
CHARACTERISTIC CLASSESPAUL NORBURYAbstra
t. These are the notes of a short 
ourse given at Mel-bourne University in De
ember 1999.
Introdu
tionThere are many approa
hes to 
hara
teristi
 
lasses and perhapsthe 
leanest approa
h is the most sophisti
ated. It 
an be found inthe book Chara
teristi
 
lasses of Milnor and Stashe�. Rather thanattempting to head straight for the approa
h used in that book, wewill gain entry via the more a

essible alternative approa
hes. One
onsequen
e of this will be that we will 
ontinually re
all the de�nitionof 
hara
teristi
 
lasses as we gain further appre
iation for the termsin the de�nition.De�nition 1. A 
hara
teristi
 
lass asso
iates invariants|numbersor 
ohomology 
lasses|to the tangent bundle|and more general ve
torbundles.Course summary.(i) Euler's formula for a warm-up.(ii) Interse
tions, transversality, lo
al ve
tor �elds.(iii) Stiefel-Whitney 
lasses, line bundles and families of ve
tor �elds.(iv) Orientation, 
omplex bundles and Chern 
lasses.(v) Grassmannians and 
ohomology.(vi) Pontryagin 
lasses.(vii) Di�erential forms, 
onne
tions and 
urvature.(viii) Chara
teristi
 numbers and spe
ial ve
tor �elds.One might think of this 
ourse as training to be able to read thebook of Milnor and Stashe�. That book is best read via its fantasti
exer
ises. You 
an attempt the �rst exer
ise in ea
h 
hapter, movingthrough the 
hapters, then return to the start to attempt the se
ondexer
ise of ea
h 
hapter. There should be no problem moving forwardsand ba
kwards through the book like that, parti
ularly after havingdone this short 
ourse. 1



2 PAUL NORBURYFurther justi�
ation for not dire
tly de�ning 
hara
teristi
 
lasses intheir most natural 
ontext 
omes from re
ent developments in math-emati
s, su
h as four-manifold moduli spa
e invariants and quantum
ohomology, where a parti
ular view of 
hara
teristi
 
lasses 
an some-times generalise to situations not 
overed by the basi
 theory of 
har-a
teristi
 
lasses.What you are and are not expe
ted to know. Pre-requisites for this
ourse are knowledge of manifolds and the tangent spa
e. Ve
tor bun-dles, homology and 
ohomology will appear throughout the 
ourse invarious guises, although no previous knowledge of these obje
ts is as-sumed.Some topi
s in these notes will have to be dis
arded as time restri
ts.There are topi
s that are not needed in the sequel so this will be easy todo. The eighth le
ture requires enough digestion that we will probablyspread parts of it through earlier le
tures.1. Ve
tor fields and Euler's formulaEuler's formula for polyhedrons is F �E + V = 2 where F;E; V arethe numbers of fa
es, edges and verti
es, respe
tively, of the polyhe-dron. How might we prove this?A 
ube gives 6 � 12 + 8 = 2. If we add a diagonal to one of thefa
es of the 
ube we get 7 � 13 + 8 = 2. More generally, we 
an addan edge joining two existing verti
es and get 7 � 13 + 8 = 2 or add avertex to an existing edge and get 6 � 13 + 9 = 2. We see that thesum F � E + V is un
hanged under su
h moves. That 
an be usedto re�ne any polyhedron so that all of its fa
es are triangles. Any twopolyhedrons have a 
ommon re�nement so the 
al
ulation for the 
ubeis enough to prove the result.Here's another approa
h that suits our purposes. We may assumethat we are working with a triangulated sphere (by re�ning the poly-hedron and using the fa
t that a polyhedron is homeomorphi
 to thesphere.) Consider the ve
tor �eld on the sphere given by a 
ow fromthe north to the south poles. Choose the north and south poles to lie inthe interior of two fa
es of the triangulation. Re�ne the triangulationso that it is made up of small enough triangles that the ve
tor �eldinterse
ts the triangulation in su
h a way as to point ea
h vertex andedge towards a unique fa
e. In that way, besides the triangles that
ontain the north and south poles, there are two types of triangles:one in whi
h one vertex and two edges point towards the fa
e and theother in whi
h one edge points towards the fa
e. This enables us toasso
iate the two edges with the fa
e and vertex, respe
tively the fa
eand an edge. Thus we have F � E + V = 1 � 2 + 1 = 0 respe
tively



CHARACTERISTIC CLASSES 3F �E +V = 1� 1+ 0 = 0. This fails at the north pole where no edgeor vertex points towards the fa
e so we get F �E + V = 1� 0+ 0 = 1and at the south pole where all edges and verti
es point towards thefa
e so we get F � E + V = 1� 3 + 3 = 1. ea
h fa
e, edge or vertexappears on
e in this asso
iation, so we get F � E + V = 2 and the 2seems to 
ome from the two zeros of the ve
tor �eld.Let's turn this around and use Euler's formula to say somethingabout a general ve
tor �eld. Take any ve
tor �eld and 
hoose a trian-gulation that satis�es the property that ea
h zero of the ve
tor �eldlies in a unique interior of some fa
e and ea
h edge and vertex pointsto a unique fa
e. Again we �nd that F �E + V = 0 on most trianglesand at ea
h zero we get F � E + V = �1. Thus, the signed sum ofzeros of any ve
tor �eld is F � E + V = 2.These arguments work over any surfa
e.De�nition 2. The Euler 
lass assigns to the tangent bundle a number.The Euler 
lass is an example of a 
hara
teristi
 
lass, the tangentbundle a ve
tor bundle, and the number a 
ohomology 
lass, so a 
har-a
teristi
 
lass assigns to a ve
tor bundle a 
ohomology 
lass.We will �nish with a qui
k reminder of the Gauss-Bonnet theo-rem. For any surfa
e � we have R� dA =Area(�). More interest-ingly, R�KdA = 2��(�) where K is the 
urvature of a an embedding� ,! RN . Later we will see that KdA is a di�erential 2-form and theembedding essentially en
odes a metri
 on �.The proof of this: K = lim�!0 �+�+
� where � is the area of a smalltriangle with angles �; �+; gamma.Then PiK�i = Pi �i + �i + 
i = 2�V � �F and sin
e the fa
esare triangles 2E = 3F so 2�V � �F =2�(V + F � E) = 2��(�). Theintegral arises in the limit.2. Interse
tions and transversalityDe�nition 3. Two subspa
es of a ve
tor spa
e V1; V2 � W interse
ttransversally if V1 + V2 = W .Two submanifolds of a manifold �1;�2 � X interse
t transversallyat p 2 �1 \ �2 if Tp�1 + Tp�2 = TpX. Curves in a surfa
e give easyexamples of this.Fa
ts: (Theorems)(i) If �l1 and �m2 interse
t transversally in Mn then �1 \ �2 is asubmanifold of dimension l +m� n.



4 PAUL NORBURY(ii) If [0; 1℄��1 and �2 interse
t transversally (but perhaps ftg��1and �2 don't interse
t transversally for some t 2 [0; 1℄ then [0; 1℄��1\�2 is a submanifold with boundary.(iii) In parti
ular, if dim�1 \ �2 = 0 then [0; 1℄ � �1 \ �2 is a 1-manifold with boundary so the number of ends of the interse
tion iseven. Thus, �1\�2 is well-de�ned mod 2 if we allow �1 to be deformed.The third fa
t is important when two submanifolds don't interse
ttransversally so we deform them to do so.One way to think of a tangent spa
e is via an embedding of a manifoldM into RN . For example, S2 ,! R3 andTS2 = f(x1; x2; x3); (v1; v2; v3) j jxj = 1; x � v = 0g:This is a 4-dimensional manifold.Often it is better to think of a ve
tor �eld lo
ally. An n-dimesionalmanifold M 
an be given in terms of 
harts [Ui = M where Ui isdi�eomorphi
 to a subset of Rn . The tangent bundle is trivial on Rn ,i.e. TRn = Rn � Rn and so with respe
t to the 
hart Ui we 
anthink of a ve
tor �eld as ((x1; :::; xn); (v1(x1; :::; xn); :::; vn(x1; :::; xn)))or v1(x1; :::; xn)�x1 + ::: + vn(x1; :::; xn)�xn .The zeros of a ve
tor �eld v :M ! TM are given by the interse
tionof v(M) � TM withM � TM where the latter embedding 
omes fromthe zero se
tion. Sin
e dimTM = 2n then if we we 
an deform theve
tor �eld so that it interse
ts the zero se
tion transversally, thenwe get a �nite set of points whi
h gives a well-de�ned number mod2. Furthermore, any ve
tor �eld deforms to any other ve
tor �eld, sowe get a number that only depends on the tangent bundle. This is a
hara
teristi
 
lass.Ve
tor �elds on the two-sphere give a good example of this. Later wewill de�ne orientation whi
h will allow us to 
ount the zeros with signto get an integer. Further examples of interse
tions: RP1 � RP2 hasnon-trivial self-interse
tion whilst S1 � �2 has trivial self-interse
tionwhen �2 is an orientable surfa
e. Perhaps 
onsider the self-interse
tionof C P1 � C P2 . 3. Stiefel-Whitney 
lassesAlong with tangent bundles, line bundles are ve
tor bundles overa manifold with interesting 
hara
teristi
 
lasses. A line bundle 
anbe des
ribed as a 
ontinuous family of 1-dimensional subspa
es of RNparametrised byM . In other words, L �M�RN and the subspa
es areLx � RN for x 2 M . (More gennerally, a k-dimensional ve
tor bundle
onsists of a 
ontinuous family of k-dimensional subspa
es Vx � RN .)Stri
tly, a line bundle is over Mn is an (N + 1)-dimensional manifold



CHARACTERISTIC CLASSES 5L equipped with a map � : L ! M su
h that that � is lo
ally trivial,i.e. there exists a 
over fUig of M su
h that ��1(Ui) = Ui � R.Alternatively, take a �nite 
over M = [Ui of balls Ui and take a setof fun
tions �ij : Ui \ Uj ! R� satisfying �ij�jk�ki = 1 and �ij = ��1ji .Then these de�ne a line bundle by mapping Ui � R � Uj � R on theoverlap by identifying (x; v) � (x; �ijv) for x 2 Ui \ Uj.A se
tion of a line bundle s : M ! L is the analogue of a ve
tor �eld.We 
an deform a se
tion to interse
t the zero se
tion transversally andget a 
hara
teristi
 
lass that is in some sense independent of the se
tionwe 
hoose. In what sense? Asso
iated to ea
h embedded 
ir
le in M ,a se
tion gives a number mod 2 (
ount zeros.) This number dependsonly on the bundle. In this 
ase the 
hara
teristi
 
lass assigns 1 or 0to ea
h embedde 
ir
le. this is an example of a Stiefel-Whitney 
lassof the line bundle.Let RPN be the manifold given by i-dimensional subspa
es in RN+1 .It possesses a natural line bundle L! RPN given byL = f(x; v) 2 RPN � RN+1 j v 2 xg
alled the 
anoni
al bundle.Stiefel-Whitney 
lasses. For any n-manifoldM , we de�ne the n�kthStiefel Whitney 
lass wn�k(TM) as the set of points where a generi
set of k ve
tor �elds on M is linearly dependent. This de�nes a k-dimensional submanifold of M and we think of it as a fun
tion fromn�k-dimensional submanifolds ofM to Z2. More generally, if E !Mis an r-dimensional bundle then wr�k(E) is obtained from the lineardependen
e set of k se
tions of E. Later we will give a de�nition whi
hmakes it 
lear that we get an n� k-dimensional submanifolds of M .For the moment, here are some examples. Consider the 
anoni
alline bundle L ! RP2 de�ned by L = f(x; v) 2 RP2 � R3 j v 2 xg.Let's 
al
ulate w1(L). The proje
tive 
oordinates [x0 : x1 : x2℄ a
tuallygive se
tions of L. Take one su
h se
tion x0. It vanishes on [0 : x1 : x2℄whi
h is RP1 � RP2 and it sends 1-dimensional submanifolds of RP2to 0 or 1 depending on whether they are deformable to a point or tothe natural RP1 � RP2 .Consider TS2. We already know that w2(TS2) � 0 sin
e it 
ounts thezeros of a ve
tor �eld. For w1(TS2) 
hoose tow ve
tor �elds, one 
omingfrom a 
ow from the north pole to the south pole and the other from a
ow from the east pole to the west pole. These are linearly dependentpre
isely along the great 
ir
le 
ontaining the four poles. This 
ir
leinterse
ts any 1-dimensional submanifold in S2 an even number of timesso w1(TS2) is trivial.



6 PAUL NORBURYHere as an alternative de�nition of Syiefel-Whitney 
lasses. Givenan r-dimensional bundle E !M , 
onsider E 
 L!M � RPN whereL! RP1 is the universal bundle. Take a generi
 se
tion s of E
L andrestri
t it to M � RPk . The zero set Z(s) � M � RPk has dimensionn+k�r where n = dimM and E is an r-bundle. Proje
t Z(s) ontoMto get an (n+k�r)-dimensional set or a 
ohomology 
lass of dimensionr � k. This is the Stiefel-Whitney 
lass wr�k(E).This 
oin
ides with the previous de�nition sin
e if k + 1 ve
tor�elds fv0; v1; :::; vkg are linearly dependent then there exists a tuplefy0; :::; ykg su
h that y0v0+ :::+ ykvk = 0. Sin
e the yi are only proje
-tively de�ned, they a
tually give a se
tion of the 
anoni
al line bundleover RPN so y0v0+:::+ykvk 2 �(E
L). This view allows us to see thatthe zero set arises as a transversal interse
tion so generi
ally we 
anarrange this and the mod 2 
lass we get is independent of any deforma-tions. Note that if the proje
tion of the zero set is not a submanifoldwe 
an perturb it to be that way.4. Orientation, 
omplex bundles and Chern 
lassesSo far we have 
ounted interse
tions mod 2 be
ause that is all thatis well-de�ned when we deform the interse
ting manifolds. In the �rstle
ture over surfa
es we managed to 
ount points with sign, so ea
hpoint of interse
tion 
ontributes +1 or -1, and get an integer that iswell-de�ned as the interse
ting manifolds are deformed. We expe
t tobe able to do this in general. An orientation of a manifold allows us todo just that. It enables us to tell when a point should be 
ounted with+1 or -1.An orientation of a ve
tor spa
e V is an equivalen
e 
lass of basesof V . Two bases are equivalent if the linear map that relates the twohas positive determinant. An orientation of V is a 
hoi
e of +1 forone equivalen
e 
lass and �1 for the other. If V = V1 � V2 then anorientation on two of these ve
tor spa
es indu
es an orientation on thethird.An orientation of a manifold is a (
ontinuous) 
hoi
e of orientationon ea
h tangent spa
e. Lo
al orientations always exist, but globalorientations might not.If Xk and Y n�k are two oriented submanifolds of an oriented mani-fold Mn then if they interse
t transversally, the points of interse
tion
an be 
ounted with sign. At a point p 2 X \ Y simply 
omparethe orientation on TpM with the indu
ed orientation on TpX � TpY .Examples: 
urve on a surfa
e and C P2.



CHARACTERISTIC CLASSES 7We have already de�ned a general ve
tor bundle to be E �! M withthe property that � is lo
ally trivial: there exists a 
over fUig ofM su
hthat ��1(Ui) = Ui�Rk . Alternatively, we 
an de�ne E as a 
ontinuousfamily of k-dimensional subspa
es Ex � RN so E � M � RN . If werepla
e the real ve
tor spa
e Rk by C k (and RN by C N ) then we havea 
omplex ve
tor bundle. Examples are 
omplex line bundles and atangent bundle equipped with an almost 
omplex stru
ture.A ve
tor bundle is oriented if it is oriented as a manifold. For ex-ample, if M is an oriented manifold then its tangent bundle 
an beoriented. Any ve
tor �eld v, after perhaps being deformed, gives riseto an isolated set of zeros that 
an be 
ounted with sign.Exer
ise. Show that this agrees with the method of giving a signused in the �rst se
tion.Any 
omplex ve
tor spa
e has a natural orientation given by fvi; Jvigfor n ve
tors vi 2 C n . Thus, any 
omplex bundle over an orientedmanifold has a natural orientation.We 
an now de�ne Chern 
lasses. The Chern 
lasses of a 
omplexbundle are de�ned analogously to Stiefel-Whitney 
lasses where we now
onsider E 
C L over M � C P1 . The 
anoni
al bundle L over C P1 isf(z; v) 2 C P1 � C j v 2 zg. The tensor produ
t is over C so we needa 
omplex stru
ture on the bundle E.If E is a 
omplex r-dimensional bundle we de�ne 
k(E) to be theproje
tion ontoM of the zero set of a generi
 se
tion of E
L restri
tedto C Pr�k . Equivalently, take r � k + 1 se
tions of E and 
k(E) is theset in M where these se
tions are dependent. This 
hara
teristi
 
lassis a fun
tion on oriented 2k-dimensional submanifolds of the orientedmanifold M to the integers.We will 
al
ulate the Chern 
lasses of T C P2 . Immediately 
0(T C P2) =1, meaning that it maps any point in C P2 to 1 sin
e any 5 ve
tor �eldsare dependent at every point of C P2 . We know 
2(T C P2) = 3 sin
e it
ounts the number of zeros of a ve
tor �eld and hen
e is the same asthe Euler 
hara
teristi
.For 
1(T C P2) we take two ve
tor �elds as follows. There is an a
tionof SU(3) on C P2 and the isotropy subgroup of ea
h point is isomorphi
to U(2). The in�nitesimal a
tion of su(3) on C P2 gives an identi�
ationof the four dimensional tangent spa
e of a point with su(3)=Ix forthe isotropy subalgebra Ix �= u(2). Thus, an element of su(3) de�nesa ve
tor �eld on C P2 . For � 2 su(3) the ve
tor �eld at [x0 : x1 :x2℄ is given by � � x 2 C 3=x. Consider the two ve
tor �elds arisingfrom diag(i;�i; 0); diag(0; i;�i) 2 su(3). They are linearly dependentwhen (x0;�x1; 0); (0; x1;�x2); (x0; x1; x2) are linearly dependent. The



8 PAUL NORBURYdeterminant of these three ve
tors is �3x0x1x2. This vanishes on theunion of the three lines x0 = 0 = x1 = x2. As a map from oriented 2-dimensional submanifolds to the integers it sends the standrad C P1 to 3.Ea
h interse
tion is 
ounted positively be
ause the 
omplex stru
turegives 
anoni
al orientations whi
h agree.5. Grassmannians and 
ohomologyGiven E �! Y let f : X ! Y . Then there is a bundle f �E ! X. Itstotal spa
e is given by f(e; x) 2 E �X j �(e) = f(x)g. Simply need to
he
k that the 
omposition map is lo
ally a produ
t. In terms of the
onstru
tion SUi = Y and �ij : Ui \Uj ! R�(C �), simply use f�1(Ui)and �ij de�ned on f�1(Ui) \ f�1(Uj).The 
hara
teristi
 
lasses are natural meaning that they are pre-served under any map f : X ! Y . On �k � X de�ne wk(f �E) � �k =wk(E) � f(�k). Here we see the 
ontravariant nature of 
hara
teristi

lasses. Easy examples are a map to a point, proje
tion of a produ
t,embeddings and the Hopf map.There is a \
lassifying spa
e" Y with bundle 
 ! Y su
h that forea
h Rn bundle E ! X there exists a map f : X ! Y su
h thatf �
 = E. The Stiefel-Whitney 
lasses of 
 are all known so this givesa way to 
al
ulate the Stiefel-Whitney 
lasses of E.The 
lassifying spa
e is given by the Grassmannian, Gr(k;N), of kplanes in RN for N >> k spa
e. The 
anoni
al bundle 
n ! Y is givenby f(z; v) 2 Gr(k;N)�RN j v 2 zg. Given an Rk bundle E over X we
onstru
t the map f : X ! Gr(k;N) as follows. Embed the bundle Ein X �RN . Then we have a map f : X ! Gr(k;N) given by x 7! Ex.The pull-ba
k of the 
anoni
al bundle 
learly gives E.If instead we 
hoose M > N then Gr(k;N) ,! Gr(k;M) and the
anoni
al bundle pulls ba
k to the 
anoni
al bundle so the pull-ba
k ofthe Stiefel-Whitney 
lasses is una�e
ted.Asso
iated to ea
h manifold is a ring 
alled the 
ohomology ring.It is a 
ontravariant fun
tor from manifolds to rings. Chara
teristi

lasses naturally live in this ring. The 
ohomology of the Grassmannianis des
ribed 
ompletely by the Stiefel-Whitney 
lasses of the 
anoni
albundle. Thus, instead of de�ning the 
ohomology ring, one 
an think ofthe 
hara
teristi
 
lasses of the 
anoni
al bundle. The ring stru
ture,or 
up produ
t, 
omes from interse
tions and is most easily seen inthese two examples.We have 
al
ulated w1(TRP2) and 
1(T C P2). In both 
ases we 
anprodu
e a 
hara
teristi
 number from the 
up produ
t.



CHARACTERISTIC CLASSES 9The analogous story works for Chern 
lasses where the Grassmannianis now given by GrC (k;N) of 
omplex subspa
es C k � C N .Theorem 1. The 
ohomology ring H�(Gr(n;1);Z2) is a polynomialalgebra over Z2 freely generated by the Stiefel-Whitney 
lassesw1(
n); :::; wn(
n):The proof requires showing that the Stiefel-Whitney 
lasses are in-dependent by 
onstru
ting a bundle over any spa
e with that indepen-den
e, and then showing that the 
ohomology algebra they generate isalready big enough to give all 
ohomology 
lasses.Theorem 2. The 
ohomology ring H�(GrC (n;1);Z) is a polynomialalgebra over Z freely generated by the Chern 
lasses 
1(
n); :::; 
n(
n).6. Pontryagin 
lasses and appli
ationsGiven a real ve
tor bundle E, the Pontryagin 
lasses are de�ned byalmost as Chern 
lasses via L ! C P1 and tensoring E 
R L. Thesigni�
ant di�eren
e is that the tensor produ
t is over R, not C , and inparti
ular the dimension of the budnle 
hanges. One way to interpretthis is that Pontryagin 
lasses are Chern 
lasses of the 
omplexi�edbundle E
 C so they are given by families of ve
tor �elds restri
ted toea
h C Pk � C P1 as des
ribed previously.Equivalently, take r � 2k + 1 se
tions of E and pk(E) is the set inM where these se
tions have rank at most r� 2k � 1. This 
hara
ter-isti
 
lass is a fun
tion on oriented 4k-dimensional submanifolds of theoriented manifold M to the integers.Let's 
al
ulate p1(T C P2). Take three ve
tor �elds given in terms ofthree elements of su(3). We will 
hoose(ix0;�ix1; 0); (0; ix1;�ix2); (x1; x0; 0)and these together with (x0; x1; x2) have to have rank 2. This o

urs onthe interse
tion of two sets of three lines. That's 9 points. The answershould be 3 so this says that 6 points of interse
tion will be 
ountedpositively and 3 negatively. That takes some thought.Conje
turally, Pontryagin 
lasses 
an be de�ned by using quater-nioni
 proje
tive spa
e H P1 . This proje
tive spa
e uses the left a
tionof the quaternions on themselves. Again there is a 
anoni
al bundlegiven by f(q; v) 2 H P1�H j v = wqg for some w 2 H � . This de�nitionwould require a quaternioni
 stru
ture on E whi
h is a restri
tion onthe real bundle.



10 PAUL NORBURYChara
teristi
 
lasses have appli
ations in showing if a manifold 
anbe embedded into Eu
lidean spa
e, whether a manifold possesses an ori-entation reversing di�eomorphism, whether a manifold is the boundaryof a manifold and whether a manifold is a produ
t of manifolds.7. Differential forms, 
onne
tions and 
urvatureThis se
tion seems diÆ
ult to digest qui
kly. Perhaps we will intro-du
e the 
on
epts throughout earlier le
tures.An important obje
t in di�erential geometry is a di�erential form.Let's start with usual integration. We 
an make sense of R ba f(t)dt ofrany fun
tion f de�ned on [a; b℄. This 
an be thought of as integra-tion over a manifold. We would like to integrate over submanifolds.Consider a 
urve in the plane. If we have a fun
tion in the plane
an we integrate it over the 
urve? Really, integration needs Rn . So,parametrise the 
urve. Noti
e, however, that the integral depends onthe parametrisation:Z f(g(s))dg = Z f(s)g0(s)ds 6= Z f(s)dsfor a 
hange of parametrisation g. It ends up that we 
annot integratefun
tions over submanifolds but we 
an integrate di�erential forms likef(s)ds = f(g)dg=g0(s). In three dimensions, a 1-form is given by threefun
tionsf1(x1; x2; x3)dx1 + f2(x1; x2; x3)dx2 + f1(x1; x2; x3)dx3:Similarly, a 2-form (in three dimensions) is given by three fun
tionsf12(x1; x2; x3)dx1 ^ dx2 + f13(x1; x2; x3)dx1 ^ dx3 + f23dx2 ^ dx3and it 
an be integrated over surfa
es in the manifold. Noti
e that a2-form be
omes a well-de�ned fun
tion when restri
ted to a surfa
e.Thus, another way to think of a 2-form on a three-manifold is as afun
tion that makes sense when you spe
ify a surfa
e (or even a planeof tangent ve
tors at a point). The expression ^ is used to show thatthe de�nition is orientation sensitive whi
h is ne
essary in 
hanges of
oordinates.If Mn = SUi is a �nite 
hart for M , so Ui maps di�eomorphi
allyto a subset of Rn although we will abuse this and treat Ui � Rn , then adi�erential 1-form is given by �1(x)dx1+ :::+ �n(x)dxn. On an overlapUi\Uj with respe
t to the lo
al 
oordinates y = (y1; :::; yn) in Uj thereis a 
hange of 
oordinates � = (x1(y); :::; xn(y)) so the di�erential form
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hanges by�1(x)dx1 + ::: + �n(x)dxn 7!Xi;j �i(�(y))�yjxidyj:(1)In other words a di�erential form is a se
tion of a ve
tor bundle.The exterior derivative is an operator d that a
ts on di�erentialforms. Expressed in lo
al 
oordinates: d�1(x)dx1 = Pj �xj�1(x)dxj ^dx1 and this extends linearly to �1(x)dx1 + ::: + �n(x)dxn. A fun
tionf on M 
an be thought of as zero-form and its derivative df as a 1-form. (This suggests the alternative view that at ea
h point p 2 M adi�erential form is a multilinear form on the tangent spa
e TpM .)If d� = 0, we say � is 
losed, and when integrated over a submanifoldwithout boundary, the integral is invariant under deformations. Thisfollows from Stokes theorem: 0 = R��I d� = R��f0g� R��f1g where�� I 7!M gives the deformation of a submanifold � ,!M . Thus wesee that di�erential forms a
t a little like interse
tion numbers. We willsee that 
hara
teristi
 
lasses 
an be represented as di�erntial forms.Let � and � be two di�erential k-forms and suppose there is a di�er-ential (k � 1)-form � su
h that � � � = d�. Then Stokes theorem saysthat if � �M has no boundary then R� � = R� � so we say that � and� are equivalent when integrated, or equivalent in 
ohomology.Suppose that isntead of a di�erential form transforming as in (1) it
hanges as: Xi �i(x)dxi 7!Xi;j �i(�(y)) + d�(2)where an extra term has been added. So rather than the di�erentialforms being equal after a 
hange of 
oordinates they are equivalentwhen integrated, or in 
ohomology.A 
omplex line bundle gives su
h a transformation rule, where d� =d ln�ij is related to the transition fun
tions that de�ne the bundle. A
onne
tion is a generalised di�erential form asso
iated to a bundle thatsatis�es (2 and any two 
onne
tions di�er by a di�erential 1-form. The
urvature of a 
onne
tion is a 2-form given by the exterior derivative ofthe 1-form whi
h is well-de�ned. Any two 
onne
tions give equivalent2-forms, so to ea
h 
omplex line bundle there is an equivalen
e 
lass (a
ohomology 
lass) of 2-forms.Remember that given a 
omplex line bundle, the zero set of anygeneri
 se
tion assigns to a dimension 2 submanifold a number|
ountzeros. Similarly, any 
onne
tion gives rise to a 2-form whi
h integratesover a dimension 2 submanifold to get a number. Theorem: the latter



12 PAUL NORBURYnumber is 2� times the former. (In parti
ular, the latter gives 2� timesan integer.) This 2-form gives the �rst Chern 
lass of the bundle.For a sum of 
omplex line bundles, there are many 
ombinationsof the 2-forms asso
iated to ea
h of the line bundles. Any symmetri
polynomial in the 2-forms gives rise to a 
ha
teristi
 
lass.8. Chara
teristi
 numbersThis se
tion is based on a paper of Raoul Bott Ve
tor �elds andChara
teristi
 numbers Mi
higan mathemati
al journal 14, p231-244.The zeros of any ve
tor �eld, 
ounted properly, give the Euler 
har-a
teristi
 of the manifold. Generalising this, a spe
ial type of ve
tor�eld has the property that lo
al invariants of the ve
tor �eld near itszeros determine the Pontryagin numbers of the tangent bundle of themanifold.One satisfying aspe
t of this approa
h is the de�nition of Chern
lasses for an endomorphism A : V ! V of a �nite-dimensional 
om-plex ve
tor spa
e (whi
h enables us to appre
iate the word 
hara
ter-isti
 in 
hara
teristi
 
lasses.) We de�ne 
i(A) to be the ith 
oeÆ
ientof the 
hara
teristi
 polynomial A, soX�i
i(A) = det(1 + �A):Let �(
) = �(
1; :::
m) (dimM = 2m) be a polynomial in the indeter-minates 
i with 
omplex 
oeÆ
ients. By repla
ing 
i with 
i(M) weobtain �f
(M)g whi
h evaluates to numbers when the interse
tion ofthe 
lasses is zero dimensional. So the monomials that will 
ontributeare of the form 
a11 
a22 :::
ann su
h that a1 +2a2 + :::+ nan = m. We alsode�ne � on an endomorphism A by �(A) = �(
1(A); :::; 
m(A)).There is a Lie bra
ket on ve
tor �elds de�ned as follows. When wethink of ve
tor �elds as derivations a
ting on fun
tions, then two ve
tor�elds u and u 
ombine to give [u; v℄f = u(v(f))� v(u(f)). Amazingly,there exists a ve
tor �eld u su
h that uf = [v; w℄f for all fun
tions fso we put w = [u; v℄. The a
tion of a ve
tor �eld u on other ve
tor�elds by v 7! [u; v℄ is 
alled the Lie derivative.In general, as a fun
tion of v, the ve
tor [u; v℄(x) depends on v ina neighbourhood of x. Whereas, at the zeros of v, its Lie derivativeis a zero order map. This means that u(p) = 0 implies that [u; v℄depends only on v(p) and thus [u; �℄ : TpM ! TpM . This is be
ause[u; v℄f = u(v(f))� v(u(f)) = up(v(f))� vp(u(f)) = �vp(u(f)) wherewe have put up; vp for the ve
tor �elds evaluated at the point and these
ond equality uses up = 0.
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an be equipped with a Riemmannian metri
 g =h�; �i|a symmetri
 positive de�nite inner produ
t (
ontinuously) as-so
iated to the tangent spa
e at ea
h point of M . So two ve
torsu; v 2 TpM map to hu; vi 2 R. Examples: S2, S4, C P2 .The Lie derivative on ve
tor �elds enables us to \di�erentiate" ametri
 g on the manifold. A ve
tor �eld u is an in�nitesimal isometry,or a Killing ve
tor �eld, if it satis�es h[u; v℄; wi+ hv; [u; w℄i = u � hv; wifor all ve
tor �elds v and w.At the ea
h zero p of an in�nitesimal isometry u, denote the indu
edlinear map on the tangent spa
e by Lp : TpM ! TpM . With respe
tto the metri
, Lp satis�es the skew symmetry property: hLpv; wi +hv; Lpwi = 0. In other words, with respe
t to an orthonormal basis, sothat the inner produ
t looks like the standard dot produ
t, the linearmap satis�es Lp = �LTp . Thus in odd dimensions detLp = 0 and ineven dimensions the determinant is a square.Theorem 3 (Bott). If the ve
tor �eld u is an in�nitesimal isometryon a 
ompa
t, even-dimensional Riemannian manifold M whose zerosare nondegenerate and �(
1; :::; 
m) is any polynomial of weight notgreater than m=2, thenXp �(Lp)= 1=2det(Lp) = �(M)where the sum is over the zeros of u.


