NONTRIVIAL RATIONAL POLYNOMIALS IN TWO VARIABLES
HAVE REDUCIBLE FIBRES
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We shall call a polynomial map f: C2 — C a “coordinate” if there is a g such
that (f,g): C* — C? is a polynomial automorphism. Equivalently, by Abhyankar-
Moh and Suzuki, f has one and therefore all fibres isomorphic to C. Following [7]
we call a polynomial f: C2 — C “rational” if the general fibres of f (and hence all
fibres of f) are rational curves. The following theorem, which says that a rational
polynomial map with irreducible fibres cannot be part of a counterexample to the
2-dimensional Jacobian Conjecture, has appeared in the literature several times. It
appears with an algebraic proof in Razar [12]. It is Theorem 2.5 of Heitmann [4]
(as corrected in the Corrigendum), and Lé and Weber, who give a geometric proof
in [6], also cite the reference Friedland [3], which we have not seen.

Theorem 1. If f: C?2 — C is a rational polynomial map with irreducible fibres and
is not a coordinate then f has no jacobian partner (i.e., no polynomial g such that
the jacobian of (f,g) is a non-zero constant).

In this note we prove the above theorem is empty:

Theorem 2. There is no f satisfying the assumptions of the above theorem. That
is, a rational f which is not a coordinate has a reducible fibre.

Proof. Suppose f is rational. Asin [7], [6], etc., we consider a nonsingular compact-
ification Y = C2 U E of C? such that f extends to a holomorphic map f: Y — P!
Then FE is a union of smooth rational curves Ey, ..., E, with normal crossings. An
E; is called horizontal if f|E; is non-constant. Let § be the number of horizontal
curves. Then we have

Lemma 3.
§—1=) (ra—1),
a€eC
where 1, is the number of irreducible components of f~'(a).

This is Lemma 4 of Lé-Weber [6] who attribute it to Kaliman [5], corollary 2.
This lemma also appears in [7] where it is attributed to Saito [10]. The proof is
simple arithmetic from the topological observation that on the one hand the euler
characteristic of ¥ is n 4+ 2 and on the other hand it is 4 + 3 p1(7a — 1), where

T, is the number of components of 77] (a),a € P

By this lemma, if f has irreducible fibres then there is just one horizontal curve.
The theorem then follows from Lemma 1.7 of [7]. It also follows from the following
proposition and its proof, which implies that the generic fibres of f have just one
point at infinity and are thus isomorphic to C. O

This research is supported by the Australian Research Council.
1



2 WALTER D. NEUMANN AND PAUL NORBURY

Proposition 4. If f: C2 = C is a polynomial map and f: Y — P! is an extension
as above, and if d is the greatest common divisor of the degrees of f on the horizontal
curves of Y then the general fibre of f has d components (so f = ho fi for some
polynomials f1: C* — C and h: C — C with degree(h) = d).

Proof. Let Ei,..., Es be the horizontal curves and d,,...,ds be the degrees of f
on these. Note that the points at infinity of a general fibre f~'(a) are the points

where 77] (a) meet the horizontal curves E;, so there are d; such points on E; for
i =1,...,d. The relationship between plumbing diagram and splice diagram (cf.
[9, 2] says that the splice diagram T for a regular link at infinity for f (cf. [8]) has &
nodes with arrows at them, and the number of arrows at these nodes are dy, ..., ds
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respectively. Let I’y be the same splice diagram but with d; /d, ..., ds/d arrows at
these nodes. Then a minimal Seifert surface S for the link represented by T' will
consist of d parallel copies of a minimal Seifert surface for the link represented by
[y, so this S has d components. But the general fibre of f is such a minimal Seifert
surface ([8], Theorem 1), completing the proof. O
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