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QUATERNIONIC CLASSIFYING SPACES
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ABSTRACT. Let M(k,SO(n)) be the moduli space of based gauge equivalence
classes of SO(n) instantons on principal SO(n) bundles over S* with first
Pontryagin class p1 = 2k. In this paper, we use a monad description ([Ti],
[D]) of these moduli spaces to show that in the limit over n, the moduli space
is homotopy equivalent to the classifying space BSp(k). Finally, we use Dirac
operators coupled to such connections to exhibit a particular and quite natural
homotopy equivalence.

1. INTRODUCTION

Let M(k,SO(n)) be the moduli space of based gauge equivalence classes of
SO(n) instantons on principal SO(n) bundles over S* with first Pontryagin class
p1 = 2k. By adding a trivial connection on a trivial line bundle, there are nat-
ural maps M (k,SO(n)) < M(k,SO(n + 1)), and one can define the direct limit
space M (k,SO). In this paper we show that there is a homotopy equivalence
M(k,SO) ~ BSp(k), where Sp(k) denotes the symplectic group of norm preserv-
ing automorphisms of the quaternionic vector space H™. We also show that this
equivalence can be realized by a “Dirac-type” map, constructed by coupling a Dirac
operator to an SO(n) connection. More precisely, the coupling of a Dirac operator
to a connection associates to each element of M (k,SO(n)) an operator acting on
the space of sections of a certain vector bundle. Associated to each selfdual con-
nection is the vector space of sections in the kernel of its associated operator. This
procedure defines a complex vector bundle, which for SO(n) connections has a sym-
plectic structure, and this bundle is classified by a map which we shall refer to as the
Dirac map, dso(n) : M(k,SO(n)) — BSp(k). The topological properties of these
Dirac maps for SU(n) connections were first studied by Atiyah and Jones [AJ], and
more recently it was shown in [S] that the limit map dsyy : M (k,SU) — BU (k)
realizes Kirwan’s [K] homology isomorphism H,(M (k, SU)) = H.(BU(k)), and is,
therefore, a homotopy equivalence. It also makes sense to define such Dirac maps
on the limit spaces M (k,G), where G is either SO or Sp, and in [S] it was shown
that the limit map 9ds, : M(k,Sp) — BO(k) is a homotopy equivalence. In this
paper we complete the picture for the classical groups by showing that the limit
map Jso : M(k,SO) — BSp(k) is also a homotopy equivalence.

Our proof will be fairly direct. In section one we review Tian’s [Ti] version
of Donaldson’s [D] monad description of M (k,SO(n)). Tian exhibits this moduli
space as the quotient of a set of triples of certain complex matrices by an action
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of Sp(k; C), the complex symplectic group. We shall show that this action is free,
that there are natural maps M (k, SO(n)) — M (k,SO(n+1)), and that in the limit
over n the space of triples is contractible. Hence, M (k, SO) will be shown to be
the quotient of a contractible space by a free Sp(k; C') action. In section 2, we use
a comparison between SO(n) and SU(n) connections to show that the Dirac map
Oso(n) : M(k,SO(n)) — BSp(k) induces a surjection in integral homology through
a range of dimension increasing with n. Since H,(M (k, SO); Z) = H.(BSp(k); Z)
by results of section one, the limit map dso must be a homology isomorphism and
therefore a homotopy equivalence.

Notice that the Sp and SO duality in these moduli spaces is foreshadowed in
Bott Periodicity. Since the entire space of based gauge equivalence classes of SO(n)
connections is homotopy equivalent to Q2SO(n), the limit over n is homotopy
equivalent to Z x BSp. Similarly, the space of Sp(n) connections is homotopy
equivalent to Q3Sp(n) which, after passing to the limit, is homotopy equivalent to
Z x BO. Alternatively, as we will see in section 2, this duality comes from the
fact that the bundle of real spinors over S* is naturally a symplectic vector bundle.
Recently, in fact, Tian [Ti] has shown that by comparing the two possible limit
processes which one can apply to these moduli spaces, viz., fixing k and taking the
limit over n or fixing n and taking the limit over k, one actually can prove Bott
Periodicity. This consequence alone demonstrates the beauty and complexity of
these moduli spaces.

2. M(k,SO) aNnD BSp(k)

The ADHM construction [ADHM] identifies the space of instantons with certain
holomorphic bundles over complex projective space, and Donaldson [D] used a
monad construction to characterize such bundles in terms of a quotient of a set of
sequences of complex matrices by a natural group action. For SO(n) instantons,
Tian [Ti] carried out this procedure explicitly.

Let o denote the standard skew form on C?*,

(0 L

=\, o
where I, is the kx k identity matrix. The complexified symplectic group, Sp(k, C) C
GI(2k,C), consists of those matrices g such that g=! = —og’0. The maximal

compact subgroup of Sp(k, C) is the compact symplectic group Sp(k).

Proposition 1. (Donaldson [D] and Tian [Ti]) Let A(k,SO(n)) be the space of
triples of complex matices (y1,72,c¢), where v; is 2k x 2k and ¢ is n X 2k, satisfying:

a) v/ = —omo
b) 75 =72
) 2(v{ 2+ m) +ele=0
7+ xlay
d) Y2 + yo has rank 2k for all z,y € C.
c

Then there is a natural action of Sp(k, C) on A(k,SO(n)) given by

9 - (r,72,¢) = (9mg (g ) 29 eg ),

and M (k,SO(n)) is homeomorphic to the quotient A(k,SO(n))/Sp(k,C).
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It has been shown [S] that in the analogous description of SU(n) and Sp(n)
instantons, this group action is free. This is, in some sense, already implicit in the
monad construction. Not surprisingly, then, it is also true in the SO(n) case. For
the sake of completeness, however, we now give the proof.

Lemma 2. The natural action of Sp(k,C) on A(k,SO(n)) is free.

Proof: Assume the converse, so we have

(97197 " (g ) g v eg™") = (11,72, 0)

for a particular g # I and triple (71,2, ¢), and note that elements of Sp(k, C) satisfy

g~ ! = —ogTo. Consider the subspace im(g — I) = V C C?*. By assumption it is
non-empty. Thus, from the definition of the action we have
C(g - I) =0 )

(g —1)=(g—Dmn,
07209 —1) = (9 —I)ov .
This last fact is proved as follows.

o= (g ) gt
=79 = (g
=079 = —o(g D) ooy
= 079 = go7Yy2 .

Equivalently ¢ annihilates V' and -, and o7, preserve V. Using conditions a), b),
and ¢), we see that on V

Nr+1m7=0
= —O0Y107%2 — Y271 = 0
= 7107 —0y2y1 =0 .

Hence y; and 072 have a common eigenvector in V.
Choose v € V satisfying y1v = Av and oy2v = pv. Then

1 — Aoy
Y2 + po v=_0
c

contradicting condition d). Thus, the image of ¢ — I must be empty so g = I and
the action is free.

We now construct the limit space M (k, SO) and show that it is homotopy equiv-
alent to BSp(k). First notice that there is an Sp(k,C) equivariant map from
A(k,SO(n)) = A(k,SO(n + 1)) which sends each ~; to itself and sends ¢ to the
(n 4+ 1) x k matrix made up of ¢ with an extra row of zeros on top. On the level of
monads, this adds to the bundle over C'P? the trivial holomorphic line bundle (see
[Ti]). Thus this map induces the natural inclusion M (k, SO(n)) — M (k,SO(n+1))
sending the connection w to the connection w & d, where d is ordinary exterior dif-
ferentiation. We now prove the main theorem of this section.

Theorem 3. A(k,SO) is a contractible space with a free Sp(k,C) action. Thus,
M(k,S0)) = A(k,S0O)/Sp(k,C) ~ BSp(k).
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Proof To show that A(k,SO) is contractible it suffices to show that all of its
homotopy groups are zero. To this end we show that for any &£ and n there is an
r > n such that inclusion A(k, SO(n)) = A(k,SO(r)) is homotopically trivial. (cf.
[S], sections 2 and 3).

For 0 < t < 1 define I;(t) to be the 4k x 2k matrix whose j*" column is the
vector

0

0
where there are 2j — 2 zeroes before the t. Note that (I ()" - I (t) is the zero

matrix. Now consider the homotopy H; : A(k,SO(n)) — A(k, SO(4k +n)) defined
as follows:
Hi(v1,72,¢) = (L= t)n, (1 = t)72, ¢)
where ~
I (1)
Ct =
(1—1%)c
It is easy to check that for any z € A(k,SO(n)) we have Hy(x) € A(k, SO(4k +n))
because ¢; clearly has rank 2k and ¢/ - ¢; = ¢’ - ¢(1 — t)%. Finally, notice that Hy is
just the natural inclusion A(k,SO(n)) — A(k,SO(4k + n)), and H; is a constant
map. This finishes the proof of the theorem.

3. THE DIRAC MAP Js0(n) : M (k,SO(n)) — BSp(k)

In this section we review the construction of the Dirac map, and show that after
passing to the limit over n it is a homotopy equivalence. To define this map it is
instructive to first consider SU(n) instantons. Let w be a connection on the SU(n)
vector bundle Ej, where the second Chern class co(Ey) = k, and let S denote the
canonical bundle of complex spinors over S* with its canonical connection V,. The
tensor product bundle S ® Ej inherits a Clifford module structure from the one on
S, and we can view V, ® w as a connection on this bundle. This connection gives
rise to a Dirac operator

D, :T(S® Ey) — T(S® Ey),

where T'(S ® Ej) is the space of smooth sections of S ® Ej. There is a splitting
S = S*® S~ and the Dirac operator interchanges the two summands. The operator

is Fredholm, in an appropriate Sobolev completion, and of index k [AJ]. Further-
more, if w is selfdual, then Coker(D}) = 0 [AHS]. Therefore, the space of sections
in the kernel of D gives a well-defined vector space associated to the connection
w. There is an equivariance of the kernel under gauge transformation in the sense
that ¢ € Ker(D}) implies go € Ker(D},,), for any g in the based gauge group
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of bundle automorphisms of Ej. Passing to gauge equivalence classes gives a k
dimensional complex vector bundle over M (k, SU(n)). This bundle is classified by
a map, dsy(n) : M(k,SU(n)) — BU(k), which we shall refer to as the Dirac map.

A similar construction can be used to define the Dirac map for SO(n) connec-
tions. Given an SO(n) bundle E with p; (E) = 2k and an SO(n) instanton w on E,
we can complexify the bundle and connection, denoted wo and E¢, then use the
unitary Dirac map to obtain

M(k, SO(n)) —s M(2k, SU(n)) 228 BU(2k).

(Note that co(FE¢) = 2k). However, because E¢ has by definition an underlying
real structure, given by some bundle involution Jg, and the complex spinor bundle
S has a quaternionic structure, given by some complex anti-linear bundle automor-
phism Jg, where Js o J; = —1, the tensor product bundle S ® E¢ will also have a
quaternionic structure. Moreover, the Dirac operator will respect this extra struc-
ture because the tensor product connection V4 ® we will commute with Jg ® Jg.
Thus, the kernel bundle, defined by coupling a Dirac operator to a real SO(n) in-
stanton, will be a k dimensional quaternionic bundle over M (k,SO(n)). In other
words, the composition

Osu(n

M(k, SO(n)) — M(2k,SU(n)) =%’ BU(2k)
factors through BSp(k). We denote this lifting by dso(n). In short, we have the
homotopy commutative diagram

050(n)

M(k,SO(m)) 2% BSp(k)

i +

M2k, SUm) U BU(2k)

We now show that we can define the limit map 9sp : M(k,SO) — BSp(k).
JFrom the matrix description of M (k,SO(n)), we see that the natural inclusion
M(k,SO(n)) — M(k,SO(n + 1)), mapping (w,E) to (w & d,E & R) embeds
M (k,SO(n)) as a closed submanifold of M (k, SO(n+1)). It follows that the direct
limit M (k,SO) is homotopy equivalent to the homotopy direct limit M (k, SO).
Thus, it suffices to define dso on M(k,SO). To this end, let A(k, SO(n)) de-
note the space of instantons before passing to gauge equivalence classes, and let
Gr,s0(n) denote the based gauge group of bundle automorphisms of the SO(n)
bundle E, where p;(E) = 2k. Let n(k,SO(n)) denote the bundle classfied by the
map Jso(n) : M(k,SO(n)) — BSp(k). By definition,

n(k,S0O(n)) = {[(wﬂ—)] iTE ker(Dj)} C Ak, SO(n)) X6, so0m (ST ® Ec)

Since the untwisted Dirac operator on S* has no kernel (S* has no harmonic
spinors), the natural inclusion of bundles

n(k,SOm)) =  n(k,SO(n + 1))

i +

M(k,SO(n)) < M(k,SO(n + 1))
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defined by (w,7) = (w&®d, 7€ 0) is an isomorphism on fibers. Thus the pullback of
n(k,SO(n + 1)) via the inclusion M (k,SO(n)) — M(k,SO(n + 1)) is isomorphic
to n(k,SO(n)). Hence, the diagram

M(k,SO(n)) — M(k,SO(n + 1))

dsom) 4 4 050(n+1)
BSp(k) = BSp(k)

commutes up to homotopy. So there exists a map dso : M (k,SO), — BSp(k).
Precomposing with the equivalence M (k, SO) ~ M (k,SO)p, gives a map

Jdso : M(k, SO) — BSp(k).

This map is not necessarily uniquely determined. Nevertheless, any two choices,
when restricted to M (k, SO(n)) will classify the bundle n(k, SO(n)), and this is the
only property of the limit map which we will use. In particular, any such choice
will give a homotopy commutative diagram

M(k,SO(n)) —s M(k,SO)
950(n) 1 0so
BSp(k).

Now, since H, (M (k,SO)) =2 H,(BSp(k)) by theorem 3, dso will induce a homology
isomorphism, and therefore be a homotopy equivalence, if and only if it induces a
surjection in homology. By the homotopy commutativity of the previous diagram,
it suffices to show that dso(n) : M(k,SO(n)) — BSp(k) induces a surjection in
homology through a range increasing with n.

Theorem 4. The Dirac map Oso(n) induces a surjection in homology through di-
mension 2n — 4. Thus, the limit map dso : M (k,SO) — BSp(k) is a homotopy
equivalence.

We begin by proving the following lemma;:
Lemma 5. There is a commutative diagram

Ho(M(k,SU®MY)) 8 H(BU®))

i i

(9s0(2n)) =
22

H,(M(k,50(2n))) H.(BSp(k)),
where Sp(k) C U(2k) consists of all matrices of the form
A B

-B A
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for any A,B € End(C*), and the map BU(k) — BSp(k) is induced from the
inclusion U(k) — Sp(k) defined by

A 0
A

0 A
Proof of Lemma First notice that the natural map of Lie algebras su(n) <
so(2n) induces a map M (k, SU(n)) — M (k,SO(2n)). The self-duality condition is
preserved because the Hodge star operator is complex linear. Locally, the connec-
tion matrix v = v 4+ ivy2, where ; is a real matrix-valued one form, will map to
the matrix

T T2

Y2 71

Also notice that, as mentioned previously, the complexification of a real connec-
tion on an SO(r) bundle induces a natural map M (k, SO(2n)) — M (2k, SU(2n)).
Locally, the composition of these two maps

M(k,SU(n)) = M(k,SO(2n)) — M (2k, SU(2n))
is given by
Y1 72 Y1 =2
Y=nFir & >
T2 N Y2 0N

where the last matrix is viewed as taking values in the Lie algebra su(2n). Since
there is a g € SU(2n) such that

"o Y+ iy 0 v 0
9! 9= =

Y2om 0 M= Y2 0 75
the connections represented by these matrix-valued one forms are gauge equivalent.
Thus, the composition M (k, SU(n)) — M (k,SO(2n)) — M(2k, SU(2n)) sends the
equivalence class of the selfdual connection w on the bundle E to the equivalence
class of the selfdual connection w @ @ on the bundle E & E.

Now consider the diagram

Osu

M (k,SU(n)) $' BU(k)

l

i i

O0s0(2n)

M(k,SO@2n)) °3Y  BSp(k)

M2k, SU(2n) 225" BU(2K).

By the definition of 950 (25, the bottom square homotopy commutes. Since the map
BSp(k) — BU(2k) induces an injection in homology, the top square will induce a
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commutative diagram in homology if the large outer “square ”

Mk SU®@) U8 BUK)

i i

Osv(2n)
et

M (2k, SU(2n)) BU (2k)

commutes in homology. Note that on the level of bundles the right vertical map
sends a complex vector bundle F to the complex bundle F & F. Let n(r, SU(I))
denote the Dirac bundle classified by the map dgy ;) : M (r,SU(l)) — BU(r). The
proof of the lemma will be complete if the composition

Osu(2n)

M(k,SU(n)) — M(2k,SU(2n)) =" BU(2k)
classifies the bundle n(k, SU(n)) @ 7j(k, SU(n)). There is a natural bundle map
Bk, SUM) & 1k, SUM) — 02k, SUEn))

+ +

M(k,SU(n)) — M(2k,SU(2n))
defined by )

(W, 91 & )] = [(w S W, 91 & 1hy)]
where 1), is the section ¢, viewed as a section of the conjugate bundle. Since ¢
is in the kernel of D7 if and only if ¢ is in the kernel of DI, this bundle map
is a surjection on fibers. Since the fibers have the same dimension, this map is
an isomorphism. Thus n(k, SU(n)) @ ij(k, SU(n)) is isomorphic to the pullback of

n(2k, SU(2n)), and the lemma is proved.
The proof of theorem 4 is now easy. In [S] section 5, it was shown that the map

is a surjection through dimension 2n — 4. Furthermore, we know that the map
BU(k) — BSp(k) induces a surjection in homology. Thus, by the commutativity
of the diagram
B5U(n)) =
H Mk, SUM®)) 28 H(BU(K))

i i

H.(M(k,SO2n)) 722 H.(BSp(k)),

(Oson))« + Ho(M(k,SO(2n)) — H.(BSp(k)) must also be a surjection through
this range. In particular, then, the limit map dso : M(k,SO) — BSp(k) is a
homotopy equivalence.
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