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RATIONAL POLYNOMIALS OF SIMPLE TYPEWALTER D. NEUMANN AND PAUL NORBURYAbstrat. We lassify two-variable polynomials whih are rational of simpletype. These are preisely the two-variablepolynomials with trivial homologialmonodromy. 1. IntrodutionA polynomial map f : C 2 ! C is rational if its generi �bre, and hene every�bre, is of genus zero. It is of simple type if, when extended to a morphism ~f : X !P1 of a ompati�ation X of C2 , the restrition of ~f to eah urve C of theompati�ation divisorD = X�C 2 is either degree 0 or 1. The urves C on whih~f is non-onstant are alled horizontal urves, so one says briey \eah horizontalurve is degree 1".The lassi�ation of rational polynomials of simple type gained some new interestthrough the result of Cassou-Nogues, Artal-Bartolo, and Dima [4℄ that they arepreisely the polynomials whose homologial monodromy is trivial (it suÆes thatthe homologial monodromy at in�nity be trivial by an observation of Dima).A lassi�ation appeared in [12℄, but it is inomplete. It impliitly assumestrivial geometri monodromy (on page 346, lines 10{11). Trivial geometri mon-odromy implies isotriviality (generi �bres pairwise isomorphi) and turns out tobe equivalent to it for rational polynomials of simple type. The lassi�ation in thenon-isotrivial ase was announed in the �nal setion of [17℄. The main purpose ofthis paper is to prove it. But we reently disovered that there are also isotrivialrational polynomials that are not in [12℄, so we have added a lassi�ation for theisotrivial ase using our methods. This ase an also be derived from Kaliman'slassi�ation [9℄ of all isotrivial polynomials. The fat that his list inludes rationalpolynomials of simple type that are not in [12℄ appears not to have been notiedbefore (it also inludes rational polynomials not of simple type).In general, the lassi�ation of polynomial maps f : C 2 ! C is an open problemwith extremely rih struture. One notable result is the theorem of Abhyankar-Mohand Suzuki [1, 23℄ whih lassi�es all polynomials with one �bre isomorphi to C .The analogous result for the next simplest ase, where one �bre is isomorphi to C � ,is open exept in speial ases when the genus of the generi �bre of the polynomialis given. Kaliman [10℄ lassi�es all rational polynomials with one �bre isomorphito C � .The basi tool we use in our study of rational polynomials is to assoiate to anyrational polynomial f : C 2 ! C a ompati�ation X of C 2 on whih f extends toa well-de�ned map ~f : X ! P1 together with a map X ! P1 �P1. The map to1991 Mathematis Subjet Classi�ation. 14H20, 32S50, 57M25.This researh was supported by the Australian Researh Counil.1



2 WALTER D. NEUMANN AND PAUL NORBURYP1� P1 is not in general anonial. We will exploit the fat that for a partiularlass of rational polynomials, there is an almost anonial hoie.Although we give expliit polynomials, the lassi�ation is initially presented interms of the splie diagram for the link at in�nity of a generi �bre of the polynomial(Theorem 4.1). This is alled the regular splie diagram for the polynomial (sinegeneri �bres are also alled \regular"). See [15℄ for a desription of the link atin�nity and its splie diagram. The regular splie diagram determines the embeddedtopology of a generi �bre and the degree of eah horizontal urve. Hene we anspeak of a \rational splie diagram of simple type".The �rst author has asked if the moduli spae of polynomials with given regularsplie diagram is onneted. For a rational splie diagram of simple type we �nd theanswer is \yes". We desribe the moduli spae for our polynomials in Theorem 4.2and use it to help give expliit normal forms for the polynomials. We also desribehow the topology of the irregular �bres varies over the moduli spae.The more general problem of lassifying all rational polynomials, whih wouldover muh of the work mentioned above, is still an open and interesting problem. Itis losely related to the problem of lassifying birational morphisms of the omplexplane sine a polynomial is rational if and only if it is one oordinate of a birationalmap of the omplex plane. Russell [20℄ alls this a \�eld generator" and de�nesa good �eld generator to be a rational polynomial that is one oordinate of abirational morphism of the omplex plane. A rational polynomial is good preiselywhen its resolution has at least one degree one horizontal urve, [20℄. Daigle [5℄studies birational morphisms C 2 ! C2 by assoiating to a ompati�ation X ofthe domain plane a anonial map X ! P2. A birational morphism is then givenby a set of urves and points in P2 indiating where the map is not one-to-one. Theapproah we use in this paper is similar.The full list of rational polynomials f : C 2 ! C of simple type is as follows. Welist them up to polynomial automorphisms of domain C 2 and range C (so-alled\right-left equivalene").Theorem 1.1. Up to right-left equivalene a rational polynomial f(x; y) of simpletype has one of the following forms fi(x; y), i = 1, 2, or 3.f1(x; y) =xq1sq + xp1sp r�1Yi=1(�i � xq1sq)ai (r � 2)f2(x; y) =xp1sp r�1Yi=1(�i � xq1sq)ai (r � 1)f3(x; y) =y r�1Yi=1(�i � x)ai + h(x) (r � 1):Here:0 � q1 < q; 0 � p1 < p; ����p p1q q1���� = �1;s = yxk + P (x); with k � 1 and P (x) a polynomial of degree < k;a1; : : : ; ar�1 are positive integers;�1; : : : ; �r�1 are distint elements of C � ;h(x) is a polynomial of degree <Pr�11 ai.



RATIONAL POLYNOMIALS OF SIMPLE TYPE 3Moreover, if g1(x; y) = g2(x; y) = xq1sq and g3(x; y) = x then (fi; gi) : C 2 !C 2 is a birational morphism for i = 1; 2; 3. In fat, gi maps a generi �bref�1i (t) biholomorphially to C � f0; t; �1; : : : ; �r�1g, C � f0; �1; : : : ; �r�1g, or C �f�1; : : : ; �r�1g, aording as i = 1; 2; 3. Thus f1 is not isotrivial and f2 and f3 are.In [12℄ the isotrivial ase is subdivided into seven subases, but these do notinlude any f2(x; y) with p; q; p1; q1 all > 1.2. ResolutionGiven a polynomial f : C 2 ! C , extend it to a map �f : P2! P1 and resolve thepoints of indeterminay to get a regular map ~f : X ! P1 that oinides with f onC 2 � X. We all D = X � C 2 the divisor at in�nity. The divisor D onsists of aonneted union of rational urves. An irreduible omponent E of D is horizontalif the restrition of ~f to E is not a onstant mapping. The degree of a horizontalurve E is the degree of the restrition ~f jE. Although the ompati�ation de�nedabove is not unique, the horizontal urves are essentially independent of hoie.Note that a generi �bre F := f�1() is a puntured Riemann surfae withpuntures preisely where F  meets a horizontal urve. Thus f has simple type ifand only if F  meets eah horizontal urve exatly one, so the number of pun-tures equals the number of horizontal urves. For non-simple type the number ofpuntures will exeed the number of horizontal urves.We say that a rational polynomial is ample if it has at least three degree one hori-zontal urves. Those polynomials with no degree one horizontal urves, or bad �eldgenerators [20℄, are examples of polynomials that are not ample. The lassi�ationof Kaliman [10℄ mentioned in the introdution gives examples of polynomials withexatly one degree one horizontal urve so they are also not ample. Nevertheless,ample rational polynomials will be the fous of our study in this paper. We willlassify all ample rational polynomials that are also of simple type.3. Curves in P1�P1.If ~f : X ! P1 is a regular map with rational �bres then X an be blown downto a Hirzebruh surfae, S, so that ~f is given by the omposition of the sequeneof blow-downs X ! S with the natural map S ! P1; see [2℄ for details. Moreover,by �rst replaing X by a blown-up version of X if neessary, we may assume thatS = P1�P1 and the natural map to P1 is projetion onto the �rst fator.A rational polynomial f : C 2 ! C , one ompati�ed to ~f : X = C 2 [D ! P1,may thus be given by P1�P1 together with instrutions how to blow up P1�P1to get X and how to determine D in X. For this we give the following data:� a olletion C of irreduible rational urves in P1�P1 inluding L1 :=1�P1;� a set of instrutions on how to blow up P1�P1 to obtain X;� a sub-olletion E of the urves of the exeptional divisor of X ! P1�P1;satisfying the ondition:� If D is the union of the urves of E and the proper transforms of the urvesof C then X �D �= C 2 ;If C � P1� P1 is an irreduible algebrai urve we assoiate to it the pair ofintegers (m;n) given by degrees of the two projetions of C to the fators ofP1�P1.Equivalently, (m;n) is the homology lass of C in terms of H2(P1�P1) = Z�Z.



4 WALTER D. NEUMANN AND PAUL NORBURYWe all C an (m;n) urve. The intersetion number of an (m;n) urve C and an(m0; n0) urve C0 is C �C0 = mn0 + nm0.The above olletion C of urves in P1�P1 will onsist of some vertial urves(that is, (0; 1) urves; one of these is L1) and some other urves. These non-vertialurves give the horizontal urves for f , so they all have m = 1 if f is of simple type.Note that a (1; n) urve is neessarily smooth and rational (sine it is the graph ofa morphism P1! P1).The image in P1 � P1 of the �bre over in�nity is the (0; 1) urve L1 and theimage of a degree m horizontal urve is an (m;n) urve. This view allows one to seeas follows a geometri proof of the result of Russell [20℄ that a rational polynomialf is good preisely when its resolution has at least one degree one horizontal urve.A degree one horizontal urve for f has image in P1�P1 given by a (1; n) urve.Call this image C and let P be its intersetion with L1. The (1; n) urves thatdo not interset C � P form a C{family that sweeps out P1 � P1 � (L1 [ C) sothey lead to a map X ! P1 whih takes values in C at points that do not lieover L1 [ C. Restriting to C 2 = X � D we obtain a meromorphi funtion g1that has poles only at points that belong to exeptional urves that were blownup on C (and do not belong to E). However the polynomial f is onstant oneah suh urve, so if 1; : : : ; k are the values that f takes on these urves, theng := g1(f � 1)a1 : : : (f � k)ak will have no poles, and hene be polynomial, fora1; : : : ; ak suÆiently large. Then (f; g) is the desired birational morphism C 2 !C 2 . For the onverse, given a birational morphism (f; g) : C 2 ! C 2 , we ompatifyit to a morphism ( ~f ; ~g) : X ! P1�P1. Then the proper transform of P1�1 is thedesired degree one horizontal urve for f .We shall use the usual enoding of the topology of D by the dual graph, whihhas a vertex for eah omponent of D, an edge when two omponents interset, andvertex weights given by self-intersetion numbers of the omponents of D. We willsometimes speak of the valeny of a omponent C of D to mean the valeny of theorresponding vertex of the dual graph, that is, the number of other omponentsthat C meets.The approah we will take to get rational polynomials will be to start with anyolletion C of k urves in P1� P1 and see if we an produe a divisor at in�nityD for a map from C 2 to C . In order to get a divisor at in�nity we must blow upP1�P1, say m times, and inlude some of the resulting exeptional urves in theolletion so that this new olletion gives a divisor D whose omplement is C 2 .The exeptional urves that we \leave behind" (i.e., do not inlude in D) will bealled utting divisors.Lemma 3.1. (i) D must have m + 2 irreduible omponents, so we must inludem�k+2 of the exeptional divisors in the olletion leaving k�2 behind as uttingdivisors;(ii) D must be onneted and have no yles;(iii) D must redue to one of the \Morrow on�gurations" by a sequene of blow-downs. The Morrow on�gurations are the on�gurations of rational urves withdual graphs of one of the following three types, in whih, in the last ase, afterreplaing the entral (n; 0;�n � 1) by a single (�1) vertex the result should blowdown to a single (+1) vertex by a sequene of blow-downs:1Æ



RATIONAL POLYNOMIALS OF SIMPLE TYPE 50 lÆ Ælm ��� l1 n 0 �n�1 t1 ��� tkÆ Æ Æ Æ Æ Æ ÆThese onditions are also suÆient that X �D �= C 2 .Proof. The �rst property follows from the fat that eah blow-up inreases therank of seond homology by 1. Thus H2(X) has rank m + 2, so D must havem+2 irreduible omponents. Notie that this implies easily the well-known result[11, 12, 23℄ that Æ � 1 =Xa2C(ra � 1);where Æ is the number of horizontal urves of f and ra is the number of irreduibleomponents of f�1(a). (Both sides are equal to k� 1� fnumber of �nite urves atin�nityg.)The seond property follows from the third property. For the third property andsuÆieny see [13, 19℄.Now assume that ~f has at least three degree one horizontal urves. Take thesethree horizontal urves and use them to map X to P1�P1 as follows. The threehorizontal urves de�ne three points in a generi �bre of ~f . We an map this generi�bre to P1 by mapping these three points to 0; 1;12 P1. This de�nes a map froma Zariski open set of X to P1 whih then extends to a map � from X to P1. If � isnot a morphism then we blow up X to get a morphism. Rather than introduingfurther notation for this blow-up we will assume we began with this blow-up andall it X. Together with the map ~f this gives us the desired morphismX ( ~f;�)�! P1�P1with the property that the three horizontal urves map to (1; 0) urves.If all horizontal urves for f are of type (1; 0) then the generi �bres form anisotrivial family (briey \f is isotrivial"). Thus if f is of simple type but notisotrivial, there must be a horizontal urve of type (1; n) in C with n > 0. Fromnow on, therefore, we assume that there are at least three (1; 0) urves and at leastone (1; n) urve in C with n > 0.Lemma 3.2. Any urve of D that is beyond a horizontal urve from the point ofview of ~L1 has self-intersetion number � �2.Proof. If the urve is an exeptional urve then it has self-intersetion � �1. If �1,then the urve must have valeny at least three (sine any �1 exeptional urvethat ould be blown down is a utting divisor). Any three adjaent urves mustinlude two horizontal urves, whih ontradits the fat that the dual graph of Dhas no yles. If the urve is not exeptional then it is the proper transform ofa vertial urve. But we must have blown up at least three times on the vertialurve to get rid of yles in the dual graph of D so in this ase the self-intersetionis � �3.



6 WALTER D. NEUMANN AND PAUL NORBURY3.1. Horizontal urves. The next few lemmas will be devoted to �nding restri-tions on the horizontal urves in the on�guration C � P1 � P1, ulminating inProposition 3.9.Lemma 3.3. A horizontal urve of type (1; n) in C must be of type (1; 1).Proof. Assume we have a horizontal urve C 2 C of type (1; n) with n > 1. Itintersets eah of the three (1; 0) urves n times (ounting with multipliity) soin order to break yles|Lemma 3.1 (ii)|we have to blow up at least n timeson eah (1; 0) horizontal urve, so the proper transforms of the three (1; 0) urveshave self-intersetion at most �n and the proper transform of the (1; n) urve hasself-intersetion at most 2n� 3n = �n.By Lemma 3.1 (iii), D must redue to a Morrow on�guration by a sequene ofblow-downs. Thus D must ontain a �1 urve E that blows down. By Lemma 3.2,the urve E must be a proper transform of a horizontal urve. The proper transformof eah (1; 0) urve has self-intersetion at most �n < �1. Thus E must ome fromone of the (1; �) horizontal urves. As mentioned above, the proper transform ofa (1; k) urve has self-intersetion � �k so E must be the proper transform of a(1; 1) urve, E0. But E0 would interset C, the (1; n) urve, 2n times and heneE:E � 2� 2n < �1 sine n > 1. This is a ontradition so any horizontal urve oftype (1; n) must be a (1; 1) urve.Hene, the horizontal urves onsist of a olletion of (1; 0) urves and (1; 1)urves. Figure 1 shows an example of a possible on�guration of horizontal urvesin P1�P1. ::: uuuuuuuuuuuuuuuuuuuuuuuuuuFigure 1. Con�guration of horizontal urves.Lemma 3.4. ~L1 � ~L1 = �1.Proof. We blow up at a point on L1 preisely when at least two horizontal urvesmeet in a ommon point there. In general, if a horizontal urve meets L1 with ahigh degree of tangeny then we blow up repeatedly there. But, sine all horizontalurves are (1; 0) and (1; 1) urves, they meet L1 transversally, so a point on L1will be blown up at most one.If there are two suh points to be blown up, then after blowing up there willbe (in the dual graph) two non-neighbouring �1 urves with valeny > 2. Theomplement of suh a on�guration annot be C 2 . This is proven by Kaliman [11℄as Corollary 3. Atually the result is stated for two �1 urves of valeny 3 but itapplies to valeny � 3.Thus, at most one point on L1 is blown up and ~L1 � ~L1 = 0 or �1. We mustshow 0 annot our.



RATIONAL POLYNOMIALS OF SIMPLE TYPE 7A B1B2eeFigure 2. The branhes B1 and B2 onsist of urves of self-intersetion < �1 and e � �1.Sine there are at least four horizontal urves, if ~L1 � ~L1 = 0, then ~L1 hasvaleny at least 4 and every other urve has negative self-intersetion. Furthermore,the only possible �1 urves must be horizontal urves, and these interset ~L1 inD.As we attempt to blow down D to get to a Morrow on�guration, the only urvesthat an be blown down will always be adjaent to ~L1. Thus the intersetionnumber of ~L1 will beome positive and all other intersetion numbers remainnegative, so a Morrow on�guration annot be reahed. Hene, ~L1 � ~L1 = �1.Lemma 3.5. A on�guration of urves that ontains two branhes onsisting ofurves of self-intersetion < �1 that meet at a valeny > 2 urve of self-intersetiongreater than or equal to �1 as in Figure 2 (where the meeting urve is drawn withvaleny 3 for onveniene) annot be blown down to a Morrow on�guration.Proof. Sine the two branhes onsist of urves of self-intersetion < �1, theyannot be redued before the other branhes are redued. If the rest of the on�g-uration of urves is blown down �rst then the valeny > 2 urve beomes a valeny2 urve with non-negative self-intersetion and no more blow-downs an be done.Sine there is no 0 urve, we have not reahed a Morrow on�guration.Lemma 3.6. The intersetion of any two (1; 1) urves in C onsists of two distintpoints ontained in the union of the (1; 0) urves in C.Proof. We will assume otherwise and redue to the situation of Lemma 3.5 to givea ontradition. Thus, assume that two (1; 1) urves do not interset in two pointsontained in the union of the (1; 0) urves. Then in order to break yles theseurves must be blown up at least four times|one eah for at least three of the(1; 0) urves and at least another time for the intersetion of the two (1; 1) urves.Thus they have self-intersetion < �1.Case 1: Suppose two (1; 1) urves meet on L1. Then after blowing up (twie ifthe (1; 1) urves meet at a tangent), the exeptional urves are retained and the �nalexeptional urve has self-intersetion �1, valeny 3 and two branhes, whih wewill all B1 and B2, onsisting of the proper transforms of the two (1; 1) urves andany other urves beyond these proper transforms all of whih have self-intersetion< �1. Thus we are in the situation of Lemma 3.5 and we get a ontradition.Case 2: Suppose two (1; 1) urves meet L1 at distint points. Then at leastone of the (1; 1) urves, D, must meet L1 at a point away from the (1; 0) urvesby Lemma 3.4. Also one of the (1; 0) urves, H, must meet L1 away from the



8 WALTER D. NEUMANN AND PAUL NORBURY(1; 1) urves and ontain at least two points where it intersets the (1; 1) urvesand thus have self-intersetion < �1 after blowing up to break yles. We are onemore at the situation of Lemma 3.5 where the valeny > 2 urve is ~L1 whih hasself-intersetion �1 by Lemma 3.4, and the branhes B1 and B2 are the propertransform of D and any urves beyond it, respetively the proper transform of Hand any urves beyond it. Thus we have a ontradition.Notie that both ases apply to two (1; 1) urves that may interset at a tangentpoint, and shows that this situation is impossible.Lemma 3.7. If there is more than one (1; 1) urve in C then there are exatly three(1; 0) horizontal urves in C.Proof. Assume that there are more than three (1; 0) horizontal urves in C and atleast two (1; 1) urves, say C1 and C2.Case 1: C1 and C2 meet on ~L1. Then they meet eah of at least two (1; 0)urves in distint points, so after blowing up to destroy yles, these (1; 0) urveshave self-intersetion number � �2 and Lemma 3.5 applies.Case 2: C1 and C2 meet ~L1 at distint points. Then one of them, say C1,meets ~L1 at a point not on a (1; 0) urve by Lemma 3.4. At least one (1; 0) urveC3 meets C1 and C2 in distint points. After breaking yles, C1 and C3 haveself-intersetions � �2 so Lemma 3.5 applies again.Lemma 3.8. A family of (1; 1) horizontal urves in C must pass through a ommonpair of points.Proof. The statement is trivial for one (1; 1) horizontal urve so assume there areat least two (1; 1) horizontal urves in C. By the previous lemma, there are exatlythree (1; 0) horizontal urves.If there are exatly two (1; 1) horizontal urves in C then the lemma is lear sinethe urves annot be tangent by Lemma 3.6.When there are more than two (1; 1) urves in C, apply Lemma 3.6 to two ofthem. If another (1; 1) horizontal urve in C does not interset these two (1; 1)urves at their ommon two points of intersetion then, by Lemma 3.6, it mustmeet both these (1; 1) urves at the third (1; 0) horizontal urve of C. So the �rsttwo (1; 1) urves would meet there, whih is a ontradition.Proposition 3.9. Any on�guration of horizontal urves in C is equivalent to oneof the form in Figure 1.Proof. By assumption and Lemma 3.3 there are at least three (1; 0) horizontalurves and some (1; 1) horizontal urves in C. If there is exatly one (1; 1) horizontalurve then the proposition is lear. If there is more than one (1; 1) horizontal urve,then by Lemmas 3.7 and 3.8 there are preisely three (1; 0) horizontal urves andtwo of the (1; 0) horizontal urves ontain the ommon intersetion of the (1; 1)urves. Eah (1; 1) urve also ontains a distinguished point where the urve meetsthe third (1; 0) horizontal urve. A Cremona transformation an bring suh aon�guration to that in Figure 1 by blowing up at the two points of intersetionof the (1; 1) urves and blowing down the two vertial lines ontaining the twopoints. This sends two of the (1; 0) horizontal urves and eah (1; 1) urve to (1; 0)horizontal urves and one of the (1; 0) urves to a (1; 1) urve that intersets eah



RATIONAL POLYNOMIALS OF SIMPLE TYPE 9of the other horizontal urves exatly one. Note that sine we blow up P1�P1 toget the polynomial map, two on�gurations of urves C; C0 in P1�P1 related by aCremona transformation give rise to the same polynomial, so we are done.3.2. The on�guration C. The image C of D � X ! P1�P1 will onsist of theon�guration of horizontal urves in Figure 1 plus some (0; 1) vertial urves. Thenext two lemmas show that in fat the only (0; 1) vertial urve we need to inludein C is L1 and furthermore that C an be given by Figure 4.Lemma 3.10. The on�guration C appears in Figure 3 or Figure 4.Proof. Let r+2 denote the number of horizontal urves and k+1 denote the numberof (0; 1) vertial urves in C. Thus C onsists of k + r + 3 irreduible omponentsand by Lemma 3.1 (i), when blowing up to get D from C we must leave k + r + 1exeptional urves behind as utting divisors.By Lemma 3.1 (ii) we must break all yles. The minimum number of uttingdivisors needed to do this is kr + k + r � 2minfk; rg. This is beause eah of thek (0; 1) vertial urves di�erent from L1 must be separated from all but one ofthe r + 1 (1; 0) horizontal urves, so we need kr utting divisors. Also, the (1; 1)horizontal urve meets eah of the r + 1 (1; 0) horizontal urves and eah of the k(0; 1) vertial urves one, so that requires k + r utting divisors (by Lemma 3.4the (1; 1) urve must meet L1 at a triple point with a (1; 0) horizontal urve, sothis intersetion does not produe a yle to be broken). We would thus requirekr+k+r utting divisors exept that the (1; 1) urve may pass through intersetionsof the (1; 0) horizontal urves and the (0; 1) vertial urves, so some of the uttingdivisors may oinide. The most suh intersetions possible is minfk; rg and wehave then over-ounted required utting divisors by 2minfk; rg. Hene we get atleast kr + k + r � 2minfk; rg utting divisors.Sine the number k+ r+1 of utting divisors is at least kr+ k+ r� 2minfk; rg,we have k + r + 1 � kr + k + r � 2minfk; rg, so1 � k(r � 2) and 1 � (k � 2)r; k � 0; r � 2:(1)The solutions of (1) are (k; r) = f(0; r); (1; 2); (1; 3); (2;2)g.Reall by Lemma 3.4 that the (1; 1) urve must meet L1 at a triple point witha (1; 0) horizontal urve. Furthermore, by keeping trak of when either inequalityin (1) is an equality, or one away from an equality, we an see that the (1; 1) urvemust meet any other (0; 1) vertial urves at a triple point with a (1; 0) horizontalurve. Thus, the only possible on�gurations for C are given in Figures 3 and 4.
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yyyyyyyyyyyyyyyyyyyyyyyyFigure 3. Con�guration C.



10 WALTER D. NEUMANN AND PAUL NORBURY::: yyyyyyyyyyyyyyyyyyyyyyyyFigure 4. Con�guration C with r + 2 horizontal urves.In the following lemmas we will exlude the on�gurations in Figure 3. Labelthe triple points in the �rst two on�gurations of Figure 3 by P1 2 L1 and P1,and in the third on�guration by P1; P1; P2. Also, label the exeptional divisorobtained by blowing up the triple point Pi by Ei and its proper transform by ~Ei.Lemma 3.11. If Ei is a utting divisor then the (0; 1) vertial urve ontaining Pian be removed from C by a birational transformation.Proof. In eah of the on�gurations of Figure 3 we an perform a Cremona trans-formation by blowing up P1 and Pi for i = 1 or 2 and then blowing down ~L1 andthe proper transform of the (0; 1) vertial urve that ontains Pi. The exeptionaldivisors E and Ei beome (0; 1) urves and the (0; 1) vertial urve that ontainsPi beomes an exeptional divisor in a new on�guration C. When Ei is a uttingdivisor this operation essentially removes a (0; 1) vertial urve from C.Lemma 3.12. In a on�guration from Figure 3 with (k; r) 2 f(1; 3); (2; 2)g at leastone of the exeptional divisors E1 or E2 is a utting divisor.Proof. Suppose otherwise, that E1 is not a utting divisor and for (k; r) = (2; 2) noris E2 a utting divisor. The exeptional urves Ei introdue an extra intersetionand hene an extra utting divisor is required. There is one suh extra intersetionin the on�guration with (k; r) = (1; 3) and two suh extra intersetions in theon�guration with (k; r) = (2; 2). As mentioned in the proof of Lemma 3.10 thesolution (k; r) = (1; 3) gives equality in (1) and so it annot sustain an extra uttingdivisor. Similarly the solution (k; r) = (2; 2) is 1 away from equality in (1) and soit annot sustain two extra utting divisors. Hene we get a ontradition and thelemma is proven.By the previous two lemmas we an simplify any on�guration from Figure 3to lie in Figure 4 or to be the �rst on�guration from Figure 3 (the one with(k; r) = (1; 2)) with the requirement that E1 is not a utting divisor. It is this lastase that we will now exlude.The next three lemmas suppose that we have the �rst on�guration fromFigure 3and that E1 is not a utting divisor. We will denote the four horizontal urves byHi, i = 1; : : : ; 4, and their proper transforms by ~Hi where H4 is the (1; 1) urve, H1ontains P1 and H3 ontains P1. Also denote the (1; 0) vertial urve that ontainsP1 by L1 and its proper transform by ~L1.Lemma 3.13. At least one of ~H1 and ~H2 and at least one of ~H3 and ~H4 hasself-intersetion �1.



RATIONAL POLYNOMIALS OF SIMPLE TYPE 11Proof. The proper transform of eah horizontal urve has self-intersetion less thanor equal to �1 and all urves in D beyond horizontal urves have self-intersetionstritly less than �1. If the two horizontal urves that meet ~L1, ~H1 and ~H2,have self-intersetion stritly less than �1, then sine all urves beyond the twohorizontal urves also have self-intersetion stritly less than �1, and sine ~L1 hasself-intersetion �1 and valene 3 this gives a ontradition by Lemma 3.5. Thesame argument applies to ~H3 and ~H4 together with E.Lemma 3.14. ~H4 � ~H4 = �1 if and only if ~H2 � ~H2 = �1.Proof. Sine L1 must be separated from at least one of H2 and H3 then at mostone of ~H2 � ~H2 = �1 and ~H3 � ~H3 = �1 an be true. SimilarlyE1 must be separatedfrom at least one of H1 and H4 so at most one of ~H1 � ~H1 = �1 and ~H4 � ~H4 = �1an be true. By Lemma 3.13, if ~H2 � ~H2 6= �1 then ~H1 � ~H1 = �1 so ~H4 � ~H4 6= �1.Similarly, ~H1 � ~H1 6= �1 implies that ~H2 � ~H2 = �1 and ~H4 � ~H4 = �1.Lemma 3.15. The on�guration from Figure 3 with (k; r) = (1; 2) together withthe requirement that E1 is not a utting divisor annot our.Proof. Suppose otherwise. Assume that ~H1 � ~H1 = �1 and ~H3 � ~H3 = �1. If thisis not the ase, then by Lemmas 3.13 and 3.14 we may assume that ~H4 � ~H4 = �1and ~H2 � ~H2 = �1 and argue similarly. The urves beyond ~H1 have self-intersetionstritly less than �1. The urve immediately adjaent and beyond ~H1 is ~E1 andthis has self-intersetion stritly less than �2. This is beause we must blow upbetween E1 and H4 to separate yles, and also between ~E1 and ~L1 to break ylesand to maintain ~H1 � ~H1 = �1 and ~H3 � ~H3 = �1. Thus if we blow down ~H1the remaining branh beyond ~L1 onsists of urves with self-intersetion stritlyless than �1. Also ~H2 has self-intersetion stritly less than �1 sine we have toblow up the intersetion between H2 and H4 and the intersetion between H2 andL1 in order to break yles and maintain ~H3 � ~H3 = �1. After blowing down ~H1,~L1 has self-intersetion 0 and valeny 3 with two branhes onsisting of urvesof self-intersetion stritly less than �1. Thus we an use Lemma 3.5 to get aontradition.4. Non-isotrivial rational polynomials of simple typeThe on�guration in Figure 4 is the starting point for any non-isotrivial rationalpolynomial of simple type. Notie that we an �ll one punture in eah �bre ofany suh map to get an isotrivial family of urves and the punture varies linearlywith  2 C . Notie also that there is an irregular �bre for eah of the r intersetionpoints of the (1; 1) urve with (1; 0) horizontal urves away from L1. In fat thereis at most one more irregular �bre whih an only our in rather speial ases, aswe disuss in subsetion 4.1.From now on the on�guration C is given by Figure 4 with r+2 horizontal urves.Beginning with C we will list all of the rational polynomials of simple type generatedfrom this on�guration. We shall give the splie diagrams for these polynomials�rst. Although we ompute the polynomials later, geometri information of interestis often more easily extrated from the splie diagram or from our onstrution ofthe polynomials than from an atual polynomial.The splie diagram enodes the topology of the polynomial. It represents thelink at in�nity of the generi �bre, or it an be thought of as an eÆient plumbing



12 WALTER D. NEUMANN AND PAUL NORBURYgraph for the divisor at in�nity, D � X. It enodes an entire parametrised familyof polynomials with the same topology of their regular �bres. See [7, 15, 16℄ formore details. Within this family, polynomials an still di�er in the topology of theirirregular �bres. Our methods also give all information about the irregular �bres,as we desribe in subsetion 4.1.The on�guration C has r+3 irreduible omponents so when we blow up to getDby Lemma3.1 (i) we will leave r+1 exeptional urves behind as utting divisors. ByLemma 3.1 (ii) we must break the r yles in C with multiple blow-ups at the pointsof intersetion leaving r exeptional urves behind as utting divisors. We blow upmultiple times between the rth (1; 0) horizontal urve and the (1; 1) horizontal urvein order to break a yle. Thus, we require those blow-ups to satisfy the onditionthat the exeptional urve will break the yle if removed. Equivalently, eah newblow-up takes plae at the intersetion of the most reent exeptional urve withan adjaent urve. We all suh a multiple blow-up a separating blow-up sequene.We have one extra utting divisor. This will arise as the last exeptional urveblown up in a sequene of blow-ups that does not break a yle. We will all this se-quene of blow-ups a non-separating blow-up sequene. A priori, this non-separatingblow-up sequene ould be a sequene as in Figure 5, where the �nal �1 urve isP Æ
�

�

�Æ __ Æ_ _ __ Æ_ _Æ __ Æ __

�
� Æ_ _�1ÆFigure 5. Sequene of blow-ups starting at P and ending at the�1 urve.the utting divisor. However, we shall see that the extra nodes this introdues inthe dual graph prohibit D from blowing down to a Morrow on�guration, so thesequene is simply a string of �2 exeptional urves followed by �1 exeptionalurve that is the utting divisor. This arises from blowing up a point on a urve inthe blow-up of C that does not lie on an intersetion of irreduible omponents.Let us begin by just performing the separating blow-up sequenes at the pointsof intersetion, of C and leaving the non-separating blow-up sequene until later.This gives the dual graph in Figure 6 with the proper transforms of the r+1 (1; 0)horizontal urves and the (1; 1) horizontal urve indiated along with ~L1 and theexeptional urve E arising from the blow-up of the triple point in C. There arer branhes heading out from the proper transform of (1; 1) onsisting of urves ofself-intersetion less than �1 and beyond eah of the proper transforms of the r(1; 0) horizontal urves the urves have self-intersetion less than �1.The self-intersetion of eah of (f1; 0)0, E and ~L1 is �1. The self-intersetions of(f1; 1) and (f1; 0)i, i = 1; : : : ; r are negative and depend on how we blow up at eahpoint of intersetion.Lemma 4.1. There is at most one branh in D beyond (f1; 1), and r � 1 of thehorizontal urves (f1; 0)i (those with index i = 1; : : : ; r�1 say) have self-intersetion�1 and only �2 urves beyond.



RATIONAL POLYNOMIALS OF SIMPLE TYPE 13(f1;1) (f1;0)rÆ
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RRRRRRRRRRRRRR Æ(f1;0)0Æ (f1;0)1 ÆFigure 6. Dual graph of C blown up at points of intersetion.Proof. Sine the self-intersetion of eah of the urves beyond (f1; 1) is less than �1eah branh beyond (f1; 1) annot be blown down before (f1; 1). Thus, there are atmost two branhes.Furthermore, sine the self-intersetion of eah of the urves beyond (f1; 0)i, i =1; : : : ; r is less than �1, the branh beyond (f1; 0)i an be blown down before (f1; 0)ionly if (f1; 0)i has self-intersetion �1 and eah urve beyond has self-intersetion�2. Thus, at most two branhes beyond (f1; 0)i, i = 1; : : : ; r do not onsist ofa �1 urve with a string of �2 urves beyond. If there are two suh branhesthen the blow-ups that reate them reate orresponding branhes beyond (f1; 1)(or possibly just derease the intersetion number at (f1; 1)). These two branhesannot be fully blown down until everything else onneting to the ~L1 vertex areblown down, but the vertex (f1; 1) and any branhes beyond it annot blow down�rst. Thus D annot blow down to a Morrow on�guration. Thus there is at mostone suh branh, proving the Lemma.Figure 7 gives the dual graph of the partially blown up C where the label of eahurve is now its self-intersetion number. The branh beyond (f1; 0)i onsists of astring of ai � 1 �2 urves and A =Pr�1i=1 ai. We have thus far only blown up onebetween the rth (1; 0) horizontal urve and the (1; 1) horizontal urve, indiating theexeptional divisor by 
. We may blow up many more times|perform a separatingblow-up sequene|leaving behind the �nal exeptional urve as utting divisor toget a branh beyond (f1; 1) and a branh beyond (f1; 0)r . In addition, we still haveto perform the non-separating blow-up sequene at some point on the divisor.�A �1Æ
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SSSSSSSSS �2 Æ fa1�1g �2ÆFigure 7. Dual graph of partially blown-up on�guration of urves.



14 WALTER D. NEUMANN AND PAUL NORBURYLemma 4.2. The non-separating blow-up sequene ours beyond either (f1; 1), (f1; 0)r,or (f1; 0)0 and in the latter ase (f1; 1) � (f1; 1) = �1.Proof. If the non-separating blow-up sequene ours on the branh beyond (f1; 0)i,i = 1; : : : ; r�1 then that branh annot be blown down. By the proof of lemma 4.1,in order to obtain a linear graph we must blow down r� 1 of the branhes beyond(f1; 0)i, i = 1; : : : ; r. Thus, if the non-separating blow-up sequene does ourbeyond (f1; 0)i for some i � r� 1, then the (f1; 0)r branh blows down, so we simplyswap the labels i and r.The non-separating blow-up sequene annot our on E or ~L1 beause theresulting utting divisor would not be sent to a �nite value.If the non-separating blow-up sequene ours on the branh beyond (f1; 0)0 thenwe must be able to blow down the branh beyond (f1; 1), hene the branh mustonsist of (f1; 1) with self-intersetion �1.Lemma 4.3. We may assume the non-separating blow-up sequene does not ourbeyond (f1; 0)0.Proof. By Lemma 4.2 if the non-separating blow-up sequene ours beyond (f1; 0)0then (f1; 1) � (f1; 1) = �1. In partiular, 1 = A = Pr�11 ai. Thus, r = 2, a1 = 1.With only four horizontal urves, we an perform a Cremona transformation tomake (f1; 0)0 the (1; 1) urve and hene we are in the �rst ase of Lemma 4.2.Lemma 4.4. The non-separating blow-up sequene ours on either of the lasturves beyond (f1; 1) or (f1; 0)r and is a string of �2 urves followed by the �1urve that is a utting divisor.Proof. Arguing as previously, if the non-separating blow-up sequene ours any-where else, or if it is more ompliated, then it introdues a new branh preventingthe divisor D from blowing down to a linear graph.We now know that our divisor D results from Figure 7 by doing a separatingblow-up sequene between the (1; 1) urve and the r-th (1; 0) urve, leaving behindthe �nal �1 exeptional urve as a utting divisor and then performing a non-separating blow-up sequene on a urve adjaent to this utting divisor to produeseond utting divisor.A priori, it is not lear that this proedure always gives rise to a divisor D � Xwhere X is a blow-up of P2 and D is the pre-image of the line at in�nity. Thelassi�ation will be omplete one we show it does.Lemma 4.5. The above proedure always gives rise to a on�guration that blowsdown to a Morrow on�guration (see Lemma 3.1) and hene determines a rationalpolynomial of simple type.Proof. The alulation involves the relation between plumbing graphs and spliediagrams desribed in [7℄ or [16℄, with whih we assume familiarity. In partiular,we use the ontinued frations of weighted graphs desribed in [7℄. If one has ahain of verties with weights �0;�1; : : : ;�t, its ontinued fration based at the



RATIONAL POLYNOMIALS OF SIMPLE TYPE 15�rst vertex is de�ned to be 0 � 11 � 12 � .. . � 1tThe dual graph for the urve on�guration of Lemma 4.5 has hains startingat the vertex (f1; 1) and (f1; 0)r . We laim these hains have ontinued frationsevaluating to A � 1 + PQ and qp respetively, where P;Q; p; q are arbitrary positiveintegers with Pq � pQ = 1. We desribe the main ingredients of this alulationbut leave the details to the reader.An easy indution shows that the initial separating blow-up sequene leads tohains at (f1; 1) and (f1; 0)r with ontinued frations A� 1+ nm and mn with positiveoprime n and m. The non-separating blow-up sequene then hanges the frationnm or mn that it operates on as follows. If the non-separating blow-up sequeneonsists of k blow-ups at the end of the left hain then nm is replaed by NM withNm� nM = 1 and k � Mm < Nn � (k+ 1). If the non-separating blow-up sequeneis on the right then mn is similarly hanged instead.Renaming, we an desribe this in terms of our hosen names p; q; P;Q as follows.We either have P > p or q > Q. If P > p the initial separating blow-up sequeneleads to hains with ontinued frations A � 1 + pq and qp and the non-separatingblow-up sequene then onsists of a sequene of k := bQq  blowups extending theleft hain (and hanging its ontinued fration to A�1+ PQ ). If q > Q the ontinuedfrations are A� 1+ PQ and QP after the separating blowup and the non-separatingblow-up onsists of k := b pP  blow-ups extending the right hain (and hanging itsontinued fration to qp ).To prove the Lemmawe must show that the dual graph of our urve on�gurationblows down to a Morrow on�guration. We an blow down the hains starting at(f1; 0)i, i = 0; : : : ; r � 1, to get a hain. To hek that this hain is a Morrowon�guration we must ompute its determinant, whih we an do with ontinuedfrations as in [7℄. We �rst replae the two end hains by verties with the rationalweights �A+1� PQ and � qp determined by their ontinued frations to get a hainof four verties with weights�A+ 1� PQ; 0; �1 + A; �qp :Then, omputing the ontinued fration for this hain based at its right vertexgives qp � QP = Pq�pQPp = 1Pp , showing that the determinant is �1 as desired, andompleting the proof.Theorem 4.1. Given positive integers P;Q; p; q with Pq � pQ = 1 and positiveintegers a1; : : : ; ar�1, the splie diagram of our rational polynomial f of simple type



16 WALTER D. NEUMANN AND PAUL NORBURYwith non-isotrivial �bres is given in Figure 8 withA = a1 + � � �+ ar�1;B = AQ+ P � Q;C = Aq + p� q;bi = qQai + 1 for eah i.The degree of f is: deg(f) = A(Q+ q) + P + p. ÆÆp1oo Æar�11
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ÆFigure 8. Splie diagram for non-isotrivial rational polynomial.(In [17℄ an \additional" ase was given, whih is, however, of the above typewith P = Q = p = 1, q = a1 = 2.)Proof. For the following omputations we ontinue to assume the reader is familiarwith the relationship between resolution graphs and splie diagrams desribed in[16℄. The arrows signify plaes at in�nity of the generi �bre, one on eah horizontalurve. The fat that (f1; 0)r is next to ~L1 in the dual graph says that the edgedeterminant of the intervening edge is 1. This orresponds to the fat that Pq �pQ = 1, whih we already know. Similarly, (f1; 0)i is next to ~L1 for i = 1; : : : ; r� 1so the weight bi is determined by the edge determinant ondition bi = qQai + 1.The \total linking number" at the vertex orresponding to eah horizontal urve(before blowing down (f1; 0)0) is zero (terminology of [16℄; this reets the fat thatthe link omponent orresponding to the horizontal urve has zero linking numberwith the entire link at in�nity, sine at almost all points on a horizontal urve, thepolynomial has no pole). The weight C is determined by the zero total linkingnumber of (f1; 1), giving C = Aq + p� q. For any i the fat that vertex (f1; 0)i haszero total linking gives B = AQ+ P �Q.It is worth summarising some onsequenes of our onstrution that will be usefullater.Lemma 4.6. The number of blow-ups in the �nal non-separating blow-up sequeneis k := max(bQq ; b pP ) and these blow-ups ourred at the (Q;�q) branh or the(p;�P ) branh of the above splie diagram aording as the �rst or seond entryof this max is the larger. Moreover, the non-separating blow-ups ourred on theorresponding horizontal urve if and only if q = 1 resp. P = 1.



RATIONAL POLYNOMIALS OF SIMPLE TYPE 17Proof. The �rst part was part of the proof of Lemma 4.5. For the seond part, notethat if q = 1 then ertainly q > Q must fail, so P > p and the nonseparating blow-ups were on the left. The ontinued fration on the left was A� 1 + pq = A� 1 + pwhih is integral, showing that the left hain onsisted only of the exeptional urvebefore the non-separating blow-up. Conversely, if the non-separating blow-ups wereadjaent to that exeptional urve then the left hain was a single vertex, henehad integral ontinued fration, so q = 1. The argument for P = 1 is the same.Theorem 4.2. The moduli spae of polynomials f : C 2 ! C with the above regu-lar splie diagram, modulo left-right equivalene (that is, the ation of polynomialautomorphisms of both domain C 2 and range C ), has dimension r + k � 2 with kdetermined in the previous Lemma. In fat it is a C k -�bration over the (r � 2)-dimensional on�guration spae of r� 1 distint points in C � labelled a1; : : : ; ar�1,modulo permutations that preserve the labelling and transformations of the formz 7! az.Proof. The splie diagram presribes the number of horizontal urves and the sep-arating blow-up sequenes at eah point of intersetion. The only freedom is inthe plaement of the horizontal urves in P1� P1, and in the hoie of points, onpresribed urves, on whih to perform the string of blow-ups we all the non-separating blow-up sequene. The (1; 1) horizontal urve is a priori the graph ofa linear map y = ax + b but an be positioned as the graph of y = x by by anautomorphisms of the image C .The point in the on�guration spae of the Theorem determines the plaement ofthe horizontal urves (1; 0)1; : : : ; (1; 0)r (after putting the (1; 0)0 urve at P1�f1gand the (1; 0)r urve at P1� f0g). The �bre C k determines the sequene of pointsfor the non-separating blow-up sequene.This proves the Theorem, exept that we need to be areful, sine some diagramsour in the form of Theorem 4.1 in two di�erent ways, whih might seem to leadto disonneted moduli spae. But the only ases that appear twie have fourhorizontal urves and the on�gurations C are related by Cremona transformations.This ompletes the lassi�ation of non-isotrivial rational polynomials of simpletype.4.1. The irregular �bres. We an read o� the topology of the irregular �bres ofthe polynomial f of Theorem 4.1 from our onstrution, sine any suh �bre is theproper transform of a vertial (0; 1) urve together with any exeptional urves leftbehind as utting divisors when blowing up on this vertial urve.We shall use the notation C (r) to mean C with r puntures (so C � = C (1)), andfor the purpose of this subsetion we used C [C 0 to mean disjoint union of urvesC and C0, and C + C0 to mean union with a single normal rossing. The generi�bre of f is C (r + 1).The irregular �bres of f arise through the breaking of yles between the (1; 1)urve and the (1; 0)i urve for i = 1; : : : ; r, so there are r of them. The non-separating blow-up also ontributes, but it usually ontributes to the r-th irregular�bre. However, if P = 1 or q = 1 then the non-separating blow-up ours ona horizontal urve and an thus have any f-value, so it generially leads to anadditional (r + 1)-st irregular �bre.



18 WALTER D. NEUMANN AND PAUL NORBURYThe irregular �bres are all redued exept for the r-th irregular �bre, whih isalways non-redued unless one of P;Q; p; q is 1.We �rst assume q 6= 1 and P 6= 1, so there are exatly r irregular �bres. Then foreah i = 1; : : : ; r� 1 the i-th irregular �bre is C (r � 1)+ C� if ai = 1 and C (r)[ C �if ai > 1. The r-th irregular �bre is C (r)[C � [C generially. As mentioned above,this �bre is redued if and only if Q = 1 or p = 1. There is a single parameter valuein the C k fator of the parameter spae of Theorem 4.2 for whih the r-th irregular�bre has di�erent topology, namely C (r) [ (C + C ). In this ase it is non-reduedeven if Q = 1 or p = 1.If q = 1 or P = 1 then write PQ and qp as 1a and ak+1k in some order. Thenon-separating blow-up reates irregularity in a �bre whih generially is distintfrom the the �rst r irregular �bres. The generi situation is that the r-th irregular�bre is C (r) [ C � or C (r � 1) + C � aording as a > 1 or a = 1 and the (r + 1)-stirregular �bre is C (r + 1) [ C or C (r) + C aording as k > 1 or k = 1, and bothare redued. But there are odimension 1 subspaes of the parameter spae forwhih the topology is di�erent. For instane, the (r + 1)-st irregular �bre will benon-redued if one blows up more than one on a vertial urve while doing thenon-separating blow-up sequene that reates it.4.2. Monodromy. We an also read o� the monodromy for our polynomial f .Consider a generi vertial (0; 1) urve C in our onstrution. Removing its in-tersetions with the horizontal urves gives a regular �bre F of f . Sine we havepositioned the horizontal urve (1; 0)0 at 1 we think of F as an r + 1-punturedC . We all the intersetion of the (1; 1) horizontal urve with C the 0-th puntureof F and for i = 1; : : : ; r we all the intersetion of the (1; 0)i urve with C the i-thpunture of F .If the (r+1)-st irregular �bre exists the loal monodromy around it is trivial. Fori = 1; : : : ; r the monodromy around the i-th irregular �bre rotates the 0-th puntureof the regular �bre C (r + 1) around the i-th punture. In terms of the braid groupon the r + 1 puntures, with standard generators �i exhanging the (i � 1)-st andi-th punture for i = 1; : : : ; r, the loal monodromies are h1 = �21, h2 = �1�22��11 ,: : : , hr = �1 : : : �r�1�2r��1r�1 : : :��11 . The monodromy h1 = hr : : :h1 at in�nity is�1�2 : : : �r�r : : :�1. It is not hard to verify that h1; : : : ; hr freely generate a freesubgroup of the braid group.5. Expliit polynomialsThe splie diagram gives suÆient information (Newton polygon, topologialproperties, et.) that one an easily �nd the polynomial without signi�ant ompu-tation by making an eduated guess and then on�rming that the guess is orret.The answer is as follows:Case 1. k � pP < k + 1. (Then pP < qQ � k + 1.)Let s1 = �0 + �1x+ � � �+ �k�1xk�1+ xky. Let �1; : : :�r�1 be distint omplexnumbers in C � .f(x; y) = xq�QksQ1 + xp�PksP1 r�1Yi=1(�i � xq�QksQ1 )ai :Case 2. k � Qq < k + 1. (Then Qq < Pp � k + 1.)



RATIONAL POLYNOMIALS OF SIMPLE TYPE 19Let s2 = �0 + �1y + � � �+ �k�1yk�1 + xyk. Let �1; : : :�r�1 be distint omplexnumbers in C � . f(x; y) = yQ�qksq2 + yP�pksp2 r�1Yi=1(�i � yQ�qksq2)ai :One an ompute the splie diagram and see it is orret. One an verify thatthe generi �bres are rational by the expliit isomorphism:f�1(t)! C � f0; �1; : : : ; �r�1; tg �(x; y) 7! xq�QksQ1 (Case 1),(x; y) 7! yQ�qksq2 (Case 2),for generi t. The irregular values of t are 0; �1; : : : ; �r�1 if P 6= 1 and q 6= 1. IfP = 1 then t = �0Q �i is the additional irregular value that our earlier disussionpredits, and if q = 1 then t = �0 is the additional irregular value.The spae of parameters (�0; : : : ; �k�1; �1; : : : ; �r�1) maps to the moduli spaewe omputed earlier with �bre of dimension 1. Indeed, with B;C as in Theorem4.1, the polynomial f�(x; y) = ��1f(�Bx; ��Cy)has the same form with the parameters �j replaed by ��1�j and �j replaed by�jB+A�1�j.To put the above polynomials in the form of f1(x; y) of Theorem 1.1, in ase 1we rename the exponents q �Qk to q1, p� Pk to p1, Q to q, P to p. In ase 2 werename Q� qk to q1, P � pk to p1, and then exhange x and y.6. The isotrivial ase.After the �rst version of this paper was ompleted we realised that the lassi�a-tion in [12℄ for the isotrivial ase has omissions. In this setion we therefore skeththe orreted lassi�ation using the tehniques of this paper. The disussion of theparameter spaes and the irregular �bres for the resulting polynomials is similar tothe non-isotrivial ase, so we leave it to the reader. One an give an alternativeproof using Kaliman's lassi�ation [9℄ of all isotrivial polynomials.We will restrit ourselves to the ase of ample rational polynomials, i.e. thosewith at least three (1; 0) horizontal urves. The ase of one (1; 0) horizontal urvealways gives a polynomial equivalent to a oordinate by the Abhyankar-Moh-Suzukitheorem [1, 23℄. The ase of two (1; 0) horizontal urves is dealt with from a spliediagram perspetive in [15℄ and earlier by analyti methods in [21℄. The result isinluded in our summary Theorem 1.1.As before, ompatify C 2 to X and onstrut a map X ! P1 � P1. The mapis essentially anonial (up to an automorphism of one fator.) The image of thedivisor at in�nity D � X in P1�P1 is given by a olletion of (1; 0) urves sinewe used three of the horizontal urves to get a map to P1�P1 and in order thatthe �bres give an isotrivial family, any other horizontal urves must also be (1; 0)urves.When there are at least three (1; 0) horizontal urves, by the following lemma theoriginal on�guration of urves in P1�P1 breaks into the two ases of no vertialurves or one vertial urve.Lemma 6.1. An ample rational polynomial with isotrivial �bres has at most onevertial urve over a �nite value.



20 WALTER D. NEUMANN AND PAUL NORBURYProof. We an argue as in the previous setion. The urve over in�nity, L1 isnot blown up sine there are no triple points. If there is more than one vertialurve over a �nite value then there are preisely three (1; 0) horizontal urves sineotherwise there would be at least two (1; 0) horizontal urves that would be blownup at least twie and sine all urves beyond these horizontal urves (exeptionalurves or vertial urves) have self-intersetion < �1 we would get two branhes B1and B2 made up of the proper transforms of these two (1; 0) horizontal urves andall urves beyond these, meeting at a valeny > 2 urve, L1, with self-intersetion0. This is the impossible situation of Lemma 3.5.There an be at most two vertial urves sine if there are l vertial urves weneed to break 2l yles but sine there are preisely three (1; 0) horizontal urves,we begin with l + 4 urves so we an break at most l + 2 yles by Lemma 3.1 (i).Therefore 2l � l + 2 so l � 2.The lemma follows when we get rid of the ase of two vertial urves and three(1; 0) horizontal urves. The few ases are easily dismissed by hand.So the beginning on�guration is given by Figure 9 or Figure 10. We analysethese below as Case 1 and Case 2. :::Figure 9. Con�guration of horizontal urves with L1.:::Figure 10. Con�guration of horizontal urves with L1 and avertial urve over a �nite value.Case 1. Denote by r the number of horizontal urves. In Figure 9 we must leavebehind r � 1 urves as utting divisors. To do so we do a non-separating blow-upsequene on eah of r � 1 horizontal urves (anything else leads to a on�gurationof urves whose intersetion matrix has determinant 0, and whih an therefore notblow down to a Morrow on�guration). Thus, on the i-th horizontal urve we blow



RATIONAL POLYNOMIALS OF SIMPLE TYPE 21up ai times and then leave behind the �nal exeptional divisor, giving a string of�2 urves of length ai � 1.The resulting splie diagram is as in Figure 11. Æa11
��

Æ�oo 1 0 Æ 1 �1 qqqqqqqqqqqqqq 1 �1 MMMMMMMMMMMMMM ... ...Æar�11
��

ÆFigure 11. Splie diagram for ase 1 of isotrivial �bres.This splie diagram has been analysed in [16℄, where it is shown that its generalpolynomial is f(x; y) = y r�1Yi=1(x� �i)ai + h(x);where h(x) is a polynomial of degree <Pr�1i=1 ai.This ase overs the following ases from [12℄: Case 1 of Theorem 3.3., Theorem3.7, Case I of Theorem 3.10.Case 2. Denote by r + 1 the number of horizontal urves. In Figure 10 we mustdo separating blow-up sequenes at r intersetion points and then do an additionalnon-separating blow-up sequene. As in the Setion 4, one �nds that eah of r� 1of the separating blow-up sequenes reates a string of �2 urves attahed to theorresponding horizontal urve, while the last one an be arbitrary, as desribed inthe proof of Lemma 4.5. In Figure 12 we show the situation after doing the �rstr � 1 separating blow-up sequenes and doing the �rst step of the r-th one.�A�1 �1Æ
MMMMMMMM 
_____ _____ Æ

ooooooooo0 0 �1 �2 �2Æ Æ
RRRRRRRRR
YYYYYYYYY Æ Æ far�1�1g Æ�1 Æ

SSSSSSSSS �2 Æ fa1�1g �2ÆFigure 12. Dual graph of partially blown-up on�guration ofurves for Fig. 10.Moreover, the non-separating blow-up sequene then ours adjaent to the ex-eptional urve left behind in the �nal separating blow-up sequene. The analysisis almost idential to the proof of Lemma 4.5, with the resulting strings now havingontinued frations A+ PQ and qp respetively, with notation as in that proof.



22 WALTER D. NEUMANN AND PAUL NORBURYThe resulting splie diagram is as in Figure 13, with notation exatly as inTheorem 4.1. The polynomial in this ase is exatly as in Setion 5 exept thatÆÆp1oo Æar�11
��

ÆÆ AQ+P Æ1
��

�Aq�p 1 � 1 �Q Æq �P1 �br�1 qqqqqqqqqqqqqq 1 �b1 MMMMMMMMMMMMMM ... ...Æa11
��

ÆFigure 13. Splie diagram for Case 2 of isotrivial �bres.the �rst term xq�QksQ1 respetively yQ�qksq2 is omitted. Namely, let �1; : : :�r�1 bedistint omplex numbers in C � and let k be as in Theorem 4.2.If k � pP < k+1 (so pP < qQ � k+1), let s1 = �0+�1x+ � � �+�k�1xk�1+ xky.Then f(x; y) = xp�PksP1 r�1Yi=1(�i � xq�QksQ1 )ai :If k � Qq < k+1 (so Qq < Pp � k+1), let s2 = �0+�1y+ � � �+�k�1yk�1+ xyk.Then f(x; y) = yP�pksp2 r�1Yi=1(�i � yQ�qksq2)ai :This ase overs the following ases from [12℄: Cases 2,3,4 of Theorem 3.3 andCase II of Theorem 3.10. However, [12℄ only has examples in whih one of P;Q; p; qis equal to 1.Note that the isotrivial splie diagrams of Case 1 and Case 2 an be onsideredto belong to one family: putting (P;Q) = (1; 0) in Figure 13 gives Figure 11.Nevertheless, the two ases have rather di�erent geometri properties.7. General rational polynomials.In this setion we will give a result for ample rational polynomials that are notneessarily of simple type.Proposition 7.1. An ample rational polynomial ontains a (1; 0) horizontal urvewhose proper transform has self-intersetion �1 and meets ~L1.Proof. By the lassi�ation of ample rational polynomials of simple type, the propo-sition is true in this ase. So, we may assume that there is a horizontal urve oftype (m;n) for m > 1.Suppose there is no (1; 0) horizontal urve with the property of the proposition.Then by the proof of Lemma 3.4 there are at least two (1; 0) horizontal urveswhose proper transforms have self-intersetion < �1 and meet ~L1. By Lemma 3.2any urves beyond these horizontal urves have self-intersetion < �1.



RATIONAL POLYNOMIALS OF SIMPLE TYPE 23A horizontal urve of type (m;n) must meet L1 at exatly one point, and henewith a tangeny of order m or at a singularity of the urve. This is beause ifa horizontal urve were to meet L1 twie then we would not be able to breakyles sine when we blow up next to L1, those exeptional urves are sent toin�nity under the polynomial and hene must be retained in the on�guration ofurves. Thus we must blow up there to get a on�guration of urves with normalintersetions. The �nal exeptional urve in suh a sequene of blow-ups will haveself-intersetion �1 and valeny > 2.If we an blow down the on�guration of urves then eventually at least oneurve adjaent to the �1 urve is blown down and hene the �1 urve ends up withnon-negative self-intersetion. But the �nal on�guration is not a linear graph sinethe proper transforms of the two (1; 0) horizontal urves and any urves beyondgive two branhes. Thus the �nal on�guration is not a Morrow on�guration whihontradits Lemma 3.1.The following result is a generalisation of Lemma 3.3.Corollary 7.1. For any ample rational polynomial, a smooth horizontal urve oftype (m;n) with m > 0 must be of type (m; 1).Proof. The statement is true for m = 1 by Lemma 3.3 so will assume m > 1. Aurve of type (m;n) will interset the (1; 0) horizontal urves m times, with multi-pliity, unless possibly if the (m;n) urve is singular at these points of intersetion.The latter possibility is ruled out by the assumption of the orollary. Hene the(1; 0) horizontal urves will be blown up at least m times and their proper trans-forms will have self-intersetion < �m. This ontradits the previous propositionso the result follows.When the rational polynomial is not ample, Russell has an example of a horizon-tal urve of type (3; 2). See the examples in the next setion. Note that smoothnessof the horizontal urve is neessary in the orollary (at the points of intersetionwith the (1; 0) horizontal urves) sine we an always have two horizontal urves oftypes (l; 1) and (m; 1) and together they an be onsidered as a singular horizontalurve of type (l +m; 2).7.1. Adding horizontal urves. Consider the following onstrution on C 2 . Blowup repeatedly starting at a point on the y-axis so that the resulting exeptionalurves form a hain from the y-axis to the last exeptional urve blown up. If wenow remove the y-axis and all but the last exeptional urve from the blown-up C 2we get a new C 2 that we all C 21 . Any polynomial f : C 2 ! C indues a polynomialf1 : C 21 ! C . Suppose the y-axis intersets generi �bres of f in d points. Then thegeneri �bres of f1 are simply generi �bres of f with d extra puntures. In fat,this onstrution simply adds an extra degree d horizontal urve, namely the y-axisbeomes a degree d horizontal urve for f1.From the point of view of the polynomials, what we have done is replaed f(x; y)by f1(x; y) = f(x; s); s = a0 + a1x+ � � �+ ak�1xk�1 + xky;that is, we have omposed f with the birational morphism (x; y) 7! (x; s) of C 2 .Sine one an ompose f �rst with a polynomial automorphismto raise its degree,one an easily add horizontal urves of arbitrarily high degree by this onstrution.This makes lear that any lassi�ation of non-simple-type polynomials must take



24 WALTER D. NEUMANN AND PAUL NORBURYaount of this sort of operation, inluding omposition with more ompliatedbirational morphisms.Although this is a ompliation, it an also simplify some issues.Here is a simple illustrative example. We start with the simplest rational poly-nomial g(x; y) = x, apply a polynomial automorphism to get f(x; y) = x+ y2 andthen apply the above birational morphism to get f1(x; y) = x+ (a0 + a1x+ � � �+ak�1xk�1+xky)2 with one degree one horizontal and one degree two horizontal. Itis not hard to hek (e.g., by listing possible splie diagrams) that this gives, up toequivalene, the only non-simple-type polynomials with generi �bre C � f0; 1g, sowith the lassi�ation of simple type polynomials, we get:Proposition 7.2. A polynomial with general �bre C � f0; 1g is left-right equiva-lent to one of the form f2(x; y) or f3(x; y) of Theorem 1.1 with r = 2 or r = 3respetively, or to f(x; y) = x+ (a0 + a1x+ � � �+ ak�1xk�1 + xky)2.This proposition also follows from Kaliman's lassi�ation [9℄ of isotrivial poly-nomials. 8. ExamplesIt is worth inluding some interesting known examples of rational polynomialsfrom the perspetive used in this paper. These examples are neither of simple typenor ample.Russell [20℄ (orretly presented in [3℄) onstruted an example of a rationalpolynomial with no degree one horizontal urves. This is an example of a bad �eldgenerator|a polynomial that is one oordinate in a birational transformation butnot in a birational morphism. It is given by beginning with three urves in P1�P1as in Figure 14. The (2; 1) urve and the (3; 2) urve interset at an order threetangeny and at the same point the (3; 2) intersets itself at a tangeny. They arethe two horizontal urves of the polynomial. The vertial urve is L1.
(3,2)

(2,1)

Figure 14. A bad �eld generator.The atual polynomial in this ase is, with s = xy + 1,f(x; y) = (y2s4 + y(s + xy)s + 1)(ys5 + 2xys2 + x)
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�27 Æ2ÆKaliman [10℄ lassi�ed all rational polynomials with one �bre isomorphi to C � .Figure 15 gives three urves in P1� P1, the two horizontal urves and L1. The(m; 1) urve has the property that when it is mapped downwards onto a (1; 0) urve,there are only two points of rami�ation, both with maximal rami�ation of m, atL1 and at the irregular �bre isomorphi to C � . Kaliman's entire lassi�ationbegins with this on�guration of urves. The only points that an be blown upare those that are in�nitely near to the point of intersetion of the two horizontalurves (besides the unneessary blowing up where the (m; 1) urve meets L1) andone exeptional urve is left behind as a omponent of the reduible �bre.

(m,1)Figure 15. Classi�ation of rational polynomials with a C � �bre.
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