VANISHING CYCLES AND MONODROMY OF COMPLEX
POLYNOMIALS
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ABSTRACT. We describe the trivial summand for monodromy around a fibre of
a polynomial map C* — C generalising and clarifying work of Artal Bartolo,
Cassou-Nogues and Dimca, who proved similar results under strong restrictions
on the homology of the general fibre and singularities of the other fibres. They
also showed a polynomial map f: C> — C has trivial global monodromy if
and only if it is “rational of simple type” in the terminology of Miyanishi and
Sugie. We refine this result and correct the Miyanishi-Sugie classification of
such polynomials, pointing out that there are also non-isotrivial examples.

1. INTRODUCTION

Let f: C* — C be a primitive polynomial map (“primitive” means f is not of
the form g o h with g: C — C and h: C* — C polynomial maps and degg > 1).
It is well-known that there are just finitely many points ¢q,...,c¢n € C for which
the fibre f~1(c;) is “irregular”, that is, it has different topology from the generic
or “regular” fibre.

Definition 1.1. If f~!(¢) is a fibre of f: C* — C choose € sufficiently small that
all fibres f~1(c') with ¢/ € D?(c) — {c} are regular and let N(c) := f~1(D?(c)). Let
F = f~'(c') be a regular fibre in N(c). Then

Vy(c) == Ker(Hq(F; 7)— Hq(N(c);Z))
Vi(e) := Cok(Hq(N(c);Z) — HI(F; Z))

are the groups of vanishing q-cycles and vanishing q-cocycles for f~1(¢). They have
the same rank, which we call the number of vanishing q-cycles for f~1(c).

Choose a regular value ¢g for f and paths ~y; from ¢g to ¢; for i = 1,...,m which
are disjoint except at ¢g. We can use these paths to refer homology or cohomology of
aregular fibre near one of the irregular fibres f ! (¢;) to the homology or cohomology
of the “reference” regular fibre F' = f~!(cq).

The fundamental group II = m; ((Cf{(:l ey cm}) acts on the homology H, (F';Z)
and cohomology H*(F';Z). If this action is trivial we say that f has “trivial global
monodromy group”. This action has the following generators.

Let hy(c;): Hy(F) = Hy(F) and hi(c;): HY(F) — H?(F) be the monodromy
about the fibre f~!(¢;) (obtained by translating the fibre F along the path +; until
close to the fibre f~1(¢;), then in a small loop around that fibre, and back along
7i). We are interested in the fixed group H?(F)"*(¢) = Ker(1— h?(c;)) of this local
monodromy.
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Theorem 1.2. The maps HY(F;7Z) — Vi(c;) induce an isomorphism
HYF;Z) = P V(e
i=1

Moreover, if we denote by K%(c;) the image of Ker(l - h"(c,;)) under the natural
map HY(F) — Vi(c;) then under this isomorphism we have:

Ker(1 - h'(c;)) = K(c;) @ @ V(cs),
i#£]

so the subgroup of cohomology fized under global monodromy is
HY(F;2)" = @ K(cs).
i=1

Theorem 1.3. Let H,.(f '(c),oc) denote H.(f '(c),U), where U is a reqular
neighbourhood of infinity (e.g., U = {z € f(c) : ||z|| > R} for large R). Then we

have a natural exact sequence:
0 — Cok(1 — h"'(c)) = Hap—q—1(f " (c),00) = K(c) = 0.

Under the assumptions that F' has homology only in dimension (n — 1) and
that all singularities of fibres of f are isolated, Artal Bartolo, Cassou-Nogués, and
Dimca [1] proved the dimension formulae for Ker(1 — A" "!(c)) and H™ ' (F; Z)"
that follow from the above theorems. Polynomials f(x1,...,2n) = z19(za, ..., xn)
are examples of polynomials with trivial global monodromy that do not satisfy their
assumptions for n > 2.

We also have a homology version of these results:

Theorem 1.4. The inclusions V,(c;) = Hy(F;7Z) induce an isomorphism
Hy(F;7) = @ Vy(cs).
i=1

Moreover, there is a natural exact sequence

0 — Im(1 — hy(c)) = Vyle) = H* 71 (f ' (c),00) = Ker(1 — hy_1(c)) — 0.
This has the immediate corollary:

Corollary 1.5. If r. is the number of components of f~1(c) then
0—=Im(1—hi(q) = Vi(c) > Z ' =0,

In particular, the monodromy about the fibre f~'(c) in dimension 1 is trivial if
and only if the number of components of this fibre exceeds by one the number of its
vanishing 1-cycles. O

For an irreducible fibre this says this monodromy is trivial if and only if the
fibre has no vanishing 1-cycles. This generalises the positive answer by Michel and
Weber [5] to Dimca’s question whether the local monodromy around a reduced and
irreducible fibre of a polynomial f: C> — C is trivial if and only if the fibre is
regular, since:

Theorem 1.6. Forn = 2 a fibre has no vanishing cycles if and only if it is reqular.
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One can show that if the monodromy around an irregular fibre of a 2-variable
polynomial is trivial then all of the components implied by Corollary 1.5 except
one must be rational. It is not hard to find examples where the other component
has any genus.

We shall prove the above theorems in Section 2. But when the fibre f~1(c) is
reduced with isolated singularities, there is a quick proof of Corollary 1.5. Namely,
let Fy be the “non-singular core” of f~!(c) obtained by intersecting f~'(c) with a
very large ball and then removing small regular neighbourhoods of its singularities.
Then Fy can be isotoped into a nearby regular fibre F' and it is not hard to see (cf

e.g., [9)):

Proposition 1.7. Under the above assumption, H,(F, Fy) is isomorphic to V(c)
by an isomorphism that fits in the commutative diagram

Hy(F,Fy) —— V,(c)

| IE
Hy(F) —"% H,(F)

Since the number of topological components of Fjy is r., Corollary 1.5 follows in
this case using ¢ = 1 and the long exact homology sequence for the pair (F, Fp).

The following consequence of the monodromy results was proved by Artal Bartolo
et al. [1].

Theorem 1.8. The polynomial f: C? — C has trivial global monodromy group if
and only if f is rational of simple type, in the sense of Miyanishi and Sugie [6].

A polynomial f: C? — C is “rational” if its generic fibre is rational (i.e., genus
zero). “Simple type” means that if we take a nonsingular compactification ¥V =
C? U E of C? such that f extends to a holomorphic map f: Y — CP! then f is of
degree 1 on each “horizontal” irreducible component of the compactification divisor
E (FE is a union of smooth rational curves Ei, ..., E, with normal crossings and a
component F; is called horizontal if f|E; is non-constant).

We give a simple proof of Theorem 1.8 and refinements of it in Section 3. In
the final Section 4 we describe corrections to Miyanishi and Sugie’s classification of

rational polynomials of simple type. Details of this will appear elsewhere.

2. PROOFS OF THE MAIN THEOREMS

For each irregular value ¢; we construct a neighbourhood N; = f~1(D2?(¢;)) of
the corresponding irregular fibre as in Definition 1.1, with € chosen small enough
that the disks D?(c;) are disjoint. Let ¢ be a regular value outside all these disks
and choose disjoint paths 7; joining ¢ to each disk D?(¢;). Let P = [J", v; and
D =", D(¢;) so K = P U D is the union of these paths and disks. Then C"
deformation retracts onto f~'(K). The Mayer-Vietoris sequence for f~1(K) =
71 (P)U £1(D) gives

(1) OAHq(F)e;éH‘I(Ni)—>€mBH‘1(F)—>0, (q>0).

Since the i-th summand of the sum @]" HY(N;) maps trivially to all but the i-th
summand of @]" H,(F), this shows:
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Proposition 2.1. H4(N;) — HY(F) is injective with cokernel (by Definition 1.1)
Vi (Cz) O

Thus, factoring source and target of the middle isomorphism of (1) by the sub-
group @ H(N;) gives the isomorphism

(2) HY(F) — @ Vi(e),

of the first statement of Theorem 1.2.
The long exact sequence for the pair (N;, F') now shows that we have a commu-
tative diagram with exact rows:

0 —— HY(N;) —— HY(F) —— H'(N;, F) — 0

H | l

0 —— HYN;) —— HYF) —— Vi(e;) — 0.

IR

We now claim that we can identify the long exact sequence of the triple (N;, ON;, F)
as follows:

Hq(aN“F) e Hq“(NZ-,E)Ni) e Hq+](Ni7F) E— Hq+](8NZ-7F)

- k l E

HY(F) —— Hyyga(f'(ci),00) ——  Vi(e) ——  HIF).
The first and fourth vertical isomorphisms are seen by thickening F' within 0N
and then using excision and the Kinneth formula:

HY(ON;, F) = HY(F x I,F x 9I) = H' ' (F).

We have already shown the third vertical isomorphism. Thus only the second verti-
cal isomorphism remains to be shown. Let N be f~'(D2?(c;)) N D?" where D?" is
first chosen large enough that f1(¢;) is transverse (in the sense of stratified sets)
to the boundary of it and all larger disks, and € is then re-chosen small enough that
OD*" is transverse to f~'(c}) for all ¢} € D?(c;). Put 9Ny := ON; NN and F) :=
f'(e;)ND*" and C; := f~'(c;) —int(F}). Then the inclusion of N; —C; in N; is a
homotopy equivalence and the inclusion of ON; into ON;U(N; — N? — ;) is a homo-
topy equivalence, so we have: H*1(N;, ON;) = HTY(N;—C;, ON;U(N; —N?—C))).
Excision then shows this is isomorphic to H9T!(N?,ON? — OF!), and this equals
HITY(N? 99N?) by homotopy equivalence. Putting ;N := N — int(9yN?),
Poincaré-Lefschetz duality gives HIT' (NP, Oy N?) = Hy,, 1 (N2, 01 N?). But the
pair (N?,8; N?) is homotopy equivalent to (F?,0F}). By excision H,(F?,0F) =
H,(f '(c;),00). Thus the above diagram is proved.

Consider now the composition HY(F) — V(¢;) = H(F) where the second map
is the map of the above diagram. Tracing the definitions, we see it is the composi-
tion: HY(F) — HY"'(ON;, F) — H!(F), where the first map is boundary map for
the pair. This composition is evidently 1 — h%(c;). Since HY(F) — V1(c¢;) is surjec-
tive with kernel @;_,; V(c;), it follows that Ker(1—h%(c;)) contains D, Vile)).
It hence has the form K?(¢;) © @,;,,; V(¢;) in terms of the isomorphism of (2),
where K7(¢;) = Ker(V(¢;) — H(F)). Thus the second statement of Theorem
1.2 follows. Theorem 1.3 then follows by replacing the first term of the bottom
sequence of the above diagram by its image and the last arrow by its kernel. O

IR
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The proof of the homology versions of these results is essentially the same so we
omit it.

Proof of Theorem 1.6. A homology computation shows x(f1(c)) = x(N(c)) for
any n. For instance, putting ¢ = ¢; we have: x(f '(c;)) = x(F?) = x(N?) =
X(N?,0oN?) = x(N;,ON;) = x(N;). This uses homotopy equivalence for the first
two equalities and the homology isomorphism of the previous proof for the fourth,
and the third and fifth equalities, of the form y(X) = x(X,Y), hold because the

Y in both cases fibres over S! and therefore has x(Y) = 0 (the exact sequence of a
pair shows x(X,Y) = x(X) — x(Y)).

For n = 2, I:Tq(F) and flq(Ni) both vanish for ¢ # 1, so the number of vanishing
1-cycles is x(N;) — x(F) = x(f (¢;)) — x(F). The fact that this is positive for an
irregular fibre is proved in [3]. (For a reduced fibre it was first proved by Suzuki [12],
see also [8]. The case of non-reduced fibres, which was also stated by Suzuki, but
without proof, is an immediate consequence of Corollary 1.5 since a non-reduced
fibre of a primitive polynomial must have more than one component.) |

3. PROOF AND DISCUSSION OF THEOREM 1.8

We give two proofs of Theorem 1.8. Our first proof is similar to that of [1] but
avoids the use of Deligne’s monodromy theorem.

Let Y = C? UE be as described just after Theorem 1.8. E is a union of smooth
rational curves Ey, ..., E, with normal crossings. Let § be the number of horizontal
curves. Then we have (see e.g., Kaliman [4], Corollary 2; in the rational case this
is Lemma 1.6 of Miyanishi and Sugie [6] who attribute it to Saito [11]).

Lemma 3.1.
m
51> (re, — 1),
i=1
where r, is the number of irreducible components of f~'(a). Moreover, equality

holds if f is rational. O

The following lemma, which was was first proved by Suzuki [12], is immediate
from Theorem 1.4.

Lemma 3.2. The total number of vanishing cycles for f satisfies:
> dimVi(e;) = 1= x(F).
i=1

Now Corollary 1.5 implies that if the global monodromy is trivial then
dimV;=r, -1 fori=1,...,m,
so applying the above two lemmas gives
51> (re, ~1)=> dimVi(e;) = 1 — x(F),
i=1 i=1
whence

0+ x(F)>2.
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Let F be the generic fibre of f: ¥V — (EP] . Then F intersects each horizontal curve
of the compactification divisor F, so F' — F consists of at least § points. Thus

x(F) > 6+ x(F) > 2.

It follows that these inequalities are equalities. Thus, F' is a rational curve and,
moreover, F intersects each horizontal curve in exactly one point, so f is of simple
type.

Conversely, if f is rational of simple type, then the homology of a generic fibre
has a basis consisting of small circles about all but one of its punctures. The
punctures occur where the compactified fibre F intersects the horizontal curves, so
the homology classes can be globally indexed by which horizontal curve they come
from. It follows that the global monodromy must be trivial. [l

There is also a quick proof using only Deligne’s monodromy theorem [2]. Indeed,
Deligne’s theorem gives an epimorphism H'(Y) — H'(F)", but H'(Y) = 0, so
this implies the first part of the following proposition (which strengthens Theorem
1.8).

Proposition 3.3. 1. The global monodromy on the closed fibre F is trivial if and
only if f has rational generic fibres.

2. If we consider the subgroup B C Hy(F) generated by small loops around the
punctures of F, then the global monodromy restricted to B is trivial if and only if

f is degree 1 on all horizontal curves.

For the second part of this proposition note that if f is degree > 1 on some
horizontal curve E then the homology classes represented by the punctures where

F meets E get permuted non-trivially as we circle a branch point of f|E. O

We can refine the last argument to obtain a stronger result. Let p;1,...,p,; be
——1

the points where f (¢;) meets horizontal curves and for each j = 1,...,k; let d;;

be the degree of f on a small neighbourhood of the point p;j in its horizontal curve.
Thus, the generic fibre F near f~'(c;) has d;; punctures near p;; that are cyclically
permuted by the monodromy around ¢;. It follows that the restriction of 1 — hy(¢;)
to the subgroup B of the above proposition has image of dimension ZI;:] (05 — 1).
Denote

ee, - = dimIm(1 — hy(¢;)) — dimIm((1 — hy(c;))|B)
k;

=dimTm(1 = hy(c;)) = Y _ (65 — 1).

J=1

This measures the “extra” part of Im(l - h (cz)) that does not arise from the
homology at infinity. _ . .
It is clear that if e., = 0 then the local monodromy hi(c;): Hi(F) — Hy(F) of

-1 . o . .
the closed fibre around f ~(¢;) is trivial. The converse is not true for arbitrary maps
of a surface, but the following theorem implies that it is for our local monodromy
map.

Theorem 3.4. With V,(c;) := Ker(H,(F) — H;(N;)), we have

Im (1 — hy(c;)) C Vilei)
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and both these groups have rank e.,. Moreover
m
Z €c; > 2genus(F).
i=1

Proof. The inclusion Im(1 — h;(¢;)) C Vi (c;) is clear, while the fact that they have
the same dimension is proved in part 2c) of section III of [1] (note that dim V' (c;)
is exactly the number k., of Kaliman [4], discussed also in [1]). We have a short
exact sequence

(3) 0—B— H{(F)— H{(F)—0
and taking the image of 1 — h(¢;) applied to this sequence gives a sequence
(4) 0= 220D 5 Im(1— hy(e;)) = Im(1— Ty (e;)) = 0.

This sequence is exact except possibly at its middle term (this holds for a ho-
momorphic image of any short exact sequence). The cokernel of 7,206 =1)
Im(l — h1(ci)) has dimension, by definition, e.,. Since the sequence induces a
surjection of this cokernel to Im(1 — hy(c;)) we see:

(5) €c; > ke,
On the other hand, Corollary 1.5 implies:

ki
dimV(¢;) = dimIm(l — h,l(ci)) + (r., — 1) = Z((Sij - 1) +e, +r, — L

Jj=1

Summing this over ¢ and applying Lemma 3.2 on the left and the Riemann-Hurwitz
formula on the right gives

1- X(F) = Z(dE - 1) + Z(efi + e — 1):
i=1
whgre the first sum on the right is over all horizontal curves E and dg is the degree
of f on E. Since Y dg is the number of punctures of F' this simplifies to

(6) 2genus(F)=1-4§+ Z(€C¢ +r, — 1),

i=1
where 0 is the number of horizontal curves. But Kaliman proves this equation in
[4] with e., replaced by k., so the inequalities (5) must be equalities. The final
inequality of the theorem follows from (6) and Lemma 3.1. O

A surprising consequence of the above proof is the exactness of the kernel sequence
(and hence also the image sequence (4)) of 1 — h(c¢;) applied to the short exact
sequence (3). Indeed, if we replace each group A in (3) by the chain complex

0 At a4 0, then the resulting short exact sequence of chain complexes has
long exact homology sequence 0 — Ker(1 — hy|B) — Ker(1 —h;) — Ker(1 —h;) —
Cok(1 — hy|B) — Cok(1 — hy) = Cok(1 — h;) = 0. The equality in (5) implies
that the middle map of this sequence has rank 0, and hence is the zero map since
Cok(1 — hy|B) is free abelian.
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4. CLASSIFICATION OF RATIONAL POLYNOMIALS OF SIMPLE TYPE

The classification in [6] mistakenly assumed isotriviality (all regular fibres of f
are conformally isomorphic to each other) at one stage in the proof (page 346, lines
10 11). There are in fact also many non-isotrivial 2-variable rational polynomials
of simple type, the simplest being f(z,y) = z(1 + zy)(1 + azy) + zy of degree 5,
whose regular fibres f~1(c) are 4-punctured CP!’s such that the cross-ratio of the
punctures varies linearly with c.

In this section we list the non-isotrivial rational polynomials of simple type. We
list their regular splice diagrams (see [7], [8]), since this gives a useful description
of the topology. For each case there are several possible topologies for the irregular
fibres, depending on additional parameters. We have a proof that these examples
complete the classification but it is tedious and not yet written down in full detail,
so the result should be considered tentative.

Let p,q, P,Q be positive integers with Pqg — pQQ = 1 and let r and ay,...,a,
be positive integers. Let A = Y7 a;, B=AQ+ P~ Q, C = Ag+p— ¢, and
b; = qQa; + 1 for i = 1,...,r. Then the following is the regular splice diagram of
a rational polynomial of simple type.

There is one further degree 8 example that does not fall in the above family. The
splice diagram is

In all these examples the curve obtained by filling the puncture corresponding
to the second arrowhead from the left has constant conformal type as we vary the
regular fibre f~1(c), and that puncture varies linearly with ¢ € C.
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