
LENGTHS OF GEODESICS ON NON-ORIENTABLE

HYPERBOLIC SURFACES

PAUL NORBURY

Abstract. We give an identity involving sums of functions of lengths of sim-
ple closed geodesics, known as a McShane identity, on any non-orientable hy-
perbolic surface with boundary which generalises Mirzakhani’s identities on
orientable hyperbolic surfaces with boundary.

1. Introduction

Closed geodesics on hyperbolic surfaces have extremely rich properties, arising
in geometry, topology and number theory. On a hyperbolic surface the set of closed
geodesics of length less than any constant is finite so in particular the set of all closed
geodesics is countable. One can sum functions that are sufficiently decreasing, of
lengths of geodesics, over the set of all closed geodesics, and the most famous
identity involving such a sum is the Selberg trace formula. An identity involving
sums of functions of lengths of simple (embedded) closed geodesics on a punctured
hyperbolic torus was obtained by McShane [4], whereas the Selberg trace formula
includes the non-embedded closed geodesics. McShane’s identity was generalised
by various authors [5, 7, 12] to other orientable hyperbolic surfaces. Most notably,
in [7] Mirzakhani applied the identities to get deep information about the moduli
space of hyperbolic surfaces.

In this paper we prove a McShane identity—a non-trivial sum of functions of
lengths of geodesics—on non-orientable hyperbolic surfaces with geodesic bound-
ary. This was motivated from two directions. Firstly, Mirzakhani [8] used her
generalisations of McShane’s identity to study recursion relations among tautolog-
ical cohomology classes on the moduli spaces. Recently Wahl [13] has shown that
the tautological cohomology classes on moduli spaces of non-orientable hyperbolic
surfaces have stable behaviour analogous to the orientable case. One would expect
there also to be recursion relations among these cohomology classes and that such
recursion relations may interact with the known recursion relations. The McShane
identity proven in this paper is potentially a tool to find such relations. Secondly,
orientable hyperbolic surfaces with geodesic boundary lie in a larger class of sur-
faces known as Klein surfaces. A Klein surface is a real algebraic curve, meaning it
is a complex algebraic curve with only real coefficients in its defining equation. It
possesses an anti-holomorphic involution and can be identified with its quotient by
the involution. For example, inside the moduli space of elliptic curves, identified as
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a fundamental domain of PSL(2, Z) acting on upper half-space H2, the Klein sur-
faces correspond to curves with representatives z ∈ H2 satisfying Re(z) ∈ 1

2Z. With
respect to the unique hyperbolic structure on a Klein surface, the anti-holomorphic
involution is an isometry with fixed point set a (possibly empty) collection of simple
closed geodesics. The quotient is a hyperbolic surface with geodesic boundary that
corresponds to the fixed point set of the involution. It is natural to try to extend
the McShane identities on orientable hyperbolic surfaces with geodesic boundary to
all Klein surfaces. We extend the identities to Klein surfaces with involution hav-
ing non-empty fixed point set, equivalently the quotient has non-empty boundary,
leaving only those with involutions that act freely.

We use the following standard terminology to describe the global and local be-
haviour of a closed curve on a surface. A simple closed curve is an embedded curve.
A simple closed curve is either globally separating or non-separating, and it is lo-
cally one-sided or two-sided. As usual, we omit the words globally and locally in
the paper. Notice that there are exactly three types of simple closed curves since a
one-sided closed curve is necessarily non-separating.

We first state the simplest version of the result, when the hyperbolic surface is the
punctured Klein bottle K, since it is the most readable form and has independent
interest. Up to isotopy there exists a unique two-sided simple closed curve γ ⊂ K
and an infinite sequence of one-sided simple closed curves γi. The two-sided and
one-sided isotopy classes are orbits of the mapping class group of K (which is
Z ⋊ Z2.) In other words, the isotopy class of the two-sided simple closed curve
is invariant under the mapping class group of K and the isotopy classes of any
two one-sided simple closed curves are related by an element of the mapping class
group.

Equip K with a complete hyperbolic metric with a cusp. Denote the length of
the unique geodesic in each isotopy class by lγ and lγi

.

Theorem 1. On any hyperbolic punctured Klein bottle,

(1)
∞∑

i=−∞

1

1 + sinh2 1
2 lγi

+ sinh2 1
2 lγi+1

= tanh
1

2
lγ

where γ is the unique two-sided geodesic and the sum is over all pairs of disjoint

simple closed geodesics.

Note that the geodesic γ, and hence tanh(lγ), is well-defined whereas to make
sense of the ith one-sided simple closed curve γi requires a marking of K. Never-
theless, the left hand side of (1) is well-defined using the property that γi is disjoint
from both γi−1 and γi+1 and has non-trivial intersection with all other γj .

Theorem 2. For

(2) R(x, y, z) = x − ln
cosh y

2 + cosh x+z
2

cosh y
2 + cosh x−z

2

and

D(x, y, z) = R(x, y, z) + R(x, z, y) − x, E(x, y, z) = R(x, 2z, y)−
x

2
on a hyperbolic surface with Euler characteristic 6= −1 the following identity holds:

(3)
∑

γ1,γ2

D(L1, lγ1
, lγ2

) +

n∑

j=2

∑

γ

R(L1, Lj, lγ) +
∑

µ,ν

E(L1, lν , lµ) = L1
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where the sums are over simple closed geodesics. The first sum is over pairs of

two-sided geodesics γ1 and γ2 that bound a pair of pants with β1, the second sum

is over boundary components βj, j = 2, .., n and two-sided geodesics γ that bound a

pair of pants with β1 and βj, and the third sum is over one-sided geodesics µ and

two-sided geodesics ν that, with β1, bound a Möbius strip minus a disk containing

µ.

In the orientable case, the third term in (3) vanishes and we are left with Mirza-
khani’s identity [7]. The functions D and R are taken from [7]. Define z′(x, y, z)

by cosh x
2 + cosh y

2 = 2 sinh z
2 sinh z′

2 (see (6)) then

0 ≤ R(x, y, z) ≤ x, 0 ≤ D(x, y, z) ≤ x, 0 ≤ E(x, y, z) + E(x, y, z′) ≤ x

so the quotients of these functions by x are best understood as probabilities, and
they make sense even in the limit x → 0. This is the view taken in Section 2.

The expression E(x, y, z)+ E(x, y, z′) for z′(x, y, z) defined above arises because
the summands E(L1, lν , lµ) in (3) naturally come in pairs E(L1, lν , lµ)+E(L1, lν , lµ′)
where µ and µ′ are the two one-sided geodesics in the Möbius strip minus a disk
bounded by ν and β1 (where lβ1

= L1). The property 0 ≤ E(x, y, z) + E(x, y, z′)
allows us to consider the series as containing only positive summands. Moreover,
we get the necessary decay

lim
y→∞

E(x, y, z) + E(x, y, z′) = 0 = lim
z→∞

E(x, y, z) + E(x, y, z′)

required for the convergence of the series.
We do not deduce the non-orientable case of Theorem 2 from the orientable

case since the proof involves analysing the self-intersections of geodesics on the
non-orientable surface, and the orientable double cover does not see these self-
intersections in general.

Theorem 2 extends to the four hyperbolic surfaces of Euler characteristic = −1,
although they each require special treatment. In Section 2 the functions D(x, y, z)
and E(x, y, z) are defined independently of R(x, y, z). The analogue of (3) on a
pair of pants produces the relation between D and R given in Theorem 2, and on
the Möbius strip minus a disk it produces the relation between E and R.

On a Klein bottle minus a disk the McShane identity bares little resemblance
to (3) (whereas the relationship on a torus minus a disk in [7] consists of the first
term of (3) evaluated on lγ1

= lγ2
.) Theorem 1 follows as a limiting case L → 0 of

the following theorem.

Theorem 3. On a hyperbolic Klein bottle with geodesic boundary of length L, for

F (x, y, z) =
x

2
− ln

cosh y + exp x
2 cosh z − sinh x

2

cosh y + exp −x
2 cosh z + sinh x

2

(4)
∑

µ,ν

F (L, lµ, lν) = 2 ln
1 + eL/2elγ

eL/2 + elγ

where γ is the unique two-sided geodesic and the sum is over all ordered pairs of

disjoint simple closed geodesics (µ, ν).

Non-orientable surfaces provide the simplest non-trivial hyperbolic surface—the
punctured Klein bottle—which helps our understanding of the general case. The
punctured Klein bottle is simpler than the punctured torus due to the simplicity of
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its mapping class group—Z ⋊ Z2 which can be essentially thought of as its index 2
normal subgroup Z. In Section 4 we give an elementary treatment of this simplest
case, which also generalises to complex lengths. This is analogous to Bowditch’s
treatment of the punctured torus [1].

This paper has some orientable consequences. The representation of a non-
orientable hyperbolic surface is an extended quasi-fuchsian group, or in other words
PGL(2, R) ⊂ PSL(2, C) and non-orientable hyperbolic surfaces give examples of
orientable hyperbolic 3-manifolds. The orientable 3-manifolds are homeomorphic
to non-trivial R bundles over non-orientable surfaces, and admit more general ex-
tended quasi-fuchsian groups coming from deforming the hyperbolic surface ex-
amples. The relationship between traces and lengths of geodesics on a hyperbolic
surface generalises to a relationship between traces and complex lengths in a hyper-
bolic 3-manifold. A complex length stores two pieces of geometric information. Its
real part is the length of the corresponding closed geodesic, and its imaginary part
which is well-defined mod π describes the angle of rotation of the normal bundle
parallel transported along the closed geodesic.

Theorem 4. On an oriented cusped hyperbolic 3-manifold homeomorphic to a bun-

dle over a punctured Klein bottle

(5)
∞∑

i=−∞

1

1 + sinh2(zi/2) + sinh2(zi+1/2)
= tanh(z/2)

where zi and zi+1 are the complex lengths of closed geodesics that project onto a

pair of disjoint embedded closed curves on the surface and z is the complex length

of the unique closed geodesic that projects to an embedded two-sided curve on the

surface.

In the final section, we describe the moduli space of hyperbolic surfaces. We find
that it is natural to consider pairs consisting of a hyperbolic surface together with
an orientation of one of its boundary components. This is analogous to choosing
an orientation on an orientable surface. It allows the construction of a well-defined
volume form on the moduli space which is required for integration over the moduli
space.

We finish by describing the consequences that (3) has on integration over the
moduli space of hyperbolic surfaces. On a hyperbolic surface, the length of an
isotopy class of simple closed curves is the minimal length of a curve in that isotopy
class, or equivalently the length of the unique closed geodesic in that class. On
the moduli space of hyperbolic surfaces of a given topological type the length of
an isotopy class of closed curves l([γ]) is a locally defined function. It fails to be
globally defined because a curve is only well-defined up to its different images under
the mapping class group, and in general l(h · [γ]) 6= l([γ]) for h an element of the
mapping class group. Nevertheless, for any f : R+ → R one can take a sum over
orbits of the mapping class group

F =
∑

h∈mcg

f
(
lh·[γ]

)

which is a well-defined function (when it converges) on the moduli space. More
generally, the summand can include lengths of more than one isotopy class of curves.
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The McShane identities in Theorem 1, 2 and 3 are of this form, expressing a function
on the moduli space as a sum of functions of lengths over orbits of the mapping
class group.

In [7] Mirzakhani used a McShane identity on orientable hyperbolic surfaces,
which is generalised by Theorem 2, to calculate the volume of the moduli space of
oriented hyperbolic surfaces of a given topology. This is an application of a more
general integration technique developed in [7]. The moduli spaces of non-orientable
surfaces have infinite volume so we integrate functions with appropriate decay. The
simplest example of such an integration over the moduli space of punctured Klein
bottles is given in Section 5.

2. Geodesics perpendicular to the boundary

In this section we prove the main theorems which are identities generalising
those of McShane and Mirzakhani. McShane [4] proved his identity by considering
geodesics emanating from the cusp of a hyperbolic surface. Mirzakhani generalised
this [7], showing that one needs to understand geodesics perpendicular to a specified
boundary component. We will study such geodesics on any hyperbolic surface with
boundary. In particular, when the hyperbolic surface is a pair of pants or a Möbius
strip minus a disk, the functions R, D and E used in the statement of Theorem 2
are defined in terms of probabilities measuring the different behaviours of geodesics
perpendicular to a specified boundary component.

Label the geodesic boundary components of a given hyperbolic surface Σ by
β1, ..., βn, and assume n ≥ 1. Take any point x on the boundary component β1 and
consider the geodesic at x in the direction perpendicular to β1. Travel along the
geodesic and stop when one of the following occurs:

A The geodesic meets itself or β1: stop.
B The geodesic meets another boundary component βj , j > 1: stop.
C The geodesic remains embedded for all time: don’t stop.

The behaviour A, B and C on any hyperbolic surface partitions β1 into three
measurable subsets. More specifically, we will see that types A and B are open
subsets of β1, and quite importantly that type C has measure zero.

When Σ is a pair of pants, see Figure 1, the boundary components are the only
three embedded closed geodesics and their lengths can take on any non-negative
values and uniquely determine Σ.

Figure 1. Pair of pants

The probability that a geodesic perpendicular to β1 behaves as in A on a pair
of pants

D̃(lβ1
, lβ2

, lβ3
) := Prgeodesic of type A

(
1β

β2

β3

)



6 PAUL NORBURY

defines a function of non-negative variables since the geodesic boundary components
βi, i = 1, 2, 3 can take any lengths. Similarly define a function by the probability
that a geodesic perpendicular to β1 behaves as in B on a pair of pants

R̃(lβ1
, lβ2

, lβ3
) := Prgeodesic of type B meets β3

(
1β

β2

β3

)
.

When Σ is a Möbius strip minus a disk as shown in Figure 2, there are exactly four
embedded closed geodesics. The lengths of any three of these geodesics determine
Σ. Denote the boundary geodesics of a Möbius strip minus a disk by β1 and β2

Figure 2. Möbius strip minus a disk

and the interior embedded closed geodesics by µ and µ′. A trace identity, (13) in
Section 3 gives the relation

(6) cosh

(
lβ1

2

)
+ cosh

(
lβ2

2

)
= 2 sinh

(
lµ
2

)
sinh

(
lµ′

2

)

so any three lengths determine the fourth.
A geodesic perpendicular to β1 on a Möbius strip minus a disk that behaves as

in A necessarily meets at least one of the one-sided embedded geodesics µ and µ′.
The probability that a geodesic of type A meets µ before it meets µ′, defines the
function

Ẽ(lβ1
, lβ2

, lµ) := Prgeodesic of type A meets µ first

(
1β

β2

µ

)

where the diagram signifies the boundary components β1 and β2, and an interior
embedded geodesic µ.

2.1. Relations between probability functions. As stated above, the behaviour
A, B and C of geodesics perpendicular to β1 partitions β1 into three subsets.
Applying this to a pair of pants with boundary lengths x, y, z with x = lβ1

gives
the relationship

(7) D̃(x, y, z) + R̃(x, y, z) + R̃(x, z, y) = 1

since a perpendicular geodesic is of type A or B, or with probability zero one of
the four geodesics of type C.

A Möbius strip minus a disk gives a relation that does not quite determine

Ẽ(x, y, z) but gives enough information for the statement of Theorem 2.

Proposition 2.1.

(8) Ẽ(x, y, z) + Ẽ(x, y, z′) + R̃(x, 2z, y) + R̃(x, 2z′, y) = 1

for cosh(x/2) + cosh(y/2) = 2 sinh(z/2) sinh(z′/2).
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Proof. Denote the Möbius strip minus a disk by Σ, its boundary components by
β1, β2 and its two interior embedded closed geodesics by µ and µ′. Put lβ1

= x,
lβ2

= y, lµ = z and lµ′ = z′. The proof uses the following two key facts.
(i) A geodesic perpendicular to β1 of type A meets at least one of µ, µ′.
(ii) A geodesic perpendicular to β1 of type B avoids one of µ, µ′.
Suppose the contrary to (i). Then a geodesic perpendicular to β1 meeting itself or

β1 avoids µ, µ′ and β2 and hence is contained insided an annular neighbourhood of
β1. But a simple application of the Gauss-Bonnet formula contradicts the existence
of a geodesic of type A in the annulus. To prove (ii), cut along any embedded
geodesic ξ perpendicular to β1 that meets β2. The remaining hyperbolic surface
has the topology of a Möbius strip with convex boundary. Since π1 of the Möbius
strip is non-trivial it contains a non-trivial embedded curve (i.e. it does not bound
a disk) and since the boundary is convex there is an embedded geodesic ν in its
isotopy class, so ξ avoids ν. But Σ only contains the embedded closed geodesics µ
and µ′ hence ν is µ or µ′.

A genus zero hyperbolic surface with four boundary components is the double
cover of a Möbius strip minus a disk. In Figure 3, lβ1

= x, lβ2
= y, and 2z and 2z′

are the lengths of the double covers of the two interior geodesics which by abuse of
notation we also call µ and µ′. They satisfy the hyperbolic trigonometric identity
(6).

µ

β1

β1

β

β

2

2

µ

’

Figure 3. Double cover of a Möbius strip minus a disk

A geodesic perpendicular to β1 is of type A with the neighbourhood of its union

with β1 homeomorphic to a pair of pants with probability Ẽ(x, y, z) + Ẽ(x, y, z′)
since it must meet µ or µ′ by (i) above. A geodesic perpendicular to β1 is of type

B, hence stops at β2, with probability R̃(x, 2z, y)+R̃(x, 2z′, y) since it must remain
inside one of the two pairs of pants in the picture by (ii) above. With probability
zero a geodesic perpendicular to β1 is of type C (there are eight of them.) The
proposition follows. �

2.2. Proofs. Theorems 2 and 3 amount to understanding all types of behaviour
of geodesics perpendicular to β1 and the probability of each. The theorems need
separate treatments simply because a hyperbolic Klein bottle minus a disk is an
exception to most of the topological parts of the argument for the general case.

Proof of Theorem 2. The partition of β1 on a general hyperbolic surface into points
lying on geodesics of types A, B and C is better understood if we regroup them
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according to pairs of pants or Möbius strips minus a disk containing the geodesic.
In the special case of a Klein bottle minus a disk we will need a different grouping.

The reorganisation of probabilities goes as follows. A pair of pants with geodesic
boundary β1, βj (j > 1) and γ ⊂ Σ of lengths lβ1

= x, lβ2
= y, lγ = z, contains a

geodesic perpendicular to β1 that avoids γ with probability

R(x, y, z)

x
:= Pravoid γ

(
1β

β2

γ

)
= D̃(x, y, z) + R̃(x, z, y).

A pair of pants with geodesic boundary β1 and γi, i = 1, 2, (γi 6= βj) of lengths
lβ1

= x, lγ1
= y, lγ2

= z, contains a geodesic perpendicular to β1 that avoids γi,
i = 1, 2, with probability

D(x, y, z)

x
:= Pravoid γ1,γ2

(
1β

γ1

γ2

)
= D̃(x, y, z).

A Möbius strip minus a disk with geodesic boundary β1 and ν, of lengths lβ1
= x,

lν = y, and containing one-sided geodesics µ and µ′ of lengths z and z′, contains a
geodesic perpendicular to β1 that avoids ν, with probability

E(x, y, z) + E(x, y, z′)

x
:= Pravoid ν

(
1β

ν

µ

)

= Ẽ(x, y, z) + Ẽ(x, y, z′).

Note that this only defines the sum E(x, y, z) + E(x, y, z′).
On Σ, a geodesic ξ perpendicular to β1 (that stops) lies inside either a unique

hyperbolic pair of pants or a unique Möbius strip minus a disk except when Σ is a
Klein bottle minus a disk. To see this, if ξ is of type A, i.e. it stops when it meets
itself or β1, the boundary of a neighbourhood of ξ∪β1 consists of one or two curves.
In the former case the boundary curve is isotopic to a closed embedded geodesic
in Σ which bounds a Möbius strip minus a disk with β1 (except when Σ is a Klein
bottle minus a disk.) In the latter case, either the two boundary curves are isotopic
to closed embedded geodesics in Σ which bounds a pair of pants with β1; or one
of the boundary curves is isotopic to a closed embedded geodesic which bounds a
Möbius strip minus a disk with β1 (or in the special case of a Klein bottle minus
a disk, neither boundary curve is isotopic to a closed embedded geodesic.) If the
geodesic ξ is of type B and meets the boundary at βj , j > 1, then the boundary of
a neighbourhood of β1 ∪ ξ ∪ βj consists of a closed embedded geodesic in Σ which
bounds a pair of pants with β1 and βj (except when Σ is a Möbius strip minus a
disk.)

Thus we take any pair of pants or Möbius strip minus a disk in Σ with β1 as a
boundary component and group together all those geodesics perpendicular to β1 of
types A and B to get the following:

1 =
∑

γ1,γ2

PrA

(
1β

γ1

γ2

)
+

n∑

j=2

∑

γ

PrB

(
1β

βj

γ

)
+

∑

ν,µ

PrA

(
1β

ν

µ

)
+ Pr∞(Σ)

where summands denote the probability that a geodesic perpendicular to β1 in the
pictured pair of pants or Möbius strip minus a disk is of type A or type B, and
Pr∞(Σ) is the probability that a geodesic is of type C, i.e. it never stops. For the
sum over Möbius strips minus a disk, only one of the pairs (ν, µ) and (ν, µ′) need
appear (where lµ′ is uniquely determined by lβ1

, lν and lµ′ .) In the next expression



LENGTHS OF GEODESICS ON NON-ORIENTABLE HYPERBOLIC SURFACES 9

both pairs (ν, µ) and (ν, µ′) appear in the sum. We have

L1 =
∑

γ1,γ2

D(L1, lγ1
, lγ2

) +

n∑

j=2

∑

γ

R(L1, Lj , lγ) +
∑

ν,µ

E(L1, lν , lµ) + L1Pr∞(Σ)

where the sum is over pairs of geodesics γ1 and γ2 that bound a pair of pants with
β1, boundary components βj , j = 2, .., n and geodesics γ that bound a pair of pants
with β1, and one-sided geodesics µ and two-sided geodesics ν that, with β1, bound
a Möbius strip minus a disk containing µ.

It remains to show that Pr∞(Σ) = 0. For a pair of pants and a Möbius strip
minus a disk there are only finitely many geodesics perpendicular to β1 that remain
embedded for all time. In general, the set of such geodesics is not even countable.
That this set has measure zero is a major part of the proof of Mirzakhani [7] and
McShane [4]. In our case, although we cannot deduce the non-orientable identity
from the orientable one, the zero measure property of this set does follow from
the orientable case. Take an orientable double cover of a non-orientable hyperbolic
surface so that β1 has two preimages upstairs, one labeled β̃1. Geodesics perpendic-
ular to β1 lift to geodesics perpendicular to β̃1. The set of points on β1 that lie on
geodesics perpendicular to β1 that remain embedded for all time is a subset of those
points on β̃1 that lie on geodesics perpendicular to β̃1 that remain embedded for all
time and hence the set downstairs has measure zero, i.e. Pr∞(Σ) = 0. (The sets
are not necessarily equal, because a geodesic upstairs may remain embedded while
its image downstairs may have self-intersection and hence should have stopped.)

Relations (7) and (8) yield the relations D(x, y, z) = R(x, y, z) + R(x, z, y) − x
and E(x, y, z) + E(x, y, z′) = R(x, 2z, y) + R(x, 2z, y) − x. We arbitrarily choose
E(x, y, z) = R(x, 2z, y)− x/2 and note that this does not correspond to the proba-
bility of reaching a one-sided geodesic first. The explicit formula

R(x, y, z) = x − ln
cosh y

2 + cosh x+z
2

cosh y
2 + cosh x−z

2

comes from Mirzakhani [7]. It is calculated using hyperbolic trigonometry. We will
not repeat the calculation here. �

Proof of Theorem 3. For the Klein bottle minus a disk, K, the idea of the previous
proof remains the same. In this case all geodesics perpendicular to β1 = ∂K are of
type A meaning they stop because they intersect themselves or β1. There are three
types of behaviour of these geodesics - the geodesic intersects the unique embedded
two-sided geodesic γ, zero, one or two times.

We end up with the sum of the probabilities

1 =
∑

γ1,γ2

Prγi

(
1β

γ1

γ2

)
+ Prgeodesic of type A meets γ + Pr∞(Σ).

The first sum consists of a single term γ1 = γ2 = γ and corresponds to the geodesics
perpendicular to β1 that do not meet γ. The third term vanishes since it is the
measure of a set of measure zero for the same reasons as in the previous proof.
The second sum consists of the geodesics perpendicular to β1 that intersect γ once
or twice. It involves a sum involving lengths of pairs of one-sided geodesics. The
summand E(L1, lν , lµ) from the general case overcounts the probability that the
geodesics meet γ twice so we need to reorganise the information.
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Cut K along any two disjoint one-sided geodesics µ and µ′ to get a pair of pants
with boundary lengths x = lβ1

, 2y = 2lµ and 2z = 2lµ′ . The two closest points on
the boundary component of length 2y divide it into two equal parts, and in Figure 4
we divide these again to get four parts of equal length y/2. Similarly do this on
the other boundary component.

2z

x

F(x,y,z)

2y

Figure 4. Probability on the Klein bottle minus a disk

The shaded region on β1 of total length F (x, y, z) denotes the probability that a
geodesic perpendicular to β1 on K will avoid at least one of µ and µ′, and if it meets
µ′, say, then it has already crossed µ′′, the other one-sided geodesic disjoint from µ.
This last requirement simply means that both F (L1, µ, µ′) and F (L1, µ, µ′′) appear
in the sum of probabilities since a perpendicular geodesic meets one of µ, µ′ first.

Thus we have
L1 = D(L1, lγ , lγ) +

∑

µ,µ′

F (L1, lµ, lµ′)

where the sum is over all pairs of disjoint one-sided geodesics µ and µ′. To calculate
F (x, y, z) we use hyperbolic trigonometry.

/2

x
2

b

z

a

F(x,y,z)

y

Figure 5. Right-angle hexagon

Figure 5 shows a hyperbolic right-angled hexagon with perpendiculars dropped
from the midpoints of two sides to the third side. The perpendiculars remain inside
the hexagon and do not meet each other by a simple application of the Gauss-Bonnet
formula. To calculate F (x, y, z) we calculate a and b and use a + F (x, y, z)/2+ b =
x/2. The two quadrilaterals containing the lengths a and b have 3 right-angles and
hence satisfy a simple hyperbolic trigonometric identity:

tanh a = tanh(z/2)/ coshy′, tanh b = tanh(y/2)/ cosh z′
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for

cosh y′ =
cosh y + cosh(x/2) cosh z

sinh(x/2) sinh z
, cosh z′ =

cosh z + cosh(x/2) cosh y

sinh(x/2) sinh y

where y′ and z′ are the lengths of sides of the hexagon opposite y and z, respectively,
and satisfy a hyperbolic trigonometric identity on the hexagon. So

tanha =
tanh(z/2) sinh(x/2) sinh z

cosh y + cosh(x/2) cosh z
, tanh b =

tanh(y/2) sinh(x/2) sinh y

cosh z + cosh(x/2) cosh y

and

F (x, y, z) = x − 2a − 2b

=
x

2
− ln

cosh y + exp x
2 cosh z − sinh x

2

cosh y + exp −x
2 cosh z + sinh x

2

.

Since

L − D(L, lγ , lγ) = 2 ln
1 + eL/2elγ

eL/2 + elγ

the sum of probabilities becomes

∑

µ,ν

F (L, lµ, lν) = 2 ln
1 + eL/2elγ

eL/2 + elγ

and the theorem is proven. �

3. Trace identities

Lengths of closed geodesics on a hyperbolic surface can be expressed in terms of
traces of elements in PGL(2, R). Trace identities between elements in PGL(2, R)
then give identities between lengths of closed geodesics. In this section we prove
trace identities required throughout the paper, and mainly focus on the less familiar
non-orientable cases.

A closed geodesic γ on a hyperbolic surface Σ corresponds to a conjugacy class in
π1Σ and hence it is sent to a conjugacy class represented by Aγ ∈ PGL(2, R), under
the representation π1Σ → PGL(2, R) that defines the hyperbolic structure. On an
orientable hyperbolic surface the representation takes its values in PGL+(2, R). If
we take a matrix representative Aγ satisfying detAγ = 1 and trAγ > 0, there is a
relationship

(9) trAγ = 2 cosh
1

2
lγ .

To see this, conjugate Aγ so that it preserves the imaginary line in upper half space
H+. Then

Aγ =

(
a 0
0 1/a

)

so Aγ · i = a2i which is translation by the hyperbolic length ln a2. In other words
lγ = ln a2 and (9) follows.

On a non-orientable surface (9) is still true for two-sided closed geodesics. For
one-sided closed geodesics we have

(10) trAγ = 2 sinh
1

2
lγ .

where we have scaled Aγ to have determinant −1 and positive trace. The change
from cosh to sinh is due to the fact that a one-sided homotopy class maps to a
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negative determinant matrix A, or equivalently it has non-trivial image under the
homomorphism

w1 : π1Σ → PGL(2, R)
sgn det
−→ Z2.

A negative determinant matrix A acts on H+ by

z 7→ Az̄

and as above, we arrange Aγ so that it preserves the imaginary line in upper half
space H

+ to get

Aγ =

(
a 0
0 −1/a

)

so Aγ · i = a2i and as before lγ = ln a2 yielding (10).
Relations (9) and (10) are most naturally expressed as

(trAγ)2

detAγ
= 2 ± 2 cosh lγ

since this is well-defined on PGL(2, R) (where ± = sgn det(Aγ).) We usually
rescale so that detAγ = ±1 for ease of use.

The following trace identity is better known on PSL(2, R) but we write it on
PGL(2, R) for naturality and generality, before specialising by rescaling. For A, B ∈
PGL(2, R), and B†, the adjugate of B, defined by BB† = detB
(11)

detB·(trA)2+detA·(trB)2+(trAB)2−trA·trB·trAB = trABA†B†+2 detAdetB.

(One can prove (11) by extending † to a linear map on M(2, R) and converting
the quadratic identity to a bilinear identity, or by directly verifying it with the
computer.)

The trace identity (11) applied to A = Aγ and B = Aµ has different geometric
interpretations according to the behaviour of the closed geodesics γ and µ. It
neatly encodes some difficult hyperbolic trigonometric identities. We will apply it
to simple closed curves intersecting exactly once.

Let γ and µ be two-sided simple closed geodesics that intersect exactly once
(and hence both are non-separating.) Then the commutator

[
[γ], [µ]

]
∈ π1Σ is

represented by a two-sided simple closed geodesic that bounds a neighbourhood of
γ ∪ µ which is homeomorphic to T 2 − D2. The hyperbolic structure gives a local
representation π1Σ → PSL(2, R) (since two-sided curves map to PGL+(2, R) ⊂
PGL(2, R).) In this case (11) becomes the better known

(trAγ)2 + (trAµ)2 + (trAγAµ)2 − trAγ · trAµ · trAγAµ = tr[Aγ , Aµ] + 2.

The sign of tr[Aγ , Aµ] is well-defined on PSL(2, R) and in fact tr[Aγ , Aµ] < 0 which
uses the following continuity argument. The space of geometric pairs (Aγ , Aµ) is
connected so since tr[Aγ , Aµ] remains away from zero (the representation is geo-
metric (Fuchsian) meaning |tr[Aγ , Aµ]| ≥ 2) it is sufficient to calculate the sign of
tr[Aγ , Aµ] in one example (which we do not do here, although we will construct an
example for the non-orientable case.) Using the quadratic identity, tr[Aγ , Aµ] ≤ −2
implies that trAγ · trAµ · trAγAµ > 0.

Lift the local representation π1Σ → PSL(2, R) to SL(2, R) so that trAγ > 0 and
trAµ > 0. From trAγ · trAµ · trAγAµ > 0 this forces trAγAµ > 0 and we have

(12) x2 + y2 + z2 −xyz = −∂ +2,

{
x = 2 cosh 1

2 lγ , z = 2 cosh(l[γ][µ]/2),
y = 2 cosh(lµ/2), ∂ = 2 cosh(l[[γ],[µ]]/2).
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When δ = 2, so the right hand side of (12) is zero, such a triple (x, y, z) is known
as a Markoff triple.

Now let γ be a one-sided simple closed geodesic and µ a two-sided simple closed
geodesic that intersect exactly once. Then the commutator

[
[γ], [µ]

]
∈ π1Σ no

longer has good geometric meaning, instead the product [γ][µ][γ]−1[µ] is represented
by a two-sided simple closed geodesic that bounds a neighbourhood of γ ∪ µ which
is homeomorphic to the Klein bottle minus a disk K − D2. Apply the identity

(13) trαβ + trαβ† = trα · trβ

to α = ABA† and β = B to get

trABA†B + trABA†B† = trABA† · trB = detA · (trB)2

so (11) becomes

(14) detB · (trA)2 + (trAB)2 − trA · trB · trAB = −trABA†B + 2 detAdetB

which has replaced trABA†B† by trABA†B, the former geometrically meaningful
in the orientable case, and the latter geometrically meaningful in the nonorientable
case.

As in the orientable case, the sign of trABA†B is well-defined on PGL(2, R)
and by a continuity argument on the connected space of geometric pairs (A, B)
(i.e. pairs corresponding to a one-sided geodesic intersecting a two-sided geodesic
once) it is determined by calculating a single example. Such an example is given
by the subgroup of PGL(2, Z) shown in (17). In this example, trABA†B > 0
thus this is true for all geometric pairs (A, B). The quadratic identity then implies
trA · trB · trAB > 0.

We lift the representation π1Σ → PGL(2, R) to GL(2, R) and rescale so that
detAγ = −1, detAµ = 1, trAγ > 0 and trAµ > 0. This forces trAγAµ > 0 so (14)
becomes

Y 2
1 + Y 2

2 − Y1Y2Z = −∂ − 2,

{
Y1 = 2 sinh 1

2 lγ , Y2 = 2 sinh(l[γ][µ]/2),
Z = 2 cosh(lµ/2), ∂ = 2 cosh(l[γ][µ][γ]−1[µ]/2).

A third geometric case when γ and µ are disjoint two-sided simple closed geod-
esics is not important for the paper but we include it out of interest. In this case
AγAµ = Aν for ν a simple closed geodesic that bounds a pair of pants with γ
and µ, and the trace identity (11) expresses the length of the closed geodesic with
(topological) three-fold symmetry, drawn as η in Figure 6, as a symmetric function
in the boundary lengths.

ν

µ

γ
η

Figure 6. lη = S(lγ , lµ, lν)
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4. Punctured Klein bottle

Theorem 1 follows from Theorem 3 if we divide both sides by L and take the
limit L → 0. In this section we give an alternative, elementary proof of Theorem 1
similar to Bowditch’s proof [1] of McShane’s original identity on the punctured
torus. As with a punctured torus, the lengths of all geodesics on a hyperbolic
punctured Klein bottle can be calculated recursively (and hence easily listed on the
computer.)

Keeping the notation of the theorem, γ denotes the unique two-sided embedded
closed geodesic, and γi denotes the sequence of one-sided embedded closed geodesics
in the hyperbolic punctured Klein bottle. Put

Z = 2 cosh
1

2
lγ , yi = sinh

1

2
lγi

.

The trace identities give the following relations. The puncture has zero length
so the quadratic identity becomes

(15) y2
i + y2

i+1 − yiyi+1Z = −1.

We can replace yi+1 in this quadratic identity by yi−1 and hence they are the two
roots of a common quadratic equation. Thus

(16) yi−1 + yi+1 = yiZ and yi−1yi+1 − y2
i = 1.

Use these to evaluate the series
∞∑

i=−∞

1

1 + y2
i + y2

i+1

=

∞∑

i=−∞

1

yiyi+1Z

=
1

Z

∞∑

i=−∞

(
yi−1

yi
−

yi

yi+1

)

=
1

Z

(
lim

i→−∞

yi−1

yi
− lim

i→∞

yi

yi+1

)
.

From (15) we have (
yi

yi+1

)2

+ 1 − Z
yi

yi+1
= −

1

y2
i+1

and 1/yi → 0 as i → ±∞ (the lengths of the geodesics go to infinity) so

lim
i→±∞

yi/yi+1 = λ±

satisfies λ2
± − Zλ± + 1 = 0 ⇒ λ = exp(±lγ/2).

From yi−1yi+1 − y2
i = 1 we calculate recursively yi+1 =

1 + y2
i

yi−1
so if yi > yi−1

then yi+1 > yi. Similarly, if yi > yi+1 then yi−1 > yi. Eventually as i gets large
the sequence is strictly increasing and as −i becomes large the sequence is strictly
decreasing (since a hyperbolic surface has a minimal length closed geodesic), so
limi→∞ yi/yi+1 = exp− 1

2 lγ and limi→−∞ yi/yi+1 = exp 1
2 lγ . Thus

1

Z

(
lim

i→−∞

yi−1

yi
− lim

i→∞

yi

yi+1

)
=

1

Z

(
exp

1

2
lγ − exp−

1

2
lγ

)

=
2 sinh 1

2 lγ

2 cosh 1
2 lγ

= tanh
1

2
lγ .
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Hence
∞∑

i=−∞

1

1 + y2
i + y2

i+1

= tanh
1

2
lγ

which is the identity (1).

4.1. Rational solutions. Surfaces with rational traces correspond to rational so-
lutions of (15). If yn and yn+1 are rational, then all yi and Z are rational. There
is exactly one hyperbolic surface with all traces integral. This has

yi = F2i, i ≥ 0, y−i = F2i−2, i > 0,

where Fi is the ith Fibonacci number (for F0 = 1 = F1.) The triples (F2i, F2i+2, 3)
give all integral solutions to (15). The hyperbolic surface with integral traces is a
quotient of H2 by the index 12 subgroup of PGL(2, Z):

(17) Γ = 〈A, B〉 ⊂ PGL(2, Z), A =

(
0 −1
−1 2

)
, B =

(
1 1
1 2

)
.

It is analogous to the modular curve given by the quotient of H2 by the index 6
commutator subgroup of PSL(2, Z) which is a hyperbolic punctured torus with all
traces integral.

4.2. Extended Quasi-Fuchsian 3-manifolds. A complete hyperbolic 3-manifold
M = H3/Γ is the quotient of hyperbolic space by a discrete subgroup Γ ⊂ PSL(2, C)
which is the image of a representation of π1M . It has conformal boundary Ω(Γ)/Γ
where Ω(Γ) is the largest open subset of S2

∞ (the conformal boundary of H3) on
which Γ acts properly discontinuously. The limit set Λ(Γ) = S2

∞ − Ω(Γ) is the set
of accumulation points of an arbitrary point in H3. Hyperbolic surfaces correspond
to Fuchsian groups which have Λ(Γ) equal to a round circle, or equivalently take
values in (a conjugate of) PSL(2, R). More generally, if Λ(Γ) is a Jordan curve
homeomorphic to a circle and Ω(Γ) consists of two disjoint sets, then either Γ pre-
serves the two components of Ω(Γ), in which case it is quasi-Fuchsian and M is
homeomorphic to a surface times R, or Γ swaps the two components of Ω(Γ), in
which case it is extended quasi-Fuchsian and M is homeomorphic to a non-trivial
R bundle over a non-orientable surface. Its conformal boundary is the orientable
double cover of the non-orientable surface.

Proof of Theorem 4. The identity (1) extends to allow complex values of yi. To
prove the more general version of the identity, it is sufficient to show the series
on the left hand side of (1) converges, since the proof of the identity goes through
without change. Recall that given initial values y0, y1 ∈ C, they determine lγ ∈ C

via (15) and {yi} via either equation in (16). To analyse the convergence of the
series (1) we need to understand the growth of the |yi| as i → ±∞, and we do this
by giving a general solution of {yi} from y0, y1 ∈ C\{0}.

(18) yn = A exp
n

2
lγ + B exp−

n

2
lγ , A + B = y0, AB = 4/ sinh2 1

2
lγ .

Note that y1 enters (18) by together with y0 determining lγ . The proof of this
general solution is by direct substitution into (15) or (16), and the fact that there
exists a unique solution given y0 and y1. Now we put the following assumption on
y0 and y1 which we interpret geometrically below.
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Condition 1. Restrict to pairs y0, y1 ∈ C\{0} such that Re(lγ) 6= 0 for lγ defined

by cosh 1
2 lγ = (1 + y2

0 + y2
1)/(2y0y1).

Now, put Re(lγ) = λ 6= 0. From (18)

|yn| >
∣∣|A| exp(nλ/2) − |B| exp(−nλ/2)

∣∣ ∼ exp(n|λ|/2)

since both |A| and |B| are non-zero and one of the terms grows exponentially while
the other decays exponentially. Thus |yn| grows exponentially. Now replace the
summands in the series (1) by the more convenient 1/yiyi+1Z so we see that the
terms decay exponentially, the series converges absolutely, and the proof of the
identity goes through under the assumption of Condition 1.

In the hyperbolic 3-manifold homeomorphic to the non-trivial R bundle over
the punctured Klein bottle there is a unique closed geodesic γ that projects to an
embedded two-sided curve on the surface. It corresponds to a loxodromic element
in PSL(2, C). A loxodromic element A ∈ PSL(2, C) satisfies tr(A) /∈ [−2, 2]. Thus
2 cosh(lγ) /∈ [−2, 2]. But cosh(a+ ib) = cosh a cos b+ i sinh a sin b so 2 cosh(a+ ib) ∈
[−2, 2] is equivalent to a = 0 and thus lγ corresponding to a loxodromic element is
equivalent to Condition 1. The theorem follows. �

Theorem 4 is an analogue of Bowditch’s study of two-generator subgroups of
PSL(2, C) using Markoff triples [2]. In that case, it is difficult to tell when a
Markoff triple—(x, y, z) the norm of each greater than 2 and satisfying (12) for
δ = 2—corresponds to a Kleinian group. The situation for the punctured Klein
bottle is much easier, since Condition 1 gives the complete answer.

5. Moduli space

For n + k− 2 > 0, denote by Mk,n,±(L) the moduli space of hyperbolic surfaces
with n geodesic boundary components of lengths L = (L1, ..., Ln) and fixed topology

(19) Σ ∼= Σ′
m#(k − 2m)RP

2, Σ′ orientable of genus m

where ± indicates when the surface is orientable or non-orientable. Note that k =
2m in the orientable case and in the non-orientable case the topology is independent
of m. The moduli space is an orbifold of dimension

dimMk,n,±(L) = 3k − 6 + 2n = −3χ − n

where χ is the Euler characteristic. The map

(20) Mg,n(L)
2:1
−→ M2g,n,+(L)

from the usual moduli space of oriented hyperbolic surfaces is generically 2:1 since
there are two orientations on each orientable surface. (A half dimensional space of
surfaces possesses an orientation preserving isometry that switches the orientations.
When L = 0, these are the real algebraic curves, or Klein surfaces.) Below we
give an analogue of (20) for non-orientable surface by equipping a surface with an
orientation of one of its boundary components.

To see the manifold, or orbifold, structure of the moduli space locally, and in
particular its dimension, as usual we take a maximal set of disjoint embedded closed
geodesics on a given surface. Deformations of the hyperbolic structure are obtained
by varying the lengths of these geodesics. Further deformations are obtained by
cutting along two-sided geodesics, rotating and gluing back. The gluing along
a one-sided geodesic is rigid and hence does not allow rotations, i.e. a one-sided
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geodesic must glue to itself via the antipodal map. A surface of type (k, n,−) has the
topology of (19), so it possesses a maximal set of disjoint closed embedded geodesics
consisting of k−2m one-sided geodesics and m−3+n+k two-sided geodesics. Thus
the dimension of the deformation space is k− 2m + 2(m− 3+ n + k) = 3k− 6 + 2n
as given above.

If we cut along the maximal set of disjoint embedded closed geodesics we get a
pair of pants decomposition of the surface. The rotation angle along a two-sided
geodesic can be given a value that is almost well-defined, by measuring the angle
difference between distinguished points on each side of the geodesic, given by the
two closest points to the two other boundary components of the pair of pants. The
angle θ(mod l) along a two-sided geodesic of length l is well-defined up to

(21) θ 7→ l − θ, θ 7→
l

2
+ θ, θ 7→

l

2
− θ.

5.1. Volume form. The moduli space of hyperbolic surfaces with a given topology
comes equipped with a local volume form which is globally well-defined up to sign.

Theorem 5. Up to sign, the volume form

(22) dvol =
∧

γ 2−sided

(dlγ ∧ dθγ) ∧
∧

µ 1−sided

coth(lµ/2)dlµ

is independent of the choice of pair of pants decomposition.

Proof. The volume form is only well-defined up to sign for two reasons. The rotation
angle θγ along the geodesic γ is well-defined up to the transformations (21) which
can transform dθγ 7→ −dθγ . Also, the order of the coth(lµ)dlµ terms is not well-
defined so switching two can alter the sign.

The main point of the theorem is that up to sign the volume form is invariant
under the mapping class group, and it is independent of the choice of the topological
pair of pants decomposition. (For example, the closed orientable genus 2 surface
has two topologically distinct pair of pants decompositions.) We prove both of
these at the same time by showing that the volume form is invariant, up to sign,
under local changes in the pair of pants decomposition. A sequence of such changes
can give any element of the mapping class group.

There are four local changes of a pair of pants decomposition. Two cases involve
only two-sided geodesics - replace a two-sided geodesic with another intersecting
two-sided geodesic and consider the two cases when the geodesic is non-separating
or separating. We will not consider these two cases here since they follow from [14].

The other two cases consist of
(i) replace a one-sided geodesic µ by another one-sided geodesic µ′ that intersects

µ exactly once;
(ii) replace two non-intersecting one-sided geodesics by a two-sided geodesic that

intersects both of the one-sided geodesics once.
For case (i), thicken µ ∪ µ′ to get a Möbius strip minus a disk Σ. The two

boundary components of Σ are isotopic to geodesics so we can choose Σ to have

geodesic boundary β1 and β2. The trace identity (6) cosh
(

lβ1

2

)
+ cosh

(
lβ2

2

)
=

2 sinh
(

lµ
2

)
sinh

(
lµ′

2

)
and the fact that β1 and β2 are unchanged by the swap of µ

with µ′ we have d log sinh
(

lµ
2

)
+ d log sinh

(
lµ′

2

)
= 0 and hence

(23) coth(lµ)dlµ = − coth(lµ′)dlµ′ .
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Furthermore, not only do the lengths of β1 and β2 remain constant, but also the
rotation angles at each of these geodesics remain constant. This is because the
distinguished points on β1 and β2 marked by shortest geodesics between boundary
components of a pair of pants decomposition, are the same for the two pair of
pants decomposition obtained by cutting along µ or µ′. This fact can be seen in
Figure 3 which shows the double cover of a Möbius strip minus a disk, and hence
both pair of pants decompositions on the same diagram. Thus all other coordinates
are unchanged and the volume element changes by coth(lµ/2)dlµ 7→ coth(lµ′ )dlµ′ =
− coth(lµ)dlµ which is multiplication by -1.

For case (ii), take any path p running between the non-intersecting one-sided
geodesics µ1 and µ2, so that p intersects each µi only at the endpoints of p. Thicken
µ1 ∪ µ1 ∪ p to get a Klein bottle minus a disk K and as before we can choose K
so that it has geodesic boundary. Inside K there is a unique two-sided geodesic γ.
We wish to replace µ1 and µ2 by γ. This gives a new pair of pants decomposition
with coordinates the length lγ and rotation angle θγ replacing the lengths lµ1

and
lµ2

. The coordinates are shown together in the following diagram.

/2lγ

γ/2θ
l

lµ
µ2

1

L

Figure 7. Coordinates lγ , θγ , lµ1
and lµ2

Figure 7 shows a right-angle hexagon, two copies giving the Klein bottle cut
along the one-sided geodesics µ1 and µ2. The geodesic joining the midpoints of
the sides µ1 and µ2 gives half of the unique two-sided geodesic γ. The length θγ/2
appears twice in the diagram as either of the intervals of equal length.

b

h
a

Figure 8. sinhh · cosh b = sinh a

Put Yi = sinh(lµi
/2) and apply the hyperbolic trigonometric identity in Figure 8

to the two quadrilaterals in Figure 7 to get

(24)
Y1

Y2
=

cosh(θγ/2)

cosh(lγ/2 − θγ/2)
.
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Also the trace identity (14) gives

Y 2
1 + Y 2

2 − 2Y1Y2 cosh
1

2
lγ = constant

where the right hand side depends on the length of the boundary of K which is
constant. So we substitute (24) to get

constant

Y 2
1

= 1 +
cosh2(lγ/2 − θγ/2)

cosh2(θγ/2)
−

2 cosh(lγ/2 − θγ/2) cosh 1
2 lγ

cosh(θγ/2)

and get rid of the constant by taking the logarithmic derivative. Together with the
logarithmic derivative of (24) we get

(25) dlγ ∧ dθγ = dY1 ∧ dY2 = coth(lµ1
/2) coth(lµ2

/2)dlµ1
∧ dlµ2

.

Under the change from µ1, µ2 to γ the length of the boundary of K is unchanged
but unlike the previous case, the angle associated to the boundary does change. The
change is given by one of the two subintervals of the length L in Figure 7. Label
this change by φ, then φ = φ(L, lµ1

, lµ2
) so in particular dφ is a linear combination

of dlµ1
and dlµ2

, or equivalently a linear combination of dlγ and dθγ , so the volume
element is unchanged by the change dφ and hence dvol changes by (25) and the
theorem is proven. �

5.2. The oriented moduli space. The moduli space of orientable hyperbolic sur-
faces Mk,n,+(L) possesses a double cover Mg,n(L) of oriented hyperbolic surfaces
of genus g = k/2. On Mg,n(L) the volume form (22) is well-defined without the
±1 ambiguity. Teichmüller space is a cover of the oriented moduli space consisting
of oriented hyperbolic surfaces with a marking, i.e. a homeomorphism to a model
topological surface, with coordinates obtained from a pair of pants decomposition
by lifting the angle θ(mod l) to take values in R. The lengths li ∈ R+ and angles
θi ∈ R give global coordinates called Fenchel-Nielsen coordinates on the Teichmüller
space of marked oriented hyperbolic surfaces. The orientation is required to make
sense of the angle at each two-sided geodesic. One can choose at each two-sided
curve the way in which to define θ (for example, from one side of a geodesic in the
decomposition turn right at a distinguished point and head towards a point distin-
guished from the other side) to leave an ambiguity θ 7→ θ+ l/2(mod l) compared to
(21). Furthermore, the change from θ to θ + l/2 gives a different hyperbolic surface
so we are left with θ(mod l). A flip θ 7→ l− θ at every two-sided geodesic gives the
same hyperbolic surface with the opposite orientation so we have a double cover of
the moduli space of unoriented surfaces.

Such a double cover of the moduli space requires more care when the surface
is non-orientable. Teichmüller spaces of non-orientable hyperbolic surfaces have
been studied by various authors. In [3, 11] Fenchel-Nielsen coordinates are de-
fined on marked non-orientable hyperbolic surfaces. Jost [3] considers an enlarged
Teichmüller space that combines orientable and non-orientable surfaces which nat-
urally arises when compactifying the spaces. The fact that one must deal with
some type of an orientation on the surfaces (see below) is not explicitly mentioned
in these papers although it is implicit in [3].

We define the “oriented” moduli space of surfaces when the boundary is non-
empty.
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Definition. For n > 0 and n + k − 2 > 0, denote by M̂k,n,±(L) the moduli space

of hyperbolic surfaces with n geodesic boundary components β1, ..., βn of lengths

L = (L1, ..., Ln) and fixed topology, together with an orientation of β1.

In the orientable case M̂k,n,+(L) = Mk/2,n(L) agrees with the usual defini-
tion. In the non-orientable case, on this oriented moduli space the volume form is
well-defined without the ±1 ambiguity present in Theorem 5. This can be seen by
choosing a curve γ with connected orientable complement unique up to the action
of the mapping class group. The orientation of β1 induces an orientation on the
complement of γ. Upstairs, in Teichmüller space, use coordinates coming from a
decomposition along a maximal set of disjoint embedded closed curves that includes
a curve γ with connected orientable complement. The orientation on the comple-
ment of γ gives rise to a well-defined angle at each of the closed geodesics in the
decomposition and hence a well-defined volume form. We describe this explicitly
below in the simplest case of a Klein bottle minus a disk in order to demonstrate
an integration formula. More generally, for any decomposition of a surface Σ along
a maximal set of disjoint embedded closed curves, a well-defined orientation, which
depends on an order of the one-sided geodesics in the maximal set, is induced from
an orientation on β1 as follows. Cut along the one-sided geodesics in the maximal
set to get an orientable surface Σ′. The orientation on β1 induces an orientation
on Σ′. To determine the order of the boundary one-sided geodesics, join pairs of
one-sided geodesics by a collection of disjoint embedded arcs in Σ′. (There may
be a one-sided geodesic left over.) The two one-sided geodesics can be replaced by
a two-sided closed geodesic in Σ which restricts to the isotopy class of the arc in
Σ′. The choice of angle along the two-sided closed geodesic is well-defined, induced
from the orientation on β1. We then use (25) which chooses an order of the two
one-sided geodesics that makes the local volume form agree.

The oriented moduli space can also be described by an index two subgroup of the
mapping class group. Take those elements of the mapping class group that preserve
the chosen orientation on the specified boundary component. To prove that this
does indeed give an index two subgroup (and not the whole group) we must show
that there exists an element of the mapping class group that flips the orientation.

Lemma. On any surface with boundary there exists a homeomorphism that flips a

chosen orientation on a boundary component.

Proof. The simplest cases are: a Möbius strip, a Möbius strip minus a disk, and
an orientable surface. A pair of pants possesses an orientation reversing reflection
and this extends to any orientable surface cut along pairs of pants. The disk and
annulus also possess reflections. For the Möbius strip minus a disk the mapping
class group is Z2 and it is easy to see explicitly that the non-trivial element flips
the orientation of both boundary components. Furthermore, this homeomorphism
extends across the disk to the Möbius strip.

In general, any non-orientable surface Σ with boundary contains a Möbius strip
minus a disk M with one boundary component in common with a boundary com-
ponent of Σ. A homeomorphism of M that flips the orientation of the boundary
extends over all of Σ by choosing a homeomorphism of Σ− M that flips the orien-
tation of its boundary component shared with M . This homeomorphism of Σ−M
exists by induction on the simpler surface Σ − M . Thus the lemma is proven. �
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The kernel of the action of the mapping class group on the orientation on a
specified boundary component gives the following corollary.

Corollary. There exists an index two subgroup of the mapping class group of a

non-orientable surface with boundary that fixes a chosen orientation on a boundary

component thus defining a double cover of the moduli space.

It is not clear that this index two subgroup exists for a closed non-orientable
surface. Equivalently, it is not clear that there exists a subgroup of the mapping
class group that preserves the volume form which is well-defined on the Teichmüller
space of a closed non-orientable surface.

In place of the decomposition of a hyperbolic surface along a maximal set of
disjoint embedded closed geodesic it is also convenient to use Penner’s coordinates
[10] of Teichmüller space given by lengths of a maximal set of disjoint geodesic
arcs perpendicular to the boundary. These coordinates consist of lengths and no
angles. Lengths are a little more natural on a non-oriented surface. In this case
the ±1 ambiguity of the volume form on the moduli space comes from a choice
of ordering for the coordinates just as for lengths of one-sided geodesics. In [9]
the Poisson structure on Teichmüller space is given in these coordinates. This
Poisson structure makes sense on the moduli spaces of non-orientable surfaces, and
is quite natural particularly since the dimensions of the moduli spaces can be odd.
The Poisson structure requires a choice of orientation on each piece of the marked
hyperbolic surface cut along the perpendicular geodesics. This can be achieved in
the same way as for the volume form.

5.3. Integration. Mirzakhani showed how to use McShane’s identity, and her gen-
eralised versions of the identity, to integrate functions on the moduli space, and in
particular calculate the volume of the moduli space [6, 7, 8].

We give a brief description of her idea, before we apply it to a non-orientable
example. Mirzakhani shows how to integrate functions of the form

F =
∑

γ=h·γ0

f(lγ)

where f is an arbitrary function and the sum is over the orbit of a geodesic under
the mapping class group. When f decays fast enough the sum is well-defined on the
moduli space. More generally, one can consider an arbitrary (decaying) function
on collections of geodesics and sum over orbits of the mapping class group acting

on the collection. Mirzakhani unfolds the integral of F to a moduli space M̂g,n(L)
of pairs (Σ, γ) consisting of a hyperbolic surface Σ and a geodesic γ ⊂ Σ.

Tg,n(L)
↓

M̂g,n(L)
↓

Mg,n(L)

The unfolded integral
∫

Mg,n(L)

F · dvol =

∫

cMg,n(L)

f(lγ) · dvol

can be expressed in terms of an integral over the simpler moduli space obtained by
cutting Σ along the geodesic γ.
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McShane’s identity is exactly of the right form for Mirzakhani’s scheme since it
expresses the constant function F = L1 as a sum of functions of lengths over orbits
of the mapping class group. In this case,

L1Vg,n(L) =

∫

Mg,n(L)

F · dvol =

∫

cMg,n(L)

f(lγ1
, lγ2

) · dvol

expresses the volume Vg,n(L) = volume(Mg,n) recursively in terms of simpler vol-
umes of moduli spaces obtained by removing a pair of pants from Σ in topologically
different ways. The simplest unfolding expresses the volume of M1,1 as an integral
over R+ × [−1/2, 1/2]. In the example of the Klein bottle below, we see a similar
unfolding to an integral over R+ × R+.

The volume of Mk,n,−(L) is infinite so we cannot integrate constant functions
over the moduli space but we can integrate integrable functions.

As described above, we can take a double cover of M2,1,−, the moduli space of
punctured Klein bottles (we have dropped the length L since it is zero), on which
the volume form is well-defined. The double cover is obtained by orienting the
boundary which induces an orientation on a complement of the two-sided geodesic
γ. The volume form is

dlγ ∧ dθγ = coth
1

2
lγi

coth
1

2
lγi+1

dlγi
∧ dlγi+1

since the orientation has allowed us to choose the sign of θγ , and also to distinguish
γi−1 from γi+1 with respect to γi.

The length lγ is well defined on the moduli space since γ is unique. The identity
from Theorem 1

∞∑

i=−∞

1

1 + sinh2 1
2 lγi

+ sinh2 1
2 lγi+1

= tanh
1

2
lγ

enables us to unfold the integral of tanh 1
2 lγ over the moduli space, but this integral

is infinite. Instead, integrate

F =
tanh 1

2 lγ

coshn 1
2 lγ

=

∞∑

i=−∞

(2 sinh 1
2 lγi

sinh 1
2 lγi+1

)n

(1 + sinh2 1
2 lγi

+ sinh2 1
2 lγi+1

)n+1
.

This identity uses (15) and the identity for n = 0.
We will calculate only the simplest case n = 1

∫

M2,1,−

F · dvol =

∫

M2,1,−

∞∑

i=−∞

2 sinh 1
2 lγi

sinh 1
2 lγi+1

(1 + sinh2 1
2 lγi

+ sinh2 1
2 lγi+1

)2
dvol

=

∫

cM2,1,−

2 sinh 1
2 lγi

sinh 1
2 lγi+1

coth 1
2 lγi

coth 1
2 lγi+1

(1 + sinh2 1
2 lγi

+ sinh2 1
2 lγi+1

)2
dlγi

dlγi+1

=

∫ ∞

0

∫ ∞

0

2 cosh 1
2x cosh 1

2y

(1 + sinh2 1
2x + sinh2 1

2y)2
dxdy.

= 2π

In this case, the integral can be performed without unfolding, since
∫ ∞

0

∫ lγ

0

tanh 1
2 lγ

cosh 1
2 lγ

dθγdlγ = 2π.
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Mirzakhani [8] used the volumes of the moduli spaces to study cohomology classes
on the moduli space. She proved recursion relations between volumes of the moduli
spaces which led to recursion relations between cohomology classes, reproving the
Witten-Kontsevich Virasoro relations on the moduli space. It is not clear what the
analogous setup should be on the moduli spaces of non-orientable surfaces since
the volumes are infinite. Nevertheless, one would hope to be able to integrate over
the moduli spaces of non-orientable surfaces and get relations between cohomology
classes on different moduli spaces. The degree 4i tautological cohomology classes
appearing in Wahl’s work [13] on the cohomology of moduli spaces of non-orientable
surfaces are the natural candidates to satisfy recursion relations.
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