
PRUNED HURWITZ NUMBERS

NORMAN DO AND PAUL NORBURY

ABSTRACT. We define a new Hurwitz problem which is essentially a small core of the simple Hurwitz problem.
The corresponding Hurwitz numbers have simpler formulae, satisfy effective recursion relations and determine the
simple Hurwitz numbers. We also apply this idea of finding a smaller simpler enumerative problem to orbifold
Hurwitz numbers and Belyi Hurwitz numbers.
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1. INTRODUCTION

In 1891 Hurwitz [1717] introduced the problem of enumerating connected branched covers of CP1 up to
isomorphism with simple ramification over m fixed points in CP1 and ramification given by a partition
µ = (µ1, µ2, . . . , µn) over ∞ ∈ CP1. The Riemann-Hurwitz formula shows that the genus of the cover satisfies
m = m(g, µ) = 2g− 2 + n + |µ| where |µ| = µ1 + µ2 + . . . + µn. Hurwitz described the following equivalent
factorisation problem in the symmetric group S|µ|. We say that a product σ1 · σ2 · · · σm in S|µ| is transitive if
the collection {σ1, σ2, . . . , σm} acts transitively on the set {1, 2, ..., |µ|}. Given µ, choose T ∈ S|µ| of cycle type
µ = (µ1, µ2, . . . , µn) and define Hg,n(µ) to be the number of transitive factorisations of T by m transpositions:

(1) σ1 · σ2 · · · σm = T.

The number Hg,n(µ) is independent of the choice of T.
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This problem was studied further by Hurwitz [1818], Goulden-Jackson [1414] and Ekedahl-Lando-Shapiro-
Vainshtein [1010] where it was shown that:

(2)
Hg,n(µ)

m(g, µ)!
=

n

∏
i=1

µ
µi
i

µi!
Pg,n(µ1, ..., µn)

for some polynomial Pg,n(µ1, ..., µn). The celebrated ELSV formula determines the polynomials Pg,n using
Hodge integrals over the moduli space of stable curvesMg,n. See Section 22.

Each number in the set {1, 2, ..., |µ|} appears in at least one of the factors σi of (11) since the collection
(σ1, σ2, · · · , σm) acts transitively on the set. In this paper we introduce a new Hurwitz problem with one
further condition.

Definition 1.1. Define the pruned simple Hurwitz number Kg,n(µ) to be the number of transitive factorisations
(11) of any T of shape µ into m = 2g− 2 + n + |µ| transpositions so that each number {1, 2, ..., |µ|} appears in
at least two of the factors σi.

The seemingly innocuous extra condition of each number appearing in at least two factors brings further
deep structure to the problem. The pruned simple Hurwitz number count is a subset of the simple Hurwitz
number count and the biggest surprise is that it is extremely well-behaved, and in many ways better behaved
than simple Hurwitz numbers. The pruning condition can also be understood in terms of branched coverings
and the word pruned refers to a graphical description of simple Hurwitz numbers described in Section 22.
Pruned simple Hurwitz numbers essentially define the core of simple Hurwitz numbers having a formula
which is a vast simplification of the formula (22) for simple Hurwitz numbers.

Theorem 1. The pruned simple Hurwitz numbers satisfy:

(i) Kg,n(µ1, µ2, . . . , µn)/(2g− 2 + n + |µ|)! is a polynomial function of the µi.
(ii) Kg,n(µ1, µ2, . . . , µn) satisfies an effective recursion.

(iii) Kg,n(µ1, µ2, . . . , µn) determines and is determined by Hg,n(µ1, µ2, . . . , µn).

The recursion in (ii) of Theorem 11 is given explicitly by Proposition 3.23.2 in Section 33. It is not simply the
restriction of the cut-and-join recursion for simple Hurwitz numbers because the pruned Hurwitz condition—
that each number {1, 2, ..., |µ|} appears in at least two of the factors σi of µ—is not preserved under the
cut-and-join operations. The coefficients of top degree terms of Kg,n(µ1, µ2, . . . , µn)/m! are intersection
numbers over Mg,n and this together with the recursion gives a new proof of the Witten–Kontsevich
theorem. The relation (iii) between Kg,n(µ1, µ2, . . . , µn) and Hg,n(µ1, µ2, . . . , µn) is given explicitly by (3.43.4) in
Section 33. The following example demonstrates the simplification of the formulae for Kg,n(µ1, µ2, . . . , µn)

over Hg,n(µ1, µ2, . . . , µn).

Example 1.2. For T ∈ S|µ| of shape µ = (µ1, µ2, µ3) consider transitive factorisations by transpositions
σ1 · σ2 · · · σ|µ|+1 = T corresponding to genus 0 branched covers. The two formulae are

H0,3(µ1, µ2, µ3) = (|µ|+ 1)!
3

∏
i=1

µ
µi+1
i
µi!

, K0,3(µ1, µ2, µ3) = (|µ|+ 1)!µ1µ2µ3

and the latter is simpler.

For any a ∈ Z+ orbifold Hurwitz numbers H[a]
g,n(µ) are defined as follows. Given µ, choose T ∈ S|µ| of

cycle type µ = (µ1, µ2, . . . , µn) and define H[a]
g,n(µ) to be the number of transitive factorisations of T by
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m = 2g− 2 + n + |µ|
a transpositions and an element σ0 of shape (a, a, ...a):

(3) σ0 · σ1 · σ2 · · · σm = T.

In particular |µ|must be divisible by a to get a non-zero count. Such factorisations correspond to branched
covers of P1 and the Riemann-Hurwitz formula in this case shows that the genus of the cover satisfies
m = 2g− 2 + n + |µ|

a . The factor σ0 in (33) defines a colouring of {1, 2, ..., |µ|} where each of the |µ|a cycles of σ0

is given a distinct colour. Each colour appears in at least one of the transposition factors σi, i > 0 of (33) since
the collection (σ0, σ1, σ2, · · · , σm) acts transitively on {1, 2, ..., |µ|}. We can generalise the pruning condition as
follows.

Definition 1.3. Define the pruned orbifold Hurwitz number K[a]
g,n(µ) to be the number of transitive factorisa-

tions (33) of any T of shape µ into m = 2g− 2 + n + |µ| transpositions and an element σ0 of shape (a, a, ...a) so
that each colour—determined by σ0—appears in at least two of the transposition factors σi, i > 0.

When a = 1, this reduces to the pruned simple Hurwitz numbers. Theorem 11 is a special case of the following
theorem.

Theorem 2. The pruned orbifold Hurwitz numbers satisfy:

(i) K[a]
g,n(µ1, µ2, . . . , µn)/(2g− 2 + n + |µ|

a )! is a polynomial function of the µi.

(ii) K[a]
g,n(µ1, µ2, . . . , µn) satisfies an effective recursion.

(iii) K[a]
g,n(µ1, µ2, . . . , µn) determines and is determined by H[a]

g,n(µ1, µ2, . . . , µn).

The operation of pruning applies to a broader set of combinatorial problems arising from geometry. It is
related to rational behaviour of a generating function. Assemble the orbifold Hurwitz numbers into the
following generating function.

(4) H[a]
g,n(x1, . . . , xn) =

∞

∑
µ1,...,µn=1

H[a]
g,n(µ)

m!
xµ1

1 · · · x
µn
n

µ1 · · · µn

Then H[a]
g,n(x1, . . . , xn) is a convergent power series that extends to a rational function of zi for xi = zie−za

i .

A local expansion of H[a]
g,n(x1, . . . , xn) in zi yields a generating function for K[a]

g,n(µ1, µ2, . . . , µn). The main

observation in this paper is that K[a]
g,n(µ1, µ2, . . . , µn) can be realised as the weighted count of an interesting

combinatorial and geometric problem.

Another application of pruning—where expansion in a rational parameter gives rise to an interesting
combinatorial or geometric problem—occurs for a different Hurwitz problem known as a Belyi Hurwitz
numbers. Consider connected genus g branched covers π : Σ → S2 unramified over S2 − {0, 1, ∞} with
points in the fibre over ∞ labeled (p1, ..., pn) and with ramification (µ1, ..., µn), ramification (2, 2, ..., 2) over 1
and arbitrary ramification over 0. We call the weighted count of non-isomorphic such branched covers a
Belyi Hurwitz number because the covers are known as Belyi maps. Pruned Belyi Hurwitz covers are Belyi
Hurwitz covers with the further restriction that all points above 0 have non-trivial ramification. Theorem 11
generalises to this case.

By pruning an enumerative problem, one aim is to produce a simpler core problem to help to understand the
original enumerative problem. Belyi Hurwitz numbers give a good example of a case where the pruned and
unpruned versions have independent interest. The unpruned Belyi Hurwitz numbers arise from discrete
surfaces and matrix integral calculations. Whereas the pruned Belyi Hurwitz covers can be understood
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as lattice points in the moduli space of curvesMg,n and give rise to deep information aboutMg,n such as
intersection numbers overMg,n and the orbifold Euler characteristic ofMg,n.

The examples of pruning given here have a further feature in common. They each satisfy the topological
recursion of Eynard and Orantin. Given a rational curve C, for every (g, n) ∈ Z2 with g ≥ 0 and n > 0 Eynard
and Orantin [1212, 1313] define a multidifferential, i.e. a tensor product of meromorphic 1-forms on the product
Cn, denoted by ω

g
n(p1, ..., pn) for pi ∈ C. When 2g− 2 + n > 0, ω

g
n(p1, ..., pn) is defined recursively in terms

of local information around the poles of ω
g′

n′(p1, ..., pn) for 2g′+ 2− n′ < 2g− 2+ n. The generating functions
for each of the examples above have been shown to arise as expansions of Eynard-Orantin invariants of
particular rational curves. For simple Hurwitz numbers this was known as the Bouchard-Mariño conjecture
[55] proven in [44, 1111], a generalisation of this result to orbifold Hurwitz numbers was proven in [77, 66] and Belyi
Hurwitz numbers [1313, 2323]. A natural question that arises is whether one can apply the idea of pruning to
other enumerative problems that satisfy the topological recursion of Eynard and Orantin. A good candidate
is the stationary Gromov-Witten invariants of P1 that were proven in [99, 2424]. We discuss this in Section 66.

We treat the case of pruned simple Hurwitz numbers, in Section 33, separately from pruned orbifold Hurwitz
numbers. This is due to the independent interest of simple Hurwitz numbers and also because this easier
case should help the reader understand the general case of orbifold Hurwitz numbers treated in Section 44.

2. SIMPLE HURWITZ NUMBERS

We begin by formally defining simple Hurwitz numbers via simple branched covers. For n > 0 and g ≥ 0
define the set of simple Hurwitz covers:

Hg,n(µ) =
{

f : Σ→ S2 |Σ connected genus g; with simple ramification over {z : zm = 1};

f−1(∞) = (p1, ..., pn) with respective ramification µ = (µ1, ..., µn);

f is unramified over S2 − {z : zm = 1} ∪ {∞}
}

/ ∼

where m = 2g − 2 + n + |µ| and { f1 : Σ1 → CP1} ∼ { f2 : Σ2 → CP1} if there exists h : Σ1 → Σ2 that
satisfies f1 = f2 ◦ h and preserves the labels over ∞.

Define the simple Hurwitz numbers:

(5) Hg,n(µ1, ..., µn) = ∑
f∈Hg,n(µ)

µ1 · ... · µn

|Aut f | .

The summands in (55) are integral essentially because the automorphism group is small. An automorphism of
the branched cover f : (Σ; p1, p2, . . . , pn)→ (CP1; ∞) is an automorphism φ of the marked Riemann surface
surface (Σ; p1, p2, . . . , pn) such that f = f ◦ φ. The automorphism group is only non-trivial on hyperelliptic
covers of P1 with one point at infinity, in which case it has order 2 and the numerator of (55) is also 2.

Remark 2.1. By the Riemann existence theorem, such a branched cover is prescribed by the location of
ramification points and the monodromy around each. Therefore (11) and (55) give equivalent definitions. Any
cycle of T acts by conjugation on factorisations (11) since it fixes T and preserves the shape of transpositions.
The orbits of this action have size equal to the summands of (55), which is µ1 · · · µn, or 1 in the exceptional
case n = 1 and µ1 = 2.

Remark 2.2. Different normalisations of simple Hurwitz numbers are often defined in the literature. They
may differ by factors of µ1 · ... · µn and |Aut µ| where Aut µ consists of the permutations of the tuple
µ = (µ1, µ2, . . . , µn) that leave it fixed corresponding to whether one distinguishes the preimages of ∞ ∈ CP1.
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For this reason, the cut-and-join relation and ELSV formula will appear here slightly different to some
appearances in the literature.

Given f ∈ Hg,n(µ), its branching graph [22] is f−1(Γm) ⊂ Σ where Γm ⊂ C is the star graph given by the cone
on the mth roots of unity.

ω

ω2

1

ωm−1

ωm−2

Conversely, a branching graph, defined below gives rise to f ∈ Hg,n(µ) and the simple Hurwitz numbers
Hg,n(µ) equivalently count branching graphs.

Definition 2.3. We define a branching graph of type (g; µ) to be an edge-labeled fatgraph of type (g, `(µ)) such
that for m = 2g− 2 + `(µ) + |µ|:

there are |µ| vertices and at each of them there is adjacent to m half-edges that are cyclically labeled
1, 2, 3, . . . , m;
there are exactly m (full) edges that are labeled 1, 2, 3, . . . , m; and
the n faces are labeled and have perimeters given by (µ1m, µ2m, . . . , µnm);
each face has a marked m-label (of the possible µk appearances of m.)

The set of all branching graphs of type (g; µ) is denoted Fatg,n(µ).

The marked m-labels give locations for removing or attaching edges in the cut-and-join relation below and
get rid of any automorphisms. They also give rise to an unweighted count that produces simple Hurwitz
numbers

Proposition 2.4. The simple Hurwitz number Hg;µ is equivalent to the enumeration of branching graphs:

Hg,n(µ1, ..., µn) = ∑
Γ∈Fatg,n(µ)

1.

We now assemble three fundamental results concerning simple Hurwitz numbers. We use the normalisation

Ĥg,n(µ1, µ2, . . . , µn) =
Hg,n(µ1, µ2, . . . , µn)

(2g− 2 + n + |µ|)! .
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The cut-and-join recursion for simple Hurwitz numbers is obtained by edge removal from branching graphs
[1515]:

mĤg,n(µ1, . . . , µn) = ∑
i<j

µiµj Ĥg,n−1(µS\{i,j}, µi + µj)(6)

+
1
2

n

∑
i=1

µi ∑
α+β=µi

Ĥg−1,n+1(µS\{i}, α, β) + ∑
g1+g2=g

ItJ=S\{i}

Ĥg1,|I|+1(µI , α)Ĥg2,|J|+1(µJ , β)

 .

The conditions g1 + g2 = g, I t J = S \ {i}, and α + β = µi imply a single edge removal, i.e. m1 + m2 = m− 1
where m = 2g− 2 + n + |µ|, m1 = 2g1 − 1 + |I|+ |µI |+ α and m2 = 2g2 − 1 + |J|+ |µJ |+ β.

Proposition 2.5 (ELSV formula, [1010]).

Ĥg,n(µ1, µ2, . . . , µn) =
n

∏
i=1

µ
µi+1
i
µi!

∫
Mg,n

1− λ1 + ... + (−1)gλg

(1− µ1ψ1)...(1− µnψn)

where ψi and λi are tautological classes on the moduli space.

Let ωg,n denote the correlation differentials output by the Eynard–Orantin topological recursion applied to
the spectral curve

x(z) = z exp(−z) and y(z) = z.

The Bouchard–Mariño conjecture [55] proven in [44, 1111] is:

Theorem 3. The expansion of ωg,n at x1 = x2 = · · · = xn = 0 is given by

(7) ωg,n =
∞

∑
µ1,...,µn=1

Ĥg,n(µ1, µ2, . . . , µn)
n

∏
k=1

xµk−1
k dxk.

3. PRUNED SIMPLE HURWITZ NUMBERS

3.1. Pruned simple Hurwitz numbers. In the previous section, we interpreted simple Hurwitz numbers
as an enumeration of branching graphs. In this section, we define pruned simple Hurwitz numbers by
restricting to the set of branching graphs that satisfy a mild condition on the vertex degrees. We will show
that simple Hurwitz numbers can be recovered from their pruned counterparts. One advantage of studying
pruned simple Hurwitz numbers is that they possess an inherent polynomial structure that allows geometric
information to be easily extracted. We conclude the section with an application of this methodology to obtain
a new proof of the Witten–Kontsevich theorem.

We define the essential degree of a vertex in a branching graph to be the number of incident (full) edges. The
branching graph of f ∈ Hg,n(µ) can be equivalently described as a triple (X, τ0, τ1) where X = f−1(Γ0

m), for
Γ0

m the interior of the stargraph Γm, equipped with automorphisms τ0 : X → X given by the monodromy
map around 0 and τ1 : X → X given by the monodromy maps around the roots of unity. The full edges, often
simply called edges, correspond to orbits of τ1 of length 2, whereas half-edges correspond to fixed points of
τ1.

For n > 0 and g ≥ 0 define the set of pruned simple Hurwitz covers:

Kg,n(µ) =
{

f ∈ Hg,n(µ) | all vertices of the branching graph f−1(Γm) have essential degree ≥ 2.}
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We call a branching graph pruned if all of its vertices have degree at least two and denote the set of all pruned
branching graphs of type (g; µ) by PFatg,n(µ). Define the pruned simple Hurwitz numbers:

(8) Kg,n(µ1, ..., µn) = ∑
f∈Kg,n(µ)

µ1 · ... · µn

|Aut f | = ∑
Γ∈PFatg,n(µ)

1.

As for Hg,n, this definition agrees with the definition of pruned simple Hurwitz numbers given in the
introduction via factorisations in the symmetric group. Furthermore, let m(g,µ) = 2g− 2 + n + |µ| and
define the normalisation

K̂g,n(µ) =
Kg,n(µ)

m(g,µ)!
.

where µ = (µ1, µ2, . . . , µn).

Example 3.1. The edges of a branching graph with (g, n) = (0, 1) necessarily form a tree. So in this case,
there does not exist a pruned branching graph and we have K0,1(µ1) = 0 for all positive integers µ1.

The edges of a branching graph with (g, n) = (0, 2) and µ = (µ1, µ2) necessarily form a cycle with µ1 + µ2

edges. Remove the edge labeled µ1 + µ2 and record the labels of the remaining edges in an anticlockwise
fashion around face 1 to obtain a permutation of the set {1, 2, . . . , µ1 + µ2 − 1}. The contribution to the
perimeter of face 1 is one more than the number of ascents of the resulting permutation. Therefore, we have

K0,2(µ1, µ2) = µ1µ2 A(µ1 + µ2 − 1, µ1 − 1)

for all positive integers µ1 and µ2. Here, A(m, n) represents the Eulerian number that counts the number of
permutations of the set {1, 2, . . . , m} with n ascents.

The cut-and-join recursion provides an effective recursive method for the calculation of simple Hurwitz
numbers [1414]. The next result establishes an analogous recursion for the case of pruned simple Hurwitz
numbers.

Proposition 3.2 (Cut-and-join recursion for pruned simple Hurwitz numbers). The following equation holds for
all 2g− 2 + n > 0 and µ = (µ1, µ2, . . . , µn).

m(g,µ) K̂g,n(µ) = ∑
i<j

µiµj ∑
α+β=µi+µj+1

β K̂g,n−1(µS\{i,j}, α)

+
1
2

n

∑
i=1

µi ∑
α+β+γ=µi+1

γ

K̂g−1,n+1(µS\{i}, α, β) +
stable

∑
g1+g2=g

ItJ=S\{i}

K̂g1,|I|+1(µI , α) K̂g2,|J|+1(µJ , β)


We use the notation S = {1, 2, . . . , n} and µI = (µi1 , µi2 , . . . , µik ) for I = {i1, i2, . . . , ik}. The word stable over the
final summation indicates that summands involving K̂0,1 or K̂0,2 are to be excluded.

Example 3.3. As an example of the cut-and-join recursion for pruned simple Hurwitz numbers in action,
consider the following calculation of K̂0,4(µ1, µ2, µ3, µ4), which uses K̂0,3(µ1, µ2, µ3) = µ1µ2µ3.

(|µ|+ 2) K̂0,4(µ1, µ2, µ3, µ4) =
4

∏
i=1

µi ·∑
i<j

∑
α+β=µi+µj+1

αβ

= (|µ|+ 2) ·
4

∏
i=1

µi ·
1
2
(µ2

1 + µ2
2 + µ2

3 + µ2
4 + µ1 + µ2 + µ3 + µ4)
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Therefore we conclude that

K0,4(µ1, µ2, µ3, µ4) = (|µ|+ 2)! ·
4

∏
i=1

µi ·
1
2

4

∑
i=1

(µ2
i + µi)

In contrast, the calculation of H0,4(µ1, µ2, µ3, µ4) via the cut-and-join recursion (66) is not really feasible because
it involves combinatorial identities more difficult than sums of polynomials, and because H0,4 appears on
both sides of the recursion.

Proof of Proposition 3.23.2. We begin by expressing the cut-and-join recursion without the normalisation.

Kg,n(µ) = ∑
i<j

µiµj ∑
α+β=µi+µj+1

β
(m− 1)!
(m− β)!

Kg,n−1(µS\{i,j}, α)

+
1
2

n

∑
i=1

µi ∑
α+β+γ=µi+1

γ (m− 1)!

Kg−1,n+1(µS\{i}, α, β)

(m− γ)!
+

stable

∑
g1+g2=g

ItJ=S\{i}

Kg1,|I|+1(µI , α) Kg2,|J|+1(µJ , β)

m1! m2!


We use the notation m1 = 2g1 − 1 + |I| + |µI | + α and m2 = 2g2 − 1 + |J| + |µJ | + β. The conditions
g1 + g2 = g, I t J = S \ {i}, and α + β + γ = µi + 1 imply that m1 + m2 = m− γ.

Recall that Kg,n(µ) is the number of pruned branching graphs, #PFatg,n(µ). Choose a branching graph in
PFatg,n(µ) and remove the edge labeled m from it. Repeatedly remove vertices with degree one and their
incident edges until all of the vertices of the resulting branching graph have degree at least two. When
removing an edge with a given label, we also remove all half-edges with the corresponding label. The
removed edges necessarily form a path in the original branching graph. Observe that one of the following
three cases must arise.

The edge labeled m is adjacent to the face labeled i on both sides and its removal leaves a connected graph.
Suppose that γ edges are removed in total, so that a branching graph in PFatg−1,n+1(µS\{i}, α, β)

remains, where α + β + γ = µi + 1.

i

i

α β
m

Conversely, there are 1
2 µiγ

(m−1)!
(m−γ)! ways to reconstruct a branching graph in PFatg,n(µ) from a branch-

ing graph in PFatg−1,n+1(µS\{i}, α, β) by adding a path of γ edges. When adding an edge with a
given label, we also add all possible half-edges with the corresponding label, while maintaining the
correct cyclic ordering of the half-edges at every vertex. The factor µi accounts for the position of the
new marked m-labeled edge. The factor γ accounts for the position of the edge labeled m along the
path. The factor (m−1)!

(m−γ)! accounts for the edge labels appearing on the remaining edges of the path. It

is then necessary to adjust by the factor 1
2 due to the overcounting caused by the symmetry in α and

β.
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The edge labeled m is adjacent to the face labeled i on both sides and its removal leaves the disjoint union of two
connected graphs.
Suppose that γ edges are removed in total, so that the disjoint union of two branching graphs
in PFatg1,|I|+1(µI , α) and PFatg2,|J|+1(µJ , β) remain, where α + β + γ = µi + 1, g1 + g2 = g, and
I t J = S \ {i}.
Conversely, there are 1

2 µiγ
(m−1)!
m1! m2! ways to reconstruct a branching graph in PFatg,n(µ) from a pair

of branching graphs in PFatg1,|I|+1(µI , α) and PFatg2,|J|+1(µJ , β) by adding a path of γ edges. When
adding an edge with a given label, we also add all possible half-edges with the corresponding label,
while maintaining the correct cyclic ordering of the half-edges at every vertex. The factor µi accounts
for the position of the new marked m-labeled edge. The factor γ accounts for the position of the
edge labeled m along the path. The factor (m−1)!

m1! m2! accounts for the distribution of the edge labels
{1, 2, . . . , m− 1} between the two branching graphs. It is then necessary to adjust by the factor 1

2 due
to the overcounting caused by the symmetry in (g1, I, α) and (g2, J, β).
The edge labeled m is adjacent to two distinct faces labeled i and j.
Suppose that β edges are removed in total, so that a branching graph in PFatg,n−1(µS\{i,j}, α) remains,
where α + β = µi + µj + 1.

i jm

Conversely, there are µiµjβ
(m−1)!
(m−β)! ways to reconstruct a branching graph in PFatg,n(µ) from a

branching graph in PFatg,n−1(µS\{i,j}, α) by adding a path of β edges. When adding an edge with a
given label, we also add all possible half-edges with the corresponding label, while maintaining the
correct cyclic ordering of the half-edges at every vertex. The factor µiµj accounts for the positions
of the marked m-labeled edges on faces i and j. The factor β accounts for the position of the edge
labeled m along the path. The factor (m−1)!

(m−β)! accounts for the edge labels appearing on the remaining
edges of the path.

There is a crucial subtlety that arises in the third case, which we now address. One can discern the issue by
considering the sequence of diagrams below, in which µi increases from left to right, relative to µj.

i j

µi ≈ µj

i

j

µi > µj

i

j

critical

ij

µi � µj
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The factor µiµjβ
(m−1)!
(m−β)! in the third case actually contributes to diagrams like the one on the far right, in

which face i completely surrounds face j, or vice versa. In fact, the edge labeled m that we remove can lie
anywhere along the dashed path in the schematic diagram. Note that this contributes to the second case, in
which the edge labeled m is adjacent to the face labeled i on both sides and its removal leaves the disjoint
union of two connected graphs. However, observe that this surplus contribution is precisely equal to the
terms from the second case that involve K̂0,2, so one can compensate simply by excluding such terms. Given
that we have already witnessed in Example 3.13.1 that K̂0,1 = 0, we can restrict to the so-called stable terms in
the second case, which are precisely those that do not involve K̂0,1 or K̂0,2.

Therefore, to obtain all fatgraphs in PFatg,n(µ) exactly once, it is necessary to perform the reconstruction
process

in the first case for all values of i and α + β + γ = µi + 1;
in the second case for all stable values of i, α + β + γ = µi + 1, g1 + g2 = g, and I t J = S \ {i}; and
in the third case for all values of i, j, and α + β = µi + µj + 1.

We obtain the cut-and-join recursion for pruned simple Hurwitz numbers by summing up over all these
contributions. �

3.2. The pruning correspondence. Despite the fact that Kg,n(µ) only counts a subset of the branching graphs
enumerated by Hg,n(µ), simple Hurwitz numbers can be determined from their pruned counterparts, and
vice versa. The crucial observation is the following combinatorial result.

Proposition 3.4. The following equation holds for all (g, n) 6= (0, 1) and µ = (µ1, . . . , µn).

Ĥg,n(µ1, . . . , µn) =
µ1,...,µn

∑
ν1,...,νn=1

K̂g,n(ν1, . . . , νn)
n

∏
i=1

µ
µi−νi
i

(µi − νi)!

Proof. We begin by writing the proposition in the following way.

Hg,n(µ) =
µ1,...,µn

∑
ν1,...,νn=1

Kg,n(ν)
(2g− 2 + n + |µ|)!

(2g− 2 + n + |ν|)! (µ1 − ν1)! · · · (µn − νn)!

n

∏
i=1

µ
µi−νi
i

This equation encapsulates the fact that, from a branching graph, one obtains a unique pruned branching
graph by repeatedly removing vertices with degree one and their incident edges. The process continues until
all of the vertices of the resulting branching graph have degree at least two. When removing an edge with a
given label, we also remove all half-edges with the corresponding label. It is then necessary to relabel the
edges and half-edges in the resulting branching graph so that the new labels come from a set of the form
{1, 2, . . . , m}, while maintaining the correct cyclic ordering of the half-edges at every vertex. We refer to the
process described above as pruning and observe that it can be carried out one face at a time.

Conversely, every branching graph of type (g;µ) can be reconstructed from a pruned branching graph of
type (g;ν) for 1 ≤ νi ≤ µi by adding µi − νi edges to face i, for all i = 1, 2, . . . , n. When adding an edge with
a given label, we also add all possible half-edges with the corresponding label. It is then necessary to relabel
the edges and half-edges in the resulting branching graph so that the new labels come from a set of the form
{1, 2, . . . , m}, while maintaining the correct cyclic ordering of the half-edges at every vertex.

There are Kg,n(ν) possibilities for the pruned branching graph and the factor

(2g− 2 + n + |µ|)!
(2g− 2 + n + |ν|)! (µ1 − ν1)! · · · (µn − νn)!
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accounts for the number of ways to choose the set of edge labels for the underlying pruned branching graph
as well as the set of µi − νi edge labels to be added to face i for i = 1, 2, . . . , n.

All that remains is to show that the factor µµ−ν is equal to the number of ways to add µ− ν edges to a pruned
face with perimeter ν. To do this, we invoke the following generalisation of Cayley’s formula.

Let N ⊆ M be sets of size ν ≤ µ, respectively. Then the number of rooted forests on µ vertices
labeled by M with ν components whose roots are labeled by N is precisely T(µ, ν) = νµµ−ν−1.

See for example [11] for a proof of the formula for T(µ, ν).

Consider a face of perimeter µ in a branching graph that has perimeter ν after pruning. By the definition of a
branching graph, each edge label occurs precisely ν times in the pruned face, so we can divide its perimeter
into ν disjoint intervals, each of which contains all of the edge labels. From the unpruned face of perimeter µ,
construct a rooted forest by contracting each of the intervals to a root vertex and reassign each edge label to
the adjacent vertex that is further away from the root. We thus obtain a rooted forest with ν components, µ− ν

edges, and hence µ vertices. The ν roots are labeled by their corresponding intervals, while the remaining
µ− ν vertices are labeled by distinct positive integers derived from the original edge labels.

As an example, consider the diagram below left, which shows a pruned face of perimeter ν = 3 with µ− ν = 8
edges added to create a face of perimeter µ = 11. The corresponding rooted forest is shown below right.

I1

I2

I3

8

3
2

5

4

7

6

1

I1 I2 I3

8 7 6

2

43

5

1

So there are µ
ν T(µ, ν) = µµ−ν possibilities for the resulting rooted forest. Conversely, the process may be

reversed to construct a face of perimeter µ from a pruned face of perimeter ν together with a labeled rooted
forest with ν components and µ vertices. The edge labels determine the cyclic orientations of the edges
adjacent to a given vertex. �

Note that the system of linear equations in Proposition 3.43.4 relating the values of Ĥg,n to those of K̂g,n is
triangular in the sense that Ĥg,n(µ) depends only on values of K̂g,n(ν) for which ν ≤ µ in the lexicographical
order. Therefore, all of the information stored in the simple Hurwitz numbers is theoretically also stored in
their pruned counterparts.

Theorem 33 states that the simple Hurwitz numbers comprise a natural enumerative problem in the context of
the Eynard–Orantin topological recursion. The following result demonstrates that the same is true of the
pruned simple Hurwitz numbers and, furthermore, that they can be derived from the same spectral curve.



12 NORMAN DO AND PAUL NORBURY

Proposition 3.5. For 2g− 2 + n > 0, the expansions of the simple Hurwitz differentials of equation (77) at the point
z1 = z2 = · · · = zn = 0 satisfy

ωg,n =
∞

∑
µ1,...,µn=1

K̂g,n(µ1, . . . , µn)
n

∏
i=1

zµi−1
i dzi.

Proof. Recall that the simple Hurwitz differentials are defined in equation (77) by the formula

ωg,n =
∞

∑
µ1,...,µn=1

Ĥg,n(µ1, . . . , µn)
n

∏
i=1

xµi−1
i dxi.

Furthermore, recall that ωg,n is a meromorphic multidifferential on Cn, where C is the rational spectral curve
given parametrically by the equation x(z) = z exp(−z) and y(z) = z. We let z1, z2, . . . , zn be the rational
coordinates on Cn and define x1 = x(z1), x2 = x(z2), . . . , xn = x(zn).

Now define another family of multidifferentials ωg,n on Cn by the following local expansion at the point
z1 = z2 = · · · = zn = 0.11

ωg,n =
∞

∑
µ1,...,µn=1

K̂g,n(µ1, . . . , µn)
n

∏
i=1

zµi−1
i dzi

Of course, we wish to prove that ωg,n = ωg,n and we proceed by calculating the following residue.

Res
x1=0

· · · Res
xn=0

ωg,n

n

∏
i=1

x−µi
i = Res

z1=0
· · · Res

zn=0

∞

∑
ν1,...,νn=1

K̂g,n(ν1, . . . , νn)
n

∏
i=1

zνi−1
i dzi [zi exp(−zi)]

−µi

= Res
z1=0
· · · Res

zn=0

∞

∑
ν1,...,νn=1

K̂g,n(ν1, . . . , νn)
n

∏
i=1

zνi−µi−1
i dzi

∞

∑
mi=0

µ
mi
i

mi!
zmi

i

=
µ1,...,µn

∑
ν1,...,νn=1

K̂g,n(ν1, . . . , νn)
n

∏
i=1

Res
zi=0

zνi−µi−1
i dzi

∞

∑
mi=0

µ
mi
i

mi!
zmi

i

=
µ1,...,µn

∑
ν1,...,νn=1

K̂g,n(ν1, . . . , νn)
n

∏
i=1

µ
µi−νi
i

(µi − νi)!

= Ĥg,n(µ1, . . . , µn)

The last equality here is a direct consequence of Proposition 3.43.4. It now follows from the above residue
calculation that

ωg,n =
∞

∑
µ1,...,µn=1

Ĥg,n(µ1, . . . , µn)
n

∏
i=1

xµi−1
i dxi = ωg,n. �

In Example 3.73.7, we observed that the linear factor m(g,µ) = 2g− 2 + n + |µ| on the left hand side of the
cut-and-join recursion divides the right hand side in the case (g, n) = (0, 4), thereby establishing the fact that
K̂0,4 is a polynomial. In fact, we will see that this phenomenon is general.

Lemma 3.6. For non-negative integers d, define the sequence qd(1), qd(2), qd(3), . . . by the triangular system of linear
equations

µµ+d+1

µ!
=

µ

∑
ν=1

qd(ν)
νµµ−ν

(µ− ν)!
, for µ = 1, 2, 3, . . . .

Then qd is a polynomial of degree 2d.

1Proposition 3.73.7 below asserts that K̂g,n is a polynomial, so the equation does indeed define an analytic multidifferential.
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Proof. First, observe that q0(ν) = 1 for ν = 1, 2, 3, . . ., since this fact is equivalent to the identity

µ2T(µ, 1) =
µ

∑
ν=1

µ!
(µ− ν)!

T(µ, ν), for µ = 1, 2, 3, . . . .

As in the proof of Proposition 3.43.4, T(µ, ν) = νµµ−ν−1 denotes the number of rooted forests on µ labeled
vertices with ν labeled roots. We interpret the left hand side of this equation as the number of trees with
vertices labeled 1, 2, . . . , µ, along with a choice of an initial vertex and a terminal vertex, which are allowed to
coincide. Given such a tree, suppose that there are ν vertices on the unique path from the initial vertex to the
terminal vertex. Note that 1 ≤ ν ≤ µ and that there are µ!

(µ−ν)! possibilities for the labels of the vertices along
the path. Removing the edges on the path yields a rooted forest, whose roots are precisely those vertices on
the path. The number of such rooted forests is T(µ, ν) by definition, which leads to the expression on the
right hand side of this equation.

Second, consider the following sequence of equalities.
µ

∑
ν=1

qd+1(ν)
νµµ−ν

(µ− ν)!
=µ

µ

∑
ν=1

qd(ν)
νµµ−ν

(µ− ν)!

=
µ

∑
ν=1

νqd(ν)
νµµ−ν

(µ− ν)!
+

µ

∑
ν=1

(µ− ν)qd(ν)
νµµ−ν

(µ− ν)!

=
µ

∑
ν=1

νqd(ν)
νµµ−ν

(µ− ν)!
+ µ

µ

∑
ν=1

(ν− 1)qd(ν− 1)
µµ−ν

(µ− ν)!

=
µ

∑
ν=1

νqd(ν)
νµµ−ν

(µ− ν)!
+

µ

∑
ν=1

(ν− 1)qd(ν− 1)
νµµ−ν

(µ− ν)!
+ µ

µ

∑
ν=1

(ν− 2)qd(ν− 2)
µµ−ν

(µ− ν)!

=
µ

∑
ν=1

νqd(ν)
νµµ−ν

(µ− ν)!
+

µ

∑
ν=1

(ν− 1)qd(ν− 1)
νµµ−ν

(µ− ν)!
+ · · ·+

µ

∑
ν=1

1qd(1)
νµµ−ν

(µ− ν)!

=
µ

∑
ν=1

[νqd(ν) + (ν− 1)qd(ν− 1) + · · ·+ 1qd(1)]
νµµ−ν

(µ− ν)!

Since the sequences qd(1), qd(2), qd(3), . . . are defined by triangular systems of linear equations, we may
deduce from the above sequence of equalities that

(9) qd+1(ν) =
ν

∑
i=1

iqd(i) and qd+1(ν) = qd+1(ν− 1) + vqd(ν).

Using the base case q0(ν) = 1 and equation (99), it is now straightforward to prove by induction that qd is a
polynomial of degree 2d. �

Proposition 3.7. For 2g − 2 + n > 0, the normalised pruned simple Hurwitz number K̂g,n(µ1, µ2, . . . , µn) is a
polynomial in µ1, µ2, . . . , µn of degree 6g− 6 + 3n.

Proof. Substitute the ELSV formula — see Proposition 2.52.5 — into the equation in the statement of Proposi-
tion 3.43.4:

Ĥg,n(µ1, . . . , µn) =
µ1,...,µn

∑
ν1,...,νn

K̂g,n(ν1, . . . , νn)
n

∏
i=1

µ
µi−νi
i

(µi − νi)!

to obtain the following:

∑
|d|+`=3g−3+n

(−1)`〈τd1 · · · τdn λ`〉g
n

∏
i=1

µ
µi+di+1
i

µi!
=

µ1,...,µn

∑
ν1,...,νn

K̂g,n(ν1, . . . , νn)
n

∏
i=1

µ
µi−νi
i

(µi − νi)!
.
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From the definition of the polynomials qd for d = 0, 1, 2, . . ., we may deduce from this equation that for all
positive integers ν1, ν2, . . . , νn,

(10) K̂g,n(ν1, . . . , νn) =
n

∏
i=1

νi · ∑
|d|+`=3g−3+n

(−1)`〈τd1 · · · τdn λ`〉g
n

∏
i=1

qdi
(νi).

Since we have already shown that qd is a polynomial of degree 2d, the desired result follows. �

The sequence of polynomials q0, q1, q2, . . . plays a crucial part in the relation between simple Hurwitz
numbers and their pruned counterparts. The numerators of the corresponding triangle of coefficients appear
as sequence A202339 in the the On-Line Encyclopedia of Integer Sequences [2828]. We state without proof some
facts about this sequence of polynomials, which follow from the base case q0 = 1 and the recursive definition
in equation (99).

Proposition 3.8. The function qd is in fact a polynomial of degree 2d with leading coefficient ad = 1
(2d)!! . For all

non-negative integers d and positive integers ν, qd(ν) = S(ν + d, ν), the Stirling number of the second kind that
represents the number of ways to partition a set with ν + d objects into ν non-empty subsets.

The combinatorial significance of the Stirling numbers of the second kind for pruned simple Hurwitz numbers
is presently unclear.

d qd(ν)

0 1
1 1

2 (ν
2 + ν)

2 1
24 (3ν4 + 10ν3 + 9ν2 + 2ν)

3 1
48 (ν

6 + 7ν5 + 17ν4 + 17ν3 + 6ν2)

4 1
5760 (15ν8 + 180ν7 + 830ν6 + 1848ν5 + 2015ν4 + 900ν3 + 20ν2 − 48ν)

5 1
11520 (3ν10 + 55ν9 + 410ν8 + 1598ν7 + 3467ν6 + 4055ν5 + 2120ν4 + 52ν3 − 240ν2)

3.3. Witten–Kontsevich theorem. We apply the earlier results of this section to give a direct proof of the
Witten–Kontsevich theorem, which governs intersection numbers of psi-classes on Deligne–Mumford moduli
spaces of curvesMg,n. We adopt the following notation of Witten for such intersection numbers, which are
defined to be zero unless the condition |d| = dimCMg,n = 3g− 3 + n is satisfied.

〈τd1 · · · τdn〉g =
∫
Mg,n

ψd1
1 · · ·ψdn

n

The psi-classes ψ1, ψ2, . . . , ψn ∈ H2(Mg,n; Q) are the first Chern classes of the cotangent line bundles at the
marked points. For more information on Deligne–Mumford moduli spaces of curves, psi-classes, and the
Witten–Kontsevich theorem, see the book of Harris and Morrison [1616].

One of the virtues of the cut-and-join recursion for pruned simple Hurwitz numbers is that, although it is
primarily an equality of numbers, it can be interpreted as an equality of polynomials in light of Proposition 3.73.7.
In order to do this, we define the following functions for non-negative integers i and j.

Pi(x, y) = ∑
α+β=x+y+1

αβ qi(α) and Pi,j(x) = ∑
α+β+γ=x+1

αβγ qi(α)qj(β)

The following lemma will be useful to determine the leading order behaviour of Pi and Pi,j.
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Lemma 3.9. The expression

∑
α1+···+αm=n

αk1
1 · · · αkm

m

is a polynomial in n of degree |k|+ m− 1 with leading coefficient k1!···km !
(|k|+m−1)! .

One proof of this fact expresses monomials αk as linear combinations of binomial coefficients αk = k!(α
k) + · · ·

and uses the combinatorial fact

∑
α1+···+αm=n

(
α1

k1

)
· · ·
(

αm

km

)
=

(
n + m− 1
|k|+ m− 1

)
.

As a direct consequence of this lemma and Proposition 3.83.8, we have the following result.

Corollary 3.10. For non-negative integers i and j, Pi is a polynomial of degree 2i + 3 and Pi,j is a polynomial of degree
2i + 2j + 5. Their leading coefficients are given by the formulae[

x2a+1y2b
]

Pa+b−1(x, y) =
(2a + 2b− 1)!!
(2a + 1)! (2b)!

and
[

x2a+2b+5
]

Pa,b(x) =
(2a + 1)!!(2b + 1)!!

(2a + 2b + 5)!
.

Example 3.11. The summations over α, β, γ in the cut-and-join recursion for pruned simple Hurwitz numbers
can be replaced by expressions involving Pi and Pi,j. For example, consider the case (g, n) = (1, 2).

(µ1 + µ2 + 2) K̂1,2(µ1, µ2)

= ∑
α+β=µ1+µ2+1

αβ K̂1,1(α) +
1
2 ∑

α+β+γ=µ1+1
αβγ K̂0,3(µ2, α, β) +

1
2 ∑

α+β+γ=µ2+1
αβγ K̂0,3(µ1, α, β)

= ∑
α+β=µ1+µ2+1

αβ
q1(α)− q0(α)

24
+

1
2 ∑

α+β+γ=µ1+1
αβγ q0(µ2)q0(α)q0(β) +

1
2 ∑

α+β+γ=µ2+1
αβγ q0(µ1)q0(α)q0(β)

=
1

24
P1(µ1, µ2)−

1
24

P0(µ1, µ2) +
1
2

P0,0(µ1) q0(µ2) +
1
2

P0,0(µ2) q0(µ1)

We are now in a position to deduce the Witten–Kontsevich theorem from equation (1010) and Proposition 1010,
the cut-and-join recursion for pruned simple Hurwitz numbers.

Theorem 4 (Witten–Kontsevich theorem). The intersection numbers of psi-classes on the Deligne–Mumford moduli
spaces of curvesMg,n satisfy the following equation for all d1, d2, . . . , dn.

〈τd1 · · · τdn〉 =
n

∑
j=2

(2d1 + 2dj − 1)!!
(2d1 + 1)!! (2dj − 1)!!

〈τdS\{1,j}τd1+dj−1〉

+
1
2 ∑

i+j=d1−2

(2i + 1)!! (2j + 1)!!
(2d1 + 1)!!

〈τiτjτdS\{1}〉+ ∑
ItJ=S\{1}

〈τiτdI 〉 〈τjτdJ 〉


Remark 3.12. In actual fact, the original formulation of Witten posited that a certain natural generating
function for intersection numbers of psi-classes — the Gromov–Witten potential of a point — is a solution to
the KdV integrable hierarchy [3030]. This is equivalent to the fact that the generating function is annihilated by
the Virasoro differential operators L−1, L0, L1, . . ., which satisfy the Virasoro relation [Lm, Ln] = (m− n)Lm+n.
The annihilation by L−1 and L0 is equivalent to the dilaton and string equations, which have straightforward
geometric interpretations that already appear in the original paper of Witten. It is straightforward to prove
that Theorem 44 is equivalent to the fact that Ld1−1 annihilates the Gromov–Witten potential of a point.

Proof of Theorem 44. Take the cut-and-join recursion for pruned simple Hurwitz numbers and consider the
coefficient of µ1µ

2d = µ2d1+1
1 µ2d2

2 · · · µ2dn
n for |d| = 3g− 3+ n. This condition ensures that no terms involving

non-trivial Hodge classes appear.
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The desired coefficient of the left hand side of the cut-and-join recursion can be expressed as follows.[
µ1µ

2d
]
(2g− 2 + n + |µ|) K̂g,n(µS)

=
[
µ1µ

2d
]
(2g− 2 + n + |µ|) ∑

|k|+`=3g−3+n
(−1)`〈τk1 · · · τkn λ`〉g

n

∏
i=1

qki
(µi)

=〈τd1 · · · τdn〉g
n

∏
i=1

adi

The first equality uses equation (1010) while the second makes use of the fact that qd is a polynomial of degree
2d with leading coefficient ad = 1

(2d)!! , as stated in Proposition 3.83.8.

The desired coefficient of the first term on the right hand side of the cut-and-join recursion can be expressed
as follows. [

µ1µ
2d
]
∑
i<j

∑
α+β=µi+µj+1

αβ K̂g,n−1(µS\{i,j}, α)

=
[
µ1µ

2d
]
∑
i<j

∑
|kS\{i,j} |+s+`=3g−4+n

(−1)`〈τkS\{i,j}τsλ`〉g Ps(µi, µj) ∏
m∈S\{i,j}

qkm(µm)

=
n

∑
j=2
〈τdS\{i,j}τd1+dj−1〉g

[
µ2d1+1

1 µ
2dj
j

]
Pd1+dj−1(µ1, µj) ∏

m∈S\{1,j}
adm

=
n

∑
j=2
〈τdS\{i,j}τd1+dj−1〉g

(2d1 + 2dj − 1)!!
(2d1 + 1)!(2dj)!

∏
m∈S\{1,j}

adm

The first equality uses equation (1010), the second takes into account the fact that |d| = 3g− 3 + n, while the
third follows from Corollary 3.103.10.

In an analogous fashion, the desired coefficients of the second and third terms on the right hand side of the
cut-and-join recursion can be expressed as follows.

1
2 ∑

s+t=d1−2
〈τdS\{1}τsτt〉g−1

[
µ2d1+1

1

]
Ps,t(µ1) ∏

m∈S\{1}
adm

1
2

stable

∑
g1+g2=g

ItJ=S\{1}

∑
s+t=d1−2

〈τdI τs〉g1〈τdJ τt〉g2

(2s + 1)!!(2t + 1)!!
(2d1 + 1)! ∏

m∈S\{1}
adm

Now substitute these expressions into the cut-and-join recursion and divide both sides by ad1 ad2 · · · adn to
obtain the desired result. �

It is worth remarking that Okounkov and Pandharipande also deduce the Witten–Kontsevich theorem using
the ELSV formula as a starting point [2727]. Their approach expresses the asymptotics of simple Hurwitz
numbers as a sum over trivalent ribbon graphs, thereby obtaining Kontsevich’s combinatorial formula [2020].
The Witten–Kontsevich theorem is then derived as a consequence of this formula using the theory of matrix
models. In contrast, the notion of pruning reduces the enumeration of simple Hurwitz numbers to an
equivalent problem that is inherently polynomial. The asymptotic analysis of pruned simple Hurwitz
numbers is then stored in the top degree terms of the cut-and-join recursion. As shown in the proof of
Theorem 44 above, the Witten–Kontsevich theorem emerges directly from this analysis without necessitating
the use of a matrix model.
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There are now myriad proofs of the Witten–Kontsevich theorem, most of which involve the theory of matrix
models in one way or another. Exceptional in this respect is the proof by Mirzakhani, who analyses the
volume Vg,n(L1, L2, . . . , Ln) of the moduli space of genus g hyperbolic surfaces with n geodesic bound-
ary components of lengths L1, L2, . . . , Ln [2121]. Her proof consists of two parts — a theorem that relates
Vg,n(L1, L2, . . . , Ln) to the intersection theory of moduli spaces of curves and a recursion that can be used
to compute Vg,n(L1, L2, . . . , Ln). It is natural to consider these as analogous to the ELSV formula and the
cut-and-join recursion, respectively. Our proof of the Witten–Kontsevich theorem bears strong resemblance
to that of Mirzakhani, but uses a combinatorial argument rather than hyperbolic geometry to obtain the
recursion.

We finish the section with a table of the polynomials K̂g,n(µ1, µ2, . . . , µn) which give pruned simple Hurwitz
numbers.

g n K̂g,n(µ1, µ2, . . . , µn)

0 3 1
0 4 1

2 ∑ µ2
i +

1
2 ∑ µi

0 5 1
8 ∑ µ4

i +
1
2 ∑ µ2

i µ2
j +

5
12 ∑ µ3

i +
1
2 ∑ µ2

i µj +
3
8 ∑ µ2

i +
1
2 ∑ µiµj +

1
12 ∑ µi

1 1 1
48 µ2

1 +
1

48 µ1 − 1
24

1 2 1
192 (µ

4
1 + µ4

2) +
1

96 µ2
1µ2

2 +
5

288 (µ
3
1 + µ3

2) +
1

96 (µ
2
1µ2 + µ1µ2

2)− 1
192 (µ

2
1 + µ2

2) +
1
96 µ1µ2 − 5

288 (µ1 + µ2)

2 1 1
442368 µ8

1 +
1

36864 µ7
1 +

271
3317760 µ6

1 − 7
276480 µ5

1 − 1873
6635520 µ4

1 − 53
552960 µ3

1 +
329

1658880 µ2
1 +

13
138240 µ1

4. PRUNED ORBIFOLD HURWITZ NUMBERS

4.1. Orbifold Hurwitz numbers. In this section, we generalise the results for simple Hurwitz numbers in
the previous section to the case of orbifold Hurwitz numbers.

Definition 4.1. For a fixed positive integer a, the orbifold Hurwitz number H[a]
g,n(µ1, µ2, . . . , µn) is the weighted

enumeration of connected genus g branched covers f : (Σ; p1, p2, . . . , pn)→ (CP1; ∞) such that

the preimage of ∞ is given by the divisor µ1 p1 + µ2 p2 + · · ·+ µn pn;
the ramification profile over 0 is given by a partition of the form (a, a, . . . , a); and
the only other ramification is simple and occurs over m fixed points.

Note that we recover the definition of simple Hurwitz numbers in the case a = 1. Justification for the
terminology orbifold Hurwitz number stems from the following generalisation of the ELSV formula due to
Johnson, Pandharipande, and Tseng.

Theorem 5 (Orbifold ELSV formula [1919]).

H[a]
g,n(µ1, µ2, . . . , µn) =

n

∏
i=1

µi ·
(

2g− 2 + n +
|µ|
a

)
!a1−g+∑{µi/a}

n

∏
i=1

µ
bµi/ac
i
bµi/ac!

∫
Mg,[−µ](BZa)

∑∞
i=0(−a)iλU

i

∏n
i=1(1− µiψi)

whereMg,γ(BZa) is the moduli space of stable maps to BZa, the classifying stack of Za given by a point
with trivial Za action, and λU

i are generalisations of the Hodge class.

Theorem 6 ([66, 77]). For a fixed positive integer a, consider the rational spectral curve C given by

x(z) = z exp(−za) and y(z) = za.
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The analytic expansion of the Eynard–Orantin invariant ωg,n of C around x1 = x2 = · · · = xn = 0 is given by

ωg,n =
∞

∑
µ1,...,µn=1

H[a]
g,n(µ1, . . . , µn)

(2g− 2 + n + |µ|
a )!

n

∏
i=1

xµi−1
i dxi.

Definition 4.2. For a fixed positive integer a, we define an a-fold branching graph of type (g; µ) to be an
edge-labeled fatgraph of type (g, `(µ)) such that

there are |µ|a vertices and at each of them there are am adjacent half-edges that are cyclically labeled

1, 2, 3, . . . , m, 1, 2, 3, . . . , m, . . . , 1, 2, 3, . . . , m;

there are exactly m (full) edges that are labeled 1, 2, 3, . . . , m; and
the n faces are labeled and have perimeters given by (µ1m, µ2m, . . . , µnm);
each face has a marked m-label (of the possible µk appearances of m.)

Here, we take m = 2g− 2 + `(µ) + |µ|
a due to the Riemann–Hurwitz formula.

Proposition 4.3. [77] The orbifold Hurwitz number H[a]
g,n(µ1, µ2, . . . , µn) is equal to the number of a-fold branching

graphs of type (g; µ).

4.2. Pruned orbifold Hurwitz numbers. One obtains pruned orbifold Hurwitz numbers by restricting the
enumeration to the set of pruned orbifold branching graphs, which are obtained by introducing the same
simple condition on vertex degrees.

Definition 4.4. We call an orbifold branching graph pruned if each vertex has essential degree at least
two. Let K[a]

g,n(µ1, µ2, . . . , µn) be the number of pruned a-fold branching grahps of type (g; µ), where µ =

(µ1, µ2, . . . , µn). Furthermore, let m = m(g, µ) = 2g− 2 + n + |µ|
a and define the normalisation

K̂[a]
g,n(µ1, µ2, . . . , µn) =

Kg,n(µ1, µ2, . . . , µn)

m!
.

Proposition 4.5 (Cut-and-join recursion for pruned orbifold Hurwitz numbers). For 2g− 2 + n > 0,

m(g, µ) K̂[a]
g,n(µS) = ∑

i<j
µiµj ∑

α+aβ=µi+µj+a
βK̂[a]

g,n−1(µS\{i,j}, α)

+
1
2

n

∑
i=1

µi ∑
α+β+γ=µi+1

γ

K̂[a]
g−1,n+1(µS\{i}, α, β) +

stable

∑
g1+g2=g

ItJ=S\{i}

K̂[a]
g1,|I|+1(µI , α) K̂[a]

g2,|J|+1(µJ , β)


Proof. The proof follows from removal of edges from branching graphs and is essentially the same as the
proof of Proposition 3.23.2. �

4.3. The pruning correspondence.

Proposition 4.6. For (g, n) 6= (0, 1),

Ĥg,n(µ1, . . . , µn) =
µ1,...,µn

∑
ν1,...,νn=1

K̂g,n(ν1, . . . , νn)
n

∏
i=1

µ
µi−νi

a
i

( µi−νi
a )!
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Proof. As in the proof of Proposition 3.43.4 the factor

(2g− 2 + n + |µ|
a )!

(2g− 2 + n + |ν |
a )! (µ1 − ν1)! · · · (µn − νn)!

accounts for the number of ways to choose the set of edge labels for the underlying pruned branching graph
as well as the set of µi−νi

a edge labels to be added to face i for i = 1, 2, . . . , n. The factor µ
µ−ν

a on each face

generalises the a = 1 case where now we let T[a]
k,e be the number of rooted forests with k labeled components

and e labeled edges, counted with weight a#internal edges. Then

T[a]
k,e = k(ae + k)e−1

and µ
µ−ν

a = µ
ν T[a]

ν, µ−ν
a

. �

Proposition 4.7. The expansions of the a-fold Hurwitz differentials at z1 = z2 = · · · = zn = 0 satisfy

ωg,n =
∞

∑
µ1,...,µn=1

K̂[a]
g,n(µ1, µ2, . . . , µn)

n

∏
i=1

zµi−1
i dzi, for 2g− 2 + n > 0.

Proof. Recall that

ωg,n =
∞

∑
µ1,...,µn=1

Ĥ[a]
g,n(µ1, µ2, . . . , µn)

n

∏
i=1

xµi−1
i dxi,

and define

ωg,n =
∞

∑
µ1,...,µn=1

K̂[a]
g,n(µ1, µ2, . . . , µn)

n

∏
i=1

zµi−1
i dzi.

We will show that ωg,n = ωg,n for 2g− 2 + n > 0 by calculating the following residue.

Res
x1=0
· · · Res

xn=0
ωg,n

n

∏
i=1

x−µi
i = Res

z1=0
· · · Res

zn=0

∞

∑
ν1,...,νn=1

K̂[a]
g,n(ν1, . . . , νn)

n

∏
i=1

zνi−1
i dzi [zi exp(−za

i )]
−µi

= Res
z1=0
· · · Res

zn=0

∞

∑
ν1,...,νn=1

K̂[a]
g,n(ν1, . . . , νn)

n

∏
i=1

zνi−1
i dzi z−µi

i

∞

∑
mi=0

µ
ami
i

mi!
zami

i

=
µ1,...,µn

∑
ν1,...,νn=1

K̂[a]
g,n(ν1, . . . , νn)

n

∏
i=1

Res
zi=0

zνi−1
i dzi z−µi

i

∞

∑
mi=0

µ
ami
i

mi!
zami

i

=
µ1,...,µn

∑
ν1,...,νn=1

K̂[a]
g,n(ν1, . . . , νn)

n

∏
i=1

µ
µi−νi

a
i

( µi−νi
a )!

= Ĥ[a]
g,n(µ1, . . . , µn)

It follows that

ωg,n =
∞

∑
µ1,...,µn=1

Ĥg,n(µ1, µ2, . . . , µn)
n

∏
i=1

µix
µi−1
i dxi = ωg,n. �

Recall that

H[a]
g,n(µ1, . . . , µn) = a1−g+d/a

n

∏
i=1

(µi/a)bµi/ac

bµi/ac! ×Q[a]
g,n(µ1, . . . , µn) = a1−g+∑{µi/a}

n

∏
i=1

µ
bµi/ac
i
bµi/ac! ×Q[a]

g,n(µ1, . . . , µn)

Proposition 4.8. For a fixed positive integer a and 2g− 2 + n > 0, the normalised pruned orbifold Hurwitz number
K̂[a]

g,n(µ1, µ2, . . . , µn) is a quasi-polynomial modulo a in µ1, µ2, . . . , µn of degree 6g− 6 + 3n.
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Proof. One can prove this in an analogous way to Proposition 3.73.7 but instead we will use the spectral curve.
By Proposition 4.74.7,

ωg,n =
∞

∑
µ1,...,µn=1

K̂[a]
g,n(µ1, µ2, . . . , µn)

n

∏
i=1

zµi−1
i dzi

is a meromorphic multidifferential on the curve (x(z), y(z)) = (z exp(−za), za) and hence it is rational in z.
Furthermore, by the general theory of Eynard-Orantin invariants it has poles only at the zeros of dxi, hence
when 0 = dxi = (1− za

i ) exp(−za
i )dzi, i.e. at the ath roots of unity za

i = 1. A rational function in z with poles
only at {z | za = 1} has an expansion ∑ p(n)zn around z = 0 for p(n) a quasi-polynomial mod a meaning it
is polynomial on each coset of the finite index sublattice aZn of Zn. Its degree follows from the order of the
poles of ωg,n which is 6g− 4 + 2n again by a general property of Eynard-Orantin invariants.

�

5. BELYI HURWITZ NUMBERS

For n > 0 and g ≥ 0 define the set of Belyi Hurwitz covers:

Zg,n(µ) = { f : Σ→ S2 |Σ connected genus g unramified over S2 − {0, 1, ∞};
f−1(∞) = (p1, ..., pn) with respective ramification µ = (µ1, ..., µn);

ramification (2, 2, ..., 2) over 1; arbitrary ramification over 0}/ ∼

where { f1 : Σ1 → CP1} ∼ { f2 : Σ2 → CP1} if there exists h : Σ1 → Σ2 that satisfies f1 = f2 ◦ h and preserves
the labels over ∞.

Define the Belyi Hurwitz numbers:

Mg,n(µ1, ..., µn) = ∑
f∈Zg,n(µ)

1
|Aut f | .

Now define the set of pruned Belyi Hurwitz covers:

Z0
g,n(µ) = { f ∈ Zg,n(µ) | all points in f−1(0) have nontrivial ramification}

and the corresponding pruned Belyi Hurwitz numbers:

Ng,n(µ1, ..., µn) = ∑
f∈Z0

g,n(µ)

1
|Aut f | .

A recursion expressing Mg,n in terms of Mg′ ,n′ uses a cut and join argument known as Tutte’s recursion in
the planar case [2929] and more generally arises out of matrix integral expansions [33, 1313]. See also [88] where
Mg,n(µ) is treated as a generalised Catalan number. Recursions expressing Ng,n in terms of Ng′ ,n′ were given
in [2222].

To any f ∈ Zg,n(µ) one can associate a fatgraph Γ f = f−1[0, 1] ⊂ Σ, meaning that Σ− f−1[0, 1] is a union
of disks, or equivalently a discrete surface of genus g obtained by gluing together n polygonal faces of
perimeters µ1, ..., µn. Equivalently, a fatgraph is described by its set of oriented edges X equipped with
automorphisms τi : X → X, i = 0, 1. Then Γ f = (X f , τ0, τ1) where X f = f−1(0, 1), τ0 : X f → X f is the
monodromy map around 0; τ1 : X f → X f is the monodromy map around 1. The vertices of the fatgraph or
polygonal faces correspond to Vf = f−1(0) ∼= X f /τ0 and the edges correspond to E f = X f /τ1

∼= f−1(1).
The boundary components correspond to X f /τ2 ∼= f−1(∞) for τ2 = τ0τ1 and its length is the size of the orbit
of τ2. An automorphism of a fatgraph Γ = (X, τ0, τ1) is a map g : X → X that commutes with τ0 and τ1.
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From the fatgraph one can reconstruct the map f . Hence the Belyi Hurwitz numbers can be equivalently
defined as follows:

Mg,n(µ1, ..., µn) = ∑
Γ∈Fatg,n(µ)

1
|Aut Γ|

where Fatg,n(µ) is the set of all genus g fatgraphs with n labeled boundary components of respective lengths
(µ1, ..., µn). Similarly

Ng,n(µ1, ..., µn) = ∑
Γ∈Fat0

g,n(µ)

1
|Aut Γ|

where Fat0
g,n(µ) ⊂ Fatg,n(µ) consists of those fatgraphs with no valence 1 vertices—pruned fatgraphs. It is

this graph representation that justifies the term ”pruned” Belyi Hurwitz number.

LetMg,n be the moduli space of genus g curves with n labeled points. For each µ = (µ1, .., µn) there is the
Penner-Harer-Mumford-Thurston cell decomposition

(11) Mg,n ∼=
⋃

Γ∈Fatg,n

PΓ(µ1, .., µn)

where the indexing set Fatg,n is the space of fatgraphs with all vertices of valence ≥ 3, of genus g and n
labeled boundary components. The cell decomposition (1111) arises by the existence and uniqueness of Strebel
differentials on a compact Riemann surface Σ with n labeled points (p1, ..., pn) and n positive real values
(µ1, .., µn). A Strebel differential is a meromorphic quadratic differential ω, holomorphic on Σ− (µ1, .., µn).
Any quadratic differential gives rise to vertical and horizontal foliations along which ω is real. Along the
horizontal and vertical foliations ω is real and positive, respectively negative. In terms of a local coordinate z
away from zeros and poles one can write ω = dz2 = dx2 − dy2 + 2idxdy which is real and positive along
y = constant and negative along x = constant. A Strebel differential is distinguished by the fact that its
horizontal foliation has compact leaves and its poles occur at the pk with principal part µkdz/z2. It has one
unique singular compact leaf which is a labeled fatgraph with lengths on edges. The important point is that
this singular compact leaf has no valence 1 vertices. A valence 1 vertex corresponds to a singularity of the
form dz2/z which is prohibited on Strebel differentials. In summary, the Strebel differentials give rise to
pruned fatgraphs with lengths on edges and no valence 2 vertices.

The natural map Zg,n(µ)→Mg,n that sends f : Σ→ S2 to its domain curve (Σ, p1, ..., pn), where f (pk) = (∞),
can be combined with the cell decomposition (1111) using the same µ to assign to f a fatgraph Γ f with no
valence 2 vertices. In general, Γ f 6= Γ f .

Underlying Γ f is a fatgraph Γ̃ f with no valence 2 vertices, essentially obtained by ignoring valence 2 vertices
of Γ f . On the level of oriented edges X f and X̃ f , there are maps π : X f → X̃ f and ι : X̃ f → X f satisfying
π ◦ ι = id, π ◦ τ1 = τ1 ◦ π and ι ◦ τ0 = τ0 ◦ ι. The induced map π∗ : E f → Ẽ f is surjective and one-to-one
except on edges adjacent to valence 2 vertices, and ι∗ : Ṽf → Vf is injective with image all of Vf except for
valence 2 vertices. For general f ∈ Zg,n(µ), Γ̃ f 6= Γ f since Γ f usually has valence 1 vertices. However

f ∈ Z0
g,n(µ) ⇒ Γ̃ f = Γ f .

In other words Z0
g,n(µ) sits naturally insideMg,n and this gives rise to a third description of Ng,n(µ1, ..., µn)

as the number of integral points inside rational polytopes making up the cells ofMg,n. The cells of (1111) are
compact convex polytopes

PΓ(µ1, .., µn) = {x ∈ R
E(Γ)
+ |AΓx = µ}
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where µ = (µ1, .., µn) ∈ Rn and AΓ : RE(Γ) → Rn is the incidence matrix that maps an edge to the sum of its
two incident boundary components. Define NΓ(µ1, .., µn) = #{ZE(Γ)

+ ∩ PΓ(µ1, .., µn)}. Then

Ng,n(µ1, ..., µn) = ∑
Γ∈Fatg,n

1
|AutΓ|NΓ(µ1, ..., µn).

An important consequence of this realisation of Ng,n(µ) as counting integral points is the identity

Ng,n(0, ..., 0) = χ(Mg,n).

One makes sense of evaluation of Ng,n at (0, ..., 0) by using the fact that Ng,n(µ1, ..., µn) is quasi-polynomial in
the µi.

5.1. The pruning correspondence.

Proposition 5.1 ([2525]).

(12) Mg,n(µ1, . . . , µn)
n

∏
i=1

µi =
µ1,...,µn

∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)
n

∏
i=1

νi

(
µi

µi−νi
2

)

Proof.

Mg,n(µ1, . . . , µn)
n

∏
i=1

µi = Res
x1=∞

· · · Res
xn=∞

ωg,n

n

∏
i=1

xµi
i

= Res
z1=0
· · · Res

zn=0

∞

∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)
n

∏
i=1

νiz
νi−1
i dzix

µi
i

= Res
z1=0
· · · Res

zn=0

∞

∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)
n

∏
i=1

νiz
νi−1
i dzi

(
zi +

1
zi

)µi

= Res
z1=0
· · · Res

zn=0

∞

∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)
n

∏
i=1

νiz
νi−1
i dzi

µi

∑
ki=0

(
µi
ki

)
zµi−2ki

i

=
µ1,...,µn

∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)
n

∏
i=1

νi

(
µi

µi+νi
2

)

=
µ1,...,µn

∑
ν1,...,νn=1

Ng,n(ν1, . . . , νn)
n

∏
i=1

νi

(
µi

µi−νi
2

)
hence (1212) follows.

The significance of this result here is that one can also give a combinatorial proof which simply formalises
the fact that, given a fatgraph, one can repeatedly remove vertices of degree 1 and their incident edges to
obtain a pruned fatgraph in a unique way. Hence this gives another example of pruning. �

Remark 5.2. We could have naturally defined Mg,n(µ1, . . . , µn) and Ng,n(µ1, . . . , µn) to include a factor of
µ1 · · · µn in which case (1212) would look much more like the pruning correspondence for simple Hurwitz
numbers in Proposition 3.43.4 differing by a simple combinatorial factor.

6. GROMOV-WITTEN INVARIANTS OF P1

In this section we apply the idea of pruning to the Gromov-Witten invariants of P1. Unlike the previous
sections, the aim here is to predict interesting structure and the problem is not yet resolved.
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Assemble the Gromov-Witten invariants into the generating function

Ωg
n(x1, ..., xn) = ∑̄

〈
n

∏
i=1

τµi (ω)

〉g

d

·
n

∏
i=1

(µi + 1)!x−µi−2
i dxi.

(13) C =

x = z + 1/z

y = ln z ∼ ∑ (1−z2)k

−2k .

ω
g
n of (C, x, yN) stabilises for N ≥ 6g− 6 + 2n, where yN are the partial sums for the expansion for y.

Theorem 7 ([99, 2424]). For 2g− 2 + n > 0, the Eynard-Orantin invariants of the curve C defined in (1313) agree with
the generating function for the Gromov-Witten invariants of P1:

ω
g
n ∼ Ωg

n(x1, ..., xn).

More precisely, Ωg
n(x1, ..., xn) gives an analytic expansion of ω

g
n around a branch of {xi = ∞}.

This was proven in [2424] for the case g = 0, 1 and for all g in [99].

The expansion of ω
g
n around zi = 0

ω
g
n ∼∑

µ

Ng,n(µ)∏ µiz
µi−1
i dzi

has coefficients Ng,n(µ) which are quasi-polynomial mod 2. The simplest quasi-polynomials are shown in
the table.

g n # odd µi Ng,n(µ1, ..., µn)

0 3 0,2 0

0 3 1,3 1

1 1 0 0

1 1 1 1
48 (µ

2
1 − 3)

0 4 0,4 1
4 (µ

2
1 + µ2

2 + µ2
3 + µ2

4)

0 4 1,3 0

0 4 2 1
4 (µ

2
1 + µ2

2 + µ2
3 + µ2

4 − 2)

1 2 0 1
384 (µ

2
1 + µ2

2 − 8)(µ2
1 + µ2

2)

1 2 1 0

1 2 2 1
384 (µ

2
1 + µ2

2 − 6)(µ2
1 + µ2

2 − 2)

2 1 0 0

2 1 1 1
216335 (µ

2
1 − 1)2(5µ4

1 − 186µ2
1 + 1605)

The quasi-polynomials satisfy the following relations.

Ng,n+1(0, µ1, . . . µn) =
n

∑
j=1

µj

∑
k=1

kNg,n(µ1, . . . , µn)|µj=k

Ng,n+1(1, µ1, . . . , µn) =
n

∑
j=1

µj

∑
k=1

kNg,n(µ1, . . . , µn)|µj=k +
χ− |µ|

2
Ng,n(µ1, . . . , µn)
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for χ = 2− 2g− n and |µ| =
n

∑
j=1

µj.

A natural question is whether the quasi-polynomials Ng,n obtained from the expansion of ω
g
n around zi = 0

yield an interesting and useful enumerative problem. In all calculated cases the genus 0 invariants N0,n take
integral values which lends evidence that there may be an underlying enumerative problem.

6.1. Cycle Hurwitz problem. The following Hurwitz problem was introduced and studied by Okounkov
and Pandharipande in [2626]. Given {x1, ..., xn} ⊂ S2, define

Cg,n(µ) = { f : Σ→ S2 |Σ connected genus g, unramified over S2 − {x1, ..., xn};
ramification (µk, 1, 1, ..., 1) over xk}/ ∼ .

Define the cycle Hurwitz numbers:

Pg,n(µ1, ..., µn) = ∑
f∈Cg,n(µ)

1
|Aut f | .

Theorem 8 (Okounkov-Pandharipande [2626]). The cycle Hurwitz numbers Pg,n(µ1, ..., µn) contribute all stable

maps with smooth domain curves to
n

∏
i=1

(µi − 1)!

〈
n

∏
i=1

τµi−1(ω)

〉g

d

.

In other words, Gromov-Witten invariants compactify the Hurwitz count by allowing stable domains.

Lemma 6.1. P0,3(µ1, µ2, µ3) = 1

Proof. Denote by Cµ1 ⊂ Sd the conjugacy class in the symmetric group consisting of all permutations with
cycle structure (µ1, 1, 1..., 1). The lemma is equivalent to the statement

(14) #{(σ1, σ2, σ3) | σi ∈ Cµi , σ1 · σ2 · σ3 = 1 is a transitive factorisation} = d!.

To get the Hurwitz number we divide (1414) by d! corresponding to identifying equivalent products

(σ1, σ2, σ3) ∼ (gσ1g−1, gσ2g−1, gσ3g−1), g ∈ Sd

or equivalently isomorphic branched covers. If a product is fixed by conjugation then this defines an
automorphism of the branched cover.

It remains to prove (1414). By the Riemann-Hurwitz formula the degree d of the cover satisfies µ1 + µ2 + µ3 =

2d + 1.

We begin with an example. Suppose (µ1, µ2, µ3) = (d, d, 1). Then there is a unique cover with two totally
ramified points, and it has automorphism group of size d, leading to 1/d. Equivalently the number of
(transitive) factorisations σ1σ2 = (1) is (d− 1)!. An extra factor of d comes from the choice of the third point
corresponding to σ3 = 1—there are d such choices—or equivalently the third point makes the automorphism
group trivial.

More generally, identify σi with its cycle of length µi (and if µi = 1 choose a single number to represent (1) or
ignore this case.) In order that the factorisation is transitive and has product (1), there is exactly one number
common to all three cycles which we suppose to be 1. Also suppose σ1 = (1...µ1). The numbers {2, ..., a}
appear in exactly one of σ2 and σ3 and their location is uniquely determined. Also, σ2 and σ3 both contain the
numbers {1, a + 1, a + 2, ..., d} and the order of these numbers in σ2 determines their order in σ3. Hence the
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number of transitive factorisations is (
d
a

)
· (a− 1)! · a · (d− a)! = d!

where the factor (d
a) chooses the elements of σ1, the factor (a− 1)! chooses the cycle σ1, the factor a chooses

the number common to all three factors and the factor (d− a)! chooses the order of {a + 1, a + 2, ..., d} in
σ2. �

Corollary 6.2. If µ1, µ2 and µ3 satisfy the triangle inequalities then N0,3(µ1, µ2, µ3) = P0,3(µ1, µ2, µ3).

Proof. We know that N0,3(µ1, µ2, µ3) = 1 iff ∑ µi is odd, so the point of this corollary is simply to identify this
appearance of 1 with the appearance of 1 in Lemma 6.16.1. The triple (µ1, µ2, µ3) appears in a Hurwitz problem
if their sum is odd, since µ1 + µ2 + µ3 = 2d + 1, and if µi ≤ d, i = 1, 2, 3. But

µ1 ≤ d⇔ −µ1 + µ2 + µ3 > 0

which is one of the three triangle inequalities. The other two triangle inequalities hold by the same argument.
�

In general Ng,n(µ1, ..., µn) 6= Pg,n(µ1, ..., µn). For example, N0,3(2d− 1, 1, 1) = 1 whereas P0,3(2d− 1, 1, 1) = 0
for d > 1. Nevertheless, Corollary 6.26.2 suggests that Pg,n(µ1, ..., µn) may equal Ng,n(µ1, ..., µn) under conditions
on (µ1, ..., µn) and more generally Ng,n(µ1, ..., µn) may be realised as the solution to a generalisation of the
cycle Hurwitz problem involving stable curves for domains.
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