
REAL INSTANTONS, DIRAC OPERATORS ANDQUATERNIONIC CLASSIFYING SPACESPAUL NORBURY AND MARC SANDERSAbstract. Let M(k; SO(n)) be the moduli space of based gauge equivalenceclasses of SO(n) instantons on principal SO(n) bundles over S4 with �rstPontryagin class p1 = 2k. In this paper, we use a monad description ([Ti],[D]) of these moduli spaces to show that in the limit over n, the moduli spaceis homotopy equivalent to the classifying space BSp(k). Finally, we use Diracoperators coupled to such connections to exhibit a particular and quite naturalhomotopy equivalence. 1. IntroductionLet M(k; SO(n)) be the moduli space of based gauge equivalence classes ofSO(n) instantons on principal SO(n) bundles over S4 with �rst Pontryagin classp1 = 2k. By adding a trivial connection on a trivial line bundle, there are nat-ural maps M(k; SO(n)) ,! M(k; SO(n + 1)); and one can de�ne the direct limitspace M(k; SO). In this paper we show that there is a homotopy equivalenceM(k; SO) ' BSp(k), where Sp(k) denotes the symplectic group of norm preserv-ing automorphisms of the quaternionic vector space Hn. We also show that thisequivalence can be realized by a \Dirac-type" map, constructed by coupling a Diracoperator to an SO(n) connection. More precisely, the coupling of a Dirac operatorto a connection associates to each element of M(k; SO(n)) an operator acting onthe space of sections of a certain vector bundle. Associated to each selfdual con-nection is the vector space of sections in the kernel of its associated operator. Thisprocedure de�nes a complex vector bundle, which for SO(n) connections has a sym-plectic structure, and this bundle is classi�ed by a map which we shall refer to as theDirac map, @SO(n) : M(k; SO(n)) ! BSp(k). The topological properties of theseDirac maps for SU(n) connections were �rst studied by Atiyah and Jones [AJ], andmore recently it was shown in [S] that the limit map @SU : M(k; SU) ! BU(k)realizes Kirwan's [K] homology isomorphism H�(M(k; SU)) �= H�(BU(k)), and is,therefore, a homotopy equivalence. It also makes sense to de�ne such Dirac mapson the limit spaces M(k;G), where G is either SO or Sp, and in [S] it was shownthat the limit map @Sp : M(k; Sp) ! BO(k) is a homotopy equivalence. In thispaper we complete the picture for the classical groups by showing that the limitmap @SO :M(k; SO)! BSp(k) is also a homotopy equivalence.Our proof will be fairly direct. In section one we review Tian's [Ti] versionof Donaldson's [D] monad description of M(k; SO(n)). Tian exhibits this modulispace as the quotient of a set of triples of certain complex matrices by an actionDate: March 10, 1995.1991 Mathematics Subject Classi�cation. Primary 53C07, 55P38. Secondary 55R45.Key words and Phrases. Instantons, Dirac operators, classifying space.1



2 PAUL NORBURY AND MARC SANDERSof Sp(k;C), the complex symplectic group. We shall show that this action is free,that there are natural mapsM(k; SO(n)) ,!M(k; SO(n+1)), and that in the limitover n the space of triples is contractible. Hence, M(k; SO) will be shown to bethe quotient of a contractible space by a free Sp(k;C) action. In section 2, we usea comparison between SO(n) and SU(n) connections to show that the Dirac map@SO(n) :M(k; SO(n))! BSp(k) induces a surjection in integral homology througha range of dimension increasing with n. Since H�(M(k; SO);Z) �= H�(BSp(k);Z)by results of section one, the limit map @SO must be a homology isomorphism andtherefore a homotopy equivalence.Notice that the Sp and SO duality in these moduli spaces is foreshadowed inBott Periodicity. Since the entire space of based gauge equivalence classes of SO(n)connections is homotopy equivalent to 
3SO(n), the limit over n is homotopyequivalent to Z � BSp. Similarly, the space of Sp(n) connections is homotopyequivalent to 
3Sp(n) which, after passing to the limit, is homotopy equivalent toZ � BO. Alternatively, as we will see in section 2, this duality comes from thefact that the bundle of real spinors over S4 is naturally a symplectic vector bundle.Recently, in fact, Tian [Ti] has shown that by comparing the two possible limitprocesses which one can apply to these moduli spaces, viz., �xing k and taking thelimit over n or �xing n and taking the limit over k, one actually can prove BottPeriodicity. This consequence alone demonstrates the beauty and complexity ofthese moduli spaces. 2. M(k; SO) and BSp(k)The ADHM construction [ADHM] identi�es the space of instantons with certainholomorphic bundles over complex projective space, and Donaldson [D] used amonad construction to characterize such bundles in terms of a quotient of a set ofsequences of complex matrices by a natural group action. For SO(n) instantons,Tian [Ti] carried out this procedure explicitly.Let � denote the standard skew form on C2k,� = � 0 Ik�Ik 0�where Ik is the k�k identity matrix. The complexi�ed symplectic group, Sp(k;C) �Gl(2k;C), consists of those matrices g such that g�1 = ��gT�. The maximalcompact subgroup of Sp(k;C) is the compact symplectic group Sp(k).Proposition 1. (Donaldson [D] and Tian [Ti]) Let A(k; SO(n)) be the space oftriples of complex matices (1; 2; c), where i is 2k�2k and c is n�2k, satisfying:a) T1 = ��1�b) T2 = 2c) 2(T1 2 + T2 1) + cT c = 0d) 0@ 1 + xI2k2 + y�c 1A has rank 2k for all x; y 2 C.Then there is a natural action of Sp(k;C) on A(k; SO(n)) given byg � (1; 2; c) = (g1g�1; (g�1)T 2g�1; cg�1);and M(k; SO(n)) is homeomorphic to the quotient A(k; SO(n))=Sp(k;C).



REAL INSTANTONS AND QUATERNIONIC CLASSIFYING SPACES 3It has been shown [S] that in the analogous description of SU(n) and Sp(n)instantons, this group action is free. This is, in some sense, already implicit in themonad construction. Not surprisingly, then, it is also true in the SO(n) case. Forthe sake of completeness, however, we now give the proof.Lemma 2. The natural action of Sp(k;C) on A(k; SO(n)) is free.Proof: Assume the converse, so we have(g1g�1; (g�1)T 2g�1; cg�1) = (1; 2; c)for a particular g 6= I and triple (1; 2; c), and note that elements of Sp(k;C) satisfyg�1 = ��gT�. Consider the subspace im(g � I) = V � C2k. By assumption it isnon-empty. Thus, from the de�nition of the action we havec(g � I) = 0 ;1(g � I) = (g � I)1 ;�2(g � I) = (g � I)�2 :This last fact is proved as follows.2 = (g�1)T 2g�1) 2g = (g�1)T 2) �2g = ��(g�1)T��2) �2g = g�2 :Equivalently c annihilates V and 1 and �2 preserve V . Using conditions a), b),and c), we see that on V T1 2 + T2 1 = 0) ��1�2 � 21 = 0) 1�2 � �21 = 0 :Hence 1 and �2 have a common eigenvector in V .Choose v 2 V satisfying 1v = �v and �2v = �v. Then0@ 1 � �I2k2 + ��c 1A v = 0contradicting condition d). Thus, the image of g � I must be empty so g = I andthe action is free.We now construct the limit spaceM(k; SO) and show that it is homotopy equiv-alent to BSp(k). First notice that there is an Sp(k;C) equivariant map fromA(k; SO(n)) ,! A(k; SO(n + 1)) which sends each i to itself and sends c to the(n+1)� k matrix made up of c with an extra row of zeros on top. On the level ofmonads, this adds to the bundle over CP 2 the trivial holomorphic line bundle (see[Ti]). Thus this map induces the natural inclusionM(k; SO(n)) ,!M(k; SO(n+1))sending the connection ! to the connection !� d, where d is ordinary exterior dif-ferentiation. We now prove the main theorem of this section.Theorem 3. A(k; SO) is a contractible space with a free Sp(k;C) action. Thus,M(k; SO)) �= A(k; SO)=Sp(k;C) ' BSp(k).



4 PAUL NORBURY AND MARC SANDERSProof To show that A(k; SO) is contractible it su�ces to show that all of itshomotopy groups are zero. To this end we show that for any k and n there is anr > n such that inclusion A(k; SO(n)) ,! A(k; SO(r)) is homotopically trivial. (cf.[S], sections 2 and 3).For 0 � t � 1 de�ne ~Ik(t) to be the 4k � 2k matrix whose jth column is thevector 0BBBBBBBBBBBB@
0...0tit0...0
1CCCCCCCCCCCCAwhere there are 2j � 2 zeroes before the t. Note that (~Ik(t))T � ~Ik(t) is the zeromatrix. Now consider the homotopy Ht : A(k; SO(n))! A(k; SO(4k+n)) de�nedas follows: Ht(1; 2; c) = ((1� t)1; (1� t)2; ct)where ct = 0@ ~Ik(t)(1� t)c1AIt is easy to check that for any x 2 A(k; SO(n)) we have Ht(x) 2 A(k; SO(4k+n))because ct clearly has rank 2k and cTt � ct = cT � c(1� t)2. Finally, notice that H0 isjust the natural inclusion A(k; SO(n)) ,! A(k; SO(4k + n)), and H1 is a constantmap. This �nishes the proof of the theorem.3. The Dirac map @SO(n) :M(k; SO(n))! BSp(k)In this section we review the construction of the Dirac map, and show that afterpassing to the limit over n it is a homotopy equivalence. To de�ne this map it isinstructive to �rst consider SU(n) instantons. Let ! be a connection on the SU(n)vector bundle Ek, where the second Chern class c2(Ek) = k, and let S denote thecanonical bundle of complex spinors over S4 with its canonical connection rs. Thetensor product bundle S
Ek inherits a Cli�ord module structure from the one onS, and we can view rs 
 ! as a connection on this bundle. This connection givesrise to a Dirac operator D! : �(S 
Ek) �! �(S 
Ek);where �(S 
 Ek) is the space of smooth sections of S 
 Ek. There is a splittingS �= S+�S� and the Dirac operator interchanges the two summands. The operatorD+! : �(S+ 
Ek) �! �(S� 
Ek)is Fredholm, in an appropriate Sobolev completion, and of index k [AJ]. Further-more, if ! is selfdual, then Coker(D+! ) = 0 [AHS]. Therefore, the space of sectionsin the kernel of D+! gives a well-de�ned vector space associated to the connection!. There is an equivariance of the kernel under gauge transformation in the sensethat � 2 Ker(D+! ) implies g� 2 Ker(D+gw), for any g in the based gauge group



REAL INSTANTONS AND QUATERNIONIC CLASSIFYING SPACES 5of bundle automorphisms of Ek. Passing to gauge equivalence classes gives a kdimensional complex vector bundle over M(k; SU(n)). This bundle is classi�ed bya map, @SU(n) :M(k; SU(n))! BU(k), which we shall refer to as the Dirac map.A similar construction can be used to de�ne the Dirac map for SO(n) connec-tions. Given an SO(n) bundle E with p1(E) = 2k and an SO(n) instanton ! on E,we can complexify the bundle and connection, denoted !C and EC , then use theunitary Dirac map to obtainM(k; SO(n)) �!M(2k; SU(n)) @SU(n)�! BU(2k):(Note that c2(EC) = 2k). However, because EC has by de�nition an underlyingreal structure, given by some bundle involution JE , and the complex spinor bundleS has a quaternionic structure, given by some complex anti-linear bundle automor-phism Js, where Js � Js = �1, the tensor product bundle S 
 EC will also have aquaternionic structure. Moreover, the Dirac operator will respect this extra struc-ture because the tensor product connection rs 
 !C will commute with Js 
 JE .Thus, the kernel bundle, de�ned by coupling a Dirac operator to a real SO(n) in-stanton, will be a k dimensional quaternionic bundle over M(k; SO(n)). In otherwords, the compositionM(k; SO(n)) �!M(2k; SU(n)) @SU(n)�! BU(2k)factors through BSp(k). We denote this lifting by @SO(n). In short, we have thehomotopy commutative diagramM(k; SO(n)) @SO(n)�! BSp(k)# #M(2k; SU(n)) @SU(n)�! BU(2k)We now show that we can de�ne the limit map @SO : M(k; SO) ! BSp(k).>From the matrix description of M(k; SO(n)), we see that the natural inclusionM(k; SO(n)) ,! M(k; SO(n + 1)), mapping (!;E) to (! � d;E � R) embedsM(k; SO(n)) as a closed submanifold ofM(k; SO(n+1)). It follows that the directlimit M(k; SO) is homotopy equivalent to the homotopy direct limit M(k; SO)h.Thus, it su�ces to de�ne @SO on M(k; SO)h. To this end, let A(k; SO(n)) de-note the space of instantons before passing to gauge equivalence classes, and letGk;SO(n) denote the based gauge group of bundle automorphisms of the SO(n)bundle E, where p1(E) = 2k. Let �(k; SO(n)) denote the bundle class�ed by themap @SO(n) :M(k; SO(n))! BSp(k). By de�nition,�(k; SO(n)) = �[(!; �)] : � 2 ker(D+! )� � A(k; SO(n)) �Gk;SO(n) �(S+ 
EC)Since the untwisted Dirac operator on S4 has no kernel (S4 has no harmonicspinors), the natural inclusion of bundles�(k; SO(n)) ,! �(k; SO(n+ 1))# #M(k; SO(n)) ,! M(k; SO(n+ 1))



6 PAUL NORBURY AND MARC SANDERSde�ned by (!; �)! (!�d; � �0) is an isomorphism on �bers. Thus the pullback of�(k; SO(n + 1)) via the inclusion M(k; SO(n)) ,! M(k; SO(n + 1)) is isomorphicto �(k; SO(n)). Hence, the diagramM(k; SO(n)) ,! M(k; SO(n+ 1))@SO(n) # # @SO(n+1)BSp(k) = BSp(k)commutes up to homotopy. So there exists a map @SO : M(k; SO)h ! BSp(k).Precomposing with the equivalence M(k; SO) 'M(k; SO)h, gives a map@SO :M(k; SO)! BSp(k):This map is not necessarily uniquely determined. Nevertheless, any two choices,when restricted toM(k; SO(n)) will classify the bundle �(k; SO(n)), and this is theonly property of the limit map which we will use. In particular, any such choicewill give a homotopy commutative diagramM(k; SO(n)) �! M(k; SO)@SO(n) & # @SOBSp(k):Now, sinceH�(M(k; SO)) �= H�(BSp(k)) by theorem 3, @SO will induce a homologyisomorphism, and therefore be a homotopy equivalence, if and only if it induces asurjection in homology. By the homotopy commutativity of the previous diagram,it su�ces to show that @SO(n) : M(k; SO(n)) ! BSp(k) induces a surjection inhomology through a range increasing with n.Theorem 4. The Dirac map @SO(n) induces a surjection in homology through di-mension 2n � 4. Thus, the limit map @SO : M(k; SO) ! BSp(k) is a homotopyequivalence.We begin by proving the following lemma:Lemma 5. There is a commutative diagramH�(M(k; SU(n))) (@SU(n))��! H�(BU(k))# #H�(M(k; SO(2n))) (@SO(2n))��! H�(BSp(k));where Sp(k) � U(2k) consists of all matrices of the form0@ A B� �B �A1A



REAL INSTANTONS AND QUATERNIONIC CLASSIFYING SPACES 7for any A;B 2 End(Ck), and the map BU(k) ! BSp(k) is induced from theinclusion U(k) ,! Sp(k) de�ned byA 7! 0@A 00 �A1A :Proof of Lemma First notice that the natural map of Lie algebras su(n) ,!so(2n) induces a map M(k; SU(n))!M(k; SO(2n)). The self-duality condition ispreserved because the Hodge star operator is complex linear. Locally, the connec-tion matrix  = 1 + i2, where j is a real matrix-valued one form, will map tothe matrix 0@1 �22 1 1A :Also notice that, as mentioned previously, the complexi�cation of a real connec-tion on an SO(r) bundle induces a natural map M(k; SO(2n))!M(2k; SU(2n)).Locally, the composition of these two mapsM(k; SU(n))!M(k; SO(2n))!M(2k; SU(2n))is given by  = 1 + i2 7! 0@1 �22 1 1A 7! 0@1 �22 1 1A ;where the last matrix is viewed as taking values in the Lie algebra su(2n). Sincethere is a g 2 SU(2n) such thatg�10@1 �22 1 1A g = 0@1 + i2 00 1 � i21A = 0@ 00 �1A ;the connections represented by these matrix-valued one forms are gauge equivalent.Thus, the compositionM(k; SU(n))!M(k; SO(2n))!M(2k; SU(2n)) sends theequivalence class of the selfdual connection ! on the bundle E to the equivalenceclass of the selfdual connection ! � �! on the bundle E � �E.Now consider the diagramM(k; SU(n)) @SU(n)�! BU(k)# #M(k; SO(2n)) @SO(2n)�! BSp(k)# #M(2k; SU(2n)) @SU(2n)�! BU(2k):By the de�nition of @SO(2n), the bottom square homotopy commutes. Since the mapBSp(k) ! BU(2k) induces an injection in homology, the top square will induce a



8 PAUL NORBURY AND MARC SANDERScommutative diagram in homology if the large outer \square "M(k; SU(n)) @SU(n)�! BU(k)# #M(2k; SU(2n)) @SU(2n)�! BU(2k)commutes in homology. Note that on the level of bundles the right vertical mapsends a complex vector bundle F to the complex bundle F � �F . Let �(r; SU(l))denote the Dirac bundle classi�ed by the map @SU(l) :M(r; SU(l))! BU(r). Theproof of the lemma will be complete if the compositionM(k; SU(n)) �!M(2k; SU(2n)) @SU(2n)�! BU(2k)classi�es the bundle �(k; SU(n))� ��(k; SU(n)). There is a natural bundle map�(k; SU(n))� ��(k; SU(n)) �! �(2k; SU(2n))# #M(k; SU(n)) �! M(2k; SU(2n))de�ned by [(!;  1 �  2)] 7! [(! � �!;  1 � � 2)]where � 2 is the section  2 viewed as a section of the conjugate bundle. Since  is in the kernel of D+! if and only if � is in the kernel of D+�! , this bundle mapis a surjection on �bers. Since the �bers have the same dimension, this map isan isomorphism. Thus �(k; SU(n))� ��(k; SU(n)) is isomorphic to the pullback of�(2k; SU(2n)), and the lemma is proved.The proof of theorem 4 is now easy. In [S] section 5, it was shown that the map(@SU(n))� : H�(M(k; SU(n))) �! H�(BU(k))is a surjection through dimension 2n � 4. Furthermore, we know that the mapBU(k) ! BSp(k) induces a surjection in homology. Thus, by the commutativityof the diagram H�(M(k; SU(n))) (@SU(n))��! H�(BU(k))# #H�(M(k; SO(2n))) (@SO(2n))��! H�(BSp(k));(@SO(2n))� : H�(M(k; SO(2n)) ! H�(BSp(k)) must also be a surjection throughthis range. In particular, then, the limit map @SO : M(k; SO) ! BSp(k) is ahomotopy equivalence. References[ADHM] M.F. Atiyah, V. G. Drinfeld, N.J. Hitchin and Y. I. Manin, Construction of instantons,Phys. Lett. A, 65 (1978), 185-187.[AJ] M.F. Atiyah and J.D.S. Jones, Topological aspects of Yang-Mills theory, Comm. Math.Phys. 61 (1978), 97-118.
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