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RATIONAL POLYNOMIALS OF SIMPLE TYPEWALTER D. NEUMANN AND PAUL NORBURYAbstra
t. We 
lassify two-variable polynomials whi
h are rational of simpletype. These are pre
isely the two-variablepolynomials with trivial homologi
almonodromy. 1. Introdu
tionA polynomial map f : C 2 ! C is rational if its generi
 �bre, and hen
e every�bre, is of genus zero. It is of simple type if, when extended to a morphism ~f : X !P1 of a 
ompa
ti�
ation X of C2 , the restri
tion of ~f to ea
h 
urve C of the
ompa
ti�
ation divisorD = X�C 2 is either degree 0 or 1. The 
urves C on whi
h~f is non-
onstant are 
alled horizontal 
urves, so one says brie
y \ea
h horizontal
urve is degree 1".The 
lassi�
ation of rational polynomials of simple type gained some new interestthrough the result of Cassou-Nogues, Artal-Bartolo, and Dim
a [4℄ that they arepre
isely the polynomials whose homologi
al monodromy is trivial (it suÆ
es thatthe homologi
al monodromy at in�nity be trivial by an observation of Dim
a).A 
lassi�
ation appeared in [12℄, but it is in
omplete. It impli
itly assumestrivial geometri
 monodromy (on page 346, lines 10{11). Trivial geometri
 mon-odromy implies isotriviality (generi
 �bres pairwise isomorphi
) and turns out tobe equivalent to it for rational polynomials of simple type. The 
lassi�
ation in thenon-isotrivial 
ase was announ
ed in the �nal se
tion of [17℄. The main purpose ofthis paper is to prove it. But we re
ently dis
overed that there are also isotrivialrational polynomials that are not in [12℄, so we have added a 
lassi�
ation for theisotrivial 
ase using our methods. This 
ase 
an also be derived from Kaliman's
lassi�
ation [9℄ of all isotrivial polynomials. The fa
t that his list in
ludes rationalpolynomials of simple type that are not in [12℄ appears not to have been noti
edbefore (it also in
ludes rational polynomials not of simple type).In general, the 
lassi�
ation of polynomial maps f : C 2 ! C is an open problemwith extremely ri
h stru
ture. One notable result is the theorem of Abhyankar-Mohand Suzuki [1, 23℄ whi
h 
lassi�es all polynomials with one �bre isomorphi
 to C .The analogous result for the next simplest 
ase, where one �bre is isomorphi
 to C � ,is open ex
ept in spe
ial 
ases when the genus of the generi
 �bre of the polynomialis given. Kaliman [10℄ 
lassi�es all rational polynomials with one �bre isomorphi
to C � .The basi
 tool we use in our study of rational polynomials is to asso
iate to anyrational polynomial f : C 2 ! C a 
ompa
ti�
ation X of C 2 on whi
h f extends toa well-de�ned map ~f : X ! P1 together with a map X ! P1 �P1. The map to1991 Mathemati
s Subje
t Classi�
ation. 14H20, 32S50, 57M25.This resear
h was supported by the Australian Resear
h Coun
il.1



2 WALTER D. NEUMANN AND PAUL NORBURYP1� P1 is not in general 
anoni
al. We will exploit the fa
t that for a parti
ular
lass of rational polynomials, there is an almost 
anoni
al 
hoi
e.Although we give expli
it polynomials, the 
lassi�
ation is initially presented interms of the spli
e diagram for the link at in�nity of a generi
 �bre of the polynomial(Theorem 4.1). This is 
alled the regular spli
e diagram for the polynomial (sin
egeneri
 �bres are also 
alled \regular"). See [15℄ for a des
ription of the link atin�nity and its spli
e diagram. The regular spli
e diagram determines the embeddedtopology of a generi
 �bre and the degree of ea
h horizontal 
urve. Hen
e we 
anspeak of a \rational spli
e diagram of simple type".The �rst author has asked if the moduli spa
e of polynomials with given regularspli
e diagram is 
onne
ted. For a rational spli
e diagram of simple type we �nd theanswer is \yes". We des
ribe the moduli spa
e for our polynomials in Theorem 4.2and use it to help give expli
it normal forms for the polynomials. We also des
ribehow the topology of the irregular �bres varies over the moduli spa
e.The more general problem of 
lassifying all rational polynomials, whi
h would
over mu
h of the work mentioned above, is still an open and interesting problem. Itis 
losely related to the problem of 
lassifying birational morphisms of the 
omplexplane sin
e a polynomial is rational if and only if it is one 
oordinate of a birationalmap of the 
omplex plane. Russell [20℄ 
alls this a \�eld generator" and de�nesa good �eld generator to be a rational polynomial that is one 
oordinate of abirational morphism of the 
omplex plane. A rational polynomial is good pre
iselywhen its resolution has at least one degree one horizontal 
urve, [20℄. Daigle [5℄studies birational morphisms C 2 ! C2 by asso
iating to a 
ompa
ti�
ation X ofthe domain plane a 
anoni
al map X ! P2. A birational morphism is then givenby a set of 
urves and points in P2 indi
ating where the map is not one-to-one. Theapproa
h we use in this paper is similar.The full list of rational polynomials f : C 2 ! C of simple type is as follows. Welist them up to polynomial automorphisms of domain C 2 and range C (so-
alled\right-left equivalen
e").Theorem 1.1. Up to right-left equivalen
e a rational polynomial f(x; y) of simpletype has one of the following forms fi(x; y), i = 1, 2, or 3.f1(x; y) =xq1sq + xp1sp r�1Yi=1(�i � xq1sq)ai (r � 2)f2(x; y) =xp1sp r�1Yi=1(�i � xq1sq)ai (r � 1)f3(x; y) =y r�1Yi=1(�i � x)ai + h(x) (r � 1):Here:0 � q1 < q; 0 � p1 < p; ����p p1q q1���� = �1;s = yxk + P (x); with k � 1 and P (x) a polynomial of degree < k;a1; : : : ; ar�1 are positive integers;�1; : : : ; �r�1 are distin
t elements of C � ;h(x) is a polynomial of degree <Pr�11 ai.



RATIONAL POLYNOMIALS OF SIMPLE TYPE 3Moreover, if g1(x; y) = g2(x; y) = xq1sq and g3(x; y) = x then (fi; gi) : C 2 !C 2 is a birational morphism for i = 1; 2; 3. In fa
t, gi maps a generi
 �bref�1i (t) biholomorphi
ally to C � f0; t; �1; : : : ; �r�1g, C � f0; �1; : : : ; �r�1g, or C �f�1; : : : ; �r�1g, a

ording as i = 1; 2; 3. Thus f1 is not isotrivial and f2 and f3 are.In [12℄ the isotrivial 
ase is subdivided into seven sub
ases, but these do notin
lude any f2(x; y) with p; q; p1; q1 all > 1.2. ResolutionGiven a polynomial f : C 2 ! C , extend it to a map �f : P2! P1 and resolve thepoints of indetermina
y to get a regular map ~f : X ! P1 that 
oin
ides with f onC 2 � X. We 
all D = X � C 2 the divisor at in�nity. The divisor D 
onsists of a
onne
ted union of rational 
urves. An irredu
ible 
omponent E of D is horizontalif the restri
tion of ~f to E is not a 
onstant mapping. The degree of a horizontal
urve E is the degree of the restri
tion ~f jE. Although the 
ompa
ti�
ation de�nedabove is not unique, the horizontal 
urves are essentially independent of 
hoi
e.Note that a generi
 �bre F
 := f�1(
) is a pun
tured Riemann surfa
e withpun
tures pre
isely where F 
 meets a horizontal 
urve. Thus f has simple type ifand only if F 
 meets ea
h horizontal 
urve exa
tly on
e, so the number of pun
-tures equals the number of horizontal 
urves. For non-simple type the number ofpun
tures will ex
eed the number of horizontal 
urves.We say that a rational polynomial is ample if it has at least three degree one hori-zontal 
urves. Those polynomials with no degree one horizontal 
urves, or bad �eldgenerators [20℄, are examples of polynomials that are not ample. The 
lassi�
ationof Kaliman [10℄ mentioned in the introdu
tion gives examples of polynomials withexa
tly one degree one horizontal 
urve so they are also not ample. Nevertheless,ample rational polynomials will be the fo
us of our study in this paper. We will
lassify all ample rational polynomials that are also of simple type.3. Curves in P1�P1.If ~f : X ! P1 is a regular map with rational �bres then X 
an be blown downto a Hirzebru
h surfa
e, S, so that ~f is given by the 
omposition of the sequen
eof blow-downs X ! S with the natural map S ! P1; see [2℄ for details. Moreover,by �rst repla
ing X by a blown-up version of X if ne
essary, we may assume thatS = P1�P1 and the natural map to P1 is proje
tion onto the �rst fa
tor.A rational polynomial f : C 2 ! C , on
e 
ompa
ti�ed to ~f : X = C 2 [D ! P1,may thus be given by P1�P1 together with instru
tions how to blow up P1�P1to get X and how to determine D in X. For this we give the following data:� a 
olle
tion C of irredu
ible rational 
urves in P1�P1 in
luding L1 :=1�P1;� a set of instru
tions on how to blow up P1�P1 to obtain X;� a sub-
olle
tion E of the 
urves of the ex
eptional divisor of X ! P1�P1;satisfying the 
ondition:� If D is the union of the 
urves of E and the proper transforms of the 
urvesof C then X �D �= C 2 ;If C � P1� P1 is an irredu
ible algebrai
 
urve we asso
iate to it the pair ofintegers (m;n) given by degrees of the two proje
tions of C to the fa
tors ofP1�P1.Equivalently, (m;n) is the homology 
lass of C in terms of H2(P1�P1) = Z�Z.



4 WALTER D. NEUMANN AND PAUL NORBURYWe 
all C an (m;n) 
urve. The interse
tion number of an (m;n) 
urve C and an(m0; n0) 
urve C0 is C �C0 = mn0 + nm0.The above 
olle
tion C of 
urves in P1�P1 will 
onsist of some verti
al 
urves(that is, (0; 1) 
urves; one of these is L1) and some other 
urves. These non-verti
al
urves give the horizontal 
urves for f , so they all have m = 1 if f is of simple type.Note that a (1; n) 
urve is ne
essarily smooth and rational (sin
e it is the graph ofa morphism P1! P1).The image in P1 � P1 of the �bre over in�nity is the (0; 1) 
urve L1 and theimage of a degree m horizontal 
urve is an (m;n) 
urve. This view allows one to seeas follows a geometri
 proof of the result of Russell [20℄ that a rational polynomialf is good pre
isely when its resolution has at least one degree one horizontal 
urve.A degree one horizontal 
urve for f has image in P1�P1 given by a (1; n) 
urve.Call this image C and let P be its interse
tion with L1. The (1; n) 
urves thatdo not interse
t C � P form a C{family that sweeps out P1 � P1 � (L1 [ C) sothey lead to a map X ! P1 whi
h takes values in C at points that do not lieover L1 [ C. Restri
ting to C 2 = X � D we obtain a meromorphi
 fun
tion g1that has poles only at points that belong to ex
eptional 
urves that were blownup on C (and do not belong to E). However the polynomial f is 
onstant onea
h su
h 
urve, so if 
1; : : : ; 
k are the values that f takes on these 
urves, theng := g1(f � 
1)a1 : : : (f � 
k)ak will have no poles, and hen
e be polynomial, fora1; : : : ; ak suÆ
iently large. Then (f; g) is the desired birational morphism C 2 !C 2 . For the 
onverse, given a birational morphism (f; g) : C 2 ! C 2 , we 
ompa
tifyit to a morphism ( ~f ; ~g) : X ! P1�P1. Then the proper transform of P1�1 is thedesired degree one horizontal 
urve for f .We shall use the usual en
oding of the topology of D by the dual graph, whi
hhas a vertex for ea
h 
omponent of D, an edge when two 
omponents interse
t, andvertex weights given by self-interse
tion numbers of the 
omponents of D. We willsometimes speak of the valen
y of a 
omponent C of D to mean the valen
y of the
orresponding vertex of the dual graph, that is, the number of other 
omponentsthat C meets.The approa
h we will take to get rational polynomials will be to start with any
olle
tion C of k 
urves in P1� P1 and see if we 
an produ
e a divisor at in�nityD for a map from C 2 to C . In order to get a divisor at in�nity we must blow upP1�P1, say m times, and in
lude some of the resulting ex
eptional 
urves in the
olle
tion so that this new 
olle
tion gives a divisor D whose 
omplement is C 2 .The ex
eptional 
urves that we \leave behind" (i.e., do not in
lude in D) will be
alled 
utting divisors.Lemma 3.1. (i) D must have m + 2 irredu
ible 
omponents, so we must in
ludem�k+2 of the ex
eptional divisors in the 
olle
tion leaving k�2 behind as 
uttingdivisors;(ii) D must be 
onne
ted and have no 
y
les;(iii) D must redu
e to one of the \Morrow 
on�gurations" by a sequen
e of blow-downs. The Morrow 
on�gurations are the 
on�gurations of rational 
urves withdual graphs of one of the following three types, in whi
h, in the last 
ase, afterrepla
ing the 
entral (n; 0;�n � 1) by a single (�1) vertex the result should blowdown to a single (+1) vertex by a sequen
e of blow-downs:1Æ



RATIONAL POLYNOMIALS OF SIMPLE TYPE 50 lÆ Ælm ��� l1 n 0 �n�1 t1 ��� tkÆ Æ Æ Æ Æ Æ ÆThese 
onditions are also suÆ
ient that X �D �= C 2 .Proof. The �rst property follows from the fa
t that ea
h blow-up in
reases therank of se
ond homology by 1. Thus H2(X) has rank m + 2, so D must havem+2 irredu
ible 
omponents. Noti
e that this implies easily the well-known result[11, 12, 23℄ that Æ � 1 =Xa2C(ra � 1);where Æ is the number of horizontal 
urves of f and ra is the number of irredu
ible
omponents of f�1(a). (Both sides are equal to k� 1� fnumber of �nite 
urves atin�nityg.)The se
ond property follows from the third property. For the third property andsuÆ
ien
y see [13, 19℄.Now assume that ~f has at least three degree one horizontal 
urves. Take thesethree horizontal 
urves and use them to map X to P1�P1 as follows. The threehorizontal 
urves de�ne three points in a generi
 �bre of ~f . We 
an map this generi
�bre to P1 by mapping these three points to 0; 1;12 P1. This de�nes a map froma Zariski open set of X to P1 whi
h then extends to a map � from X to P1. If � isnot a morphism then we blow up X to get a morphism. Rather than introdu
ingfurther notation for this blow-up we will assume we began with this blow-up and
all it X. Together with the map ~f this gives us the desired morphismX ( ~f;�)�! P1�P1with the property that the three horizontal 
urves map to (1; 0) 
urves.If all horizontal 
urves for f are of type (1; 0) then the generi
 �bres form anisotrivial family (brie
y \f is isotrivial"). Thus if f is of simple type but notisotrivial, there must be a horizontal 
urve of type (1; n) in C with n > 0. Fromnow on, therefore, we assume that there are at least three (1; 0) 
urves and at leastone (1; n) 
urve in C with n > 0.Lemma 3.2. Any 
urve of D that is beyond a horizontal 
urve from the point ofview of ~L1 has self-interse
tion number � �2.Proof. If the 
urve is an ex
eptional 
urve then it has self-interse
tion � �1. If �1,then the 
urve must have valen
y at least three (sin
e any �1 ex
eptional 
urvethat 
ould be blown down is a 
utting divisor). Any three adja
ent 
urves mustin
lude two horizontal 
urves, whi
h 
ontradi
ts the fa
t that the dual graph of Dhas no 
y
les. If the 
urve is not ex
eptional then it is the proper transform ofa verti
al 
urve. But we must have blown up at least three times on the verti
al
urve to get rid of 
y
les in the dual graph of D so in this 
ase the self-interse
tionis � �3.



6 WALTER D. NEUMANN AND PAUL NORBURY3.1. Horizontal 
urves. The next few lemmas will be devoted to �nding restri
-tions on the horizontal 
urves in the 
on�guration C � P1 � P1, 
ulminating inProposition 3.9.Lemma 3.3. A horizontal 
urve of type (1; n) in C must be of type (1; 1).Proof. Assume we have a horizontal 
urve C 2 C of type (1; n) with n > 1. Itinterse
ts ea
h of the three (1; 0) 
urves n times (
ounting with multipli
ity) soin order to break 
y
les|Lemma 3.1 (ii)|we have to blow up at least n timeson ea
h (1; 0) horizontal 
urve, so the proper transforms of the three (1; 0) 
urveshave self-interse
tion at most �n and the proper transform of the (1; n) 
urve hasself-interse
tion at most 2n� 3n = �n.By Lemma 3.1 (iii), D must redu
e to a Morrow 
on�guration by a sequen
e ofblow-downs. Thus D must 
ontain a �1 
urve E that blows down. By Lemma 3.2,the 
urve E must be a proper transform of a horizontal 
urve. The proper transformof ea
h (1; 0) 
urve has self-interse
tion at most �n < �1. Thus E must 
ome fromone of the (1; �) horizontal 
urves. As mentioned above, the proper transform ofa (1; k) 
urve has self-interse
tion � �k so E must be the proper transform of a(1; 1) 
urve, E0. But E0 would interse
t C, the (1; n) 
urve, 2n times and hen
eE:E � 2� 2n < �1 sin
e n > 1. This is a 
ontradi
tion so any horizontal 
urve oftype (1; n) must be a (1; 1) 
urve.Hen
e, the horizontal 
urves 
onsist of a 
olle
tion of (1; 0) 
urves and (1; 1)
urves. Figure 1 shows an example of a possible 
on�guration of horizontal 
urvesin P1�P1. ::: uuuuuuuuuuuuuuuuuuuuuuuuuuFigure 1. Con�guration of horizontal 
urves.Lemma 3.4. ~L1 � ~L1 = �1.Proof. We blow up at a point on L1 pre
isely when at least two horizontal 
urvesmeet in a 
ommon point there. In general, if a horizontal 
urve meets L1 with ahigh degree of tangen
y then we blow up repeatedly there. But, sin
e all horizontal
urves are (1; 0) and (1; 1) 
urves, they meet L1 transversally, so a point on L1will be blown up at most on
e.If there are two su
h points to be blown up, then after blowing up there willbe (in the dual graph) two non-neighbouring �1 
urves with valen
y > 2. The
omplement of su
h a 
on�guration 
annot be C 2 . This is proven by Kaliman [11℄as Corollary 3. A
tually the result is stated for two �1 
urves of valen
y 3 but itapplies to valen
y � 3.Thus, at most one point on L1 is blown up and ~L1 � ~L1 = 0 or �1. We mustshow 0 
annot o

ur.



RATIONAL POLYNOMIALS OF SIMPLE TYPE 7A B1B2eeFigure 2. The bran
hes B1 and B2 
onsist of 
urves of self-interse
tion < �1 and e � �1.Sin
e there are at least four horizontal 
urves, if ~L1 � ~L1 = 0, then ~L1 hasvalen
y at least 4 and every other 
urve has negative self-interse
tion. Furthermore,the only possible �1 
urves must be horizontal 
urves, and these interse
t ~L1 inD.As we attempt to blow down D to get to a Morrow 
on�guration, the only 
urvesthat 
an be blown down will always be adja
ent to ~L1. Thus the interse
tionnumber of ~L1 will be
ome positive and all other interse
tion numbers remainnegative, so a Morrow 
on�guration 
annot be rea
hed. Hen
e, ~L1 � ~L1 = �1.Lemma 3.5. A 
on�guration of 
urves that 
ontains two bran
hes 
onsisting of
urves of self-interse
tion < �1 that meet at a valen
y > 2 
urve of self-interse
tiongreater than or equal to �1 as in Figure 2 (where the meeting 
urve is drawn withvalen
y 3 for 
onvenien
e) 
annot be blown down to a Morrow 
on�guration.Proof. Sin
e the two bran
hes 
onsist of 
urves of self-interse
tion < �1, they
annot be redu
ed before the other bran
hes are redu
ed. If the rest of the 
on�g-uration of 
urves is blown down �rst then the valen
y > 2 
urve be
omes a valen
y2 
urve with non-negative self-interse
tion and no more blow-downs 
an be done.Sin
e there is no 0 
urve, we have not rea
hed a Morrow 
on�guration.Lemma 3.6. The interse
tion of any two (1; 1) 
urves in C 
onsists of two distin
tpoints 
ontained in the union of the (1; 0) 
urves in C.Proof. We will assume otherwise and redu
e to the situation of Lemma 3.5 to givea 
ontradi
tion. Thus, assume that two (1; 1) 
urves do not interse
t in two points
ontained in the union of the (1; 0) 
urves. Then in order to break 
y
les these
urves must be blown up at least four times|on
e ea
h for at least three of the(1; 0) 
urves and at least another time for the interse
tion of the two (1; 1) 
urves.Thus they have self-interse
tion < �1.Case 1: Suppose two (1; 1) 
urves meet on L1. Then after blowing up (twi
e ifthe (1; 1) 
urves meet at a tangent), the ex
eptional 
urves are retained and the �nalex
eptional 
urve has self-interse
tion �1, valen
y 3 and two bran
hes, whi
h wewill 
all B1 and B2, 
onsisting of the proper transforms of the two (1; 1) 
urves andany other 
urves beyond these proper transforms all of whi
h have self-interse
tion< �1. Thus we are in the situation of Lemma 3.5 and we get a 
ontradi
tion.Case 2: Suppose two (1; 1) 
urves meet L1 at distin
t points. Then at leastone of the (1; 1) 
urves, D, must meet L1 at a point away from the (1; 0) 
urvesby Lemma 3.4. Also one of the (1; 0) 
urves, H, must meet L1 away from the



8 WALTER D. NEUMANN AND PAUL NORBURY(1; 1) 
urves and 
ontain at least two points where it interse
ts the (1; 1) 
urvesand thus have self-interse
tion < �1 after blowing up to break 
y
les. We are on
emore at the situation of Lemma 3.5 where the valen
y > 2 
urve is ~L1 whi
h hasself-interse
tion �1 by Lemma 3.4, and the bran
hes B1 and B2 are the propertransform of D and any 
urves beyond it, respe
tively the proper transform of Hand any 
urves beyond it. Thus we have a 
ontradi
tion.Noti
e that both 
ases apply to two (1; 1) 
urves that may interse
t at a tangentpoint, and shows that this situation is impossible.Lemma 3.7. If there is more than one (1; 1) 
urve in C then there are exa
tly three(1; 0) horizontal 
urves in C.Proof. Assume that there are more than three (1; 0) horizontal 
urves in C and atleast two (1; 1) 
urves, say C1 and C2.Case 1: C1 and C2 meet on ~L1. Then they meet ea
h of at least two (1; 0)
urves in distin
t points, so after blowing up to destroy 
y
les, these (1; 0) 
urveshave self-interse
tion number � �2 and Lemma 3.5 applies.Case 2: C1 and C2 meet ~L1 at distin
t points. Then one of them, say C1,meets ~L1 at a point not on a (1; 0) 
urve by Lemma 3.4. At least one (1; 0) 
urveC3 meets C1 and C2 in distin
t points. After breaking 
y
les, C1 and C3 haveself-interse
tions � �2 so Lemma 3.5 applies again.Lemma 3.8. A family of (1; 1) horizontal 
urves in C must pass through a 
ommonpair of points.Proof. The statement is trivial for one (1; 1) horizontal 
urve so assume there areat least two (1; 1) horizontal 
urves in C. By the previous lemma, there are exa
tlythree (1; 0) horizontal 
urves.If there are exa
tly two (1; 1) horizontal 
urves in C then the lemma is 
lear sin
ethe 
urves 
annot be tangent by Lemma 3.6.When there are more than two (1; 1) 
urves in C, apply Lemma 3.6 to two ofthem. If another (1; 1) horizontal 
urve in C does not interse
t these two (1; 1)
urves at their 
ommon two points of interse
tion then, by Lemma 3.6, it mustmeet both these (1; 1) 
urves at the third (1; 0) horizontal 
urve of C. So the �rsttwo (1; 1) 
urves would meet there, whi
h is a 
ontradi
tion.Proposition 3.9. Any 
on�guration of horizontal 
urves in C is equivalent to oneof the form in Figure 1.Proof. By assumption and Lemma 3.3 there are at least three (1; 0) horizontal
urves and some (1; 1) horizontal 
urves in C. If there is exa
tly one (1; 1) horizontal
urve then the proposition is 
lear. If there is more than one (1; 1) horizontal 
urve,then by Lemmas 3.7 and 3.8 there are pre
isely three (1; 0) horizontal 
urves andtwo of the (1; 0) horizontal 
urves 
ontain the 
ommon interse
tion of the (1; 1)
urves. Ea
h (1; 1) 
urve also 
ontains a distinguished point where the 
urve meetsthe third (1; 0) horizontal 
urve. A Cremona transformation 
an bring su
h a
on�guration to that in Figure 1 by blowing up at the two points of interse
tionof the (1; 1) 
urves and blowing down the two verti
al lines 
ontaining the twopoints. This sends two of the (1; 0) horizontal 
urves and ea
h (1; 1) 
urve to (1; 0)horizontal 
urves and one of the (1; 0) 
urves to a (1; 1) 
urve that interse
ts ea
h



RATIONAL POLYNOMIALS OF SIMPLE TYPE 9of the other horizontal 
urves exa
tly on
e. Note that sin
e we blow up P1�P1 toget the polynomial map, two 
on�gurations of 
urves C; C0 in P1�P1 related by aCremona transformation give rise to the same polynomial, so we are done.3.2. The 
on�guration C. The image C of D � X ! P1�P1 will 
onsist of the
on�guration of horizontal 
urves in Figure 1 plus some (0; 1) verti
al 
urves. Thenext two lemmas show that in fa
t the only (0; 1) verti
al 
urve we need to in
ludein C is L1 and furthermore that C 
an be given by Figure 4.Lemma 3.10. The 
on�guration C appears in Figure 3 or Figure 4.Proof. Let r+2 denote the number of horizontal 
urves and k+1 denote the numberof (0; 1) verti
al 
urves in C. Thus C 
onsists of k + r + 3 irredu
ible 
omponentsand by Lemma 3.1 (i), when blowing up to get D from C we must leave k + r + 1ex
eptional 
urves behind as 
utting divisors.By Lemma 3.1 (ii) we must break all 
y
les. The minimum number of 
uttingdivisors needed to do this is kr + k + r � 2minfk; rg. This is be
ause ea
h of thek (0; 1) verti
al 
urves di�erent from L1 must be separated from all but one ofthe r + 1 (1; 0) horizontal 
urves, so we need kr 
utting divisors. Also, the (1; 1)horizontal 
urve meets ea
h of the r + 1 (1; 0) horizontal 
urves and ea
h of the k(0; 1) verti
al 
urves on
e, so that requires k + r 
utting divisors (by Lemma 3.4the (1; 1) 
urve must meet L1 at a triple point with a (1; 0) horizontal 
urve, sothis interse
tion does not produ
e a 
y
le to be broken). We would thus requirekr+k+r 
utting divisors ex
ept that the (1; 1) 
urve may pass through interse
tionsof the (1; 0) horizontal 
urves and the (0; 1) verti
al 
urves, so some of the 
uttingdivisors may 
oin
ide. The most su
h interse
tions possible is minfk; rg and wehave then over-
ounted required 
utting divisors by 2minfk; rg. Hen
e we get atleast kr + k + r � 2minfk; rg 
utting divisors.Sin
e the number k+ r+1 of 
utting divisors is at least kr+ k+ r� 2minfk; rg,we have k + r + 1 � kr + k + r � 2minfk; rg, so1 � k(r � 2) and 1 � (k � 2)r; k � 0; r � 2:(1)The solutions of (1) are (k; r) = f(0; r); (1; 2); (1; 3); (2;2)g.Re
all by Lemma 3.4 that the (1; 1) 
urve must meet L1 at a triple point witha (1; 0) horizontal 
urve. Furthermore, by keeping tra
k of when either inequalityin (1) is an equality, or one away from an equality, we 
an see that the (1; 1) 
urvemust meet any other (0; 1) verti
al 
urves at a triple point with a (1; 0) horizontal
urve. Thus, the only possible 
on�gurations for C are given in Figures 3 and 4.
yyyyyyyyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyyyyyyyy

yyyyyyyyyyyyyyyyyyyyyyyyFigure 3. Con�guration C.



10 WALTER D. NEUMANN AND PAUL NORBURY::: yyyyyyyyyyyyyyyyyyyyyyyyFigure 4. Con�guration C with r + 2 horizontal 
urves.In the following lemmas we will ex
lude the 
on�gurations in Figure 3. Labelthe triple points in the �rst two 
on�gurations of Figure 3 by P1 2 L1 and P1,and in the third 
on�guration by P1; P1; P2. Also, label the ex
eptional divisorobtained by blowing up the triple point Pi by Ei and its proper transform by ~Ei.Lemma 3.11. If Ei is a 
utting divisor then the (0; 1) verti
al 
urve 
ontaining Pi
an be removed from C by a birational transformation.Proof. In ea
h of the 
on�gurations of Figure 3 we 
an perform a Cremona trans-formation by blowing up P1 and Pi for i = 1 or 2 and then blowing down ~L1 andthe proper transform of the (0; 1) verti
al 
urve that 
ontains Pi. The ex
eptionaldivisors E and Ei be
ome (0; 1) 
urves and the (0; 1) verti
al 
urve that 
ontainsPi be
omes an ex
eptional divisor in a new 
on�guration C. When Ei is a 
uttingdivisor this operation essentially removes a (0; 1) verti
al 
urve from C.Lemma 3.12. In a 
on�guration from Figure 3 with (k; r) 2 f(1; 3); (2; 2)g at leastone of the ex
eptional divisors E1 or E2 is a 
utting divisor.Proof. Suppose otherwise, that E1 is not a 
utting divisor and for (k; r) = (2; 2) noris E2 a 
utting divisor. The ex
eptional 
urves Ei introdu
e an extra interse
tionand hen
e an extra 
utting divisor is required. There is one su
h extra interse
tionin the 
on�guration with (k; r) = (1; 3) and two su
h extra interse
tions in the
on�guration with (k; r) = (2; 2). As mentioned in the proof of Lemma 3.10 thesolution (k; r) = (1; 3) gives equality in (1) and so it 
annot sustain an extra 
uttingdivisor. Similarly the solution (k; r) = (2; 2) is 1 away from equality in (1) and soit 
annot sustain two extra 
utting divisors. Hen
e we get a 
ontradi
tion and thelemma is proven.By the previous two lemmas we 
an simplify any 
on�guration from Figure 3to lie in Figure 4 or to be the �rst 
on�guration from Figure 3 (the one with(k; r) = (1; 2)) with the requirement that E1 is not a 
utting divisor. It is this last
ase that we will now ex
lude.The next three lemmas suppose that we have the �rst 
on�guration fromFigure 3and that E1 is not a 
utting divisor. We will denote the four horizontal 
urves byHi, i = 1; : : : ; 4, and their proper transforms by ~Hi where H4 is the (1; 1) 
urve, H1
ontains P1 and H3 
ontains P1. Also denote the (1; 0) verti
al 
urve that 
ontainsP1 by L1 and its proper transform by ~L1.Lemma 3.13. At least one of ~H1 and ~H2 and at least one of ~H3 and ~H4 hasself-interse
tion �1.



RATIONAL POLYNOMIALS OF SIMPLE TYPE 11Proof. The proper transform of ea
h horizontal 
urve has self-interse
tion less thanor equal to �1 and all 
urves in D beyond horizontal 
urves have self-interse
tionstri
tly less than �1. If the two horizontal 
urves that meet ~L1, ~H1 and ~H2,have self-interse
tion stri
tly less than �1, then sin
e all 
urves beyond the twohorizontal 
urves also have self-interse
tion stri
tly less than �1, and sin
e ~L1 hasself-interse
tion �1 and valen
e 3 this gives a 
ontradi
tion by Lemma 3.5. Thesame argument applies to ~H3 and ~H4 together with E.Lemma 3.14. ~H4 � ~H4 = �1 if and only if ~H2 � ~H2 = �1.Proof. Sin
e L1 must be separated from at least one of H2 and H3 then at mostone of ~H2 � ~H2 = �1 and ~H3 � ~H3 = �1 
an be true. SimilarlyE1 must be separatedfrom at least one of H1 and H4 so at most one of ~H1 � ~H1 = �1 and ~H4 � ~H4 = �1
an be true. By Lemma 3.13, if ~H2 � ~H2 6= �1 then ~H1 � ~H1 = �1 so ~H4 � ~H4 6= �1.Similarly, ~H1 � ~H1 6= �1 implies that ~H2 � ~H2 = �1 and ~H4 � ~H4 = �1.Lemma 3.15. The 
on�guration from Figure 3 with (k; r) = (1; 2) together withthe requirement that E1 is not a 
utting divisor 
annot o

ur.Proof. Suppose otherwise. Assume that ~H1 � ~H1 = �1 and ~H3 � ~H3 = �1. If thisis not the 
ase, then by Lemmas 3.13 and 3.14 we may assume that ~H4 � ~H4 = �1and ~H2 � ~H2 = �1 and argue similarly. The 
urves beyond ~H1 have self-interse
tionstri
tly less than �1. The 
urve immediately adja
ent and beyond ~H1 is ~E1 andthis has self-interse
tion stri
tly less than �2. This is be
ause we must blow upbetween E1 and H4 to separate 
y
les, and also between ~E1 and ~L1 to break 
y
lesand to maintain ~H1 � ~H1 = �1 and ~H3 � ~H3 = �1. Thus if we blow down ~H1the remaining bran
h beyond ~L1 
onsists of 
urves with self-interse
tion stri
tlyless than �1. Also ~H2 has self-interse
tion stri
tly less than �1 sin
e we have toblow up the interse
tion between H2 and H4 and the interse
tion between H2 andL1 in order to break 
y
les and maintain ~H3 � ~H3 = �1. After blowing down ~H1,~L1 has self-interse
tion 0 and valen
y 3 with two bran
hes 
onsisting of 
urvesof self-interse
tion stri
tly less than �1. Thus we 
an use Lemma 3.5 to get a
ontradi
tion.4. Non-isotrivial rational polynomials of simple typeThe 
on�guration in Figure 4 is the starting point for any non-isotrivial rationalpolynomial of simple type. Noti
e that we 
an �ll one pun
ture in ea
h �bre ofany su
h map to get an isotrivial family of 
urves and the pun
ture varies linearlywith 
 2 C . Noti
e also that there is an irregular �bre for ea
h of the r interse
tionpoints of the (1; 1) 
urve with (1; 0) horizontal 
urves away from L1. In fa
t thereis at most one more irregular �bre whi
h 
an only o

ur in rather spe
ial 
ases, aswe dis
uss in subse
tion 4.1.From now on the 
on�guration C is given by Figure 4 with r+2 horizontal 
urves.Beginning with C we will list all of the rational polynomials of simple type generatedfrom this 
on�guration. We shall give the spli
e diagrams for these polynomials�rst. Although we 
ompute the polynomials later, geometri
 information of interestis often more easily extra
ted from the spli
e diagram or from our 
onstru
tion ofthe polynomials than from an a
tual polynomial.The spli
e diagram en
odes the topology of the polynomial. It represents thelink at in�nity of the generi
 �bre, or it 
an be thought of as an eÆ
ient plumbing



12 WALTER D. NEUMANN AND PAUL NORBURYgraph for the divisor at in�nity, D � X. It en
odes an entire parametrised familyof polynomials with the same topology of their regular �bres. See [7, 15, 16℄ formore details. Within this family, polynomials 
an still di�er in the topology of theirirregular �bres. Our methods also give all information about the irregular �bres,as we des
ribe in subse
tion 4.1.The 
on�guration C has r+3 irredu
ible 
omponents so when we blow up to getDby Lemma3.1 (i) we will leave r+1 ex
eptional 
urves behind as 
utting divisors. ByLemma 3.1 (ii) we must break the r 
y
les in C with multiple blow-ups at the pointsof interse
tion leaving r ex
eptional 
urves behind as 
utting divisors. We blow upmultiple times between the rth (1; 0) horizontal 
urve and the (1; 1) horizontal 
urvein order to break a 
y
le. Thus, we require those blow-ups to satisfy the 
onditionthat the ex
eptional 
urve will break the 
y
le if removed. Equivalently, ea
h newblow-up takes pla
e at the interse
tion of the most re
ent ex
eptional 
urve withan adja
ent 
urve. We 
all su
h a multiple blow-up a separating blow-up sequen
e.We have one extra 
utting divisor. This will arise as the last ex
eptional 
urveblown up in a sequen
e of blow-ups that does not break a 
y
le. We will 
all this se-quen
e of blow-ups a non-separating blow-up sequen
e. A priori, this non-separatingblow-up sequen
e 
ould be a sequen
e as in Figure 5, where the �nal �1 
urve isP Æ
�

�

�Æ __ Æ_ _ __ Æ_ _Æ __ Æ __

�
� Æ_ _�1ÆFigure 5. Sequen
e of blow-ups starting at P and ending at the�1 
urve.the 
utting divisor. However, we shall see that the extra nodes this introdu
es inthe dual graph prohibit D from blowing down to a Morrow 
on�guration, so thesequen
e is simply a string of �2 ex
eptional 
urves followed by �1 ex
eptional
urve that is the 
utting divisor. This arises from blowing up a point on a 
urve inthe blow-up of C that does not lie on an interse
tion of irredu
ible 
omponents.Let us begin by just performing the separating blow-up sequen
es at the pointsof interse
tion, of C and leaving the non-separating blow-up sequen
e until later.This gives the dual graph in Figure 6 with the proper transforms of the r+1 (1; 0)horizontal 
urves and the (1; 1) horizontal 
urve indi
ated along with ~L1 and theex
eptional 
urve E arising from the blow-up of the triple point in C. There arer bran
hes heading out from the proper transform of (1; 1) 
onsisting of 
urves ofself-interse
tion less than �1 and beyond ea
h of the proper transforms of the r(1; 0) horizontal 
urves the 
urves have self-interse
tion less than �1.The self-interse
tion of ea
h of (f1; 0)0, E and ~L1 is �1. The self-interse
tions of(f1; 1) and (f1; 0)i, i = 1; : : : ; r are negative and depend on how we blow up at ea
hpoint of interse
tion.Lemma 4.1. There is at most one bran
h in D beyond (f1; 1), and r � 1 of thehorizontal 
urves (f1; 0)i (those with index i = 1; : : : ; r�1 say) have self-interse
tion�1 and only �2 
urves beyond.
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JJJJJJJJ Æ

kkkkkkkkkkkkkkE ~L1 (f1;0)r�1Æ
vv

vv
vv

vv
v Æ

RRRRRRRRRRRRRR Æ(f1;0)0Æ (f1;0)1 ÆFigure 6. Dual graph of C blown up at points of interse
tion.Proof. Sin
e the self-interse
tion of ea
h of the 
urves beyond (f1; 1) is less than �1ea
h bran
h beyond (f1; 1) 
annot be blown down before (f1; 1). Thus, there are atmost two bran
hes.Furthermore, sin
e the self-interse
tion of ea
h of the 
urves beyond (f1; 0)i, i =1; : : : ; r is less than �1, the bran
h beyond (f1; 0)i 
an be blown down before (f1; 0)ionly if (f1; 0)i has self-interse
tion �1 and ea
h 
urve beyond has self-interse
tion�2. Thus, at most two bran
hes beyond (f1; 0)i, i = 1; : : : ; r do not 
onsist ofa �1 
urve with a string of �2 
urves beyond. If there are two su
h bran
hesthen the blow-ups that 
reate them 
reate 
orresponding bran
hes beyond (f1; 1)(or possibly just de
rease the interse
tion number at (f1; 1)). These two bran
hes
annot be fully blown down until everything else 
onne
ting to the ~L1 vertex areblown down, but the vertex (f1; 1) and any bran
hes beyond it 
annot blow down�rst. Thus D 
annot blow down to a Morrow 
on�guration. Thus there is at mostone su
h bran
h, proving the Lemma.Figure 7 gives the dual graph of the partially blown up C where the label of ea
h
urve is now its self-interse
tion number. The bran
h beyond (f1; 0)i 
onsists of astring of ai � 1 �2 
urves and A =Pr�1i=1 ai. We have thus far only blown up on
ebetween the rth (1; 0) horizontal 
urve and the (1; 1) horizontal 
urve, indi
ating theex
eptional divisor by 
. We may blow up many more times|perform a separatingblow-up sequen
e|leaving behind the �nal ex
eptional 
urve as 
utting divisor toget a bran
h beyond (f1; 1) and a bran
h beyond (f1; 0)r . In addition, we still haveto perform the non-separating blow-up sequen
e at some point on the divisor.�A �1Æ
LLL

LLLL
L 
______ ______ Æ

nnnnnnnnn�1 �1 �1 �2 �2Æ
ssss

sss
s Æ

OOOOOOOOOO
WWWWWWWWW Æ Æ far�1�1g Æ�1Æ �1 Æ

SSSSSSSSS �2 Æ fa1�1g �2ÆFigure 7. Dual graph of partially blown-up 
on�guration of 
urves.



14 WALTER D. NEUMANN AND PAUL NORBURYLemma 4.2. The non-separating blow-up sequen
e o

urs beyond either (f1; 1), (f1; 0)r,or (f1; 0)0 and in the latter 
ase (f1; 1) � (f1; 1) = �1.Proof. If the non-separating blow-up sequen
e o

urs on the bran
h beyond (f1; 0)i,i = 1; : : : ; r�1 then that bran
h 
annot be blown down. By the proof of lemma 4.1,in order to obtain a linear graph we must blow down r� 1 of the bran
hes beyond(f1; 0)i, i = 1; : : : ; r. Thus, if the non-separating blow-up sequen
e does o

urbeyond (f1; 0)i for some i � r� 1, then the (f1; 0)r bran
h blows down, so we simplyswap the labels i and r.The non-separating blow-up sequen
e 
annot o

ur on E or ~L1 be
ause theresulting 
utting divisor would not be sent to a �nite value.If the non-separating blow-up sequen
e o

urs on the bran
h beyond (f1; 0)0 thenwe must be able to blow down the bran
h beyond (f1; 1), hen
e the bran
h must
onsist of (f1; 1) with self-interse
tion �1.Lemma 4.3. We may assume the non-separating blow-up sequen
e does not o

urbeyond (f1; 0)0.Proof. By Lemma 4.2 if the non-separating blow-up sequen
e o

urs beyond (f1; 0)0then (f1; 1) � (f1; 1) = �1. In parti
ular, 1 = A = Pr�11 ai. Thus, r = 2, a1 = 1.With only four horizontal 
urves, we 
an perform a Cremona transformation tomake (f1; 0)0 the (1; 1) 
urve and hen
e we are in the �rst 
ase of Lemma 4.2.Lemma 4.4. The non-separating blow-up sequen
e o

urs on either of the last
urves beyond (f1; 1) or (f1; 0)r and is a string of �2 
urves followed by the �1
urve that is a 
utting divisor.Proof. Arguing as previously, if the non-separating blow-up sequen
e o

urs any-where else, or if it is more 
ompli
ated, then it introdu
es a new bran
h preventingthe divisor D from blowing down to a linear graph.We now know that our divisor D results from Figure 7 by doing a separatingblow-up sequen
e between the (1; 1) 
urve and the r-th (1; 0) 
urve, leaving behindthe �nal �1 ex
eptional 
urve as a 
utting divisor and then performing a non-separating blow-up sequen
e on a 
urve adja
ent to this 
utting divisor to produ
ese
ond 
utting divisor.A priori, it is not 
lear that this pro
edure always gives rise to a divisor D � Xwhere X is a blow-up of P2 and D is the pre-image of the line at in�nity. The
lassi�
ation will be 
omplete on
e we show it does.Lemma 4.5. The above pro
edure always gives rise to a 
on�guration that blowsdown to a Morrow 
on�guration (see Lemma 3.1) and hen
e determines a rationalpolynomial of simple type.Proof. The 
al
ulation involves the relation between plumbing graphs and spli
ediagrams des
ribed in [7℄ or [16℄, with whi
h we assume familiarity. In parti
ular,we use the 
ontinued fra
tions of weighted graphs des
ribed in [7℄. If one has a
hain of verti
es with weights �
0;�
1; : : : ;�
t, its 
ontinued fra
tion based at the
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0 � 1
1 � 1
2 � .. . � 1
tThe dual graph for the 
urve 
on�guration of Lemma 4.5 has 
hains startingat the vertex (f1; 1) and (f1; 0)r . We 
laim these 
hains have 
ontinued fra
tionsevaluating to A � 1 + PQ and qp respe
tively, where P;Q; p; q are arbitrary positiveintegers with Pq � pQ = 1. We des
ribe the main ingredients of this 
al
ulationbut leave the details to the reader.An easy indu
tion shows that the initial separating blow-up sequen
e leads to
hains at (f1; 1) and (f1; 0)r with 
ontinued fra
tions A� 1+ nm and mn with positive
oprime n and m. The non-separating blow-up sequen
e then 
hanges the fra
tionnm or mn that it operates on as follows. If the non-separating blow-up sequen
e
onsists of k blow-ups at the end of the left 
hain then nm is repla
ed by NM withNm� nM = 1 and k � Mm < Nn � (k+ 1). If the non-separating blow-up sequen
eis on the right then mn is similarly 
hanged instead.Renaming, we 
an des
ribe this in terms of our 
hosen names p; q; P;Q as follows.We either have P > p or q > Q. If P > p the initial separating blow-up sequen
eleads to 
hains with 
ontinued fra
tions A � 1 + pq and qp and the non-separatingblow-up sequen
e then 
onsists of a sequen
e of k := bQq 
 blowups extending theleft 
hain (and 
hanging its 
ontinued fra
tion to A�1+ PQ ). If q > Q the 
ontinuedfra
tions are A� 1+ PQ and QP after the separating blowup and the non-separatingblow-up 
onsists of k := b pP 
 blow-ups extending the right 
hain (and 
hanging its
ontinued fra
tion to qp ).To prove the Lemmawe must show that the dual graph of our 
urve 
on�gurationblows down to a Morrow 
on�guration. We 
an blow down the 
hains starting at(f1; 0)i, i = 0; : : : ; r � 1, to get a 
hain. To 
he
k that this 
hain is a Morrow
on�guration we must 
ompute its determinant, whi
h we 
an do with 
ontinuedfra
tions as in [7℄. We �rst repla
e the two end 
hains by verti
es with the rationalweights �A+1� PQ and � qp determined by their 
ontinued fra
tions to get a 
hainof four verti
es with weights�A+ 1� PQ; 0; �1 + A; �qp :Then, 
omputing the 
ontinued fra
tion for this 
hain based at its right vertexgives qp � QP = Pq�pQPp = 1Pp , showing that the determinant is �1 as desired, and
ompleting the proof.Theorem 4.1. Given positive integers P;Q; p; q with Pq � pQ = 1 and positiveintegers a1; : : : ; ar�1, the spli
e diagram of our rational polynomial f of simple type



16 WALTER D. NEUMANN AND PAUL NORBURYwith non-isotrivial �bres is given in Figure 8 withA = a1 + � � �+ ar�1;B = AQ+ P � Q;C = Aq + p� q;bi = qQai + 1 for ea
h i.The degree of f is: deg(f) = A(Q+ q) + P + p. ÆÆp1oo Æar�11
��

ÆÆ QÆ1 OO �q B Æ1
��

�C 1 � 1 �Q Æq �P1 �br�1 qqqqqqqqqqqqqq 1 �b1 MMMMMMMMMMMMMM ... ...Æa11
��

ÆFigure 8. Spli
e diagram for non-isotrivial rational polynomial.(In [17℄ an \additional" 
ase was given, whi
h is, however, of the above typewith P = Q = p = 1, q = a1 = 2.)Proof. For the following 
omputations we 
ontinue to assume the reader is familiarwith the relationship between resolution graphs and spli
e diagrams des
ribed in[16℄. The arrows signify pla
es at in�nity of the generi
 �bre, one on ea
h horizontal
urve. The fa
t that (f1; 0)r is next to ~L1 in the dual graph says that the edgedeterminant of the intervening edge is 1. This 
orresponds to the fa
t that Pq �pQ = 1, whi
h we already know. Similarly, (f1; 0)i is next to ~L1 for i = 1; : : : ; r� 1so the weight bi is determined by the edge determinant 
ondition bi = qQai + 1.The \total linking number" at the vertex 
orresponding to ea
h horizontal 
urve(before blowing down (f1; 0)0) is zero (terminology of [16℄; this re
e
ts the fa
t thatthe link 
omponent 
orresponding to the horizontal 
urve has zero linking numberwith the entire link at in�nity, sin
e at almost all points on a horizontal 
urve, thepolynomial has no pole). The weight C is determined by the zero total linkingnumber of (f1; 1), giving C = Aq + p� q. For any i the fa
t that vertex (f1; 0)i haszero total linking gives B = AQ+ P �Q.It is worth summarising some 
onsequen
es of our 
onstru
tion that will be usefullater.Lemma 4.6. The number of blow-ups in the �nal non-separating blow-up sequen
eis k := max(bQq 
; b pP 
) and these blow-ups o

urred at the (Q;�q) bran
h or the(p;�P ) bran
h of the above spli
e diagram a

ording as the �rst or se
ond entryof this max is the larger. Moreover, the non-separating blow-ups o

urred on the
orresponding horizontal 
urve if and only if q = 1 resp. P = 1.



RATIONAL POLYNOMIALS OF SIMPLE TYPE 17Proof. The �rst part was part of the proof of Lemma 4.5. For the se
ond part, notethat if q = 1 then 
ertainly q > Q must fail, so P > p and the nonseparating blow-ups were on the left. The 
ontinued fra
tion on the left was A� 1 + pq = A� 1 + pwhi
h is integral, showing that the left 
hain 
onsisted only of the ex
eptional 
urvebefore the non-separating blow-up. Conversely, if the non-separating blow-ups wereadja
ent to that ex
eptional 
urve then the left 
hain was a single vertex, hen
ehad integral 
ontinued fra
tion, so q = 1. The argument for P = 1 is the same.Theorem 4.2. The moduli spa
e of polynomials f : C 2 ! C with the above regu-lar spli
e diagram, modulo left-right equivalen
e (that is, the a
tion of polynomialautomorphisms of both domain C 2 and range C ), has dimension r + k � 2 with kdetermined in the previous Lemma. In fa
t it is a C k -�bration over the (r � 2)-dimensional 
on�guration spa
e of r� 1 distin
t points in C � labelled a1; : : : ; ar�1,modulo permutations that preserve the labelling and transformations of the formz 7! az.Proof. The spli
e diagram pres
ribes the number of horizontal 
urves and the sep-arating blow-up sequen
es at ea
h point of interse
tion. The only freedom is inthe pla
ement of the horizontal 
urves in P1� P1, and in the 
hoi
e of points, onpres
ribed 
urves, on whi
h to perform the string of blow-ups we 
all the non-separating blow-up sequen
e. The (1; 1) horizontal 
urve is a priori the graph ofa linear map y = ax + b but 
an be positioned as the graph of y = x by by anautomorphisms of the image C .The point in the 
on�guration spa
e of the Theorem determines the pla
ement ofthe horizontal 
urves (1; 0)1; : : : ; (1; 0)r (after putting the (1; 0)0 
urve at P1�f1gand the (1; 0)r 
urve at P1� f0g). The �bre C k determines the sequen
e of pointsfor the non-separating blow-up sequen
e.This proves the Theorem, ex
ept that we need to be 
areful, sin
e some diagramso

ur in the form of Theorem 4.1 in two di�erent ways, whi
h might seem to leadto dis
onne
ted moduli spa
e. But the only 
ases that appear twi
e have fourhorizontal 
urves and the 
on�gurations C are related by Cremona transformations.This 
ompletes the 
lassi�
ation of non-isotrivial rational polynomials of simpletype.4.1. The irregular �bres. We 
an read o� the topology of the irregular �bres ofthe polynomial f of Theorem 4.1 from our 
onstru
tion, sin
e any su
h �bre is theproper transform of a verti
al (0; 1) 
urve together with any ex
eptional 
urves leftbehind as 
utting divisors when blowing up on this verti
al 
urve.We shall use the notation C (r) to mean C with r pun
tures (so C � = C (1)), andfor the purpose of this subse
tion we used C [C 0 to mean disjoint union of 
urvesC and C0, and C + C0 to mean union with a single normal 
rossing. The generi
�bre of f is C (r + 1).The irregular �bres of f arise through the breaking of 
y
les between the (1; 1)
urve and the (1; 0)i 
urve for i = 1; : : : ; r, so there are r of them. The non-separating blow-up also 
ontributes, but it usually 
ontributes to the r-th irregular�bre. However, if P = 1 or q = 1 then the non-separating blow-up o

urs ona horizontal 
urve and 
an thus have any f-value, so it generi
ally leads to anadditional (r + 1)-st irregular �bre.



18 WALTER D. NEUMANN AND PAUL NORBURYThe irregular �bres are all redu
ed ex
ept for the r-th irregular �bre, whi
h isalways non-redu
ed unless one of P;Q; p; q is 1.We �rst assume q 6= 1 and P 6= 1, so there are exa
tly r irregular �bres. Then forea
h i = 1; : : : ; r� 1 the i-th irregular �bre is C (r � 1)+ C� if ai = 1 and C (r)[ C �if ai > 1. The r-th irregular �bre is C (r)[C � [C generi
ally. As mentioned above,this �bre is redu
ed if and only if Q = 1 or p = 1. There is a single parameter valuein the C k fa
tor of the parameter spa
e of Theorem 4.2 for whi
h the r-th irregular�bre has di�erent topology, namely C (r) [ (C + C ). In this 
ase it is non-redu
edeven if Q = 1 or p = 1.If q = 1 or P = 1 then write PQ and qp as 1a and ak+1k in some order. Thenon-separating blow-up 
reates irregularity in a �bre whi
h generi
ally is distin
tfrom the the �rst r irregular �bres. The generi
 situation is that the r-th irregular�bre is C (r) [ C � or C (r � 1) + C � a

ording as a > 1 or a = 1 and the (r + 1)-stirregular �bre is C (r + 1) [ C or C (r) + C a

ording as k > 1 or k = 1, and bothare redu
ed. But there are 
odimension 1 subspa
es of the parameter spa
e forwhi
h the topology is di�erent. For instan
e, the (r + 1)-st irregular �bre will benon-redu
ed if one blows up more than on
e on a verti
al 
urve while doing thenon-separating blow-up sequen
e that 
reates it.4.2. Monodromy. We 
an also read o� the monodromy for our polynomial f .Consider a generi
 verti
al (0; 1) 
urve C in our 
onstru
tion. Removing its in-terse
tions with the horizontal 
urves gives a regular �bre F of f . Sin
e we havepositioned the horizontal 
urve (1; 0)0 at 1 we think of F as an r + 1-pun
turedC . We 
all the interse
tion of the (1; 1) horizontal 
urve with C the 0-th pun
tureof F and for i = 1; : : : ; r we 
all the interse
tion of the (1; 0)i 
urve with C the i-thpun
ture of F .If the (r+1)-st irregular �bre exists the lo
al monodromy around it is trivial. Fori = 1; : : : ; r the monodromy around the i-th irregular �bre rotates the 0-th pun
tureof the regular �bre C (r + 1) around the i-th pun
ture. In terms of the braid groupon the r + 1 pun
tures, with standard generators �i ex
hanging the (i � 1)-st andi-th pun
ture for i = 1; : : : ; r, the lo
al monodromies are h1 = �21, h2 = �1�22��11 ,: : : , hr = �1 : : : �r�1�2r��1r�1 : : :��11 . The monodromy h1 = hr : : :h1 at in�nity is�1�2 : : : �r�r : : :�1. It is not hard to verify that h1; : : : ; hr freely generate a freesubgroup of the braid group.5. Expli
it polynomialsThe spli
e diagram gives suÆ
ient information (Newton polygon, topologi
alproperties, et
.) that one 
an easily �nd the polynomial without signi�
ant 
ompu-tation by making an edu
ated guess and then 
on�rming that the guess is 
orre
t.The answer is as follows:Case 1. k � pP < k + 1. (Then pP < qQ � k + 1.)Let s1 = �0 + �1x+ � � �+ �k�1xk�1+ xky. Let �1; : : :�r�1 be distin
t 
omplexnumbers in C � .f(x; y) = xq�QksQ1 + xp�PksP1 r�1Yi=1(�i � xq�QksQ1 )ai :Case 2. k � Qq < k + 1. (Then Qq < Pp � k + 1.)



RATIONAL POLYNOMIALS OF SIMPLE TYPE 19Let s2 = �0 + �1y + � � �+ �k�1yk�1 + xyk. Let �1; : : :�r�1 be distin
t 
omplexnumbers in C � . f(x; y) = yQ�qksq2 + yP�pksp2 r�1Yi=1(�i � yQ�qksq2)ai :One 
an 
ompute the spli
e diagram and see it is 
orre
t. One 
an verify thatthe generi
 �bres are rational by the expli
it isomorphism:f�1(t)! C � f0; �1; : : : ; �r�1; tg �(x; y) 7! xq�QksQ1 (Case 1),(x; y) 7! yQ�qksq2 (Case 2),for generi
 t. The irregular values of t are 0; �1; : : : ; �r�1 if P 6= 1 and q 6= 1. IfP = 1 then t = �0Q �i is the additional irregular value that our earlier dis
ussionpredi
ts, and if q = 1 then t = �0 is the additional irregular value.The spa
e of parameters (�0; : : : ; �k�1; �1; : : : ; �r�1) maps to the moduli spa
ewe 
omputed earlier with �bre of dimension 1. Indeed, with B;C as in Theorem4.1, the polynomial f�(x; y) = ��1f(�Bx; ��Cy)has the same form with the parameters �j repla
ed by ��1�j and �j repla
ed by�jB+A�1�j.To put the above polynomials in the form of f1(x; y) of Theorem 1.1, in 
ase 1we rename the exponents q �Qk to q1, p� Pk to p1, Q to q, P to p. In 
ase 2 werename Q� qk to q1, P � pk to p1, and then ex
hange x and y.6. The isotrivial 
ase.After the �rst version of this paper was 
ompleted we realised that the 
lassi�
a-tion in [12℄ for the isotrivial 
ase has omissions. In this se
tion we therefore sket
hthe 
orre
ted 
lassi�
ation using the te
hniques of this paper. The dis
ussion of theparameter spa
es and the irregular �bres for the resulting polynomials is similar tothe non-isotrivial 
ase, so we leave it to the reader. One 
an give an alternativeproof using Kaliman's 
lassi�
ation [9℄ of all isotrivial polynomials.We will restri
t ourselves to the 
ase of ample rational polynomials, i.e. thosewith at least three (1; 0) horizontal 
urves. The 
ase of one (1; 0) horizontal 
urvealways gives a polynomial equivalent to a 
oordinate by the Abhyankar-Moh-Suzukitheorem [1, 23℄. The 
ase of two (1; 0) horizontal 
urves is dealt with from a spli
ediagram perspe
tive in [15℄ and earlier by analyti
 methods in [21℄. The result isin
luded in our summary Theorem 1.1.As before, 
ompa
tify C 2 to X and 
onstru
t a map X ! P1 � P1. The mapis essentially 
anoni
al (up to an automorphism of one fa
tor.) The image of thedivisor at in�nity D � X in P1�P1 is given by a 
olle
tion of (1; 0) 
urves sin
ewe used three of the horizontal 
urves to get a map to P1�P1 and in order thatthe �bres give an isotrivial family, any other horizontal 
urves must also be (1; 0)
urves.When there are at least three (1; 0) horizontal 
urves, by the following lemma theoriginal 
on�guration of 
urves in P1�P1 breaks into the two 
ases of no verti
al
urves or one verti
al 
urve.Lemma 6.1. An ample rational polynomial with isotrivial �bres has at most oneverti
al 
urve over a �nite value.
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an argue as in the previous se
tion. The 
urve over in�nity, L1 isnot blown up sin
e there are no triple points. If there is more than one verti
al
urve over a �nite value then there are pre
isely three (1; 0) horizontal 
urves sin
eotherwise there would be at least two (1; 0) horizontal 
urves that would be blownup at least twi
e and sin
e all 
urves beyond these horizontal 
urves (ex
eptional
urves or verti
al 
urves) have self-interse
tion < �1 we would get two bran
hes B1and B2 made up of the proper transforms of these two (1; 0) horizontal 
urves andall 
urves beyond these, meeting at a valen
y > 2 
urve, L1, with self-interse
tion0. This is the impossible situation of Lemma 3.5.There 
an be at most two verti
al 
urves sin
e if there are l verti
al 
urves weneed to break 2l 
y
les but sin
e there are pre
isely three (1; 0) horizontal 
urves,we begin with l + 4 
urves so we 
an break at most l + 2 
y
les by Lemma 3.1 (i).Therefore 2l � l + 2 so l � 2.The lemma follows when we get rid of the 
ase of two verti
al 
urves and three(1; 0) horizontal 
urves. The few 
ases are easily dismissed by hand.So the beginning 
on�guration is given by Figure 9 or Figure 10. We analysethese below as Case 1 and Case 2. :::Figure 9. Con�guration of horizontal 
urves with L1.:::Figure 10. Con�guration of horizontal 
urves with L1 and averti
al 
urve over a �nite value.Case 1. Denote by r the number of horizontal 
urves. In Figure 9 we must leavebehind r � 1 
urves as 
utting divisors. To do so we do a non-separating blow-upsequen
e on ea
h of r � 1 horizontal 
urves (anything else leads to a 
on�gurationof 
urves whose interse
tion matrix has determinant 0, and whi
h 
an therefore notblow down to a Morrow 
on�guration). Thus, on the i-th horizontal 
urve we blow



RATIONAL POLYNOMIALS OF SIMPLE TYPE 21up ai times and then leave behind the �nal ex
eptional divisor, giving a string of�2 
urves of length ai � 1.The resulting spli
e diagram is as in Figure 11. Æa11
��

Æ�oo 1 0 Æ 1 �1 qqqqqqqqqqqqqq 1 �1 MMMMMMMMMMMMMM ... ...Æar�11
��

ÆFigure 11. Spli
e diagram for 
ase 1 of isotrivial �bres.This spli
e diagram has been analysed in [16℄, where it is shown that its generalpolynomial is f(x; y) = y r�1Yi=1(x� �i)ai + h(x);where h(x) is a polynomial of degree <Pr�1i=1 ai.This 
ase 
overs the following 
ases from [12℄: Case 1 of Theorem 3.3., Theorem3.7, Case I of Theorem 3.10.Case 2. Denote by r + 1 the number of horizontal 
urves. In Figure 10 we mustdo separating blow-up sequen
es at r interse
tion points and then do an additionalnon-separating blow-up sequen
e. As in the Se
tion 4, one �nds that ea
h of r� 1of the separating blow-up sequen
es 
reates a string of �2 
urves atta
hed to the
orresponding horizontal 
urve, while the last one 
an be arbitrary, as des
ribed inthe proof of Lemma 4.5. In Figure 12 we show the situation after doing the �rstr � 1 separating blow-up sequen
es and doing the �rst step of the r-th one.�A�1 �1Æ
MMMMMMMM 
_____ _____ Æ

ooooooooo0 0 �1 �2 �2Æ Æ
RRRRRRRRR
YYYYYYYYY Æ Æ far�1�1g Æ�1 Æ

SSSSSSSSS �2 Æ fa1�1g �2ÆFigure 12. Dual graph of partially blown-up 
on�guration of
urves for Fig. 10.Moreover, the non-separating blow-up sequen
e then o

urs adja
ent to the ex-
eptional 
urve left behind in the �nal separating blow-up sequen
e. The analysisis almost identi
al to the proof of Lemma 4.5, with the resulting strings now having
ontinued fra
tions A+ PQ and qp respe
tively, with notation as in that proof.



22 WALTER D. NEUMANN AND PAUL NORBURYThe resulting spli
e diagram is as in Figure 13, with notation exa
tly as inTheorem 4.1. The polynomial in this 
ase is exa
tly as in Se
tion 5 ex
ept thatÆÆp1oo Æar�11
��

ÆÆ AQ+P Æ1
��

�Aq�p 1 � 1 �Q Æq �P1 �br�1 qqqqqqqqqqqqqq 1 �b1 MMMMMMMMMMMMMM ... ...Æa11
��

ÆFigure 13. Spli
e diagram for Case 2 of isotrivial �bres.the �rst term xq�QksQ1 respe
tively yQ�qksq2 is omitted. Namely, let �1; : : :�r�1 bedistin
t 
omplex numbers in C � and let k be as in Theorem 4.2.If k � pP < k+1 (so pP < qQ � k+1), let s1 = �0+�1x+ � � �+�k�1xk�1+ xky.Then f(x; y) = xp�PksP1 r�1Yi=1(�i � xq�QksQ1 )ai :If k � Qq < k+1 (so Qq < Pp � k+1), let s2 = �0+�1y+ � � �+�k�1yk�1+ xyk.Then f(x; y) = yP�pksp2 r�1Yi=1(�i � yQ�qksq2)ai :This 
ase 
overs the following 
ases from [12℄: Cases 2,3,4 of Theorem 3.3 andCase II of Theorem 3.10. However, [12℄ only has examples in whi
h one of P;Q; p; qis equal to 1.Note that the isotrivial spli
e diagrams of Case 1 and Case 2 
an be 
onsideredto belong to one family: putting (P;Q) = (1; 0) in Figure 13 gives Figure 11.Nevertheless, the two 
ases have rather di�erent geometri
 properties.7. General rational polynomials.In this se
tion we will give a result for ample rational polynomials that are notne
essarily of simple type.Proposition 7.1. An ample rational polynomial 
ontains a (1; 0) horizontal 
urvewhose proper transform has self-interse
tion �1 and meets ~L1.Proof. By the 
lassi�
ation of ample rational polynomials of simple type, the propo-sition is true in this 
ase. So, we may assume that there is a horizontal 
urve oftype (m;n) for m > 1.Suppose there is no (1; 0) horizontal 
urve with the property of the proposition.Then by the proof of Lemma 3.4 there are at least two (1; 0) horizontal 
urveswhose proper transforms have self-interse
tion < �1 and meet ~L1. By Lemma 3.2any 
urves beyond these horizontal 
urves have self-interse
tion < �1.
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urve of type (m;n) must meet L1 at exa
tly one point, and hen
ewith a tangen
y of order m or at a singularity of the 
urve. This is be
ause ifa horizontal 
urve were to meet L1 twi
e then we would not be able to break
y
les sin
e when we blow up next to L1, those ex
eptional 
urves are sent toin�nity under the polynomial and hen
e must be retained in the 
on�guration of
urves. Thus we must blow up there to get a 
on�guration of 
urves with normalinterse
tions. The �nal ex
eptional 
urve in su
h a sequen
e of blow-ups will haveself-interse
tion �1 and valen
y > 2.If we 
an blow down the 
on�guration of 
urves then eventually at least one
urve adja
ent to the �1 
urve is blown down and hen
e the �1 
urve ends up withnon-negative self-interse
tion. But the �nal 
on�guration is not a linear graph sin
ethe proper transforms of the two (1; 0) horizontal 
urves and any 
urves beyondgive two bran
hes. Thus the �nal 
on�guration is not a Morrow 
on�guration whi
h
ontradi
ts Lemma 3.1.The following result is a generalisation of Lemma 3.3.Corollary 7.1. For any ample rational polynomial, a smooth horizontal 
urve oftype (m;n) with m > 0 must be of type (m; 1).Proof. The statement is true for m = 1 by Lemma 3.3 so will assume m > 1. A
urve of type (m;n) will interse
t the (1; 0) horizontal 
urves m times, with multi-pli
ity, unless possibly if the (m;n) 
urve is singular at these points of interse
tion.The latter possibility is ruled out by the assumption of the 
orollary. Hen
e the(1; 0) horizontal 
urves will be blown up at least m times and their proper trans-forms will have self-interse
tion < �m. This 
ontradi
ts the previous propositionso the result follows.When the rational polynomial is not ample, Russell has an example of a horizon-tal 
urve of type (3; 2). See the examples in the next se
tion. Note that smoothnessof the horizontal 
urve is ne
essary in the 
orollary (at the points of interse
tionwith the (1; 0) horizontal 
urves) sin
e we 
an always have two horizontal 
urves oftypes (l; 1) and (m; 1) and together they 
an be 
onsidered as a singular horizontal
urve of type (l +m; 2).7.1. Adding horizontal 
urves. Consider the following 
onstru
tion on C 2 . Blowup repeatedly starting at a point on the y-axis so that the resulting ex
eptional
urves form a 
hain from the y-axis to the last ex
eptional 
urve blown up. If wenow remove the y-axis and all but the last ex
eptional 
urve from the blown-up C 2we get a new C 2 that we 
all C 21 . Any polynomial f : C 2 ! C indu
es a polynomialf1 : C 21 ! C . Suppose the y-axis interse
ts generi
 �bres of f in d points. Then thegeneri
 �bres of f1 are simply generi
 �bres of f with d extra pun
tures. In fa
t,this 
onstru
tion simply adds an extra degree d horizontal 
urve, namely the y-axisbe
omes a degree d horizontal 
urve for f1.From the point of view of the polynomials, what we have done is repla
ed f(x; y)by f1(x; y) = f(x; s); s = a0 + a1x+ � � �+ ak�1xk�1 + xky;that is, we have 
omposed f with the birational morphism (x; y) 7! (x; s) of C 2 .Sin
e one 
an 
ompose f �rst with a polynomial automorphismto raise its degree,one 
an easily add horizontal 
urves of arbitrarily high degree by this 
onstru
tion.This makes 
lear that any 
lassi�
ation of non-simple-type polynomials must take
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ount of this sort of operation, in
luding 
omposition with more 
ompli
atedbirational morphisms.Although this is a 
ompli
ation, it 
an also simplify some issues.Here is a simple illustrative example. We start with the simplest rational poly-nomial g(x; y) = x, apply a polynomial automorphism to get f(x; y) = x+ y2 andthen apply the above birational morphism to get f1(x; y) = x+ (a0 + a1x+ � � �+ak�1xk�1+xky)2 with one degree one horizontal and one degree two horizontal. Itis not hard to 
he
k (e.g., by listing possible spli
e diagrams) that this gives, up toequivalen
e, the only non-simple-type polynomials with generi
 �bre C � f0; 1g, sowith the 
lassi�
ation of simple type polynomials, we get:Proposition 7.2. A polynomial with general �bre C � f0; 1g is left-right equiva-lent to one of the form f2(x; y) or f3(x; y) of Theorem 1.1 with r = 2 or r = 3respe
tively, or to f(x; y) = x+ (a0 + a1x+ � � �+ ak�1xk�1 + xky)2.This proposition also follows from Kaliman's 
lassi�
ation [9℄ of isotrivial poly-nomials. 8. ExamplesIt is worth in
luding some interesting known examples of rational polynomialsfrom the perspe
tive used in this paper. These examples are neither of simple typenor ample.Russell [20℄ (
orre
tly presented in [3℄) 
onstru
ted an example of a rationalpolynomial with no degree one horizontal 
urves. This is an example of a bad �eldgenerator|a polynomial that is one 
oordinate in a birational transformation butnot in a birational morphism. It is given by beginning with three 
urves in P1�P1as in Figure 14. The (2; 1) 
urve and the (3; 2) 
urve interse
t at an order threetangen
y and at the same point the (3; 2) interse
ts itself at a tangen
y. They arethe two horizontal 
urves of the polynomial. The verti
al 
urve is L1.
(3,2)

(2,1)

Figure 14. A bad �eld generator.The a
tual polynomial in this 
ase is, with s = xy + 1,f(x; y) = (y2s4 + y(s + xy)s + 1)(ys5 + 2xys2 + x)
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e diagram is Æ 3 Æ
����

��
�� ��<

<<
<
�4 � �2 Æ 3�13 ÆÆ__????

����
��
�27 Æ2ÆKaliman [10℄ 
lassi�ed all rational polynomials with one �bre isomorphi
 to C � .Figure 15 gives three 
urves in P1� P1, the two horizontal 
urves and L1. The(m; 1) 
urve has the property that when it is mapped downwards onto a (1; 0) 
urve,there are only two points of rami�
ation, both with maximal rami�
ation of m, atL1 and at the irregular �bre isomorphi
 to C � . Kaliman's entire 
lassi�
ationbegins with this 
on�guration of 
urves. The only points that 
an be blown upare those that are in�nitely near to the point of interse
tion of the two horizontal
urves (besides the unne
essary blowing up where the (m; 1) 
urve meets L1) andone ex
eptional 
urve is left behind as a 
omponent of the redu
ible �bre.

(m,1)Figure 15. Classi�
ation of rational polynomials with a C � �bre.
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