CHARACTERISTIC CLASSES

PAUL NORBURY

ABSTRACT. These are the notes of a short course given at Mel-
bourne University in December 1999.

INTRODUCTION

There are many approaches to characteristic classes and perhaps
the cleanest approach is the most sophisticated. It can be found in
the book Characteristic classes of Milnor and Stasheff. Rather than
attempting to head straight for the approach used in that book, we
will gain entry via the more accessible alternative approaches. One
consequence of this will be that we will continually recall the definition
of characteristic classes as we gain further appreciation for the terms
in the definition.

Definition 1. A characteristic class associates invariants—mnumbers
or cohomology classes—to the tangent bundle—and more general vector
bundles.

Course summary.

(i) Euler’s formula for a warm-up.

(ii) Intersections, transversality, local vector fields.

(iii) Stiefel-Whitney classes, line bundles and families of vector fields.
(iv) Orientation, complex bundles and Chern classes.

(v) Grassmannians and cohomology.

(vi) Pontryagin classes.

(vii) Differential forms, connections and curvature.

(viii) Characteristic numbers and special vector fields.

One might think of this course as training to be able to read the
book of Milnor and Stasheff. That book is best read via its fantastic
exercises. You can attempt the first exercise in each chapter, moving
through the chapters, then return to the start to attempt the second
exercise of each chapter. There should be no problem moving forwards
and backwards through the book like that, particularly after having

done this short course.
1
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Further justification for not directly defining characteristic classes in
their most natural context comes from recent developments in math-
ematics, such as four-manifold moduli space invariants and quantum
cohomology, where a particular view of characteristic classes can some-
times generalise to situations not covered by the basic theory of char-
acteristic classes.

What you are and are not expected to know. Pre-requisites for this
course are knowledge of manifolds and the tangent space. Vector bun-
dles, homology and cohomology will appear throughout the course in
various guises, although no previous knowledge of these objects is as-
sumed.

Some topics in these notes will have to be discarded as time restricts.
There are topics that are not needed in the sequel so this will be easy to
do. The eighth lecture requires enough digestion that we will probably
spread parts of it through earlier lectures.

1. VECTOR FIELDS AND EULER’S FORMULA

Euler’s formula for polyhedrons is F'— E+V = 2 where F, E,V are
the numbers of faces, edges and vertices, respectively, of the polyhe-
dron. How might we prove this?

A cube gives 6 — 12+ 8 = 2. If we add a diagonal to one of the
faces of the cube we get 7 — 13 + 8 = 2. More generally, we can add
an edge joining two existing vertices and get 7 — 13 +8 = 2 or add a
vertex to an existing edge and get 6 — 13 + 9 = 2. We see that the
sum F' — E 4+ V is unchanged under such moves. That can be used
to refine any polyhedron so that all of its faces are triangles. Any two
polyhedrons have a common refinement so the calculation for the cube
is enough to prove the result.

Here’s another approach that suits our purposes. We may assume
that we are working with a triangulated sphere (by refining the poly-
hedron and using the fact that a polyhedron is homeomorphic to the
sphere.) Consider the vector field on the sphere given by a flow from
the north to the south poles. Choose the north and south poles to lie in
the interior of two faces of the triangulation. Refine the triangulation
so that it is made up of small enough triangles that the vector field
intersects the triangulation in such a way as to point each vertex and
edge towards a unique face. In that way, besides the triangles that
contain the north and south poles, there are two types of triangles:
one in which one vertex and two edges point towards the face and the
other in which one edge points towards the face. This enables us to
associate the two edges with the face and vertex, respectively the face
and an edge. Thus we have FF — E +V =1 — 241 = 0 respectively
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F—FE+V =1—-1+0=0. This fails at the north pole where no edge
or vertex points towards the face so we get F— E+V =1-0+0=1
and at the south pole where all edges and vertices point towards the
face so we get F — E+V =1—3+ 3 = 1. each face, edge or vertex
appears once in this association, so we get F' — E + V = 2 and the 2
seems to come from the two zeros of the vector field.

Let’s turn this around and use Euler’s formula to say something
about a general vector field. Take any vector field and choose a trian-
gulation that satisfies the property that each zero of the vector field
lies in a unique interior of some face and each edge and vertex points
to a unique face. Again we find that F'— E +V = 0 on most triangles
and at each zero we get F' — E +V = £1. Thus, the signed sum of
zeros of any vector fieldis FF — E 4+ V = 2.

These arguments work over any surface.

Definition 2. The Euler class assigns to the tangent bundle a number.

The Euler class is an example of a characteristic class, the tangent
bundle a vector bundle, and the number a cohomology class, so a char-
acteristic class assigns to a vector bundle a cohomology class.

We will finish with a quick reminder of the Gauss-Bonnet theo-
rem. For any surface ¥ we have [ dA =Area(¥). More interest-
ingly, [, KdA = 2wx(X) where K is the curvature of a an embedding
Y — RN, Later we will see that KdA is a differential 2-form and the
embedding essentially encodes a metric on X.

The proof of this: K = lima_,q % where A is the area of a small
triangle with angles a, 5+, gamma.

Then >, KA; =Y .0; + ;i + v = 2nV — nF and since the faces
are triangles 2F = 3F so 27V — nF =27(V + F — E) = 2rwx(X). The
integral arises in the limit.

2. INTERSECTIONS AND TRANSVERSALITY

Definition 3. Two subspaces of a vector space Vi,Vo C W intersect
transversally if Vi + Vo = W.

Two submanifolds of a manifold ¥, ¥, C X intersect transversally
at p € ¥y N3y if T, + 1,3y = T,X. Curves in a surface give easy
examples of this.

Facts: (Theorems)

(i) If ) and BT intersect transversally in M™ then ¥; N'Y, is a
submanifold of dimension [ + m — n.
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(ii) If [0, 1] x 3; and X, intersect transversally (but perhaps {t} x ¥,
and ¥, don’t intersect transversally for some ¢ € [0, 1] then [0, 1] x X1 N
Y, is a submanifold with boundary.

(iii) In particular, if dim¥; N ¥y = 0 then [0,1] x ¥ N ¥y is a 1-
manifold with boundary so the number of ends of the intersection is
even. Thus, ¥, N3, is well-defined mod 2 if we allow ¥; to be deformed.

The third fact is important when two submanifolds don’t intersect
transversally so we deform them to do so.

One way to think of a tangent space is via an embedding of a manifold
M into RN . For example, S? — R? and

TS* = {(x1,zy,73), (v1,v9,v3) | |2| = 1,2 -v = 0}.

This is a 4-dimensional manifold.

Often it is better to think of a vector field locally. An n-dimesional
manifold M can be given in terms of charts UU; = M where U; is
diffeomorphic to a subset of R*. The tangent bundle is trivial on R",
ie. TR® = R* x R* and so with respect to the chart U; we can
think of a vector field as ((z1,...,xn), (V1(Z1,..os Tn)y oy U (T1, s )
Or v1(Z1, ..o, Tn)O0gy + oo + Vp(@1, .oy 1) Oy, -

The zeros of a vector field v : M — T M are given by the intersection
of v(M) C TM with M C T M where the latter embedding comes from
the zero section. Since dimT'M = 2n then if we we can deform the
vector field so that it intersects the zero section transversally, then
we get a finite set of points which gives a well-defined number mod
2. Furthermore, any vector field deforms to any other vector field, so
we get a number that only depends on the tangent bundle. This is a
characteristic class.

Vector fields on the two-sphere give a good example of this. Later we
will define orientation which will allow us to count the zeros with sign
to get an integer. Further examples of intersections: RP! C RP? has
non-trivial self-intersection whilst S! C X2 has trivial self-intersection

when Y2 is an orientable surface. Perhaps consider the self-intersection
of CP' c CP2.

3. STIEFEL- WHITNEY CLASSES

Along with tangent bundles, line bundles are vector bundles over
a manifold with interesting characteristic classes. A line bundle can
be described as a continuous family of 1-dimensional subspaces of RY
parametrised by M. In other words, L C M xRN and the subspaces are
L, C RN for z € M. (More gennerally, a k-dimensional vector bundle
consists of a continuous family of k-dimensional subspaces V, C RV .)
Strictly, a line bundle is over M" is an (N + 1)-dimensional manifold
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L equipped with a map 7w : L — M such that that 7 is locally trivial,
i.e. there exists a cover {U;} of M such that 7= '(U;) = U; x R.

Alternatively, take a finite cover M = UU; of balls U; and take a set
of functions A;; : U; NU; — R* satisfying A\jjA\jpAri = 1 and \;; = )\]72-1.
Then these define a line bundle by mapping U; x R = U; x R on the
overlap by identifying (z,v) ~ (z, Ajjv) for z € U; N U;.

A section of a line bundle s : M — L is the analogue of a vector field.
We can deform a section to intersect the zero section transversally and
get a characteristic class that is in some sense independent of the section
we choose. In what sense? Associated to each embedded circle in M,
a section gives a number mod 2 (count zeros.) This number depends
only on the bundle. In this case the characteristic class assigns 1 or 0
to each embedde circle. this is an example of a Stiefel-Whitney class
of the line bundle.

Let RPY be the manifold given by i-dimensional subspaces in RV*1,
It possesses a natural line bundle L — RPY given by

L={(z,v) € RPN x R"*! | v € z}

called the canonical bundle.

Stiefel-Whitney classes. For any n-manifold M, we define the n—kth
Stiefel Whitney class w,, (T M) as the set of points where a generic
set of k vector fields on M is linearly dependent. This defines a k-
dimensional submanifold of M and we think of it as a function from
n — k-dimensional submanifolds of M to Zj,. More generally, if B — M
is an r-dimensional bundle then w, j(FE) is obtained from the linear
dependence set of k sections of E. Later we will give a definition which
makes it clear that we get an n — k-dimensional submanifolds of M.

For the moment, here are some examples. Consider the canonical
line bundle L — RP? defined by L = {(z,v) € RP* x R* | v € z}.
Let’s calculate wy(L). The projective coordinates [z : x1 : 23] actually
give sections of L. Take one such section zq. It vanishes on [0 : z; : 23]
which is RP! ¢ RP? and it sends 1-dimensional submanifolds of RIP?
to 0 or 1 depending on whether they are deformable to a point or to
the natural RP! C RP2.

Consider T'S?. We already know that w,(7'S?) = 0 since it counts the
zeros of a vector field. For w;(T'S?) choose tow vector fields, one coming
from a flow from the north pole to the south pole and the other from a
flow from the east pole to the west pole. These are linearly dependent
precisely along the great circle containing the four poles. This circle
intersects any 1-dimensional submanifold in S? an even number of times
so wy (TS?) is trivial.
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Here as an alternative definition of Syiefel-Whitney classes. Given
an r-dimensional bundle E — M, consider E ® L — M x RPY where
L — RP® is the universal bundle. Take a generic section s of EQ L and
restrict it to M x RP*. The zero set Z(s) C M x RP* has dimension
n+k—r where n = dim M and F is an r-bundle. Project Z(s) onto M
to get an (n+k —r)-dimensional set or a cohomology class of dimension
r — k. This is the Stiefel-Whitney class w,_x(E).

This coincides with the previous definition since if & + 1 vector
fields {wvg, v1,...,vx} are linearly dependent then there exists a tuple
{%0, -.-, yx} such that yovg + ... + yxvr, = 0. Since the y; are only projec-
tively defined, they actually give a section of the canonical line bundle
over RPY so ygvg+...+ypvr € T(EQ®L). This view allows us to see that
the zero set arises as a transversal intersection so generically we can
arrange this and the mod 2 class we get is independent of any deforma-
tions. Note that if the projection of the zero set is not a submanifold
we can perturb it to be that way.

4. ORIENTATION, COMPLEX BUNDLES AND CHERN CLASSES

So far we have counted intersections mod 2 because that is all that
is well-defined when we deform the intersecting manifolds. In the first
lecture over surfaces we managed to count points with sign, so each
point of intersection contributes +1 or -1, and get an integer that is
well-defined as the intersecting manifolds are deformed. We expect to
be able to do this in general. An orientation of a manifold allows us to
do just that. It enables us to tell when a point should be counted with
+1 or -1.

An orientation of a vector space V' is an equivalence class of bases
of V. Two bases are equivalent if the linear map that relates the two
has positive determinant. An orientation of V is a choice of +1 for
one equivalence class and —1 for the other. If V = V; & V5 then an
orientation on two of these vector spaces induces an orientation on the
third.

An orientation of a manifold is a (continuous) choice of orientation
on each tangent space. Local orientations always exist, but global
orientations might not.

If X* and Y™ * are two oriented submanifolds of an oriented mani-
fold M™ then if they intersect transversally, the points of intersection
can be counted with sign. At a point p € X NY simply compare
the orientation on 7, with the induced orientation on 7,X & T,Y.

——2
Examples: curve on a surface and CP .
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™

We have already defined a general vector bundle to be £ — M with
the property that 7 is locally trivial: there exists a cover {U;} of M such
that 7~ 1(U;) = U; x RE. Alternatively, we can define E as a continuous
family of k-dimensional subspaces E, C RY so E C M x RN. If we
replace the real vector space R* by C* (and RN by CV) then we have
a complex vector bundle. Examples are complex line bundles and a
tangent bundle equipped with an almost complex structure.

A vector bundle is oriented if it is oriented as a manifold. For ex-
ample, if M is an oriented manifold then its tangent bundle can be
oriented. Any vector field v, after perhaps being deformed, gives rise
to an isolated set of zeros that can be counted with sign.

Exercise. Show that this agrees with the method of giving a sign
used in the first section.

Any complex vector space has a natural orientation given by {v;, Jv;}
for n vectors v; € C*. Thus, any complex bundle over an oriented
manifold has a natural orientation.

We can now define Chern classes. The Chern classes of a complex
bundle are defined analogously to Stiefel-Whitney classes where we now
consider £ ®c L over M x CIP*°. The canonical bundle L over CP* is
{(z,v) € CP*>* x C | v € z}. The tensor product is over C so we need
a complex structure on the bundle F.

If E is a complex r-dimensional bundle we define c¢;(E) to be the
projection onto M of the zero set of a generic section of EF® L restricted
to CP"*. Equivalently, take r — k + 1 sections of F and c;(E) is the
set in M where these sections are dependent. This characteristic class
is a function on oriented 2k-dimensional submanifolds of the oriented
manifold M to the integers.

We will calculate the Chern classes of TCP?. Immediately co(TCP?) =
1, meaning that it maps any point in CP? to 1 since any 5 vector fields
are dependent at every point of CP?. We know cy(TCP?) = 3 since it
counts the number of zeros of a vector field and hence is the same as
the Euler characteristic.

For ¢;(TCP?) we take two vector fields as follows. There is an action
of SU(3) on CP? and the isotropy subgroup of each point is isomorphic
to U(2). The infinitesimal action of su(3) on CP? gives an identification
of the four dimensional tangent space of a point with su(3)/I, for
the isotropy subalgebra I, = u(2). Thus, an element of su(3) defines
a vector field on CP?. For ¢ € su(3) the vector field at [z : z; :
Ty] is given by £ -z € C*/x. Consider the two vector fields arising
from diag(i, —i,0), diag(0, i, —i) € su(3). They are linearly dependent
when (zg, —z1,0), (0, 21, —22), (2o, x1, 22) are linearly dependent. The



8 PAUL NORBURY

determinant of these three vectors is —3zgxiz2. This vanishes on the
union of the three lines g = 0 = z; = 5. As a map from oriented 2-
dimensional submanifolds to the integers it sends the standrad CP* to 3.
Each intersection is counted positively because the complex structure
gives canonical orientations which agree.

5. GRASSMANNIANS AND COHOMOLOGY

Given E — Y let f : X — Y. Then there is a bundle f*F — X. Its
total space is given by {(e,z) € E x X | n(e) = f(x)}. Simply need to
check that the composition map is locally a product. In terms of the
construction | JU; =Y and A;; : U; NU; — R*(C*), simply use f1(U;)
and )\ij defined on fﬁl(UZ) N fﬁl(U]‘).

The characteristic classes are natural meaning that they are pre-
served under any map f: X — Y. On X% C X define wy(f*E) - ZF =
wy(E) - f(X*). Here we see the contravariant nature of characteristic
classes. Easy examples are a map to a point, projection of a product,
embeddings and the Hopf map.

There is a “classifying space” Y with bundle v — Y such that for
each R" bundle £ — X there exists a map f : X — Y such that
f*y = E. The Stiefel-Whitney classes of vy are all known so this gives
a way to calculate the Stiefel-Whitney classes of E.

The classifying space is given by the Grassmannian, Gr(k, N), of k
planes in RY for N >> k space. The canonical bundle y* — Y is given
by {(z,v) € Gr(k,N) x RN | v € z}. Given an R* bundle E over X we
construct the map f : X — Gr(k, N) as follows. Embed the bundle E
in X x RY. Then we have a map f : X — Gr(k, N) given by = — E,,.
The pull-back of the canonical bundle clearly gives E.

If instead we choose M > N then Gr(k, N) — Gr(k, M) and the
canonical bundle pulls back to the canonical bundle so the pull-back of
the Stiefel-Whitney classes is unaffected.

Associated to each manifold is a ring called the cohomology ring.
It is a contravariant functor from manifolds to rings. Characteristic
classes naturally live in this ring. The cohomology of the Grassmannian
is described completely by the Stiefel-Whitney classes of the canonical
bundle. Thus, instead of defining the cohomology ring, one can think of
the characteristic classes of the canonical bundle. The ring structure,
or cup product, comes from intersections and is most easily seen in
these two examples.

We have calculated w;(TRP?) and ¢;(TCP?). In both cases we can
produce a characteristic number from the cup product.
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The analogous story works for Chern classes where the Grassmannian
is now given by Gre(k, N) of complex subspaces C* ¢ CV.

Theorem 1. The cohomology ring H*(Gr(n,00); Zs) is a polynomial
algebra over Zy freely generated by the Stiefel-Whitney classes

w1 ("), oy we (Y").

The proof requires showing that the Stiefel-Whitney classes are in-
dependent by constructing a bundle over any space with that indepen-
dence, and then showing that the cohomology algebra they generate is
already big enough to give all cohomology classes.

Theorem 2. The cohomology ring H*(Grc(n,o0);7Z) is a polynomial
algebra over 7 freely generated by the Chern classes c1(y"), ..., cn(7").

6. PONTRYAGIN CLASSES AND APPLICATIONS

Given a real vector bundle F, the Pontryagin classes are defined by
almost as Chern classes via L — CP* and tensoring £ ®r L. The
significant difference is that the tensor product is over R, not C, and in
particular the dimension of the budnle changes. One way to interpret
this is that Pontryagin classes are Chern classes of the complexified
bundle £ ® C so they are given by families of vector fields restricted to
each CP* C CP* as described previously.

Equivalently, take r — 2k + 1 sections of E and pi(F) is the set in
M where these sections have rank at most » — 2k — 1. This character-
istic class is a function on oriented 4k-dimensional submanifolds of the
oriented manifold M to the integers.

Let’s calculate p; (TCP?). Take three vector fields given in terms of
three elements of su(3). We will choose

(ian _ixla O)a (0) ixla _i$2); (xla Zo, 0)

and these together with (xg, 21, z5) have to have rank 2. This occurs on
the intersection of two sets of three lines. That’s 9 points. The answer
should be 3 so this says that 6 points of intersection will be counted
positively and 3 negatively. That takes some thought.

Conjecturally, Pontryagin classes can be defined by using quater-
nionic projective space HIP*. This projective space uses the left action
of the quaternions on themselves. Again there is a canonical bundle
given by {(¢q,v) € HP*® xH | v = wq} for some w € H*. This definition
would require a quaternionic structure on E which is a restriction on
the real bundle.
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Characteristic classes have applications in showing if a manifold can
be embedded into Euclidean space, whether a manifold possesses an ori-
entation reversing diffeomorphism, whether a manifold is the boundary
of a manifold and whether a manifold is a product of manifolds.

7. DIFFERENTIAL FORMS, CONNECTIONS AND CURVATURE

This section seems difficult to digest quickly. Perhaps we will intro-
duce the concepts throughout earlier lectures.

An important object in differential geometry is a differential form.
Let’s start with usual integration. We can make sense of fab f(t)dt ofr
any function f defined on [a,b]. This can be thought of as integra-
tion over a manifold. We would like to integrate over submanifolds.
Consider a curve in the plane. If we have a function in the plane
can we integrate it over the curve? Really, integration needs R". So,
parametrise the curve. Notice, however, that the integral depends on
the parametrisation:

[ Ho@hds = [ 1619 s)as # [ ss)ds

for a change of parametrisation g. It ends up that we cannot integrate
functions over submanifolds but we can integrate differential forms like
f(s)ds = f(g)dg/g'(s). In three dimensions, a 1-form is given by three
functions

fi(z1, xe, x3)dxy + fo(T1, T2, x3)dTe + f1(21, T2, T3)dT3.
Similarly, a 2-form (in three dimensions) is given by three functions
fr2(z1, x2, x3)dxy N dag + fia(@y, T2, x3)dzy A dws + fosdrs A das

and it can be integrated over surfaces in the manifold. Notice that a
2-form becomes a well-defined function when restricted to a surface.
Thus, another way to think of a 2-form on a three-manifold is as a
function that makes sense when you specify a surface (or even a plane
of tangent vectors at a point). The expression A is used to show that
the definition is orientation sensitive which is necessary in changes of
coordinates.

If M" =JU; is a finite chart for M, so U; maps diffeomorphically
to a subset of R" although we will abuse this and treat U; C R", then a
differential 1-form is given by m; (z)dzy + ... + np(z)dx,. On an overlap
U; NU; with respect to the local coordinates y = (v, ..., y,) in U; there
is a change of coordinates ¢ = (z1(y), ..., ,(y)) so the differential form
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changes by

(1) m(x)dzy + ... + nu(x)dz, — an )0y, xidy;.

In other words a differential form is a section of a vector bundle.

The exterior derivative is an operator d that acts on differential
forms. Expressed in local coordinates: dni(z)dz; = ) ; 0p,mi(z)dz; A
dx; and this extends linearly to m (z)dz; + ... + n,(2)dz,. A function
f on M can be thought of as zero-form and its derivative df as a 1-
form. (This suggests the alternative view that at each point p € M a
differential form is a multilinear form on the tangent space T, .)

If dn = 0, we say 7 is closed, and when integrated over a submanifold
without boundary, the integral is invariant under deformations. This
follows from Stokes theorem: 0 = [,  dn = fo{O} - fo{l} where
¥ x I — M gives the deformation of a submanifold ¥ — M. Thus we
see that differential forms act a little like intersection numbers. We will
see that characteristic classes can be represented as differntial forms.

Let n and £ be two differential k-forms and suppose there is a differ-
ential (k — 1)-form v such that n — £ = dv. Then Stokes theorem says
that if ¥ C M has no boundary then [, 7 = [ & so we say that 1 and
¢ are equivalent when integrated, or equivalent in cohomology.

Suppose that isntead of a differential form transforming as in (1) it
changes as:

(2) Z 772 d.Tz = Z 772 -l- dv

where an extra term has been added. So rather than the differential
forms being equal after a change of coordinates they are equivalent
when integrated, or in cohomology.

A complex line bundle gives such a transformation rule, where dv =
dlIn );; is related to the transition functions that define the bundle. A
connection is a generalised differential form associated to a bundle that
satisfies (2 and any two connections differ by a differential 1-form. The
curvature of a connection is a 2-form given by the exterior derivative of
the 1-form which is well-defined. Any two connections give equivalent
2-forms, so to each complex line bundle there is an equivalence class (a
cohomology class) of 2-forms.

Remember that given a complex line bundle, the zero set of any
generic section assigns to a dimension 2 submanifold a number—count
zeros. Similarly, any connection gives rise to a 2-form which integrates
over a dimension 2 submanifold to get a number. Theorem: the latter
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number is 27 times the former. (In particular, the latter gives 27 times
an integer.) This 2-form gives the first Chern class of the bundle.

For a sum of complex line bundles, there are many combinations
of the 2-forms associated to each of the line bundles. Any symmetric
polynomial in the 2-forms gives rise to a chacteristic class.

8. CHARACTERISTIC NUMBERS

This section is based on a paper of Raoul Bott Vector fields and
Characteristic numbers Michigan mathematical journal 14, p231-244.
The zeros of any vector field, counted properly, give the Euler char-
acteristic of the manifold. Generalising this, a special type of vector
field has the property that local invariants of the vector field near its
zeros determine the Pontryagin numbers of the tangent bundle of the
manifold.

One satisfying aspect of this approach is the definition of Chern
classes for an endomorphism A : V — V of a finite-dimensional com-
plex vector space (which enables us to appreciate the word character-
istic in characteristic classes.) We define ¢;(A) to be the ith coefficient
of the characteristic polynomial A, so

D " Nei(A) = det(1 4 AA).

Let ®(c) = ®(cy,...cm) (dim M = 2m) be a polynomial in the indeter-
minates ¢; with complex coefficients. By replacing ¢; with ¢;(M) we
obtain ®{c(M)} which evaluates to numbers when the intersection of
the classes is zero dimensional. So the monomials that will contribute
are of the form ¢{*c5*...c%" such that a; + 2as + ... + na, = m. We also
define ® on an endomorphism A by ®(A) = ®(c1(A), ..., cm(A4)).

There is a Lie bracket on vector fields defined as follows. When we
think of vector fields as derivations acting on functions, then two vector
fields u and w combine to give [u,v]f = u(v(f)) — v(u(f)). Amazingly,
there exists a vector field u such that uf = [v, w]f for all functions f
so we put w = [u,v]. The action of a vector field u on other vector
fields by v + [u, v] is called the Lie derivative.

In general, as a function of v, the vector [u,v](z) depends on v in
a neighbourhood of . Whereas, at the zeros of v, its Lie derivative
is a zero order map. This means that u(p) = 0 implies that [u,v]
depends only on v(p) and thus [u,-] : T,M — T,M. This is because
fu, 01 = u(v(£)) — v(u(F)) = up(0(1)) — vp(ulf)) = —vp(u(f)) where
we have put u,, v, for the vector fields evaluated at the point and the
second equality uses u, = 0.
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A manifold M can be equipped with a Riemmannian metric g =
(-,-)—a symmetric positive definite inner product (continuously) as-
sociated to the tangent space at each point of M. So two vectors
u,v € T,M map to (u,v) € R. Examples: 52, S*, CP?.

The Lie derivative on vector fields enables us to “differentiate” a
metric g on the manifold. A vector field « is an infinitesimal isometry,
or a Killing vector field, if it satisfies ([u, v], w) + (v, [u, w]) = u - (v, w)
for all vector fields v and w.

At the each zero p of an infinitesimal isometry u, denote the induced
linear map on the tangent space by L, : T,M — T,M. With respect
to the metric, L, satisfies the skew symmetry property: (L,v,w) +
(v, Lyw) = 0. In other words, with respect to an orthonormal basis, so
that the inner product looks like the standard dot product, the linear
map satisfies L, = —LZ. Thus in odd dimensions det L, = 0 and in
even dimensions the determinant is a square.

Theorem 3 (Bott). If the vector field u is an infinitesimal isometry
on a compact, even-dimensional Riemannian manifold M whose zeros
are nondegenerate and ®(cy, ...,cp) is any polynomial of weight not
greater than m/2, then

1/2

Z@ )/ det(L,) = ®(M)

where the sum is over the zeros of u.



