GAUGE THEORY IN THREE AND FOUR
DIMENSIONS

PAUL NORBURY

ABSTRACT. Following Kronheimer and Mrowka, we prove minimal
genus bounds for surfaces embedded in manifolds of dimensions
three and four.

INTRODUCTION

These notes are written for the December 1998 short courses at Mel-
bourne University. The course consists of eight one hour lectures. The
level is aimed at students who have just completed an undergraduate
degree.

The aim of this course is to introduce gauge theory techniques into
the study of low-dimensional topology. Given the restricted time, the
background will be brief and we will satisfy ourselves with just a few
applications. The main sources for this course will be John Morgan’s
book “The Seiberg-Witten invariants and applications to the topol-
ogy of smooth four-manifolds” and John Moore’s book “Lectures on
Seiberg-Witten invariants” for the background and Kronheimer’s paper
“Embedded surfaces and gauge theory in three and four dimensions”
(http://www.math.harvard.edu/ kronheim/) for the application.

The general philosophy will be to start with a topological problem
and describe a topological approach to its solution. By a topological
approach, I mean that using a topological object with very interesting
properties, we can tackle the problem. Gauge theory will come in when
trying to prove the existence of such a freakish topological object.

1. MINIMAL GENUS

Let K C S? be a knot and consider Y = §* — N(K), the manifold
obtained by removing a neighbourhood of the knot from S®. A Seifert
surface for K is an embedded surface ¥ — Y such that 0¥ C 9Y is
given by a longitude. In fact, this property uniquely determines the
longitude.

Example Let K be the unknot. Then ¥V = 83 — N(K) gives the
solid torus. It is easy to see a spanning disk for K. In fact we can add

handles to get many surfaces with the same boundary. Why can’t we
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get any other curve on the boundary torus this way? Any two such
surfaces will intersect in 1-dimensional manifolds once we ensure the
intersection is transversal. The intersection will actually be an oriented
1-manifold with boundary. A (1,n) curve will intersect the (0, 1) curve
exactly once so there can be only one boundary component, which is
impossible. More generally, the intersection points of two curves in the
torus will induce the same orientation.

The proof for the general case is identical. The following issue nat-
urally arises.

Question 1.1. What is the minimal genus of a Seifert surface for a
given knot K ?

Example The trefoil has a genus 1 Seifert surface. Since it doesn’t
bound an embedded disk its genus is 1. Why doesn’t it bound an
embedded disk? Any immersed disk with embedded boundary that
bounds the trefoil must intersect itself an odd number of times which
is not satisfied by an embedded disk.

There is a more general question we can ask.

Question 1.2. What is the minimal genus of an embedded surface rep-
resenting a given homology class in a three-manifold Y ?

By homology class, we mean to start with an embedded surface and
move it around the manifold, perhaps so that it is not embedded at
some places, and, if we can, squeezing holes until they disappear. We
would like to know what is the minimal genus of an embedded surface
in the family. (Equivalently, we might start with an immersed surface
and move it as described and ask if we can ever get an embedded surface
in that family.)

Here is a wishful approach to this problem. Consider a collection of
oriented embedded circles S C Y. We can arrange that these intersect
any embedded surface ¥ transversally by moving > or S slightly. We
can count the points of intersection (with sign) in ¥ N S. Imagine if
we could find a collection of circles S such that the number of points
in the intersection ¥ N S is a lower bound for the genus of X for any
Y. Such an intersection only depends on the homology class of ¥ so it
could give an answer to the question.

A more sophisticated way of expressing this approach is to ask if
there is a line bundle L over Y such that the restriction of L to any
embedded surface ¥ is “less twisted” than the tangent bundle of 3.

Gauge theory, via the Seiberg-Witten equations, supplies us with
exactly such a freakish set of circles. The lower bounds that such a



GAUGE THEORY IN THREE AND FOUR DIMENSIONS 3

collection S might give can sometimes be quite bad for a particular
surface Y. Fortunately, gauge theory gives us a finite number of sets S;
each with the property described above. For any embedded surface ¥,
we can use the maximum of ¥ - S; over the ¢ and this can give a good
lower bound.

This should look similar to the way that foliations give lower bounds
to the genus of an embedded surface. The theory of foliations ties in
quite closely with the gauge theory. We will get to that closer to the
end of the course.

2. DIFFERENTIAL GEOMETRY

Bundles, connections and the Dirac operator. The easy version.

We will think of a bundle as a sub-bundle of a trivial vector bundle
and connections as projections on to the sub-bundle. All manifolds
here will be oriented.

A manifold is given by Y C RY. In fact, this induces a Riemannian
metric. Consider the tangent bundle 7Y of Y consisting of the tangent
spaces of Y inside R"Y. Let vy be the normal bundle of Y. Notice that
TY ®v, =Y xRY. In general, we can embed the tangent bundle 7Y C
Y x RM into other trivial bundles, and there are many embeddings into
each trivial bundle. (So the canonical embedding is a bit misleading.)
More generally, we can define a bundle over Y to be any smoothly
varying family of subspaces E, C {z} x RM for z € Y. A section s of
a bundle is a smooth map s : Y — R such that s(z) € E, for all z.
We also call a section of the tangent bundle a vector field. The space
of sections of a bundle E is notated by I'(E).

Example Consider S? C R® given by S? = {x € R*| |z| = 1} and
take its tangent bundle

TS? ={(z,v) € S* x R?|z-v = 0}.
Here’s a couple of sections:
s(21, 9, 13) = (=123, —Tow3, 17 + 13), T(21, 22, 73) = (—22, 71, 0).

Often we would like to understand how a section changes as we move
across the manifold. Notice from the previous example that this notion
of change is ambiguous. It seems that as we travel around the equator
the vectors do not change and as we travel north they change in a way
that is independent of where we start from on the equator. But that
would mean that they don’t change near the north pole and it is clear
that they do. Perhaps I went about it the wrong way and I should
start with the north pole and in fact the whole northern hemisphere.
Comparing the two hemispheres, we still get a contradiction. Surely
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this has to do with the “twisting” (i.e. non-triviality) of the tangent
bundle?

A connection allows us to differentiate sections. It is given by a
projection P, : RM — E,. Why does this help? We can differentiate
vectors in a trivial bundle, so for v € T,Y and s € T'(F), we have
(0ys)(z) € RM. Define 9;'s = P,0,s. If £ is a vector field, then 9¢'s €
['(E) as desired. We use A to denote the connection (even though P
would suffice). Another way to express a connection is 85‘ =0, — 0,P
where the extra term acts as a zero order operator.

In the example above, there is an obvious family of projections from
R? to T,S?, given by P,v = v — (z - v)x. Look at the point (1,0,0) on
the equator. Then we have

9{31.05 = P11,0,0)(0,0,0) = (0,0,0), 050,15 = Pap,0(—1,0,0) = (0,0,0).

At a general point (except for a pole), let v be the unit vector parallel
to the equator and let w be the unit vector pointing north. Then

a;;qs = P(T1T2,T3)Df(v) = I3V, 6;38 = P(TlT2,T3)Df(w) = —T3W.

So the vectors behave as expected as we travel north but they seem to
twist as we traverse the globe. Notice that this contradicts an argument
we gave above. What we see here is that covariant derivatives don’t
commute. This brings us to the curvature of a connection.

Define Fy = [dP, dP] where we mean that for v, w € T,Y, Fa(v,w) =
[0, P, 0,, P]. The curvature acts on sections by (natrix) multiplication.
That’s quite remarkable since the curvature arises from the commutator
Fa(v,w) = [04,04] so we might expect it to be a second order operator
instead of a zero order operator. What we see is that although the
covariant derivative is not commutative, it is somewhere in between.

An important object in differential geometry is a differential form.
Let’s start with usual integration. We can make sense of fab f(t)dt ofr
any function f defined on [a,b]. This can be thought of as integra-
tion over a manifold. We would like to integrate over submanifolds.
Consider a curve in the plane. If we have a function in the plane
can we integrate it over the curve? Really, integration needs R". So,
parametrise the curve. Notice, however, that the integral depends on
the parametrisation:

[ tends = [ 1619 s1as # [ sis)ds

for a change of parametrisation g. It ends up that we cannot integrate
functions over submanifolds but we can integrate differential forms like
f(s)ds = f(g)dg/g'(s). In three dimensions, a 1-form is given by three
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functions

fi(@y, wa, w3)day + fo(w1, 22, 23)dxs + fi(21, 22, 23)d3.
Similarly, a 2-form (in three dimensions) is given by three functions
fra(x1, X9, w3)dxy A dxe + f13(21, T2, w3)dxy A dxs + fo3(71, X9, v3)dTe A d3

and it can be integrated over surfaces in the manifold. Notice that a
2-form becomes a well-defined function when restricted to a surface.
Thus, another way to think of a 2-form on a three-manifold is as a
function that makes sense when you specify a surface (or even a plane
of tangent vectors at a point). The expression A is used to show that
the definition is orientation sensitive which is necessary in changes of
coordinates.

The curvature defined above is a 2-form..

Perhaps we will leave the Dirac operator to another lecture. Instead,
let’s look at the global topology that a connection captures, indepen-
dently of the connection!

Let L be a complex line bundle over Y. So L, CY x CV. Let s be
a section of L. Then the zero set of s is a one-dimensional (oriented)
submanifold S C Y, once we choose s appropriately transversal to
the zero section. A one-dimensional submanifold must be a collection
of circles in Y. Take any (oriented) surface ¥ C Y. The intersection
of S and ¥ gives a number by counting the points in the intersection
with appropriate sign—+1 if S points in the positive normal direction
of ¥ and —1 if S points in the negative normal direction of 3. We
know that this number only depends on the homology classes of S and
Y. What is interesting is that the homology class of S is independent
of the section s so depends only on the line bundle L. It is probably
easiest to see this if we restrict L to the surface . The zero set of
any section is an isolated set of points in 3 (transversality). Any two
sections sp, s can be joined by a path of sections s = (1 — t)s; + tss.
Since s : ¥ x I — L is a section its zero set is a 1-manifold (perhaps we
perturb the homotopy to get transversality) with boundary given by
the zero sets of s; and sy. This gives an oriented cobordism between
the two sets so they are counted the same way.

The set S can be thought of as an element of the second cohomology
group H?(Y). Is there a convenient 2-form representing this class?
Yes the curvature of the connection gives us what we want. First
notice that if A; and A, are two connections, then A; — Ay = a is a
1-form and Fl4, = F4, + da os the cohomology class is

These are Dirac magnetic monopoles.
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I would like to mention that bundles can be defined intrinsically
where we use a structure group to keep track of the twisting rather
than an ambient trivial bundle that has the ability to see twisting.

3. SPINORS AND VECTORS

This will make the second of the Seiberg-Witten equations friendlier.
Also introduce the Dirac operator and vectors and Hermitian matri-
ces. The advantage of doing it this way and then referring to the spin
representation is that are forced to see the matrices rather than settle
for mere existence. (More the physicists way.)

Simply understand the isomorphism CP! 2 {v € R?*| |v| = 1}.

The two-sphere can be realised as the unit vectors in R? or, equiva-
lently, the oriented projective space of lines in R® so we can label this
realisation RP2. We can also realise the two-sphere as the projective
space CP' of complex lines in C?. These two realisations respectively
make the actions of SO(3) and SU(2) manifest. Is there a nice way to
associate to a real vector in R? its complex vector in C? and such that
the actions of SO(3) and SU(2) are compatible?

Take a non-zero vector s = (21, z2) € C?. So s represents a point in
CP'. From s we can get a vector

v=0(s) = ((|21]* — ||} 221%) € R?
where we have used R* =2 Rx C. Then |v| = |s|? and we claim that this
induces the desired map ¢ : CP' — RP?. Really there isn’t a canonical
way to associate a point of CP' with a point of RP2. So after making
a choice (in this case the isomorphism R* = R x C) we can ask at least
that the SU(2) and SO(3) actions are compatible.
The map from SU(2) to SO(3)
1 re(ab —im(ab)
a b -
( b a ) — | —re(ab)  x *
—im(ab) *

shows how the respective actions on CP' and RP? agree.
Some further features of this map:

e The map o : C2 — R? induces the Hopf fibration S* — S? when
restricted to any sphere of constant norm vectors in C2.

e A slicker way to see o is to use the fact that we know that the
action of SU(2) on its Lie algebra gives the standard SO(3) ac-
tion. Here we are identifying the Lie algebra su(2) with R*. This
identification is really encoding the Clifford action of vectors on
spinors. Then notice that o(s) = ss7 — 3]s|>. For u € SU(2),
we get o(us) = uo(s)baru” = uo(s)u~"', the adjoint action of
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SU(2) on its Lie algebra (times 7). Notice that s is an eigenvec-
tor of o(s). In fact this property determines o(s) uniquely up to
oriented scaling.

e We can say that CP' are isomorphic RP? since an eigenspace of a
Hermitian matrix is (almost) the same as a Hermitian matrix.

e Or, we say that “two” spinors is in some sense the same as a
vector. This is the twistor theory of Penrose.

Back to connections on a bundle on a three-manifold and the Dirac
operator. Define the Dirac operator by

Ds = Z I'(e;)Ve,s
J

and more generally

Dys = Z F(ej)V;‘is.
J

Here {e1, €5, €3} is an orthonormal set of vectors in the tangent bundle
of Y and I'(e;) is the Hermitian matrix associated to the vector e;.
Look at the Dirac operator in two dimensions to get a feel for this.

Ds = T'(e1)Ve s+ T'(e2)Ve,s

_ Or Oy
- (% %)

Notice that the algebra of matrices agrees with the algebra of complex
numbers. The Dirac equation is the Cauchy-Riemann equation. More
generally, solutions of the twisted Dirac operator correspond to holo-
morphic sections of a (complex) line bundle, and moreover we can use
the Dirac operator to define the holomorphic structure on a complex
line bundle.

4. THE SEIBERG-WITTEN EQUATIONS

The Seiberg-Witten equations are given by
(1) Dsy® = 0
(2) p(Fa) = o(2)
where A is a connection on L, ® is a section of S® L, D4 : T'(S® L) —
['(S ® L) is the Dirac operator twisted by the connection A, F, is the
curvature 2-form of A and p(F,) associates a Hermitian matrix valued
function to the curvature, and o(®)®®” — 1|®|?] is described in the
previous section.

A Weitzenbock formula for the Dirac operator helps to justify these
equations. Before describing this, we will quickly define the scalar
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curvature of a metric. For a surface Y, the scalar curvature can be
defined in many equivalent ways:

(i) Say ¥ C R®. At each point x € 3 we can find local coordinates
(71,72, 73) in R* around z so that X is locally given by 3 = f(z,79) =
Zi,j Qijr;xj + ... where there is no constant or degree one term and
we have included the second order term and omitted the higher order
terms. Then @);; is a symmetric matrix that is almost an invariant of
Y at the point x. Actually, the invariant quantities are tr() = 2H, the
mean curvature, and det@) = s, the scalar, or Gaussian, curvature.

(ii) The Levi-Civita connection on T'Y has curvature Fyc = sw, a
multiple of the area form w. The multiplier is the scalar curvature.

(iii) Take a geodesic triangle on ¥ and consider (a+ 3+~ —7)/area —
s as the area goes to 0.

In three dimensions, the scalar curvature is twice the sum of the
scalar curvatures of a set of three planes generated by three orthogonal
vectors, s =23, . 8; j.

Now, consider

DuDay = T(0,)00T(0,,)00 = > T(0y,)° 005 + ...
1,3 i

where the missing terms are s + p(F4). From this we get

Alo)? = > 02 |®f
= ) 201070, ®) + Y 20, P, 07 P)
S
> §|<I>|2+(p(FA)<I>,<I>)

S 1
> B2+ = |d*
> 2o+ o)

which allows us to deduce that |®* < —s. Thus Fy =0 or |Fy| < —s
or |[Fa| < —s_ where s_ is the negative part of s and is 0 otherwise.

We have,
|/FA < / |Fy|d(area) < —/sd(area)
s s s

and this last expression would be helpful if we could relate the scalar
curvature of Y at x € ¥ to the scalar curvature of ¥ there and if the
scalar curvature on Y is always non-positive.

We can change the metric so that locally it gives a product ¥ x I in a
neighbourhood of ¥ of a non-positively curved metric on Sigma and the
flat metric in the normal direction. But perhaps the Seiberg-Witten
equations don’t have a solution for this quite special metric. In the next
section we will study an invariant produced from the Seiberg-Witten
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equations that is independent of the metric and whose non-vanishing
for a particular metric ensures a solution for that metric.

5. PROPERTIES OF THE SEIBERG- WITTEN EQUATIONS AND
EXAMPLES

We have seen from the previous section that not only do we want
a solution of the Seiberg-Witten equations but we want a solution to
survive as we vary the metric.

In this section we will follow Kronheimer “Embedded surfaces and
gauge theory in three and four dimensions” quite closely, adding back-
ground material.

We want to use the analogy with the critical points of a function on
a compact manifold.

As for the finite dimensional case we need to ensure that we have

(i) isolated critical points—we may have to perturb the equations;

(ii) finitely many critical points—compactness of the space of solu-
tions;

(iii) as usual, we will need to count with sign if we want the sum to
be independent of the metric spectral flow.

To isolate critical points we use Sard’s theorem on a Banach space
that tells us that if a family is transverse then most points in the family
are too.

The space of solutions is compact because we know how connections
can blow up (or bubble) and that a uniform bound will prevent this.
A sequence of spinors will converge since they are uniformly bounded.

Spectral flow is best seen via an ordinary differential equation. This
gives the spectral flow in terms of the index of a Fredholm operator.

6. FINAL COMMENTS AND FOUR DIMENSIONS

The Alexander polynomial of a knot K gives the Seiberg-Witten
invariants of Y which is zero surgery on S* — N(K). This gives a pretty
ordinary bound on the genus of a Seifert surface. In fact, g(3) > r
where r is the degree of the Alxander polynomial.

It is necessary to use a deeper theory, namely Floer homology, which
again gives an invariant of the Seiberg-Wittens equations that is inde-
pendent of the metric. The existemce of taut foliations and associated
contact structures is used, via symplectic geometry in four dimensions
to get these sturdier solutions.

Symplectic geometry, Thom conjecture, unknotting number. Does
our topological viewpoint help in four dimensions? And property P?



