
VANISHING CYCLES AND MONODROMY OF COMPLEXPOLYNOMIALSWALTER D. NEUMANN AND PAUL NORBURYAbstract. We describe the trivial summand for monodromy around a �bre ofa polynomial map Cn ! C generalising and clarifying work of Artal Bartolo,Cassou-Nogu�es and Dimca, who proved similar results under strong restrictionson the homology of the general �bre and singularities of the other �bres. Theyalso showed a polynomial map f : C2 ! C has trivial global monodromy ifand only if it is \rational of simple type" in the terminology of Miyanishi andSugie. We re�ne this result and correct the Miyanishi-Sugie classi�cation ofsuch polynomials, pointing out that there are also non-isotrivial examples.1. IntroductionLet f : C n ! C be a primitive polynomial map (\primitive" means f is not ofthe form g � h with g : C ! C and h : C n ! C polynomial maps and deg g > 1).It is well-known that there are just �nitely many points c1; : : : ; cm 2 C for whichthe �bre f�1(ci) is \irregular", that is, it has di�erent topology from the genericor \regular" �bre.De�nition 1.1. If f�1(c) is a �bre of f : C n ! C choose � su�ciently small thatall �bres f�1(c0) with c0 2 D2� (c)�fcg are regular and let N(c) := f�1(D2� (c)). LetF = f�1(c0) be a regular �bre in N(c). ThenVq(c) := Ker�Hq(F ;Z)! Hq(N(c);Z)�V q(c) := Cok�Hq(N(c);Z)! Hq(F ;Z)�are the groups of vanishing q-cycles and vanishing q-cocycles for f�1(c). They havethe same rank, which we call the number of vanishing q-cycles for f�1(c).Choose a regular value c0 for f and paths 
i from c0 to ci for i = 1; : : : ;m whichare disjoint except at c0. We can use these paths to refer homology or cohomology ofa regular �bre near one of the irregular �bres f�1(ci) to the homology or cohomologyof the \reference" regular �bre F = f�1(c0).The fundamental group � = �1�C�fc1 ; : : : ; cmg� acts on the homologyH�(F ;Z)and cohomology H�(F ;Z). If this action is trivial we say that f has \trivial globalmonodromy group". This action has the following generators.Let hq(ci) : Hq(F ) ! Hq(F ) and hq(ci) : Hq(F ) ! Hq(F ) be the monodromyabout the �bre f�1(ci) (obtained by translating the �bre F along the path 
i untilclose to the �bre f�1(ci), then in a small loop around that �bre, and back along
i). We are interested in the �xed group Hq(F )hq(ci) = Ker�1�hq(ci)� of this localmonodromy.1991 Mathematics Subject Classi�cation. 14H20, 32S50, 57M25.This research was supported by the Australian Research Council.1



2 WALTER D. NEUMANN AND PAUL NORBURYTheorem 1.2. The maps Hq(F ;Z)! V q(ci) induce an isomorphismHq(F ;Z)�= mMi=1 V q(ci)Moreover, if we denote by Kq(ci) the image of Ker�1 � hq(ci)� under the naturalmap Hq(F )! V q(ci) then under this isomorphism we have:Ker�1� hq(cj)� = Kq(cj)�Mi 6=j V q(ci);so the subgroup of cohomology �xed under global monodromy isHq(F ;Z)� = mMi=1 Kq(ci):Theorem 1.3. Let H�(f�1(c);1) denote H�(f�1(c); U), where U is a regularneighbourhood of in�nity (e.g., U = fz 2 f�1(c) : jjzjj > Rg for large R). Then wehave a natural exact sequence:0! Cok�1� hq�1(c)�! H2n�q�1(f�1(c);1)! Kq(c)! 0:Under the assumptions that F has homology only in dimension (n � 1) andthat all singularities of �bres of f are isolated, Artal Bartolo, Cassou-Nogu�es, andDimca [1] proved the dimension formulae for Ker�1 � hn�1(c)� and Hn�1(F ;Z)�that follow from the above theorems. Polynomials f(x1; : : : ; xn) = x1g(x2; : : : ; xn)are examples of polynomials with trivial global monodromy that do not satisfy theirassumptions for n > 2.We also have a homology version of these results:Theorem 1.4. The inclusions Vq(ci)! Hq(F ;Z) induce an isomorphismHq(F ;Z)�= mMi=1 Vq(ci):Moreover, there is a natural exact sequence0! Im�1� hq(c)�! Vq(c)! H2n�q�1(f�1(c);1)! Ker�1� hq�1(c)�! 0:This has the immediate corollary:Corollary 1.5. If rc is the number of components of f�1(c) then0! Im�1� h1(q)�! V1(c)! Zrc�1 ! 0;In particular, the monodromy about the �bre f�1(c) in dimension 1 is trivial ifand only if the number of components of this �bre exceeds by one the number of itsvanishing 1-cycles.For an irreducible �bre this says this monodromy is trivial if and only if the�bre has no vanishing 1-cycles. This generalises the positive answer by Michel andWeber [5] to Dimca's question whether the local monodromy around a reduced andirreducible �bre of a polynomial f : C 2 ! C is trivial if and only if the �bre isregular, since:Theorem 1.6. For n = 2 a �bre has no vanishing cycles if and only if it is regular.



VANISHING CYCLES AND MONODROMY OF COMPLEX POLYNOMIALS 3One can show that if the monodromy around an irregular �bre of a 2-variablepolynomial is trivial then all of the components implied by Corollary 1.5 exceptone must be rational. It is not hard to �nd examples where the other componenthas any genus.We shall prove the above theorems in Section 2. But when the �bre f�1(c) isreduced with isolated singularities, there is a quick proof of Corollary 1.5. Namely,let F0 be the \non-singular core" of f�1(c) obtained by intersecting f�1(c) with avery large ball and then removing small regular neighbourhoods of its singularities.Then F0 can be isotoped into a nearby regular �bre F and it is not hard to see (cfe.g., [9]):Proposition 1.7. Under the above assumption, Hq(F; F0) is isomorphic to Vq(c)by an isomorphism that �ts in the commutative diagramHq(F; F0) �=����! Vq(c)x?? ??y�Hq(F ) 1�hq����! Hq(F )Since the number of topological components of F0 is rc, Corollary 1.5 follows inthis case using q = 1 and the long exact homology sequence for the pair (F; F0).The following consequence of the monodromy results was proved by Artal Bartoloet al. [1].Theorem 1.8. The polynomial f : C2 ! C has trivial global monodromy group ifand only if f is rational of simple type, in the sense of Miyanishi and Sugie [6].A polynomial f : C 2 ! C is \rational" if its generic �bre is rational (i.e., genuszero). \Simple type" means that if we take a nonsingular compacti�cation Y =C 2 [E of C 2 such that f extends to a holomorphic map f : Y ! CP 1 then f is ofdegree 1 on each \horizontal" irreducible component of the compacti�cation divisorE (E is a union of smooth rational curves E1; : : : ; En with normal crossings and acomponent Ei is called horizontal if f jEi is non-constant).We give a simple proof of Theorem 1.8 and re�nements of it in Section 3. Inthe �nal Section 4 we describe corrections to Miyanishi and Sugie's classi�cation ofrational polynomials of simple type. Details of this will appear elsewhere.2. Proofs of the main theoremsFor each irregular value ci we construct a neighbourhood Ni = f�1(D2� (ci)) ofthe corresponding irregular �bre as in De�nition 1.1, with � chosen small enoughthat the disks D2� (ci) are disjoint. Let c0 be a regular value outside all these disksand choose disjoint paths 
i joining c0 to each disk D2� (ci). Let P = Smi=1 
i andD = Smi=1D2� (ci) so K = P [ D is the union of these paths and disks. Then C ndeformation retracts onto f�1(K). The Mayer-Vietoris sequence for f�1(K) =f�1(P ) [ f�1(D) gives0! Hq(F )� mMi=1 Hq(Ni)! mMi=1 Hq(F )! 0; (q � 0):(1)Since the i-th summand of the sum Lm1 Hq(Ni) maps trivially to all but the i-thsummand of Lm1 Hq(F ), this shows:



4 WALTER D. NEUMANN AND PAUL NORBURYProposition 2.1. Hq(Ni) ! Hq(F ) is injective with cokernel (by De�nition 1.1)V q(ci).Thus, factoring source and target of the middle isomorphism of (1) by the sub-groupLHq(Ni) gives the isomorphismHq(F ) �=�! mMi=1 V q(ci);(2)of the �rst statement of Theorem 1.2.The long exact sequence for the pair (Ni; F ) now shows that we have a commu-tative diagram with exact rows:0 ����! Hq(Ni) ����! Hq(F ) ����! Hq+1(Ni; F ) ����! 0


 


 ??y�=0 ����! Hq(Ni) ����! Hq(F ) ����! V q(ci) ����! 0 .We now claim that we can identify the long exact sequence of the triple (Ni; @Ni; F )as follows:Hq(@Ni; F ) ����! Hq+1(Ni; @Ni) ����! Hq+1(Ni; F ) ����! Hq+1(@Ni; F )??y�= ??y�= ??y�= ??y�=Hq�1(F ) ����! H2n�q�1(f�1(ci);1) ����! V q(ci) ����! Hq(F ) .The �rst and fourth vertical isomorphisms are seen by thickening F within @Nand then using excision and the K�unneth formula:Hq(@Ni; F ) �= Hq(F � I; F � @I) �= Hq�1(F ):We have already shown the third vertical isomorphism. Thus only the second verti-cal isomorphism remains to be shown. Let N0i be f�1(D2� (ci)) \D2n where D2n is�rst chosen large enough that f�1(ci) is transverse (in the sense of strati�ed sets)to the boundary of it and all larger disks, and � is then re-chosen small enough that@D2n is transverse to f�1(c0i) for all c0i 2 D2� (ci). Put @0N0i := @Ni\N0i and F 0i :=f�1(ci)\D2n and Ci := f�1(ci)� int(F 0i ). Then the inclusion of Ni�Ci in Ni is ahomotopy equivalence and the inclusion of @Ni into @Ni[(Ni�N0i �Ci) is a homo-topy equivalence, so we have: Hq+1(Ni; @Ni) �= Hq+1(Ni�Ci; @Ni[(Ni�N0i �Ci)).Excision then shows this is isomorphic to Hq+1(N0i ; @N0i � @F 0i ), and this equalsHq+1(N0i ; @0N0i ) by homotopy equivalence. Putting @1N0i := @N0i � int(@0N0i ),Poincar�e-Lefschetz duality gives Hq+1(N0i ; @0N0i ) �= H2n�q�1(N0i ; @1N0i ). But thepair (N0i ; @1N0i ) is homotopy equivalent to (F 0i ; @F 0i ). By excision H�(F 0i ; @F 0i ) =H�(f�1(ci);1). Thus the above diagram is proved.Consider now the composition Hq(F )! V q(ci)! Hq(F ) where the second mapis the map of the above diagram. Tracing the de�nitions, we see it is the composi-tion: Hq(F )! Hq+1(@Ni; F )! Hq(F ), where the �rst map is boundary map forthe pair. This composition is evidently 1�hq(ci). Since Hq(F )! V q(ci) is surjec-tive with kernelLj 6=i V q(cj), it follows that Ker�1�hq(ci)� containsLj 6=i V q(cj).It hence has the form Kq(ci) �Lj 6=i V q(cj) in terms of the isomorphism of (2),where Kq(ci) = Ker(V q(ci) ! Hq(F )). Thus the second statement of Theorem1.2 follows. Theorem 1.3 then follows by replacing the �rst term of the bottomsequence of the above diagram by its image and the last arrow by its kernel.



VANISHING CYCLES AND MONODROMY OF COMPLEX POLYNOMIALS 5The proof of the homology versions of these results is essentially the same so weomit it.Proof of Theorem 1.6. A homology computation shows �(f�1(c)) = �(N(c)) forany n. For instance, putting c = ci we have: �(f�1(ci)) = �(F 0i ) = �(N0i ) =�(N0i ; @0N0i ) = �(Ni; @Ni) = �(Ni). This uses homotopy equivalence for the �rsttwo equalities and the homology isomorphism of the previous proof for the fourth,and the third and �fth equalities, of the form �(X) = �(X;Y ), hold because theY in both cases �bres over S1 and therefore has �(Y ) = 0 (the exact sequence of apair shows �(X;Y ) = �(X)� �(Y )).For n = 2, ~Hq(F ) and ~Hq(Ni) both vanish for q 6= 1, so the number of vanishing1-cycles is �(Ni)� �(F ) = �(f�1(ci))� �(F ). The fact that this is positive for anirregular �bre is proved in [3]. (For a reduced �bre it was �rst proved by Suzuki [12],see also [8]. The case of non-reduced �bres, which was also stated by Suzuki, butwithout proof, is an immediate consequence of Corollary 1.5 since a non-reduced�bre of a primitive polynomial must have more than one component.)3. Proof and discussion of Theorem 1.8We give two proofs of Theorem 1.8. Our �rst proof is similar to that of [1] butavoids the use of Deligne's monodromy theorem.Let Y = C 2 [E be as described just after Theorem 1.8. E is a union of smoothrational curves E1; : : : ; En with normal crossings. Let � be the number of horizontalcurves. Then we have (see e.g., Kaliman [4], Corollary 2; in the rational case thisis Lemma 1.6 of Miyanishi and Sugie [6] who attribute it to Saito [11]).Lemma 3.1. � � 1 � mXi=1(rci � 1);where ra is the number of irreducible components of f�1(a). Moreover, equalityholds if f is rational.The following lemma, which was was �rst proved by Suzuki [12], is immediatefrom Theorem 1.4.Lemma 3.2. The total number of vanishing cycles for f satis�es:mXi=1 dimV1(ci) = 1� �(F ):Now Corollary 1.5 implies that if the global monodromy is trivial thendimVi = rci � 1 for i = 1; : : : ;m,so applying the above two lemmas gives� � 1 � mXi=1(rci � 1) = mXi=1 dimV1(ci) = 1� �(F );whence � + �(F ) � 2:



6 WALTER D. NEUMANN AND PAUL NORBURYLet F be the generic �bre of f : Y ! CP 1 . Then F intersects each horizontal curveof the compacti�cation divisor E, so F � F consists of at least � points. Thus�(F ) � � + �(F ) � 2:It follows that these inequalities are equalities. Thus, F is a rational curve and,moreover, F intersects each horizontal curve in exactly one point, so f is of simpletype.Conversely, if f is rational of simple type, then the homology of a generic �brehas a basis consisting of small circles about all but one of its punctures. Thepunctures occur where the compacti�ed �bre F intersects the horizontal curves, sothe homology classes can be globally indexed by which horizontal curve they comefrom. It follows that the global monodromy must be trivial.There is also a quick proof using only Deligne's monodromy theorem [2]. Indeed,Deligne's theorem gives an epimorphism H1(Y ) ! H1(F )�, but H1(Y ) = 0, sothis implies the �rst part of the following proposition (which strengthens Theorem1.8).Proposition 3.3. 1. The global monodromy on the closed �bre F is trivial if andonly if f has rational generic �bres.2. If we consider the subgroup B � H1(F ) generated by small loops around thepunctures of F , then the global monodromy restricted to B is trivial if and only iff is degree 1 on all horizontal curves.For the second part of this proposition note that if f is degree > 1 on somehorizontal curve E then the homology classes represented by the punctures whereF meets E get permuted non-trivially as we circle a branch point of f jE.We can re�ne the last argument to obtain a stronger result. Let pi1; : : : ; piki bethe points where f�1(ci) meets horizontal curves and for each j = 1; : : : ; ki let �ijbe the degree of f on a small neighbourhood of the point pij in its horizontal curve.Thus, the generic �bre F near f�1(ci) has �ij punctures near pij that are cyclicallypermuted by the monodromy around ci. It follows that the restriction of 1�h1(ci)to the subgroup B of the above proposition has image of dimensionPkij=1(�ij � 1).Denote eci : = dim Im�1� h1(ci)�� dim Im��1� h1(ci)�jB�= dim Im�1� h1(ci)�� kiXj=1(�ij � 1):This measures the \extra" part of Im�1 � h1(ci)� that does not arise from thehomology at in�nity.It is clear that if eci = 0 then the local monodromy h1(ci) : H1(F ) ! H1(F ) ofthe closed �bre around f�1(ci) is trivial. The converse is not true for arbitrary mapsof a surface, but the following theorem implies that it is for our local monodromymap.Theorem 3.4. With V 1(ci) := Ker(H1(F )! H1(N i)), we haveIm�1� h1(ci)� � V 1(ci)



VANISHING CYCLES AND MONODROMY OF COMPLEX POLYNOMIALS 7and both these groups have rank eci . MoreovermXi=1 eci � 2 genus(F ):Proof. The inclusion Im(1�h1(ci)) � V 1(ci) is clear, while the fact that they havethe same dimension is proved in part 2c) of section III of [1] (note that dimV 1(ci)is exactly the number kci of Kaliman [4], discussed also in [1]). We have a shortexact sequence 0! B ! H1(F )! H1(F )! 0(3)and taking the image of 1� h(ci) applied to this sequence gives a sequence0! ZPj(�ij�1) ! Im�1� h1(ci)�! Im�1� h1(ci)�! 0:(4)This sequence is exact except possibly at its middle term (this holds for a ho-momorphic image of any short exact sequence). The cokernel of ZPj(�ij�1) !Im�1 � h1(ci)� has dimension, by de�nition, eci . Since the sequence induces asurjection of this cokernel to Im�1� h1(ci)� we see:eci � kci :(5)On the other hand, Corollary 1.5 implies:dimV (ci) = dim Im�1� h1(ci)�+ (rci � 1) = kiXj=1(�ij � 1) + eci + rci � 1:Summing this over i and applying Lemma 3.2 on the left and the Riemann-Hurwitzformula on the right gives1� �(F ) =X(dE � 1) + mXi=1(eci + rci � 1);where the �rst sum on the right is over all horizontal curves E and dE is the degreeof f on E. Since P dE is the number of punctures of F this simpli�es to2 genus(F ) = 1� � + mXi=1(eci + rci � 1);(6)where � is the number of horizontal curves. But Kaliman proves this equation in[4] with eci replaced by kci , so the inequalities (5) must be equalities. The �nalinequality of the theorem follows from (6) and Lemma 3.1.A surprising consequence of the above proof is the exactness of the kernel sequence(and hence also the image sequence (4)) of 1 � h(ci) applied to the short exactsequence (3). Indeed, if we replace each group A in (3) by the chain complex0! A 1�h�! A! 0, then the resulting short exact sequence of chain complexes haslong exact homology sequence 0! Ker(1�h1jB)! Ker(1�h1)! Ker(1�h1)!Cok(1 � h1jB) ! Cok(1 � h1) ! Cok(1 � h1) ! 0. The equality in (5) impliesthat the middle map of this sequence has rank 0, and hence is the zero map sinceCok(1� h1jB) is free abelian.



8 WALTER D. NEUMANN AND PAUL NORBURY4. Classification of rational polynomials of simple typeThe classi�cation in [6] mistakenly assumed isotriviality (all regular �bres of fare conformally isomorphic to each other) at one stage in the proof (page 346, lines10{11). There are in fact also many non-isotrivial 2-variable rational polynomialsof simple type, the simplest being f(x; y) = x(1 + xy)(1 + axy) + xy of degree 5,whose regular �bres f�1(c) are 4-punctured CP 1 's such that the cross-ratio of thepunctures varies linearly with c.In this section we list the non-isotrivial rational polynomials of simple type. Welist their regular splice diagrams (see [7], [8]), since this gives a useful descriptionof the topology. For each case there are several possible topologies for the irregular�bres, depending on additional parameters. We have a proof that these examplescomplete the classi�cation but it is tedious and not yet written down in full detail,so the result should be considered tentative.Let p; q; P;Q be positive integers with Pq � pQ = 1 and let r and a1; : : : ; arbe positive integers. Let A = Pri=1 ai, B = AQ + P � Q, C = Aq + p � q, andbi = qQai + 1 for i = 1; : : : ; r. Then the following is the regular splice diagram ofa rational polynomial of simple type. �a11
��

�� Q �1
��

�q B �1
��

�C 1 � 1 �Q �q�P 1 �b1 qqqqqqqqqqqqqq 1 �br MM
MM

MM
MM

MM
MM

MM
... ...�p1oo �ar1

��

��There is one further degree 8 example that does not fall in the above family. Thesplice diagram is� 2 � �5 11
��

� �1 12
��

� 1 �3 � 1 //2
��In all these examples the curve obtained by �lling the puncture correspondingto the second arrowhead from the left has constant conformal type as we vary theregular �bre f�1(c), and that puncture varies linearly with c 2 C .References[1] E. Artal Bartolo, P. Cassou-Nogu�es, and A. Dimca, Sur la topologie des polynômes complexes,preprint.[2] P. Deligne, Th�eorie de Hodge II, Publ. Math. IHES 40 (1971), 5{58.[3] Ha Huy Vui, and Lê D~ung Tr�ang, Sur la topologie des polynomes complexes, Acta Mathe-matica Vietnamica, 9 (1984), 21{32.[4] S. Kaliman, Two remarks on polynomials in two variables, Paci�c J. Math. 154 (1992),285{295.[5] F. Michel and C. Weber, On the monodromies of a polynomial map from C2 to C, preprint.[6] M. Miyanishi and T. Sugie, Generically rational polynomials, Osaka J. Math. 17 (1980),339{362.[7] W.D. Neumann, Complex algebraic plane curves via their links at in�nity, Inv. Math. 98(1989), 445{489.



VANISHING CYCLES AND MONODROMY OF COMPLEX POLYNOMIALS 9[8] W.D. Neumann, Irregular links at in�nity of complex a�ne plane curves, Quarterly J. Math.(to appear).[9] W.D. Neumann and P. Norbury, Unfoldings at in�nity of polynomial maps, in preparation.[10] W.D. Neumann and P. Norbury, Rational polynomials of simple type, in preparation.[11] H. Saito, Fonctions enti�eres qui se reduisent �a certains polyn�omes. II, Osaka J. Math. 9(1977), 649{674.[12] M. Suzuki, Propri�et�es topologiques des polynômes de deux variables complexes, et automor-phismes alg�ebriques de l'espace C 2 , J. Math. Soc. Japan 26 (1974), 241-257.Department of Mathematics, The University of Melbourne, Parkville, Vic 3052, Aus-traliaE-mail address: neumann@ms.unimelb.edu.auDepartment of Mathematics, The University of Melbourne, Parkville, Vic 3052, Aus-traliaE-mail address: norbs@ms.unimelb.edu.au


