
CHARACTERISTIC CLASSESPAUL NORBURYAbstrat. These are the notes of a short ourse given at Mel-bourne University in Deember 1999.
IntrodutionThere are many approahes to harateristi lasses and perhapsthe leanest approah is the most sophistiated. It an be found inthe book Charateristi lasses of Milnor and Stashe�. Rather thanattempting to head straight for the approah used in that book, wewill gain entry via the more aessible alternative approahes. Oneonsequene of this will be that we will ontinually reall the de�nitionof harateristi lasses as we gain further appreiation for the termsin the de�nition.De�nition 1. A harateristi lass assoiates invariants|numbersor ohomology lasses|to the tangent bundle|and more general vetorbundles.Course summary.(i) Euler's formula for a warm-up.(ii) Intersetions, transversality, loal vetor �elds.(iii) Stiefel-Whitney lasses, line bundles and families of vetor �elds.(iv) Orientation, omplex bundles and Chern lasses.(v) Grassmannians and ohomology.(vi) Pontryagin lasses.(vii) Di�erential forms, onnetions and urvature.(viii) Charateristi numbers and speial vetor �elds.One might think of this ourse as training to be able to read thebook of Milnor and Stashe�. That book is best read via its fantastiexerises. You an attempt the �rst exerise in eah hapter, movingthrough the hapters, then return to the start to attempt the seondexerise of eah hapter. There should be no problem moving forwardsand bakwards through the book like that, partiularly after havingdone this short ourse. 1



2 PAUL NORBURYFurther justi�ation for not diretly de�ning harateristi lasses intheir most natural ontext omes from reent developments in math-ematis, suh as four-manifold moduli spae invariants and quantumohomology, where a partiular view of harateristi lasses an some-times generalise to situations not overed by the basi theory of har-ateristi lasses.What you are and are not expeted to know. Pre-requisites for thisourse are knowledge of manifolds and the tangent spae. Vetor bun-dles, homology and ohomology will appear throughout the ourse invarious guises, although no previous knowledge of these objets is as-sumed.Some topis in these notes will have to be disarded as time restrits.There are topis that are not needed in the sequel so this will be easy todo. The eighth leture requires enough digestion that we will probablyspread parts of it through earlier letures.1. Vetor fields and Euler's formulaEuler's formula for polyhedrons is F �E + V = 2 where F;E; V arethe numbers of faes, edges and verties, respetively, of the polyhe-dron. How might we prove this?A ube gives 6 � 12 + 8 = 2. If we add a diagonal to one of thefaes of the ube we get 7 � 13 + 8 = 2. More generally, we an addan edge joining two existing verties and get 7 � 13 + 8 = 2 or add avertex to an existing edge and get 6 � 13 + 9 = 2. We see that thesum F � E + V is unhanged under suh moves. That an be usedto re�ne any polyhedron so that all of its faes are triangles. Any twopolyhedrons have a ommon re�nement so the alulation for the ubeis enough to prove the result.Here's another approah that suits our purposes. We may assumethat we are working with a triangulated sphere (by re�ning the poly-hedron and using the fat that a polyhedron is homeomorphi to thesphere.) Consider the vetor �eld on the sphere given by a ow fromthe north to the south poles. Choose the north and south poles to lie inthe interior of two faes of the triangulation. Re�ne the triangulationso that it is made up of small enough triangles that the vetor �eldintersets the triangulation in suh a way as to point eah vertex andedge towards a unique fae. In that way, besides the triangles thatontain the north and south poles, there are two types of triangles:one in whih one vertex and two edges point towards the fae and theother in whih one edge points towards the fae. This enables us toassoiate the two edges with the fae and vertex, respetively the faeand an edge. Thus we have F � E + V = 1 � 2 + 1 = 0 respetively



CHARACTERISTIC CLASSES 3F �E +V = 1� 1+ 0 = 0. This fails at the north pole where no edgeor vertex points towards the fae so we get F �E + V = 1� 0+ 0 = 1and at the south pole where all edges and verties point towards thefae so we get F � E + V = 1� 3 + 3 = 1. eah fae, edge or vertexappears one in this assoiation, so we get F � E + V = 2 and the 2seems to ome from the two zeros of the vetor �eld.Let's turn this around and use Euler's formula to say somethingabout a general vetor �eld. Take any vetor �eld and hoose a trian-gulation that satis�es the property that eah zero of the vetor �eldlies in a unique interior of some fae and eah edge and vertex pointsto a unique fae. Again we �nd that F �E + V = 0 on most trianglesand at eah zero we get F � E + V = �1. Thus, the signed sum ofzeros of any vetor �eld is F � E + V = 2.These arguments work over any surfae.De�nition 2. The Euler lass assigns to the tangent bundle a number.The Euler lass is an example of a harateristi lass, the tangentbundle a vetor bundle, and the number a ohomology lass, so a har-ateristi lass assigns to a vetor bundle a ohomology lass.We will �nish with a quik reminder of the Gauss-Bonnet theo-rem. For any surfae � we have R� dA =Area(�). More interest-ingly, R�KdA = 2��(�) where K is the urvature of a an embedding� ,! RN . Later we will see that KdA is a di�erential 2-form and theembedding essentially enodes a metri on �.The proof of this: K = lim�!0 �+�+� where � is the area of a smalltriangle with angles �; �+; gamma.Then PiK�i = Pi �i + �i + i = 2�V � �F and sine the faesare triangles 2E = 3F so 2�V � �F =2�(V + F � E) = 2��(�). Theintegral arises in the limit.2. Intersetions and transversalityDe�nition 3. Two subspaes of a vetor spae V1; V2 � W intersettransversally if V1 + V2 = W .Two submanifolds of a manifold �1;�2 � X interset transversallyat p 2 �1 \ �2 if Tp�1 + Tp�2 = TpX. Curves in a surfae give easyexamples of this.Fats: (Theorems)(i) If �l1 and �m2 interset transversally in Mn then �1 \ �2 is asubmanifold of dimension l +m� n.



4 PAUL NORBURY(ii) If [0; 1℄��1 and �2 interset transversally (but perhaps ftg��1and �2 don't interset transversally for some t 2 [0; 1℄ then [0; 1℄��1\�2 is a submanifold with boundary.(iii) In partiular, if dim�1 \ �2 = 0 then [0; 1℄ � �1 \ �2 is a 1-manifold with boundary so the number of ends of the intersetion iseven. Thus, �1\�2 is well-de�ned mod 2 if we allow �1 to be deformed.The third fat is important when two submanifolds don't intersettransversally so we deform them to do so.One way to think of a tangent spae is via an embedding of a manifoldM into RN . For example, S2 ,! R3 andTS2 = f(x1; x2; x3); (v1; v2; v3) j jxj = 1; x � v = 0g:This is a 4-dimensional manifold.Often it is better to think of a vetor �eld loally. An n-dimesionalmanifold M an be given in terms of harts [Ui = M where Ui isdi�eomorphi to a subset of Rn . The tangent bundle is trivial on Rn ,i.e. TRn = Rn � Rn and so with respet to the hart Ui we anthink of a vetor �eld as ((x1; :::; xn); (v1(x1; :::; xn); :::; vn(x1; :::; xn)))or v1(x1; :::; xn)�x1 + ::: + vn(x1; :::; xn)�xn .The zeros of a vetor �eld v :M ! TM are given by the intersetionof v(M) � TM withM � TM where the latter embedding omes fromthe zero setion. Sine dimTM = 2n then if we we an deform thevetor �eld so that it intersets the zero setion transversally, thenwe get a �nite set of points whih gives a well-de�ned number mod2. Furthermore, any vetor �eld deforms to any other vetor �eld, sowe get a number that only depends on the tangent bundle. This is aharateristi lass.Vetor �elds on the two-sphere give a good example of this. Later wewill de�ne orientation whih will allow us to ount the zeros with signto get an integer. Further examples of intersetions: RP1 � RP2 hasnon-trivial self-intersetion whilst S1 � �2 has trivial self-intersetionwhen �2 is an orientable surfae. Perhaps onsider the self-intersetionof C P1 � C P2 . 3. Stiefel-Whitney lassesAlong with tangent bundles, line bundles are vetor bundles overa manifold with interesting harateristi lasses. A line bundle anbe desribed as a ontinuous family of 1-dimensional subspaes of RNparametrised byM . In other words, L �M�RN and the subspaes areLx � RN for x 2 M . (More gennerally, a k-dimensional vetor bundleonsists of a ontinuous family of k-dimensional subspaes Vx � RN .)Stritly, a line bundle is over Mn is an (N + 1)-dimensional manifold



CHARACTERISTIC CLASSES 5L equipped with a map � : L ! M suh that that � is loally trivial,i.e. there exists a over fUig of M suh that ��1(Ui) = Ui � R.Alternatively, take a �nite over M = [Ui of balls Ui and take a setof funtions �ij : Ui \ Uj ! R� satisfying �ij�jk�ki = 1 and �ij = ��1ji .Then these de�ne a line bundle by mapping Ui � R � Uj � R on theoverlap by identifying (x; v) � (x; �ijv) for x 2 Ui \ Uj.A setion of a line bundle s : M ! L is the analogue of a vetor �eld.We an deform a setion to interset the zero setion transversally andget a harateristi lass that is in some sense independent of the setionwe hoose. In what sense? Assoiated to eah embedded irle in M ,a setion gives a number mod 2 (ount zeros.) This number dependsonly on the bundle. In this ase the harateristi lass assigns 1 or 0to eah embedde irle. this is an example of a Stiefel-Whitney lassof the line bundle.Let RPN be the manifold given by i-dimensional subspaes in RN+1 .It possesses a natural line bundle L! RPN given byL = f(x; v) 2 RPN � RN+1 j v 2 xgalled the anonial bundle.Stiefel-Whitney lasses. For any n-manifoldM , we de�ne the n�kthStiefel Whitney lass wn�k(TM) as the set of points where a generiset of k vetor �elds on M is linearly dependent. This de�nes a k-dimensional submanifold of M and we think of it as a funtion fromn�k-dimensional submanifolds ofM to Z2. More generally, if E !Mis an r-dimensional bundle then wr�k(E) is obtained from the lineardependene set of k setions of E. Later we will give a de�nition whihmakes it lear that we get an n� k-dimensional submanifolds of M .For the moment, here are some examples. Consider the anonialline bundle L ! RP2 de�ned by L = f(x; v) 2 RP2 � R3 j v 2 xg.Let's alulate w1(L). The projetive oordinates [x0 : x1 : x2℄ atuallygive setions of L. Take one suh setion x0. It vanishes on [0 : x1 : x2℄whih is RP1 � RP2 and it sends 1-dimensional submanifolds of RP2to 0 or 1 depending on whether they are deformable to a point or tothe natural RP1 � RP2 .Consider TS2. We already know that w2(TS2) � 0 sine it ounts thezeros of a vetor �eld. For w1(TS2) hoose tow vetor �elds, one omingfrom a ow from the north pole to the south pole and the other from aow from the east pole to the west pole. These are linearly dependentpreisely along the great irle ontaining the four poles. This irleintersets any 1-dimensional submanifold in S2 an even number of timesso w1(TS2) is trivial.



6 PAUL NORBURYHere as an alternative de�nition of Syiefel-Whitney lasses. Givenan r-dimensional bundle E !M , onsider E 
 L!M � RPN whereL! RP1 is the universal bundle. Take a generi setion s of E
L andrestrit it to M � RPk . The zero set Z(s) � M � RPk has dimensionn+k�r where n = dimM and E is an r-bundle. Projet Z(s) ontoMto get an (n+k�r)-dimensional set or a ohomology lass of dimensionr � k. This is the Stiefel-Whitney lass wr�k(E).This oinides with the previous de�nition sine if k + 1 vetor�elds fv0; v1; :::; vkg are linearly dependent then there exists a tuplefy0; :::; ykg suh that y0v0+ :::+ ykvk = 0. Sine the yi are only proje-tively de�ned, they atually give a setion of the anonial line bundleover RPN so y0v0+:::+ykvk 2 �(E
L). This view allows us to see thatthe zero set arises as a transversal intersetion so generially we anarrange this and the mod 2 lass we get is independent of any deforma-tions. Note that if the projetion of the zero set is not a submanifoldwe an perturb it to be that way.4. Orientation, omplex bundles and Chern lassesSo far we have ounted intersetions mod 2 beause that is all thatis well-de�ned when we deform the interseting manifolds. In the �rstleture over surfaes we managed to ount points with sign, so eahpoint of intersetion ontributes +1 or -1, and get an integer that iswell-de�ned as the interseting manifolds are deformed. We expet tobe able to do this in general. An orientation of a manifold allows us todo just that. It enables us to tell when a point should be ounted with+1 or -1.An orientation of a vetor spae V is an equivalene lass of basesof V . Two bases are equivalent if the linear map that relates the twohas positive determinant. An orientation of V is a hoie of +1 forone equivalene lass and �1 for the other. If V = V1 � V2 then anorientation on two of these vetor spaes indues an orientation on thethird.An orientation of a manifold is a (ontinuous) hoie of orientationon eah tangent spae. Loal orientations always exist, but globalorientations might not.If Xk and Y n�k are two oriented submanifolds of an oriented mani-fold Mn then if they interset transversally, the points of intersetionan be ounted with sign. At a point p 2 X \ Y simply omparethe orientation on TpM with the indued orientation on TpX � TpY .Examples: urve on a surfae and C P2.



CHARACTERISTIC CLASSES 7We have already de�ned a general vetor bundle to be E �! M withthe property that � is loally trivial: there exists a over fUig ofM suhthat ��1(Ui) = Ui�Rk . Alternatively, we an de�ne E as a ontinuousfamily of k-dimensional subspaes Ex � RN so E � M � RN . If wereplae the real vetor spae Rk by C k (and RN by C N ) then we havea omplex vetor bundle. Examples are omplex line bundles and atangent bundle equipped with an almost omplex struture.A vetor bundle is oriented if it is oriented as a manifold. For ex-ample, if M is an oriented manifold then its tangent bundle an beoriented. Any vetor �eld v, after perhaps being deformed, gives riseto an isolated set of zeros that an be ounted with sign.Exerise. Show that this agrees with the method of giving a signused in the �rst setion.Any omplex vetor spae has a natural orientation given by fvi; Jvigfor n vetors vi 2 C n . Thus, any omplex bundle over an orientedmanifold has a natural orientation.We an now de�ne Chern lasses. The Chern lasses of a omplexbundle are de�ned analogously to Stiefel-Whitney lasses where we nowonsider E 
C L over M � C P1 . The anonial bundle L over C P1 isf(z; v) 2 C P1 � C j v 2 zg. The tensor produt is over C so we needa omplex struture on the bundle E.If E is a omplex r-dimensional bundle we de�ne k(E) to be theprojetion ontoM of the zero set of a generi setion of E
L restritedto C Pr�k . Equivalently, take r � k + 1 setions of E and k(E) is theset in M where these setions are dependent. This harateristi lassis a funtion on oriented 2k-dimensional submanifolds of the orientedmanifold M to the integers.We will alulate the Chern lasses of T C P2 . Immediately 0(T C P2) =1, meaning that it maps any point in C P2 to 1 sine any 5 vetor �eldsare dependent at every point of C P2 . We know 2(T C P2) = 3 sine itounts the number of zeros of a vetor �eld and hene is the same asthe Euler harateristi.For 1(T C P2) we take two vetor �elds as follows. There is an ationof SU(3) on C P2 and the isotropy subgroup of eah point is isomorphito U(2). The in�nitesimal ation of su(3) on C P2 gives an identi�ationof the four dimensional tangent spae of a point with su(3)=Ix forthe isotropy subalgebra Ix �= u(2). Thus, an element of su(3) de�nesa vetor �eld on C P2 . For � 2 su(3) the vetor �eld at [x0 : x1 :x2℄ is given by � � x 2 C 3=x. Consider the two vetor �elds arisingfrom diag(i;�i; 0); diag(0; i;�i) 2 su(3). They are linearly dependentwhen (x0;�x1; 0); (0; x1;�x2); (x0; x1; x2) are linearly dependent. The



8 PAUL NORBURYdeterminant of these three vetors is �3x0x1x2. This vanishes on theunion of the three lines x0 = 0 = x1 = x2. As a map from oriented 2-dimensional submanifolds to the integers it sends the standrad C P1 to 3.Eah intersetion is ounted positively beause the omplex struturegives anonial orientations whih agree.5. Grassmannians and ohomologyGiven E �! Y let f : X ! Y . Then there is a bundle f �E ! X. Itstotal spae is given by f(e; x) 2 E �X j �(e) = f(x)g. Simply need tohek that the omposition map is loally a produt. In terms of theonstrution SUi = Y and �ij : Ui \Uj ! R�(C �), simply use f�1(Ui)and �ij de�ned on f�1(Ui) \ f�1(Uj).The harateristi lasses are natural meaning that they are pre-served under any map f : X ! Y . On �k � X de�ne wk(f �E) � �k =wk(E) � f(�k). Here we see the ontravariant nature of harateristilasses. Easy examples are a map to a point, projetion of a produt,embeddings and the Hopf map.There is a \lassifying spae" Y with bundle  ! Y suh that foreah Rn bundle E ! X there exists a map f : X ! Y suh thatf � = E. The Stiefel-Whitney lasses of  are all known so this givesa way to alulate the Stiefel-Whitney lasses of E.The lassifying spae is given by the Grassmannian, Gr(k;N), of kplanes in RN for N >> k spae. The anonial bundle n ! Y is givenby f(z; v) 2 Gr(k;N)�RN j v 2 zg. Given an Rk bundle E over X weonstrut the map f : X ! Gr(k;N) as follows. Embed the bundle Ein X �RN . Then we have a map f : X ! Gr(k;N) given by x 7! Ex.The pull-bak of the anonial bundle learly gives E.If instead we hoose M > N then Gr(k;N) ,! Gr(k;M) and theanonial bundle pulls bak to the anonial bundle so the pull-bak ofthe Stiefel-Whitney lasses is una�eted.Assoiated to eah manifold is a ring alled the ohomology ring.It is a ontravariant funtor from manifolds to rings. Charateristilasses naturally live in this ring. The ohomology of the Grassmannianis desribed ompletely by the Stiefel-Whitney lasses of the anonialbundle. Thus, instead of de�ning the ohomology ring, one an think ofthe harateristi lasses of the anonial bundle. The ring struture,or up produt, omes from intersetions and is most easily seen inthese two examples.We have alulated w1(TRP2) and 1(T C P2). In both ases we anprodue a harateristi number from the up produt.



CHARACTERISTIC CLASSES 9The analogous story works for Chern lasses where the Grassmannianis now given by GrC (k;N) of omplex subspaes C k � C N .Theorem 1. The ohomology ring H�(Gr(n;1);Z2) is a polynomialalgebra over Z2 freely generated by the Stiefel-Whitney lassesw1(n); :::; wn(n):The proof requires showing that the Stiefel-Whitney lasses are in-dependent by onstruting a bundle over any spae with that indepen-dene, and then showing that the ohomology algebra they generate isalready big enough to give all ohomology lasses.Theorem 2. The ohomology ring H�(GrC (n;1);Z) is a polynomialalgebra over Z freely generated by the Chern lasses 1(n); :::; n(n).6. Pontryagin lasses and appliationsGiven a real vetor bundle E, the Pontryagin lasses are de�ned byalmost as Chern lasses via L ! C P1 and tensoring E 
R L. Thesigni�ant di�erene is that the tensor produt is over R, not C , and inpartiular the dimension of the budnle hanges. One way to interpretthis is that Pontryagin lasses are Chern lasses of the omplexi�edbundle E
 C so they are given by families of vetor �elds restrited toeah C Pk � C P1 as desribed previously.Equivalently, take r � 2k + 1 setions of E and pk(E) is the set inM where these setions have rank at most r� 2k � 1. This harater-isti lass is a funtion on oriented 4k-dimensional submanifolds of theoriented manifold M to the integers.Let's alulate p1(T C P2). Take three vetor �elds given in terms ofthree elements of su(3). We will hoose(ix0;�ix1; 0); (0; ix1;�ix2); (x1; x0; 0)and these together with (x0; x1; x2) have to have rank 2. This ours onthe intersetion of two sets of three lines. That's 9 points. The answershould be 3 so this says that 6 points of intersetion will be ountedpositively and 3 negatively. That takes some thought.Conjeturally, Pontryagin lasses an be de�ned by using quater-nioni projetive spae H P1 . This projetive spae uses the left ationof the quaternions on themselves. Again there is a anonial bundlegiven by f(q; v) 2 H P1�H j v = wqg for some w 2 H � . This de�nitionwould require a quaternioni struture on E whih is a restrition onthe real bundle.



10 PAUL NORBURYCharateristi lasses have appliations in showing if a manifold anbe embedded into Eulidean spae, whether a manifold possesses an ori-entation reversing di�eomorphism, whether a manifold is the boundaryof a manifold and whether a manifold is a produt of manifolds.7. Differential forms, onnetions and urvatureThis setion seems diÆult to digest quikly. Perhaps we will intro-due the onepts throughout earlier letures.An important objet in di�erential geometry is a di�erential form.Let's start with usual integration. We an make sense of R ba f(t)dt ofrany funtion f de�ned on [a; b℄. This an be thought of as integra-tion over a manifold. We would like to integrate over submanifolds.Consider a urve in the plane. If we have a funtion in the planean we integrate it over the urve? Really, integration needs Rn . So,parametrise the urve. Notie, however, that the integral depends onthe parametrisation:Z f(g(s))dg = Z f(s)g0(s)ds 6= Z f(s)dsfor a hange of parametrisation g. It ends up that we annot integratefuntions over submanifolds but we an integrate di�erential forms likef(s)ds = f(g)dg=g0(s). In three dimensions, a 1-form is given by threefuntionsf1(x1; x2; x3)dx1 + f2(x1; x2; x3)dx2 + f1(x1; x2; x3)dx3:Similarly, a 2-form (in three dimensions) is given by three funtionsf12(x1; x2; x3)dx1 ^ dx2 + f13(x1; x2; x3)dx1 ^ dx3 + f23dx2 ^ dx3and it an be integrated over surfaes in the manifold. Notie that a2-form beomes a well-de�ned funtion when restrited to a surfae.Thus, another way to think of a 2-form on a three-manifold is as afuntion that makes sense when you speify a surfae (or even a planeof tangent vetors at a point). The expression ^ is used to show thatthe de�nition is orientation sensitive whih is neessary in hanges ofoordinates.If Mn = SUi is a �nite hart for M , so Ui maps di�eomorphiallyto a subset of Rn although we will abuse this and treat Ui � Rn , then adi�erential 1-form is given by �1(x)dx1+ :::+ �n(x)dxn. On an overlapUi\Uj with respet to the loal oordinates y = (y1; :::; yn) in Uj thereis a hange of oordinates � = (x1(y); :::; xn(y)) so the di�erential form



CHARACTERISTIC CLASSES 11hanges by�1(x)dx1 + ::: + �n(x)dxn 7!Xi;j �i(�(y))�yjxidyj:(1)In other words a di�erential form is a setion of a vetor bundle.The exterior derivative is an operator d that ats on di�erentialforms. Expressed in loal oordinates: d�1(x)dx1 = Pj �xj�1(x)dxj ^dx1 and this extends linearly to �1(x)dx1 + ::: + �n(x)dxn. A funtionf on M an be thought of as zero-form and its derivative df as a 1-form. (This suggests the alternative view that at eah point p 2 M adi�erential form is a multilinear form on the tangent spae TpM .)If d� = 0, we say � is losed, and when integrated over a submanifoldwithout boundary, the integral is invariant under deformations. Thisfollows from Stokes theorem: 0 = R��I d� = R��f0g� R��f1g where�� I 7!M gives the deformation of a submanifold � ,!M . Thus wesee that di�erential forms at a little like intersetion numbers. We willsee that harateristi lasses an be represented as di�erntial forms.Let � and � be two di�erential k-forms and suppose there is a di�er-ential (k � 1)-form � suh that � � � = d�. Then Stokes theorem saysthat if � �M has no boundary then R� � = R� � so we say that � and� are equivalent when integrated, or equivalent in ohomology.Suppose that isntead of a di�erential form transforming as in (1) ithanges as: Xi �i(x)dxi 7!Xi;j �i(�(y)) + d�(2)where an extra term has been added. So rather than the di�erentialforms being equal after a hange of oordinates they are equivalentwhen integrated, or in ohomology.A omplex line bundle gives suh a transformation rule, where d� =d ln�ij is related to the transition funtions that de�ne the bundle. Aonnetion is a generalised di�erential form assoiated to a bundle thatsatis�es (2 and any two onnetions di�er by a di�erential 1-form. Theurvature of a onnetion is a 2-form given by the exterior derivative ofthe 1-form whih is well-de�ned. Any two onnetions give equivalent2-forms, so to eah omplex line bundle there is an equivalene lass (aohomology lass) of 2-forms.Remember that given a omplex line bundle, the zero set of anygeneri setion assigns to a dimension 2 submanifold a number|ountzeros. Similarly, any onnetion gives rise to a 2-form whih integratesover a dimension 2 submanifold to get a number. Theorem: the latter



12 PAUL NORBURYnumber is 2� times the former. (In partiular, the latter gives 2� timesan integer.) This 2-form gives the �rst Chern lass of the bundle.For a sum of omplex line bundles, there are many ombinationsof the 2-forms assoiated to eah of the line bundles. Any symmetripolynomial in the 2-forms gives rise to a hateristi lass.8. Charateristi numbersThis setion is based on a paper of Raoul Bott Vetor �elds andCharateristi numbers Mihigan mathematial journal 14, p231-244.The zeros of any vetor �eld, ounted properly, give the Euler har-ateristi of the manifold. Generalising this, a speial type of vetor�eld has the property that loal invariants of the vetor �eld near itszeros determine the Pontryagin numbers of the tangent bundle of themanifold.One satisfying aspet of this approah is the de�nition of Chernlasses for an endomorphism A : V ! V of a �nite-dimensional om-plex vetor spae (whih enables us to appreiate the word harater-isti in harateristi lasses.) We de�ne i(A) to be the ith oeÆientof the harateristi polynomial A, soX�ii(A) = det(1 + �A):Let �() = �(1; :::m) (dimM = 2m) be a polynomial in the indeter-minates i with omplex oeÆients. By replaing i with i(M) weobtain �f(M)g whih evaluates to numbers when the intersetion ofthe lasses is zero dimensional. So the monomials that will ontributeare of the form a11 a22 :::ann suh that a1 +2a2 + :::+ nan = m. We alsode�ne � on an endomorphism A by �(A) = �(1(A); :::; m(A)).There is a Lie braket on vetor �elds de�ned as follows. When wethink of vetor �elds as derivations ating on funtions, then two vetor�elds u and u ombine to give [u; v℄f = u(v(f))� v(u(f)). Amazingly,there exists a vetor �eld u suh that uf = [v; w℄f for all funtions fso we put w = [u; v℄. The ation of a vetor �eld u on other vetor�elds by v 7! [u; v℄ is alled the Lie derivative.In general, as a funtion of v, the vetor [u; v℄(x) depends on v ina neighbourhood of x. Whereas, at the zeros of v, its Lie derivativeis a zero order map. This means that u(p) = 0 implies that [u; v℄depends only on v(p) and thus [u; �℄ : TpM ! TpM . This is beause[u; v℄f = u(v(f))� v(u(f)) = up(v(f))� vp(u(f)) = �vp(u(f)) wherewe have put up; vp for the vetor �elds evaluated at the point and theseond equality uses up = 0.



CHARACTERISTIC CLASSES 13A manifold M an be equipped with a Riemmannian metri g =h�; �i|a symmetri positive de�nite inner produt (ontinuously) as-soiated to the tangent spae at eah point of M . So two vetorsu; v 2 TpM map to hu; vi 2 R. Examples: S2, S4, C P2 .The Lie derivative on vetor �elds enables us to \di�erentiate" ametri g on the manifold. A vetor �eld u is an in�nitesimal isometry,or a Killing vetor �eld, if it satis�es h[u; v℄; wi+ hv; [u; w℄i = u � hv; wifor all vetor �elds v and w.At the eah zero p of an in�nitesimal isometry u, denote the induedlinear map on the tangent spae by Lp : TpM ! TpM . With respetto the metri, Lp satis�es the skew symmetry property: hLpv; wi +hv; Lpwi = 0. In other words, with respet to an orthonormal basis, sothat the inner produt looks like the standard dot produt, the linearmap satis�es Lp = �LTp . Thus in odd dimensions detLp = 0 and ineven dimensions the determinant is a square.Theorem 3 (Bott). If the vetor �eld u is an in�nitesimal isometryon a ompat, even-dimensional Riemannian manifold M whose zerosare nondegenerate and �(1; :::; m) is any polynomial of weight notgreater than m=2, thenXp �(Lp)= 1=2det(Lp) = �(M)where the sum is over the zeros of u.


