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Abstract. We associate to an SU(2) hyperbolic monopole a holomorphic
sphere embedded in projective space and use this to uncover various features
of the monopole.

1. Introduction

In this paper we exploit the geometry of hyperbolic space to study monopoles.
We will use features of hyperbolic space that do not arise in Euclidean space,
and hence expose properties of hyperbolic monopoles that have no analogues for
Euclidean monopoles. The space of geodesics in H3 is the complex manifold

Z = P1 × P1 − ∆̄

where the point (w, z) ∈ P1×P1 represents the geodesic that runs from ŵ = −1/w̄,
the antipodal point of w, to z considered as points on the sphere at infinity. The
antidiagonal ∆̄ has been removed, although one aspect of this paper is that in some
sense we can replace the antidiagonal, making sense of (ẑ, z), which represents a
geodesic from z to itself.

A monopole is a pair (A,Φ) consisting of a connection A with L2 curvature FA
defined on a trivial bundle E over R3 with structure group SU(2), and a Higgs field
Φ : R3 → su(2) that solves the Bogomolny equation

dAΦ = ∗FA
and satisfies limr→∞ ||Φ|| = m, the mass of the monopole. The charge of the
monopole is defined to be the topological degree of the map Φ∞ : S2 → S2. The
gauge group of maps g : R3 → SU(2) acts on the equations and we identify gauge
equivalent monopoles. The metric is featured in the Hodge star, ∗. In this paper
we will mainly consider the hyperbolic metric and sometimes refer to the Euclidean
metric.

Hyperbolic and Euclidean monopoles have been studied using three construc-
tions: the spectral curve, Nahm data, and the rational map [2, 6, 8, 9, 10, 16, 17].
Each construction is related, although they are different enough that a particular
aspect of monopoles is often more readily seen from the perspective of one of these
constructions. The rational map and the spectral curve use solutions of an ordi-
nary differential equation ((1) in the next section) defined along geodesics, known
as the scattering equation. The rational map arises when one restricts the scattering
equation to the pencil of geodesics that contain a common point (which may be at
infinity.) The spectral curve is defined to be the set of geodesics along which the
scattering equation has an L2 solution. It is a compact algebraic curve inside the
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variety of geodesics. The spectral curve of a charge k monopole is a degree (k, k)
curve in P1 × P1 − ∆̄, or equivalently the zero set of a holomorphic section of the
line bundle O(k, k).

In this paper, we introduce a fourth construction for hyperbolic monopoles—an
embedded holomorphic sphere in projective space. Such a construction has existed
previously for half-integer mass hyperbolic monopoles [6]. We define it for any
real mass using completely different techniques to [6] and give various applications,
some of which are known for half-integer mass monopoles.

A hyperbolic monopole has a well-defined limit at infinity given by a reducible
connection A∞ over a two-sphere. Denote by FA∞ the curvature of the reducible
connection.

Theorem 1. An SU(2) hyperbolic monopole (A,Φ) of charge k is determined by
a degree k holomorphic embedding q : P1 → Pk uniquely defined up to the action of
U(k + 1) on its image with the properties:

(i) Σ = {(w, z) ∈ P1 × P1 | 〈q(ŵ), q(z)〉 = 0} is the spectral curve of (A,Φ);
(ii) FA∞ = q∗ω, for ω the Kahler form on Pk.

One consequence of the theorem is the fact that an SU(2) hyperbolic monopole
is determined up to gauge by its reducible connection on the sphere at infinity. This
was proven in [19] by a different method, and for the half-integer mass case in [6]
also using an embedded sphere in projective space.

Theorem 1 relies on the fact that P1 × P1 − ∆̄, the twistor space of geodesics
in H3, has a compactification obtained by including a totally real surface. The
same situation seems to arise for spherical monopoles [20] which would lead one to
predict that a monopole with one singularity on S3 is determined by its asymptotic
value near the singularity, and it is neatly described by a holomorphic sphere in
projective space. The construction does not apply to Euclidean monopoles. Only
the charge of a Euclidean monopole is detected from its reducible connection at
infinity. The difference comes down to the asymptotic decay conditions forced on
finite energy monopoles in Euclidean and hyperbolic spaces.

The centre of a Euclidean monopole is defined in [4]. Previously a definition
of the centre has existed only for half-integer mass hyperbolic monopoles. In [23]
the third author proposed a definition for a general hyperbolic monopole but could
not prove that the centre is unique. Intuitively, the centre of a monopole arises
from the PSL(2,C) action on hyperbolic space. One would like to show that the
PSL(2,C) orbit of a hyperbolic monopole possesses a centred monopole unique
up to the action of SO(3) ⊂ PSL(2,C). The holomorphic sphere allows one to
apply geometric invariant theory to obtain such a definition for the centre of the
monopole.

Theorem 2. There is a lift of the PSL(2,C) action on the space of hyperbolic
monopoles to a linear SL(2,C) action on CN whose stable points contain the space
of hyperbolic monopoles. A monopole has a unique centre, and it is centred when it
lies in the zero set of the moment map for SU(2) ⊂ SL(2,C).

Given a hyperbolic monopole (A,Φ) and a point w ∈ S2
∞, one can use the

scattering equation along geodesics γ satisfying limt→−∞ γ(t) = w to define a degree
k rational map fw(z) : P1 → P1. Moreover, the rational map uniquely determines
the monopole. Previously, it has not been understood how one might relate the
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different rational maps as w is varied. The holomorphic sphere q in some sense
combines all of these rational maps.

Theorem 3. For any w ∈ S2
∞,

fw = πw ◦ q : P1 → Pk → P1

where πw is projection onto a unique line Lw ⊂ Pk that contains q(w).

We have been unable to improve the theorem from an existence result to a more
satisfying version that would specify Lw, and a scale (described in Section 4), in
terms of q.

We prove Theorems 1, 2 and 3 in Sections 2, 3 and 4 respectively. Property (i) of
Theorem 1 is not sufficient to guarantee that a curve is the spectral curve of a mono-
pole. In general a spectral curve requires even further restrictions. Nevertheless, in
Section 5 we exploit the fact that for charge two monopoles no further restrictions
are necessary. In Section 6 we discuss similarities between the holomorphic sphere
and previous work on massless monopoles. In the final section we prove a vanishing
theorem for hyperbolic monopoles which we need to prove Theorem 1. This is of
some independent interest having been conjectured in [16] and is a necessary step
towards generalising that work to monopoles of non-integral mass.

2. Holomorphic sphere

Theorem 1 consists of two quite independent results. Part (i) states that the
spectral curve of a hyperbolic monopole is of a specific type inside the variety of
(k, k) curves in P1 × P1. Part (ii) is a consequence of a more direct relationship
between the spectral curve and the boundary value of the hyperbolic monopole,
given in Theorem 5 in terms of the defining polynomial of the spectral curve.

The spectral curve of a hyperbolic monopole possesses a type of positivity prop-
erty which can be seen explicitly in the case of charge 1 monopoles. The spectral
curve of a charge 1 monopole is a real (1, 1) curve corresponding to all geodesics
containing a given point of H3. Such a (1, 1) curve necessarily lies in the connected
component of the diagonal of P1 × P1 which represents all geodesics containing
0 ∈ H3. For example, if a real (1, 1) curve contains the points (0, 0) and (∞,∞), it
is of the form w − az = 0 for a ∈ R∗. It is a spectral curve of a charge 1 monopole
precisely when a > 0. The proof of the first part of Theorem 1 is a generalisation
of this simple fact, using the connectivity of the moduli space and a rather deep
analogue of the property a ∈ R∗.

The defining “polynomial” of the spectral curve of a hyperbolic monopole is an
example of a general feature used in this paper. A section of

O(k, k)
↓

Z = P1 × P1 − ∆̄

extends to a section of

O(k, k)
↓

Q = P1 × P1

and hence is given by a polynomial. More generally, if a holomorphic bundle over
Z extends to Q then any section extends. When the bundle is trivial, this says
that a holomorphic function on Z is necessarily constant, which uses the fact that
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Z contains many compact holomorphic curves, in particular those (1, 1) curves
corresponding to all geodesics containing a given point of H3. The more general
fact can be proven in a couple of ways. In the proof of Lemma 9.1, it is shown that
sections of line bundles over Z lift to homogeneous functions defined over a large
enough (to contain many compact holomorphic curves) subset of P3. An alternative
argument uses the fact that any local holomorphic function defined over a deleted
neighbourhood of a totally real submanifold, in this case any open set in ∆̄, extends
uniquely to a holomorphic function on the neighbourhood. Thus, if a holomorphic
bundle over Z extends to Q, then any local holomorphic section also extends.

2.1. Positive definite. Along any geodesic γ ⊂ H3 the monopole (A,Φ) defines
the scattering equation

(∂At − iΦ)s = 0 (1)

where t parametrises γ and s(t) is a section of E restricted to γ. The Bogomolny
equations define an integrability condition [∂At − iΦ, ∂Az̄ ] = 0 and hence local solu-

tions satisfying ∂Az̄ s = 0 can be found. These define a holomorphic bundle Ẽ over
Z with distinguished sub-line bundles L+, L− given by those solutions that decay
as t → ∞, respectively t → −∞. The line bundles L+ and L− coincide over an
algebraic curve Σ ∈ P1 × P1 known as the spectral curve. Points on the spectral
curve represent geodesics that possess a solution which decays both as t→ ±∞.

Corresponding to reversing the direction of a geodesic, the space of geodesics
P1 × P1 − ∆̄ possesses a real structure (w, z) 7→ (ẑ, ŵ). The spectral curve Σ is
invariant under the real structure since a solution of (1) along γ(t) can be used to
construct a solution of (1) along γ(−t) with decay preserved.

Lemma 2.1. The defining polynomial for the spectral curve can be chosen to satisfy

ψ(ẑ, ŵ) = ψ(w, z) (2)

and to be positive on the anti-diagonal w = ẑ.

Proof. If we take ψ(w, z) to mean a degree (k, k) polynomial in w−1 and z (perhaps
one would prefer P (w−1, z) or to refer to wkψ(w, z) as the polynomial) then one can
express the reality condition quite simply. The reality condition means that ψ(ẑ, ŵ)
and ψ(w, z) have the same zero set and since ψ(w, z) and the complex conjugate
of ψ(ẑ, ŵ) both define degree (k, k) polynomials in w−1 and z, they are the same

up to a constant ψ(ẑ, ŵ) = cψ(w, z). The spectral curve does not intersect the
anti-diagonal so ψ does not vanish there, and hence c = exp(2iθ) for some constant
θ. We can replace ψ by exp(−iθ)ψ to get (2). Since ψ does not vanish on the
anti-diagonal, it is either positive or negative there, and if the latter we can replace
it by −ψ.

Theorem 4. For each monopole (A,Φ) there exists a holomorphic embedding

q : P1 → Pk

unique up to the action of U(k + 1) on its image satisfying

〈q(ŵ), q(z)〉 = ψ(w, z).

Proof. Let v(z) = (1, z, z2, . . . , zk). Then

ψ(w, z) = v(−1/w)TΨv(z)

for a (k + 1)× (k + 1) matrix Ψ. Condition (2) is equivalent to Ψ = Ψ
T
.
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To prove the theorem we will show that the matrix Ψ is positive definite so
Ψ = Q̄TQ for an invertible (k + 1) × (k + 1) matrix Q unique up to Q 7→ uQ for
u ∈ U(k + 1). Then set q(z) = Qv(z), a degree k holomorphic map.

This proves a stronger property of q than simply being an embedding—the image
of q spans all of Pk, and we call it full. A full map is an embedding since any
singular point z would satisfy 0 = q′(z) = Qv′(z), and any double point would
satisfy 0 = q(z1) − λq(z2) = Q(v(z1)− λv(z2)), and in both cases Q would have a
non-trivial kernel, contradicting the fullness of q.

The following lemma gives part of the property that the bilinear form Ψ is
positive definite.

Lemma 2.2. The matrix Ψ is non-degenerate.

Proof. We will prove that for any (k, k) curve Σ = {(w, z) ∈ P1 × P1|ψ(w, z) = 0}
with coefficient matrix Ψ, the condition that Ψ be nondegenerate is equivalent
to H0(Σ,O(−2, k)) = 0. The spectral curve of a mass m monopole satisfies the
property L2m+k|Σ ∼= OΣ [17] so

H0(Σ,O(−2, k)) = H0(Σ, L2m(k − 2, 0))

and the latter vanishes by Theorem 7.
A section of H0(Σ,O(−2, k)) is represented by a polynomial together with the

defining polynomial of Σ, expressed as p(w), ψ(w) ∈ C[z][w−1] with coefficients
given by sections of O(k), or degree k polynomials in z, such that

w−2p(w) + ψ(w)q(w) ∈ C[z][w] for some q(w) ∈ C[w,w−1]. (3)

Put q =
∑
ql(−1)lwl−1. Then

ψ(w)q(w) =
∑

i,j,l

Ψijql(−1)i+lwl−i−1zj (4)

and the coefficient of w−1zj is
∑

i Ψijqi. The degeneracy of Ψ is equivalent to the
existence of a nontrivial q such that

∑
i Ψijqi = 0 for all j. But then (4) becomes

(3) if we move the terms on the right hand side of (4) with negative powers of w
to the left hand side, and the lemma is proven.

The difference of sections in two charts giving rise to a vector in the kernel of Ψ
looks like the coboundary map in cohomology. In fact, we can express the proof of
the lemma in terms of the exact sequence in cohomology given by

0 → H0(Σ,O(−2, k)) → H1(Q,O(−2− k, 0))
Ψ→ H1(Q,O(−2, k))

where the right-most map is multiplication by ψ(w, z) and becomes the matrix
Ψ : Ck+1 → Ck+1.

Since a continuous family of non-degenerate Hermitian matrices has constant sig-
nature, it follows from Lemma 2.2 and the connectivity of the moduli space that
we need show that only one monopole possesses a positive definite Ψ. This is true
for axially symmetric monopoles by the explicit construction given in Section 7 (or
we can prove it for half-integer mass monopoles using techniques from [6].) Hence
Ψ is positive definite for all monopoles and the theorem is proven.
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2.2. Hermitian metrics. A Hermitian metric on a vector space V is a linear map

H : V ⊗ V → C satisfying H(u, v) = H(v̄, ū)

where the map · gives an antilinear isomorphism from V to V and back.
A Hermitian metric on a holomorphic bundle uniquely determines a Hermitian

connection on the holomorphic bundle compatible with the holomorphic structure.
The reducible connection on the sphere at infinity A∞, a U(1) connection on the
holomorphic line bundle O(−k) over S2, can be described via a Hermitian metric
on O(−k). In local coordinates, the Hermitian metric, h, is locally a positive valued
function well-defined up to h(z) ∼ |g(z)|2h(z), for g a local holomorphic function.
The h-Hermitian connection is ∂z lnh · dz, or in a unitary gauge it is

A∞ = −∂z̄ ln ξ · dz̄ + ∂z ln ξ · dz (5)

for ξ2 = h, the positive square root.

Theorem 5. Let ψ be the defining polynomial of the spectral curve of (A,Φ),

Σ = {(w, z)|ψ(w, z) = 0}.
Then the restriction of ψ to the anti-diagonal, ψ|∆̄, gives rise to a Hermitian metric
on the holomorphic bundle O(−k) over ∆ that defines the connection at infinity.

Proof. The real structure on P1×P1 given by (w, z) 7→ (ẑ, ŵ) lifts to a real structure
on the bundle O(k, k). This is reflected in Lemma 2.1 where it is proven that local
trivialisations for O(k, k) can be chosen so that the involution on each fibre is simply
complex conjugation, and the real structure fixes any section of O(k, k) whose zero
set is preserved by the real structure.

Any section s of O(k, k) gives a map s : O(−k,−k) → C. Suppose s is fixed by
the real structure. Restrict s to the fixed point set of the real structure, ∆ ⊂ P1×P1.

We can identify O(−k,−k)|∆ ∼= O(−k) ⊗ O(−k) so s defines a Hermitian metric

s : O(−k)⊗O(−k) → C on the holomorphic bundle O(−k) over ∆.
Apply this to ψ, the defining polynomial of the spectral curve, since it is fixed

under the real structure. Its restriction to the anti-diagonal defines a Hermitian
metric on the holomorphic bundle O(−k), and hence a Hermitian connection there.
It remains to show that this Hermitian connection is the U(1) connection at infinity
of the monopole. This is a consequence of the following three lemmas.

In order to understand the map ψ : O(−k,−k) → C we choose local holomor-

phic sections s+(ẑ, ŵ) ⊗ s+(w, z) of O(−k,−k) where s+(w, z) is a solution of (1)
along the geodesic traveling from ŵ to z (so s+(ẑ, ŵ) is a solution of (1) along the
oppositely oriented geodesic.)

Lemma 2.3. The section ψ acts on O(−k,−k) by

ψ(s+(ẑ, ŵ)⊗ s+(w, z)) = 〈s+(ẑ, ŵ), s+(w, z)〉.
Proof. Recall from [17] that a hyperbolic monopole defines a holomorphic bundle

Ẽ → Z with two extensions:

0 → Lm(0,−k) → Ẽ → L−m(0, k) → 0

and
0 → L−m(−k, 0) → Ẽ → Lm(k, 0) → 0

for L = O(1,−1). The sub-bundles L+ = Lm(0,−k) and L− = L−m(−k, 0), defined
as the space of solutions of (1) that decay as t→∞, respectively t→ −∞, coincide
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over the spectral curve Σ and their coincidence defines a non-vanishing section over
Σ of L2m+k.

The spectral curve is a (k, k) curve with defining polynomial ψ, hence

0 → O(−k,−k) ψ→ O → OΣ → 0

we can tensor this with Lm(k, 0) to get

0 → Lm(0,−k) ψ→ Lm(k, 0) → OΣ(Lm(k, 0)) → 0
↑∼= ↑ ↑

0 → Lm(0,−k) → Ẽ → L−m(0, k) → 0

which represents ψ as a map ψ : L+ → Ẽ/L−.
For τ the real structure on the space of geodesics, there is a natural map

Ẽτ(w,z) ⊗ Ẽ(w,z) → C

given by r ⊗ s 7→ 〈r(t), s(t)〉 where r ∈ Ẽτ(w,z) and s ∈ Ẽ(w,z) or equivalently,

(∂At + iΦ)r = 0 and (∂At − iΦ)s = 0. The inner product 〈r(t), s(t)〉 is independent
of t, since

∂t〈r(t), s(t)〉 = 〈(∂At + iΦ)r(t), s(t)〉 + 〈r(t), (∂At − iΦ)s(t)〉 = 0.

Thus, ψ : L+ → Ẽ/L− can be re-expressed as ψ : (Ẽ/L−)∗ ⊗L+ → C and since

(Ẽ/L−)∗ ∼= (L−)⊥ = τ∗L+, we have

ψ(s+(ẑ, ŵ)⊗ s+(w, z)) = 〈s+(ẑ, ŵ), s+(w, z)〉.

Lemma 2.4.

lim
w→ẑ

ψ(w, z) = lim
w→ẑ

〈s+(ẑ, ŵ), s+(w, z))〉 = lim
t→∞

exp(2mt)‖s+(w, z)‖2.

Proof. In order to make sense of the lemma, we really need to choose local trivi-
alisations for the bundles so that we are dealing with local functions, and so that
s+ is well-defined. We can do this as follows. Fix limt→∞ exp(mt)s+(w, z) in a
small neighbourhood U ⊂ P1 containing z. (One can choose any family of solu-
tions s+(w0, z), for fixed w0, and use limt→∞ exp(mt)s+(w0, z).) As w moves close
enough to ẑ so that ŵ ∈ U , we use the same limit for limt→−∞ exp(mt)s+(ẑ, ŵ),
where we use the parameter −t for the oppositely oriented geodesic.

The proof is not yet immediate, since we have only arranged that the values at
opposite ends of a geodesic in the t independent quantity 〈s+(ẑ, ŵ), s+(w, z)) are
approximately the same.

Now use the fact from [21] that there exists a gauge in which

∂At ± iΦ = ∂t ± i

(
im 0
0 −im

)
+ ε · C exp(−m|t|) (6)

where C is constant and ε → 0 as w → z. We see that we do indeed end up with
the product of limt→−∞ exp(mt)s+(ẑ, ŵ) and limt→∞ exp(mt)s+(w, z) which, by
construction, tends towards limt→∞ exp(2mt)‖s+(w, z)‖2. Further details can be
found in [19].
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Lemma 2.5. Let s+ be a local holomorphic section of L+. Then if we fix w and
parametrise the sphere at infinity by z

h(w, z) = lim
t→∞

exp(2mt)‖s+(w, z)‖2

is a Hermitian metric that determines the U(1) connection at infinity.

Proof. Since the U(1) connection at infinity is Hermitian, it can be determined from
its (0, 1) part. If we fix one end of a family of geodesics (to be ŵ) and vary the other
end (z), then ∂Az̄ s+ = λ(z)s+ for some λ(z) independent of t. This follows from the
three properties (∂At − iΦ)s+ = 0, [∂Az̄ , ∂

A
t − iΦ] = 0 and ∂Az̄ s+ decays as t → ∞.

In particular, λ(z) makes sense at t = ∞ and gives the (0, 1) part of the U(1)
connection at infinity. The (1, 0) part can be determined by the fact that the U(1)
connection at infinity is Hermitian with respect to limt→∞ exp(2mt)‖s+(w, z)‖2.

From Lemmas 2.3, 2.4 and 2.5, we see that ψ|∆̄ defines a Hermitian metric that
gives rise to the U(1) connection at infinity.

Note that when choosing a local frame for O(−k,−k), if we also require

∂Az̄ s+(w, z) = 0 = ∂Aws+(w, z)

and similar conditions on s+(ẑ, ŵ), then local holomorphic sections for O(−k,−k)
are simply given in terms of local holomorphic functions with respect to this frame,
whereas without these extra conditions one must use the (0, 1) part of a connection
to detect local holomorphic sections.

It is important to understand that in order to use (5) to retrieve the connec-
tion from the Hermitian metric, one needs a local trivialisation of the holomorphic
bundle in which local holomorphic sections are given by local holomorphic func-
tions. When we choose separable transition functions for O(−k,−k), that is each
transition function is given by a product of transition functions for O(−k, 0) and
O(0,−k), then the holomorphic structure on the bundle O(−k) over the antidi-
agonal has local holomorphic sections given by local holomorphic functions. In
particular, the choice of ψ as a polynomial (in the local coordinates w and z or
−1/w and z, etc) arises from separable transition functions. Thus, we can choose ψ
to be the defining polynomial and use (5) to retrieve the connection and Theorem 5
is proven.

In the statement of Theorem 1, we express the relationship of the holomorphic
map q : P1 → Pk with the connection at infinity via FA∞ = q∗ω, for ω the Kahler
form on Pk. The holomorphic map q pulls back a Hermitian metric, its connection
and its curvature. The Hermitian metric is given by 〈q(z), q(z)〉 which, by The-
orem 4 is ψ|∆̄. Thus, Theorem 5 can be restated as q pulls back the Hermitian
metric that defines the U(1) connection at infinity and in particular FA∞ = q∗ω
and part (ii) of Theorem 1 is proven.

The real analyticity of ψ in a neighbourhood of ∆̄, and the fact that ∆̄ is a
totally real submanifold of P1 × P1 allows one to show that ψ|∆̄ well-defined up
to multiplication by holomorphic and anti-holomorphic functions uniquely extends
and hence determines ψ on P1 × P1. See [19] for details. Thus

Corollary 6. An SU(2) hyperbolic monopole is determined up to gauge by its re-
ducible connection on the sphere at infinity.
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This was proven in [19] by a slightly different method. That paper did not require
Theorem 5—ψ|∆̄ is a Hermitian metric that defines the connection at infinity—
although it did use the fact that ψ|∆̄ determines ψ. The proof of Corollary 6 in
the half integer mass case [6] uses the discrete Nahm equations to prove that a
holomorphic map q : P1 → Pk uniquely determines the monopole, and a result of
Calabi [7] to show that q∗ω uniquely determines q. That approach, combined with
Theorem 1 can be used to give a third proof of Corollary 6, although the use of
Calabi’s theorem seems a bit unnecessary given the alternative local argument.

3. Centred monopoles

The holomorphic sphere q : P1 → Pk associated to a monopole allows one to use
geometric invariant theory to define the centre of a monopole. We can represent q
by

q(z) = v0 +
√
kv1z +

√(
k

2

)
v2z

2 + · · ·+
√(

k

j

)
vjz

j + · · ·+ vkz
k

where each vj ∈ Ck+1 and the coefficients arise quite naturally as we shall see
later. The PSL(2,C) action on the domain of such maps lifts to a linear action of
SL(2,C) on (k + 1)-tuples (v0, . . . , vk) 7→ (w0, . . . , wk) where,

(
a b
c d

)
· q(z) = (cz + d)kv0 + · · ·+ (cz + d)k−j(az + b)j

√(
k

j

)
vj + . . .

= w0 +
√
kw1z + · · ·+

√(
k

j

)
wjz

j + · · ·+ wkz
k.

The space of (k+ 1)-tuples is a subset of CN (for N = (k+ 1)2), so that geometric
invariant applies. The norm on the space of (k + 1)-tuples is

‖q‖2 = ‖v0‖2 + ‖v1‖2 + · · ·+ ‖vj‖2 + · · ·+ ‖vk‖2 (7)

which is preserved by SU(2) ⊂ SL(2,C). (We are abusing notation by labeling
(v0, . . . , vk) ∈ CN by q when really q is the projective class in CPN−1.)

Recall that a (k + 1)−tuple (v0, . . . , vk) is stable under the SL(2,C) action if
and only if the map SL(2,C) → CN given by g 7→ g · (v0, . . . , vk) is proper, so in
particular the SL(2,C) orbit is closed and we can minimise the norm ‖q‖ in its
SL(2,C) orbit.

Lemma 3.1. Each (k+ 1)−tuple (v0, . . . , vk) arising from a degree k holomorphic
map q is a stable point of the SL(2,C) action.

Proof. By the Hilbert criterion it is enough to test the stability of a point on one-
parameter subgroups of SL(2,C). Any one parameter subgroup in SL(2,C) is given
by

g

(
t 0
0 t−1

)
g−1.

Since the degree of q is k then v0 6= 0 and vk 6= 0. Also, after acting by g the map q
is still of degree k and hence we may assume that v0 6= 0, vk 6= 0 and g = I . Then
the action is given by

(v0, . . . , vk) 7→ (t−kv0, . . . , t
2j−kvj , . . . , t

kvk).
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In particular, since v0 6= 0 and vk 6= 0, the norm ‖q‖ → ∞ as t→ 0 and t→∞ so
the map is proper.

Proposition 3.2. The moment map for the action of SU(2) is

µ(v0, . . . , vk) = (

k∑

j=0

(2j − k)‖vj‖2,

k−1∑

j=0

√
(j + 1)(k − j)(vj , vj+1)) ∈ R× C.

Proof. We wish to minimise the norm (7) on each SL(2,C) orbit (which is closed by
Lemma 3.1.) The minimum occurs on stationary points of the infinitesimal action
of sl(2,C). Since su(2) ⊂ sl(2,C) acts trivially it is enough to consider the actions
of

e0 =

(
1 0
0 −1

)
, eθ =

(
0 exp(iθ)
0 0

)

given by

e0 · (v0, . . . , vk) = (−kv0, (2− k)v1, . . . , (2j − k)vj , . . . , kvk)

eθ · (v0, . . . , vk) = exp(iθ)(
√
kv1, . . . ,

√
j(k + 1− j)vj , . . . ,

√
kvk, 0).

Then

e0 · ‖q‖2 = 2

k∑

j=0

(2j − k)‖vj‖2

eθ · ‖q‖2 = 2Re exp(iθ)
k−1∑

j=0

√
(j + 1)(k − j)(vj , vj+1)

and the result follows.

Definition 1. An SU(2) hyperbolic monopole is centred at 0 ∈ H3 if its associated
holomorphic sphere q : P1 → Pk lies in the zero set of the moment map µ.

A consequence of the preceeding definition and the discussion of geometric in-
variant theory is a well-defined centre of a monopole. Each PSL(2,C) orbit of a
monopole possesses a unique SO(3) orbit that lies in the zero set of the moment
map µ. Hence to each element in a PSL(2,C) orbit one can associate a unique
point of H3 which is defined to be the centre of the monopole.

4. Rational maps

Proof of Theorem 3. The rational map fw(z) : P1 → P1 is defined as follows.
Consider all geodesics that begin at w ∈ S2

∞. Frame the bundle E at w ∈ S2
∞

and extend it to a neighbourhood. This consists of choosing vectors in each of the
eigenspaces of Φ. One of these vectors extends to a unique global solution of (1)
as follows. Define sw(z) to be a solution of (1) along all geodesics beginning at
w ∈ S2

∞ and extending to S2, satisfying
(i) limt→−∞ emtsw(z) is a non-zero vector in the chosen eigenspace of Φ;
(ii) limz→w sw(z) exists;
(iii) ∂Az̄ sw(z) = 0.
Similarly, the other eigenspace gives rise to decaying solutions s− that satisfy

these conditions with emt in (i) replaced by e−mt. This frame of solutions is unique
since any other frame differs by a holomorphic gauge transformation defined over
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S2 and hence is constant, and in fact the identity since the bundle E is framed at
w.

Amongst solutions of (1) along each geodesic that begins at w ∈ S2
∞ is a solution

s+ that decays so that limt→∞ emts+ is well-defined. This defines a one-dimensional
subspace of the frame defined above, and hence of C2.

Thus, we get a map fw(z) : P1 → P1 which turns out to be holomorphic [1, 2].
The poles of fw(z) correspond to those points zi such that the solution s+ along
the geodesic from w to z decays at both ends. Equivalently, s+ is a multiple of
s− and has no sw component. Thus, the poles come from points of the spectral
curve, (ŵ, zi) ∈ Σ. We have chosen a direction in the frame C2 to represent ∞. We
choose the orthogonal direction in C2 to represent 0, so a zero of fw corresponds to
a solution s+ that is a multiple of sw and thus has no s− component. In particular,
w is a zero of fw since in the limit z → w, s+ and s− are orthogonal.

Choose w ∈ S2 and let L be any line in Pk that contains the point q(w). Let
P : Pk → L be projection onto the line. It is alternatively described as projection
onto the plane in Ck+1 defined by L using the Hermitian product on Ck+1. The
map Pq(z) : P1 → P1 is a degree k holomorphic map. We choose the direction
q(w) ∈ L to represent the point 0, and the orthogonal direction to represent ∞.
Thus Pq(z) has poles given by zi such that Pq(zi) ∈ L is orthogonal to q(w) ∈ L, so
〈q(w), q(zi)〉 = 0. The poles correspond to points of the spectral curve (ŵ, zi) ∈ Σ
and coincide with the poles of the rational map.

Furthermore, since Pq(w) = q(w), w is a zero of Pq(z) which agrees with
fw(w) = 0. There are k zeros {wi|i = 1, .., k} (w1 = w) of fw counted with
multiplicity. When the zeros are distinct, q(wi) define a k-dimensional subspace
of Ck+1, since q is full, and this possesses a unique orthogonal direction. Choose
Lw to represent the plane spanned by this orthogonal direction and q(w). Hence,
the holomorphic map Pq(z) has the same zeros and poles as fw(z). If a zero wi
has multiplicity d + 1, then q(wi), q

′(wi), .., q
(d)(wi) spans a (d + 1)−dimensional

subspace of Ck+1 and the unique orthogonal direction still exists.
The rational maps fw(z) and Pq(w) differ by a constant. This constant deter-

mines a scale on the line Lw. We supposed that the coefficients of the unit vector
in q(w) and the orthogonal unit vector in Lw determine a rational map, or in other
words that the isomorphism of Lw with P1 respects the metric on Pk. It may be
that there is another natural scale on Lw. The question of how we might determine
Lw and the scale intrinsically from q is an interesting one.

5. Charge two monopoles

For charge two hyperbolic monopoles, we can get explicit expressions for the
boundary data. We will restrict to the space of centred charge 2 hyperbolic mono-
poles since these give rise to interesting structure. A charge two monopole is centred
if after reflection in the origin, the new monopole is gauge equivalent to the orig-
inal one. Since a gauge equivalent monopole produces the same equivalence class
of holomorphic spheres in projective space, q : P1 → P2, comes from a centred
monopole when

q(ẑ) = u · q(z), for some u ∈ U(3) (8)

(u is independent of z.) If we put q = v0 + v1z
√

2 + v2z
2 for vi ∈ C3, then (8) is

equivalent to ‖v0‖2 = ‖v2‖2 and (v0, v1) + (v1, v2) = 0 and this is the zero set of
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the moment map defined in Proposition 3.2. Put

M2 = {(v0, v1, v2) ∈ C3 ⊗ C3 | ‖v0‖2 = ‖v2‖2, (v0, v1) + (v1, v2) = 0}/CU(3) (9)

where CU(3) = R+ × U(3) is the conformal unitary group which acts on a triple
by (v0, v1, v2) 7→ (u−1v0, u

−1v1, u
−1v2).

If we replace the vectors vi in (9) by vectors in C2 and quotient by CU(2) then
this gives the space of centred rational maps of degree 2 which naturally sit inside
M2. if we replace the vectors vi in (9) by vectors in C and quotient by C∗ then we
get a real structure on CP2 with fixed set RP2.

The space M2 is a five dimensional space that contains an open dense five-
dimensional manifold M0

2 ⊂ M2 that is given by triples of independent vectors.
Points of M0

2 precisely correspond to full maps q and these contain the space of
centred charge 2 hyperbolic monopoles.

There is an SO(3) action on M2 that preserves M0
2 coming from the action of

SU(2) on the polynomials (1, z, z2) given by
(

a b
−b̄ ā

)
· (1, z, z2) = ((−b̄z + ā)2, (−b̄z + ā)(az + b), (az + b)2).

It is well-defined since it commutes with the CU(3) action. A convenient description
of the space M2 is as follows.

Proposition 5.1. M2
∼= su(2) ⊗ su(2)/CO(3) and the isomorphism respects the

right SO(3) actions.

Proof. Again CO(3) = R+ × SO(3) is the conformal orthogonal group. A point of
su(2) ⊗ su(2)/CO(3) is represented by a triple (r0, r1, r2) for ri ∈ su(2), and the
isomorphism is given by

(r0, r1, r2) 7→
(

1√
2
(r0 + r2i), r1,

1√
2
(−r0 + r2i)

)
.

The proof requires the choice of representatives in each CU(3) orbit

M2
∼= {(v0, v1,−v̄0) | v1 ∈ R3}.

Using CU(3), we may assume that v1 = (1, 0, 0) so that by (9) v0 = (c, ξ0) and
v2 = (−c̄, ξ2) for ξi ∈ C2 satisfying ‖xi0‖2 = ‖xi2‖2. Now use u ∈ U(2) to realise
uξ2 = −ūξ̄0, or equivalently uTuξ2 = −ξ̄0. We can do this since {uTu|u ∈ U(2)}
acts transitively on S3 ⊂ C2.

One would expect that M0
2 is a one parameter family of four-dimensional man-

ifolds of centred charge 2 hyperbolic monopoles with given mass. In fact, it seems
that half of M0

2 does not represent hyperbolic monopoles. Evidence for this is the
fact that the point of M0

2 consisting of {vi = ei|i = 0, 1, 2}, where e0, e1, e2 is an
orthonormal set of basis vectors, is the unique fixed point of the SO(3) action on
M0

2. Such a point cannot correspond to a hyperbolic monopole, since no monopole
is SO(3) invariant. It does correspond to all charge 2 Euclidean monopoles since
they each give a symmetric measure at infinity which would be pulled back by the
this fixed point.

Consider the axially symmetric points in M0
2. These are given by orthogonal

triples (v0, v1, v2) and thus the spectral curve is given by

w2 − 2‖v1‖2wz + z2 = 0.
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In Section 7 we calculate the spectral curves of axially symmetric monopoles. In
the charge 2 case, we find that the spectral curve is w2− 2 cos(π/(2m+2))wz+ z2.
Thus ‖v1‖2 = cos(π/(2m + 2)) and in particular it takes its values on the unit
interval and the symmetric point is on one side of the allowed values.

In general, we expect the four dimensional spaces of monopoles with given mass
to form two sided hypersurfaces in M0

2. We expect the symmetric point to partition
M0

2 into two pieces, one containing hyperbolic monopoles. The piece containing
hyperbolic monopoles is determined by the axially symmetric examples, and by
the fact that in the limit, as the triple tends towards spanning a two-dimensional
subspace, the massless monopoles emerge. One might guess that the other half of
the points correspond to asymptotic values of spherical monopoles near a singular
point.

To identify the mass of the monopole from the point of M0
2 is difficult. However,

we can in a sense understand the tangential direction of changing mass as follows.
Associated to a hyperbolic monopole is the rational map obtained from scattering
from 0 ∈ H3 [12], and when the monopole has charge 2 and is centred, it is uniquely
determined by the intersection of the spectral curve with the diagonal in P1 × P1.
We fix this rational map, and change the mass.

On su(2) ⊗ su(2)/CO(3) for ν = (r0, r1, r2) the map ν 7→ [ν, ν] is well-defined.
Here [·, ·] is the bracket induced on su(2)⊗ su(2) by the Lie bracket on the su(2).
Note that this is not a Lie bracket, and in general [ν, ν] 6= 0.

Proposition 5.2. The map ν 7→ [ν, ν] is an involution with fixed point the sym-
metric point of M0

2.

Proof. Put ν = e1⊗r1 +e2⊗r2 +e3⊗r3 where ei is an orthonormal basis of su(2).
Then

[ν, ν] = 2e1 ⊗ [r2, r3] + 2e2 ⊗ [r3, r1] + 2e3 ⊗ [r1, r2]

since [ei, ej ] = εijkek. The element ν is fixed by this map if [ri, rj ] = λεijkrk for
a constant λ, thus ri 7→ ei under the action of CO(3). The square of this map is
given by

[[ν, ν], [ν, ν]] = 8e1 ⊗ [[r3, r1], [r1, r2]] + 8e2 ⊗ [[r1, r2], [r2, r3]]

+8e3 ⊗ [[r2, r3], [r3, r1]]

= 8〈r1, [r2, r3]〉ν
≡ ν

where the last equivalence uses the fact that for monopoles r1, r2 and r3 are inde-
pendent and hence 〈r1, [r2, r3]〉r1 6= 0. We have also used the identity

[[r1, r2], [r2, r3]] = 〈r1, [r2, r3]〉r1
which can be shown to hold in su(2) by linearly extending the easy identity

[[ei, ej ], [ej , ek]] = εijkej .

Proposition 5.3. The expression [ν, ν] defines a vector field on M0
2 and a flow

along that vector field fixes the rational map of the monopole.
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Proof. The intersection of the spectral curve with the diagonal in P1×P1 consists of
four points, given by two pairs of antipodal points on the diagonal. These uniquely
determine the the rational map obtained by scattering from 0 ∈ H3.

Put v0 = (1/
√

2)(r0 + r2i), v1 = r1 and v2 = (1/
√

2)(−r0 + r2i) for real vectors
ri as in Proposition 5.1. When we translate the triple ν = (r0, r1, r2) in the [ν, ν]
direction the intersection of the spectral curve with the diagonal is unchanged and
hence the rational map is preserved. To see this, calculate 〈q(ẑ), q(z)〉 = 0 in terms
of the ri to get the degree 4 polynomial

0 =
1

2
[〈r2, r2〉 − 〈r0, r0〉+ 2i〈r0, r2〉] z4 +

1

2
[〈r2, r2〉 − 〈r0, r0〉 − 2i〈r0, r2〉]

+2 [〈r0, r1〉 − i〈r2, r1〉] z3 − 2 [〈r0, r1〉+ i〈r2, r1〉] z
+ [〈r0, r0〉+ 〈r2, r2〉 − 2〈r1, r1〉] z2.

Now, consider the infinitesimal change given by ν 7→ ν + t[ν, ν] so

r0 7→ r0 + t[r1, r2], r1 7→ r1 + t[r2, r0], r2 7→ r2 + t[r0, r1].

Up to first order, this yields the change

〈ri, rj〉 7→ 〈ri, rj〉+ tδijεikl〈ri, [rk, rl]〉
where we only sum over k and l. Thus the coefficients of the degree 4 polynomial
are unchanged up to first order. (For example take the coefficient of z4,

〈r0, r0〉 7→ 〈r0, r0〉+ 2t〈r0, [r1, r2]〉
〈r2, r2〉 7→ 〈r2, r2〉+ 2t〈r2, [r0, r1]〉
〈r0, r2〉 7→ 〈r0, r2〉

and the changes cancel.)

For any ξ ∈ so(3), [ξ, ν] consists of trivial vectors (they point in the gauge
direction) and [ν, ξ] gives the tangent space to the SO(3) action. Thus we have
four tangent directions in M0

2, three tangent to a moduli space of monopoles with
fixed mass, and one “transverse” to each moduli space. It would be useful to find
another mass-preserving tangent direction that would enable one to specify the
fixed mass submanifold of M0

2.

5.1. Mass of the monopole. The spectral curve Σ of a charge k monopole is a real
(k, k) curve in P1×P1 with the extra condition that O(−(2m+ k), 2m+ k)|Σ ∼= O,
[17], where m is the mass of the monopole, m = limr→∞ ‖Φ‖. It is quite difficult
to detect the mass from the spectral curve.

The case of charge 2 SU(2) hyperbolic monopoles is special mainly because it is
related to elliptic functions via its elliptic spectral curve, and because the spectral
curve is identified with its Jacobian, the place where the Nahm data resides. Elliptic
functions and isomonodromic deformations are used in [11] to find a new family of
Einstein metrics and explicit expressions for them on the space of charge 2 centred
monopoles, those monopoles invariant (up to gauge) under reflection in the origin.

We will describe part of the construction in [11]. For a generic choice of (w, z) ∈
Σ, the two lines {w} × P1 and P1 × {z} meet Σ again, once each. Label (w, z) by
P0 and the other intersection point of the vertical line {w} × P1 with Σ by P1. At
P1 take a horizontal line and label the second point of Σ which it intersects by P2.
Continue this process until P4m+4 to get P0, P1, . . . P4m+4. Each point Pi gives a
divisor on Σ, and P0+P1 ∼ O(0, 1), P1+P2 ∼ O(1, 0), P2+P3 ∼ O(0, 1) and so on,
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where O(0, 1) and O(1, 0) mean the restriction of these line bundles to Σ. Take the
alternating sum of these divisors to get P0+P1−(P1+P2)+· · ·−(P4m+3+P4m+4) ∼
O(−(2m+ 2), 2m+ 2). But O(−(2m+ 2), 2m+ 2) ∼ O on Σ (where we assume for
the moment that m ∈ (1/2) ∗Z.) Thus P0 − P4m+4 is the trivial divisor and hence
there is a meromorphic function on Σ with multiplicity one zero and pole given
respectively by P0 and P4m+4. Non-constant meromorphic functions must have at
least two zeros, thus we get a contradiction unless P0 = P4m+4.

Out of interest, we will mention the relation of this construction to the Poncelet
polygon problem—to find n-sided polygons in the plane inscribed in one conic and
circumscribed about another—described in [11]. Consider the map π : P1×P1 → P2

defined by π((w0, w1), (z0, z1)) = (w0z0, w0z1 + w1z0, w1z1), (or affinely π(w, z) =
(wz,w+ z).) The preimage of any point consists of (w, z) and (z, w) thus the map
is a two fold branched cover ramified on the diagonal and branched over the conic
B = (z2

0 , 2z0z1, z
2
1). It simply relates the coefficients of a degree two polynomial

to its roots. The image of any vertical or horizontal line {w} × P1, respectively
P1 × {z}, is tangent to B.

The spectral curve of a centred 2 monopole is invariant under the involution that
swaps the two factors (w, z) 7→ (z, w). This is because the two points represent a
geodesic running from ŵ to z, respectively a geodesic running from ẑ to w. These
geodesics are images of each other under reflection in the origin. The image of the
spectral curve of a centred 2 monopole is a conic, C = π(Σ). Let (w, z) ∈ Σ, then
the images of the two lines {w}×P1 and P1×{z} are the two tangents of the conic
B meeting C in the point π(w, z). Hence the construction described above yields a
4m+ 4-sided polygon in the plane inscribed in one conic and circumscribed about
another.

When m ∈ (1/4) ∗Z one can conclude that P0 6= P4m+4 but they lie in the same
fibre of π, again giving a solution of the Poncelet problem.

This construction can be interpreted in terms of the holomorphic sphere q : P1 →
P2. A generic point z0 ∈ P1 gives rise to a sequence of points . . . z−1, z0, z1, z2, . . .
by requiring the condition that (q(zi), q(zi±1)) = 0.

Lemma 5.4. When m ∈ Q, then the sequence {. . . z−1, z0, z1, z2, . . . } defined by
(q(zi), q(zi±1)) = 0 is a discrete lattice on the sphere.

Proof. This follows from the argument described above. If m = m1/m2 then after
4m1 + 4m2 steps we can conclude from O(−(2m + 2), 2m + 2)m2 ∼ O on Σ that
the sequence closes up.

The number of points in the discrete lattice is related to the sum of the numerator
and denominator of the mass. It would be good to see the mass precisely from the
lattice and to understand what can be done in the irrational mass case.

A lattice can be constructed in this way for any charge k monopole. At each new
step, k new points on the sphere are produced. It is unlikely that this will yield a
discrete lattice. The argument for this relied crucially on the property that after
a finite number of steps in the construction, we are left with a question about the
divisor P0 − PN consisting of two points, and can use the fact that a meromorphic
function must have at least two zeros.

Hitchin mentions that his metrics are defined via the spectral curves and have
little to do with the monopole fields. The relationship between the boundary values



16 MICHAEL K. MURRAY, PAUL NORBURY, AND MICHAEL A. SINGER

of the monopole fields and the spectral curve should expose a more direct link
between the monopoles and the Einstein metric.

6. Massless monopoles.

By the maximum principle on the Higgs field, monopoles with zero mass are
necessarily flat, and hence trivial on hyperbolic space. Still, the zero mass limit of
hyperbolic monopoles, which by a rescaling corresponds to the infinite curvature
limit of hyperbolic space, contains intersting features. This limit was studied in
[3, 5, 13] for different reasons.

Given a rational function f : P1 → P1, one can produce a curve Cf ⊂ P1×P1 by

Cf = {(w, z) ∈ P1 × P1 | f(z) = σfσ(w)} (10)

where σ is the antipodal map σ(z) = −1/z̄, [3, 5]. When f(z) = k′/(zN − k), the
curve Cf contains the parameters of a solution of the Yang-Baxter equation related
to the Potts model. For a degree N rational map f , the curve Cf has the properties

1. Cf is a curve of bidegree (N,N) on P1 × P1

2. Cf is a real curve with respect to τ(w, z) = (ẑ, ŵ) and has no real points
3. N(D+ −D−) ∼ 0 where D+ and D− are the divisors of the intersection of
Cf with P1 × {z0} and {w0} × P1.

The spectral curve Σ of a hyperbolic monopole of mass m satisfies conditions 1 and
2 and a modification of condition 3:

3*. (N+2m)(D+−D−) ∼ 0 whereD+ andD− are the divisors of the intersection
of Σ with P1 × {z0} and {w0} × P1.

Thus, it is natural to treat the curves Cf as the zero mass limit of hyperbolic
monopoles. Another way to write (10) is

Cf = {(w, z) ∈ P1 × P1 | 〈f(w), f(z)〉 = 0}
where 〈·, ·〉 is the Hermitian metric on C2, so Cf detects when the subspaces are
orthogonal.

By Lemma 2.1 the holomorphic sphere satisfies 〈q(ŵ), q(z)〉 = w−kψ(w, z) or in
other words the zero set of ψ, which defines the spectral curve of the monopole, is
given by

Σ = {(w, z) ∈ P1 × P1 | 〈q(w), q(z)〉 = 0}.
Thus we see that the holomorphic sphere q : P1 → Pk resembles closely the

holomorphic map f : P1 → P1. Moreover, as the mass of the monopole tends to
zero, the image of q tends toward being contained in a line in projective space,
giving f : P1 → P1 ↪→ Pk in the limit. We interpret the image of q to be “almost”
contained in a line to mean that the pull-back of the Kahler form under q is close to
the pull-back of the Kahler form when the image lies in a line. When the rational
map f is given by radial scattering the claim follows from [18], where it is shown
that small non-integer mass hyperbolic monopoles have boundary values perturbed
not too far from the pull-back of the Kahler form on P1 by the rational map.

The particular line in Pk into which the image of q tends is not significant, since
q is only well-defined up to the action of U(k + 1) on its image. Since every line in
Pk is equivalent up to this action of U(k + 1), the image of q can tend to lie inside
any line.
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The motivation of [3, 5] is to find solutions to the Yang-Baxter equations that
use the spectral curve of a monopole and resemble the curves Cf from the Potts
model. It may be that the rational map f(z) = k′/(zN − k) has an analogue q for
each mass. In general it is hard to find the holomorphic maps q corresponding to
monopoles, however particularly symmetric examples are more accessible such as
those described in Section 5.

In [13] it was shown that the rational map associated to a hyperbolic monopole
can be used to construct an explicit solution of a degenerate form of the Bogo-
molny equations obtained from the infinite curvature limit of hyperbolic space.
This explicit solution was interpreted as an approximate monopole and the curve
Cf defined in (10) naturally arises as a type of spectral curve. It was proven that the
approximate monopole can flow to a unique genuine monopole under a heat flow.
This viewpoint may help with the question: is there a good way to go straight from
the holomorphic sphere q to the monopole field (A,Φ)? We would hope to con-
struct from q an approximate monopole and again prove that a genuine monopole
lies nearby.

7. Axially symmetric monopoles.

When the monopole is axially symmetric, the spectral curve Σ is a collection of
k (1, 1) curves

∏

i

(w − aiz) = 0.

The reality condition on Σ implies that for each i there is a j such that ai = āj .The
curve has massm if Lk+2m|Σ is trivial. With respect to local trivialisations of Lk+2m

in neighbourhoods of (w, z) = (0, 0) and (w, z) = (∞,∞) a transition function can
be given by zk+2mw−(k+2m). A non-vanishing section over Σ can be set to be the
constant 1 in a neighbourhood of (w, z) = (0, 0). Along the curve w − aiz = 0,

the transition function is zk+2mw
−(k+2m) = a

−(k+2m)
i thus 1 7→ a

−(k+2m)
i and

one condition that this is a global section over Σ is that the sections over each
w − aiz = 0 agree at (w, z) = (∞,∞). Thus

ak+2m
i = ak+2m

j ∈ R (11)

for all i and j, and since āi is amongst the ajs, the number ak+2m
i is real. When 2m

is not an integer, the expression ak+2m
i is still uniquely defined. In general, such

an expression requires the choice of a branch. In our case, there is a well-defined
branch of ak+2m

i obtained by continuity as the mass is varied. When m = 0, one
can still make sense of the spectral curve of a “massless” monopole (see Section 6)
and in this case it is given by the equation wk + (−1)kαkzk = 0 for some α > 0.
Since condition (11) is a discrete condition on the ai we can again use continuity
in the mass, and prove that for m > 0

aj = α exp

(
2πij

k + 2m

)
, j = (1− k)/2, (3− k)/2, . . . , (k − 1)/2. (12)

Notice that, in agreement with Hitchin [9] p.188, that ak+2m
i is positive when k is

odd and negative when k is even. This reflects the real structure on the line bundle.
The coefficients of

∏
j(w− ajz), for aj defined in (12) are all non-zero. This can

be seen from the fact that each symmetric polynomial in the aj ’s strictly increases
with the mass since each aj(m) creeps along the circle towards the positive real line.
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In Lemma 2.2 it is proven that the non-degeneracy of the matrix of coefficients of
the defining polyomial of the spectral curve is equivalent to the vanishing of the
cohomology group H0(Σ,O(k,−2)).

We have given explicit expressions for spectral curves of hyperbolic monopoles
and for boundary values of hyperbolic monopoles. Here we give an explicit expres-
sion for the field over H3 of a charge two hyperbolic monopole. Choose coordinates
(z, r) where r is the hyperbolic distance from the origin to the point, and z is a holo-
morphic coordinate on each sphere of constant distance from the origin. In order to
give a gauge invariant expresssion it is convenient to use an associated Hermitian
metric H defined over H3 which gives the monopole (A,Φ) in a non-unitary gauge
by

Az̄ = 0, Az = H−1∂zH, Ar = (1/2)H−1∂rH, Φ = (−i/2)H−1∂rH.

The pair (A,Φ) satisfies the Bogomolny equation when H satisfies the nonlinear
equation

∂r(H
−1∂rH) +

(1 + |z|2)2
sinh2(r)

∂z̄(H
−1∂zH) = 0. (13)

For an axially symmetric centred charge 2 hyperbolic monopole, H looks like

H =
1

D

(
a(r) + 2b(r)|z|2 + |z|4/a(r) (1− b(r)2)1/2(a(r) − 1/a(r))z̄2

(1− b(r)2)1/2(a(r) − 1/a(r))z2 1/a(r) + 2b(r)|z|2 + a(r)|z|4
)

(14)

for D = (1 + |z|2)2 − (2 − b(r)(a(r) + 1/a(r)))|z|2. The functions a(r) and b(r)
satisfy a set of non-linear equations derived from putting (14) into (13). One
explicit solution is given by

a(r) = sech(r) = b(r) (15)

and this gives a mass 1/2 monopole. When a(r) = e−2r and b(r) ≡ 0 we get a
solution of a degenerate equation much like (13) which corresponds to a zero mass
monopole.

The holomorphic sphere of the monopole arising from (15) is

q(z) = (
1√
2
(1 + z),

i√
2
(1− z), z2).

It would be desirable to find a one-parameter family of solutions am(r) and bm(r)
depending on the mass m, in particular to get explicit expressions for fractional
mass hyperbolic monopoles.

8. The Vanishing Theorem

The proof of Theorem 1 requires H0(Σ, L2m(k − 2, 0)) = 0. In this section we
will prove a more general vanishing theorem that has further applications.

Theorem 7 (Vanishing Theorem). If Σ ⊂ Z is the spectral curve of a hyperbolic
monopole of mass m and charge k then

H0(Σ, Ls(k − 2, 0)) = 0

for all 1 ≤ s ≤ 2m+ 1.
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Note 8.1. We have that L2m+k restricted to Σ is trivial. So H0(Σ, Ls(k − 2, 0)) =
H0(Σ, Ls−2m−k(k − 2, 0)) = H0(Σ, L2m+2−s(k − 2, 0)). The last equality uses the
real structure and is actually a conjugate linear isomorphism. So it suffices to prove
the theorem for 1 ≤ s ≤ m+ 1.

Note 8.2. The case s = 1 (and hence also s = 2m+ 1) is elementary since we have
H0(S,O(k − 1,−1)) = 0 for any degree (k, k) curve Σ ⊂ Z.

The method of proof of the Theorem is an adaption of Hitchin [9] for the Eu-
clidean case. In summary it is as follows.

(1) Show that the H0(Σ, Ls(k − 2, 0)) injects into H1(Z,Ls−mẼ(−2, 0)).
(2) Penrose transform to get a solution u of

(∇∗A∇A − 1 + Φ∗sΦs)u = 0 (16)

where Φs = Φ + i(s−m− 1) such that |u(x)| decays asympotically as x → 0 like
the maximum of xs and x2m+2−s.
(3) Transfer u(x) to R4 − R2 where the operator in (20) becomes positive and we
can integrate by parts to show that u = 0.

9. Holomorphic sections of L

Before we begin the proof we need a result about the space of holomorphic
sections of Ls(k, 0) over Z. Note that Ls(k, 0) extends to the quadric Q = P1 × P1

only when s is an integer. The result we need says that if s is not an integer there
are no holomorphic sections of Ls over Z and if s is an integer they are all obtained
by restriction of holomorphic sections of Ls(k, 0) over Q. In this latter case the
Kunneth formula tells us that

H0(Z,Ls(k, 0)) = H0(Q,Ls(k, 0)) = H0(P1,O(s+ k))⊗H0(P1,O(−s)).
We have

Lemma 9.1. For any non-negative integer k

H0(Z,Ls(k, 0)) =

{
0 s 6= 0,−1, . . . ,−k
C(s+k)(−s) s = 0,−1, . . . ,−k

Proof. A local section f of Ls(k, 0) = O(k + s,−s) pulls back to a real analytic

function f̂ defined locally on CP 3 satisfying f̂(αu, βv) = αk+sβ−sf̂(u, v) where

u and v lie in C2. Equivalently f̂(λ1/2µ.u, λ−1/2µ.v) = λk/2+sµkf̂(u, v) and the

factor µk shows that f̂ can be interpreted as a section of O(k) that satisfies

f̂(λ1/2u, λ−1/2v) = λk/2+sf̂(u, v). (17)

Instead of working on local open neighbourhoods of CP 3 we can restrict to the set
P defined by P = {[u, v] ∈ CP 3 : 〈u, v〉 > 0} which is an open subset of the real
hypersurface {Im〈u, v〉 = 0}. Then (17) describes a real analytic section of O(k)|P ,
holomorphic on holomorphic sub-manifolds of P , that transforms under λ ∈ R+.
The set P misses the pull-back of the anti-diagonal and it contains the pre-images
of all real (1, 1) curves. One can describe P as a twistor space.

Pick any projective line L ⊂ P . Then f̂ continues analytically to a holomorphic

section of O(k) in an open (in CP3) neighbourhood W of L. We claim that f̂ is
the restriction of a polynomial of degree k. Granted that, it follows at once that
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f̂ = 0 unless s = 0,−1, . . . ,−k since the only possible weights for the R+ action on
a polynomial of degree k are k/2, k/2− 1, k/2− 2, ...,−k/2.

It remains to show that f̂ is a restriction of such a polynomial. The identity

f̂(z0, z1, z2, z3) =
∑

zj1 . . . zjk∂j1 . . . ∂jk f̂

(which follows from Euler’s identity proved by repeatedly differentiating both sides
of f(λz0, λz1, λz2, λz3) = λkf(z0, z1, z2, z3) with respect to λ) reduces to the case

k = 0 for ∂j1 . . . ∂jk f̂ ∈ H0(W,O). But this is constant as W contains lots of
intersecting projective lines.

10. Proof of the vanishing theorem

10.1. The injection. From the short exact sequence of sheaves

0 → O(−k,−k) → O → OΣ → 0

we obtain

0 → H0(Z,Ls(k − 2, 0)) → H0(Σ, Ls(k − 2, 0)) → H1(Z,Ls(−2,−k)) → . . . .

According to Lemma 9.1, H0(Z,Ls(k − 2, 0)) = 0 unless s = 0,−1,−2, . . .2− k so
for the range of s we are interested in the connecting homomorphism

H0(Σ, Ls(k − 2, 0)) → H1(Z,Ls(−2,−k))

is injective.
We also have

0 → Lm(0,−k) → Ẽ → L−m(0, k) → 0

and hence

0 → Ls(−2,−k) → Ls−mẼ(−2, 0) → Ls−2m(−2, k) → 0

so that

H0(Z,Ls−2m(−2, k)) → H1(Z,Ls(−2,−k)) → H1(Z,Ls−mẼ(−2, 0)).

Again from Lemma 9.1 we have that H0(Z,Ls−2m(−2, k)) = 0 unless s − 2m =
2, 3, . . . ,−k or s = 2m+2, 2m+3, . . . , 2m+k which is outside the range of interest.
Finally we have

H0(Σ, Ls(k − 2, 0)) ↪→ H1(Z,Ls−mẼ(−2, 0))

for 1 ≤ s ≤ 2m+ 1.
By replacing s by s− 2m− k at the outset and using the other sequence

0 → L−m(−k, 0) → Ẽ → Lm(k, 0) → 0

we obtain an equivalent description of the same class inH1(Z,Ls−mẼ(−2, 0)) which
factors through the other canonical subbundle.
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10.2. The Penrose Transform for H3. We describe the Penrose transform of a
class

[f ] ∈ H1(Z,La(−2, 0))

and give estimates for its growth if it is compactly supported.
Identify hyperbolic three-space H3 with the space of positive-definite, two by

two, Hermitian matices X up to scale or with the space of positive-definite, two by
two, Hermitian matrices of unit determinant. We co-ordinatize these matrices by

X =
1

x3

[
1 x1 + ix2

x1 − ix2 x2
3 + x2

1 + x2
2

]

for x3 > 0. This is the upper half-space model of hyperbolic space. Denote by M
the open set of future pointing timelike vectors in R3,1 so that M/R+ = H3.

Theorem 8. There is a canonical isomorphism

H1(Z,La(−2, 0)) = {u ∈ C∞(M) : �u = 0, u(tX) = ta−2u(X)}
= {v ∈ C∞(H3) : (4+ a(a− 2))v = 0}

Moreover if f has compact support then u has a decomposition for x ≤ 0 smooth

u(x1, x2, x3) = x2−a
3 u1(x1, x2, x3) + xa3u2(x1, x2, x3) (18)

where u1 and u2 are smooth down to x3 = 0.

Remark 10.1. Notice that the expansion fits well with what is known about the
boundary behaviour of eigenfunctions of the Laplacian on H3 [14].

Proof. Choose homogeneous coordinates [η] = [η0, η1] and [ζ] = [ζ0, ζ1] for Z, so
in terms of the affine coordinates, w = η1/η0 and z = ζ1/ζ0. By considering the
framing 〈η, ζ〉/〈ζ, ζ〉 of L over Z, we see that [f ] can be represented by

f ∈ Ω0,1(Z, E(−2, 0))

such that

∂̄

((
1 + w̄z

1 + z̄z

)a
f

)
= 0.

By pulling back to P , for example, we get the function

ψ(x) =

∫

[ζ]∈P1

(
ζ∗Xζ

ζ∗ζ

)a
f(Xζ, ζ) ∧ (ζ0dζ1 − ζ1dζ0) (19)

from the Minkowski version of the Penrose transform. Thus ψ satisfies the wave
equation on M and is plainly homogeneous of degree a− 2 in X . One way to find
the equation satisfied by ψ on restriction to H3 is to compute |X |2�(|X |2−aψ(X)),
for � on functions of degree 0 is 4H3 = − trHess. We have

∂i(|X |2−aψ(X)) = (2− a)|X |−aXiψ(X) + |X |2−a∂iψ(X).

and

∂i∂i(|X |2−aψ(X)) = (2− a)|X |−a(4ψ(X)− 2ψ(X)− (2− a)ψ(X))

= a(2− a)ψ(X)|X |−a.
So if v(x) = |X |2−aψ(X) we have 4v + a(a− 2)v = 0.

Now suppose for definiteness that f has support contained in the relatively com-
pact subset V defined by the condition |η0ζ1 − η1ζ0|2 < R2|η0ζ̄0 + η1ζ̄1|2 that is
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|w − z| < R|1 + wz̄| for some R < 0. The set V obviously does not intersect the
antidiagonal. Consider how it meets a real curve

C(x1,x2,x3) = {η1ζ0 + (x1 + ix2)η
1ζ1 − (x1 − ix2)η

0ζ0 − (x2
1 + x2

2 + x2
3)η

0ζ0 = 0}

when x3 is small but positive. Now

C(x1,x2,0) = {ζ0 + (x1 + ix2)ζ
1 = 0} ∪ {η1 − (x1 − ix2)η

0 = 0}

and

V ∩ C(0,0,0) = V1 ∪ V2

where

V1 = {η1 = 0} × {[ζ] : |ζ1/ζ0| < R}
and

V2 = {ζ0 = 0} × {[η] : |η0/η1| < R}
with V1 ∩ V2 = ∅. Similarly, for sufficiently small x3, the intersection of V with
C(x1,x2,x3) is a union of two disjoint sets V1 and V2 which are approximately of the
form

V1 = {η1 = (x1 − ix2)η
0} × U1

and

V2 = U2 × {ζ0 + (x1 + ix2)ζ
1 = 0}

where U1 and U2 are discs. The decomposition (18) of u in the statement of the
theorem corresponds to a decomposition of the integral (19) into integrals over V1

and V2. To see this we check the growth rates of the two contributions by taking
x1 = x2 = 0. If we integrate over V1 we obtain

∫

V1

(
x−1

3 |ζ1|2 + x3|ζ1|2
|ζ0|2 + |ζ1|2

)a
f(x−1

3 ζ0, x3ζ
1, ζ0, ζ1)(ζ0dζ1 − ζ1dζ0)

= x2−a
3

∫

V1

(
1 + x2

3|z|2
1 + |z|2

)a
f(1, x2

3z, 1, z)dz

= x2−a
3 u1(x3, 0, 0)

Similarly integrating over V2 gives

∫

V2

(
x3|η0|2 + x−1

3 |η1|2
x2

3|η0|2 + x−2
3 |η1|2

)a
f(η0, η1, x3η

0, x−1
3 η1)(η0dη1 − η1dη0)

= xa3

∫

V2

(
1 + x2

3/|w|2
1 + x4

3/|w|2
)a

f(1/w, 1, x2
3/w, 1)d(1/w)

= xa3u2(x3, 0, 0).

The result follows as the integrals have uniformly compact supports at x3 → 0.

Remark 10.2. In particular the ‘boundary data’ u1 and u2 arise as integrals over the
generators of f . If we use the real structure to replace La(−2, 0) by L−a(0,−2) =
La(−2, 0) the roles of the two generators are swapped but (of course) the conclusion
is the same.
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10.3. Completion of proof. Coupling to the bundle Ẽ replaces the differential
equation in Theorem 8 by the analogous coupled equation

(∇∗A∇A − 1 + Φ∗sΦs)u = 0 (20)

where Φs = Φ + i(s −m − 1). The methods of Hitchin [9] can be used to obtain
additional decay like xm3 . So we have

|u(x3)| ' max(xs3, x
2+2m−s
3 ).

It is not clear that the operator in (20) is positive so we now transfer to R4−R2.

Using ∇̂ for the Euclidean operators we have

x3
3∇̂∗∇̂(x−1

3 u) = (∇∗∇− 1)u

so that if v = x−1
3 u then we have

∇̂∗∇̂v + x−2
3 Φ∗sΦsv = 0.

In now 1 < s < 2m+ 1 then v = O(xε3) for ε > 0 and this is enough to integrate by
parts in R4 − R2 and hence v = 0.
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