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Abstract. A topological invariant of a polynomial map p : X → B from a
complex surface containing a curve C ⊂ X to a one-dimensional base is given
by a rational second homology class in the compactification of the moduli
space of genus g curves with n labeled points Mg,n. Here the generic fibre of
p has genus g and intersects C in n points. In this paper we give an efficient
method to calculate this homology class. We apply this to any polynomial in
two complex variables p : C2 → C where the n points on a fibre are its points
at infinity.

1. Introduction

A polynomial map p : X → B comes equipped with a rich topological structure.
The fibres p−1(b) form a family of complex analytic curves parametrised by points
in the base b ∈ B. The generic fibre is a smooth connected topological surface of
genus g. A finite set S = {b1, ..., bm} ⊂ C of values in the base have exceptional
fibres p−1(bi) with Euler characteristic strictly greater than the generic Euler char-
acteristic. On the complement of S the map p defines a surface fibration with
structure group the mapping class group of the generic fibre, also known as its geo-
metric monodromy group. The action of this monodromy group on the homology
of the generic fibre is a well-studied topological invariant. The object of study in
this paper is concerned with the geometric monodromy left over after passing to
finite covers. For example, if the homological monodromy is trivial, or finite so that
a cover is trivial, there can be interesting geometric monodromy remaining.

An effective way to study the geometric monodromy group uses the moduli
space Mg of genus g curves. This is rationally the classifying space of the mapping
class group so it classifies bundles on the complement of the exceptional set. A
polynomial map p : X → B gives a map from the complement of its exceptional
set B − S → Mg by sending b ∈ B − S to its fibre p−1(b) a smooth genus g curve.
Finite covers of fibrations arise when one tries to extend over the exceptional set
to get a map B → Mg to the compactification which is the moduli space of stable
curves of arithmetic genus g. A stable curve satisfies g > 1, it has at worst isolated
nodal singularities, and any genus zero irreducible component contains at least
three singular points [2]. Typically, there will be exceptional fibres of p which are
not stable.

The main technical issue of how to extend the map

B − S → Mg →֒ Mg
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across the set S of exceptional values is dealt with in Section 2 using the process of
stable reduction of a family of curves. The stable reduction around a singular curve
F0 in a family Ft canonically produces a stable curve to replace F0 and induces a
canonical topological decomposition along circles of the generic curve in the family.
The stable curve corresponds to pinching along these circles. The stable reduction is
obtained by pulling back the (singular) fibration p : X → B over a new base B′ → B
so that the fibres are reasonably behaved. In this case reasonably behaved means
that the local monodromy around exceptional values is given by Dehn twists around
disjoint non-parallel curves, which is equivalent to the homological monodromy
being unipotent. This condition on the monodromy is equivalent to the fibres
having at worst isolated nodal singularities. If we also blow down any genus zero
component of a fibre containing fewer than three singular points, in which case the
fibre becomes a stable curve, then we have produced a map from B′ → Mg, and

a corresponding rational homology class [B′]/d ⊂ H2(Mg) where d is the degree
of the cover B′ → B. It is clear that the homology class depends only upon the
topological type of the stable reduction and that it is independent of the finite
cover.

The process of stable reduction around an exceptional fibre F0 in a family Ft

is topologically equivalent to a canonical topological decomposition of the generic
curve in the family along circles, together with the degree of the cover. This process,
and hence the decomposition, depends only on a neighbourhood of F0 in the family.
The neighbourhood is encoded in its 3-manifold link, well-defined for arbitrarily
small ǫ,

Y =
{

⋃

Ft | |t| = ǫ
}

which fibres over S1. The 3-manifold Y possesses a canonical decomposition known
as the JSJ decomposition [3, 4]. The JSJ decomposition canonically decomposes Y
along two-dimensional tori. The intersection of the tori with a fibre Ft of Y induces
a canonical decomposition of the fibre along circles.

Theorem 1. Given a polynomial map p : X → B, in a neighbourhood of an
exceptional fibre the two decompositions of the generic fibre along circles, arising
from stable reduction and the JSJ decomposition, coincide.

We have stated the theorem in its simplest possible form although more is true.
The JSJ decomposition also detects further information contained in the stable
reduction - the finite cover required during the base change, and the singularities
at nodal points of the stable curve. The singularities at nodal points were only
mentioned implicitly in the statement that we should blow down some genus zero
components of a fibre. See Section 2 for precise details. The theorem can also be
extended to the situation of a map p : X → B in the presence of a curve C ⊂ X
that intersects all fibres. The stronger version of the theorem with proof appears as
Theorem 2 in Section 2. This generalisation is required in our applications and is
explained below. The theorem is simply an interpretation of the methods of Eisen-
bud and Neumann in [1] which applies the JSJ decomposition of the 3-manifold
boundary neighbourhood of an exceptional fibre to piece together the geometric
monodromy. This ends up being perfectly suited to stable reduction. The main
purpose of the theorem is not only to give a topological construction of the rational
homology class associated to p : X → B, but also an efficient way to calculate. In
Section 2.1 we show the long process involved in stable reduction and in Section 2.2
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we show how Theorem 1 makes the calculations much more efficient.

A curve C ⊂ X marks points on each fibre of p : X → B. The generic fibre
must intersect C transversally in n points, and in particular the set of exceptional
values may enlarge to S′ = {b1, ..., bm, bm+1, ..., bm′} ⊂ B. As in the case when
C is empty, we can characterise an exceptional fibre p−1(bi) by the property that
the Euler characteristic χ(p−1(bi) − C) is strictly greater than the generic Euler
characteristic χ(p−1(b)−C). The curve C decomposes into irreducible components
C = C1 ∪ C2 ∪ ... ∪ Ck, and we may assume that no Ci lies in a fibre of p, since
we can just remove such components, so k ≤ n. If k = n then the Ci are sections
of the map p : X → B and the generic fibre p−1(b) is an element of Mg,n, the
moduli space of genus g curves with n labeled points. The geometric monodromy
fixes the labeled points and Mg,n is rationally the classifying space of the subgroup
of the mapping class group that fixes the n labeled points. When k < n there is
not a well-defined labeling of the n points of intersection on a generic fibre. In
other words, the monodromy acts non-trivially on the intersection of C with the
generic fibre, and in particular its action on homology is not unipotent. There is
a finite cover B′ → B with monodromy acting trivially on the intersection of the
pull-back of C with the generic fibre, and hence the map p′ : X ′ → B′ possesses
n sections. Thus stable reduction, which ensures unipotent monodromy around
exceptional fibres, is also used to enable a labeling of the n points of intersection.
As before we get a homology class [B′]/d ⊂ H2(Mg,n) where d is the degree of the

cover B′ → B. The compactification Mg,n consists of stable curves of arithmetic
genus g and n labeled points. Generalising the case n = 0 to n > 0, a stable curve
has at worst isolated nodal singularities distinct from the labeled points, and any
genus zero irreducible component contains at least three points made up of labeled
points and singular points. There is no restriction on genus. Theorem 1 generalises
to this situation in which the three-manifold now contains a link L = Y ∩C ⊂ Y .

Since the main purpose of these ideas is to be able to do calculations, this paper
contains examples. A huge source of examples is supplied by polynomials in two
variables p : C2 → C. In this case the n points on a generic fibre are its points at
infinity. The stable reduction of a family is obtained by pulling back p : C2 → C

over a new base B′ → C so that the homological monodromy around exceptional
fibres and around infinity is unipotent. This fits in with the picture above if we
compactify C2 to X and extend p to a map from X to P1. Note that we cannot
simply choose X = P2 since p does not extend there. Section 2 gives details. Thus,
a polynomial p : C2 → C gives a (multi-valued) map from the complement of its
exceptional set in its base C − S to Mg,n and stable reduction allows us to extend
over the exceptional set and at the same time choose a labeling of the n points at
infinity to get a rational homology class in H2(Mg,n).

The JSJ decomposition has previously been applied to polynomials in two vari-
ables in [8] to introduce a powerful topological invariant of a polynomial p : C2 → C,
its link at infinity which is a link in the 3-sphere given by the intersection of a generic
fibre of p with the boundary of a very large ball in C2. This is analogous to the
link of a complex plane curve singularity obtained by intersecting the curve with
the boundary of a very small ball around the singularity. The link at infinity yields
topological information about the polynomial such as the genus of the generic curve
in the family, the monodromy around exceptional curves in the family, and possible
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exceptional curves that can arise in the family. Part of this paper addresses the
question of how much the link at infinity of a polynomial can say about its second
rational homology class in Mg,n.

An effective description of the homology class associated to p : X → B uses
rational numbers obtained by evaluating the homology class on rational cohomology
classes

δ, κ1, λ1, ψi ∈ H2(Mg,n,Q), i = 1, ..., n.

These cohomology classes are defined in Section 3 where explicit calculations of the
rational numbers are given.

2. Stable reduction

The technique of stable reduction here is taken from [2]. As described in the
introduction, generic fibres of a polynomial map p : X → B with C ⊂ X are smooth
genus g curves containing n distinct points. Although exceptional fibres are not
necessarily stable, the existence of the compactification Mg,n means that as fibres
approach an exceptional fibre they converge to a stable curve, so we may replace the
exceptional fibre with that stable curve. This process, known as stable reduction,
involves passing to a cover B′ → B in which the local homological monodromy
around each exceptional fibre is unipotent. The pull-back map p′ : X ′ → B′ will
have the two important properties that every fibre is a stable curve, and that
C′ ⊂ X ′ is the image of n sections B′ → X ′. Such a cover exists by the local
monodromy theorem which asserts that there exists a power of the local homological
monodromy around an exceptional fibre which is unipotent with exponent 2, i.e.
(hm − 1)2 = 0. There are many such covers since any power of a unipotent element
remains unipotent, nevertheless the way in which we define the rational second
homology class in the moduli space of stable curves is independent of the cover.
We decompose the cover into cyclic covers of prime degree since they are most easily
understood. The process is best demonstrated via explicit calculations so this is
what we will do next. The reader can consult [2] for further details.

2.1. Branched covers. Given a polynomial p : C2 → C compactify to a morphism
p̂ : X → P1. This is achieved by first compactifying to p̄ : P2 → P1. The map p̄ is
not a morphism (unless it was trivially a coordinate to begin with) or in other words
there are points in P2 on which p̄ takes on every value and hence is ill-defined. Thus
we repeatedly blow up P2 = C2 ∪P1

∞ until the transform p̂ of p is well-defined, and
in particular there exist rational curves C1, ..., Cm ⊂ X −C2 so that p̂ : Ci → P1 is
onto, sometimes referred to as horizontal curves or quasi-sections. If the degree of
p̂ : Ci → P1 is 1 for each i then m = n and the map p̂ : X → P1 has n sections and
the generic fibres become points of Mg,n. If the degree of p̂ : Ci → P1 is di > 1 for
some i then the inverse map P1 → Ci is a multiply defined 1 : di map. We must
take a finite cover consisting of different choices of labeling the points at infinity
meeting Ci to get di sections. We arrange this at the same time that we do stable
reduction around a non-stable fibre. Note that the fibre p̂−1(∞) is never stable
because it has components of multiplicity greater than 1 so we need to replace it.

Let p = (x2 − y3)2 + xy. The generic fibre has genus 4 and 1 point at infinity.
Extend to p̄ : P2 → P1 and resolve the indeterminate points of p̄ (explicitly, change
coordinates to p̄ = (z − y3)2 + yz4 and blow up multiple times, or do a single toric
blow-up (y, z) = (y1z1, y

2
1z

3
1), followed by a change of coordinates (y1, z1) = (1 −
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y2, z2) and another toric blow-up (y2, z2) = (y4
3z

7
3 , y3z

2
3) followed by another change

of coordinates and multiple blow-up) to get the curve over infinity represented in
Figure 1 by its dual graph.
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Figure 1. Fibre of p̂ over infinity

In Figure 1 the nodes denote irreducible components, which are rational curves
unless a genus is specified, the edges denote intersections between components, the
self-intersection numbers are given in brackets, and the other numbers denote the
multiplicity of p̂ on each component. The multiplicities and intersection numbers
are related by the fact that a component has zero intersection with the fibre at
infinity. The zero multiplicity on the right-most component denotes the fact that it
maps surjectively onto P1, and in this case the map has degree 1 so it is a section.
The dark node corresponds to the proper transform of the line at infinity in P2.

The Euler characteristic of the generic fibre can be calculated from the fibre over
infinity by removing the points of intersection of irreducible components and taking
the Euler characteristic. Thus a node of multiplicity m and valency v is replaced by
m copies of a v-punctured 2-sphere. The valency 2 genus 0 components contribute
0 to this sum which is 6 + 4 + 5 − 12 − 10 = −7 so the generic fibre is a genus 4
curve minus a point at infinity.

Each fibre meets the section exactly once. The fibre over infinity is not stable
since most of its components have multiplicity greater than 1. All other fibres
are stable in this example because the exceptional fibres, which are precisely the
singular fibres, contain only nodal singularities. We will demonstrate the process
of stable reduction which will replace the fibre at infinity by a stable curve.

Break the branched cover up into a sequence of covers of prime degree. Take a 3
to 1 branched cover of the base totally ramified at infinity. The fibre over infinity
in the pull-back fibration is not smooth since the original fibre over infinity is not
smooth. For example, the cover z3 = xy is singular above the singularity (0, 0),
and we can resolve the cover using two intersecting (−2) curves. More generally we
will need to consider zp = xayb for a p-fold cover near the intersection of curves of
multiplicities a and b. It turns out that the normalisation of the pull-back fibration
is the same as ramifying along curves over infinity of multiplicity not divisible by
3. For example, in Figure 2 ramify on the curves of multiplicities 8, 10, 8 and 10.

The rightmost curve of multiplicity 6 in Figure 2 pulls back to a 3-fold cover
branched at its two intersection points with the multiplicity 8 and 10 curves. Its
multiplicity is divided by 3. For the intersecting multiplicity 10 and 8 curves the
3-fold cover ramified along these two is singular. It is a Hirzebruch-Jung singularity
which can be resolved. In this case it can be resolved by blowing up between the
two curves downstairs to get a multiplicity 18 curve which is divisible by 3, so we
are reduced to the previous case of a 3-fold cover branched over 2 points, leaving a
multiplicity 6 curve. The multiplicity 12 curve is branched over its two intersection
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2

(−2) (−2) (−2)

6 12

  8

10 8 6

(−3)

24

  8

(−2)

102 6 8 10

(−9)(−1)(−3)(−1)

10

3:1

2

Figure 2. Example of a 3-fold cover branched over a singular curve

points with multiplicity 8 and 10 and hence 3 copies of the multiplicity 6 curve live
in the cover, sharing multiplicity 2 each.

Figure 3 shows the fibre over infinity of a sequence of base changes of prime

degree combining to give a branched cover P1 60:1
→ P1 that pulls back the fibration

so that the fibre over infinity is a stable curve. Often the resolution of a Hirzebruch-
Jung singularity contains a string of curves that can be blown down. We have not
shown the full calculation. Only once in Figure 3 have we shown the blow-downs
preferring to combine steps and hide many intermediate rational curves.

The process ends with the stable curve of arithmetic genus 4 given by two genus
1 curves attached to a genus 2 curve as in Figure 4. This stable curve is canonically
associated to the family in that any other cover leading to stable reduction will give
the same stable curve over infinity. In the final diagram of Figure 3 the cross with
a 7 on an edge means that the intersection of the genus 1 and genus 2 curves is a Z7

quotient singularity obtained by blowing down a string of six (−2) curves. In the
family of curves, parametrised by t, say, with t = 0 corresponding to infinity, the
nodal singularity is given by xy = t7. Often we stop at the previous step containing
strings of (−2) curves, and hence semi-stable fibres, to avoid singularities upstairs.
Of course if we take a further branched cover of degree d say, the nodal singularity
would be xy = t7d. It is clear that the factor of 7 is essential and the extra factor of
d is the result of taking a less efficient cover. The essential number is really 7/60,
an invariant of the process. Similarly, it is 1/60th of the stable curve in Figure 4
that strictly replaces the fibre over infinity. This reflects the fact that the moduli
space is an orbifold.

In the example, the curve C ⊂ X is already a section. More generally, when
there are irreducible components of C that are not sections we need to arrange
to have sections in the cover during the stable reduction process. In each step
the p-fold cover is totally ramified at infinity and we can freely specify all other
ramification. We choose some of the points of ramification away from infinity to
coincide with the points of ramification of the map C → P1 in such a way to remove
the ramification. Note that when the base is P1 as for polynomials of two variables,
we can also choose the ramification away from infinity so that the cover of the base
is again P1.

The result of stable reduction produces stable curves to replace non-stable ex-
ceptional fibres. When these new stable curves are included into the family there
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Figure 3. The fibre over infinity of a 60:1 branched cover is a
genus 2 curve meeting two genus 1 curves.

are usually singularities at nodes of the stable curves. The degree of the cover of the
stable reduction must be remembered in order to get invariant quantities such as
the homology class. The example demonstrates an algorithm for stable reduction
that works in general. Next we will prove Theorem 1 and apply it to deduce the
stable reduction more efficiently.
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Figure 4. Stable fibre over infinity.

2.2. Canonical decompositions. Theorem 1 is a special case of a more general
theorem which we will now describe. Consider a polynomial map p : X → B
and a curve C ⊂ X . For any exceptional fibre F0 define the link of F0 by the pair
(Y, L) = (∂N(F0), C∩∂N(F0)) consisting of a 3-manifold Y containing a 1-manifold
L, where N(F0) is a small enough neighbourhood of F0. The JSJ decomposition
decomposes Y − L along finitely many tori. The manifold Y − L fibres over the
circle via p, with fibre the complement of n distinct points on the generic fibre of
p. Equipped with the more detailed description of stable reduction above, we are
ready to restate Theorem 1 in its full generality.

Theorem 2. The stable reduction of an exceptional fibre F0 of a polynomial map
p : X → B with a curve C ⊂ X is obtained as follows. Denote the generic fibre of
p by F and let (Y, L) be the link of F0. Then Y −L fibres over the circle with fibre
F − {n distinct points} and monodromy h satisfying:

(i) The JSJ decomposition of Y − L along tori induces a decomposition

(1) F − {n points} = F (1) ∪ ... ∪ F (k)

of each fibre along circles.
(ii) The monodromy h preserves the decomposition (1). It has finite order on

each piece F (i) and acts by a fractional twist along the decomposing circles.
(iii) The stable reduction of F0 in the family uses the cover on which the lift of h

is trivial on each F (i). In particular, the degree of the cover is the lowest common
multiple of the finite orders of h on each F (i).

(iv) The quotient singularities at nodes of the stable fibre are detected by the
twists of h along the decomposing circles.

Remark. Consider the case of a fibre F0 that is a nodal curve with isolated
singularities and no (-1) rational curves meeting fewer than three other components.
Equivalently the multiplicity of each irreducible component is 1 and each rational
curve contains at least two singular points. More generally, there may be n local
sections around F0, and we blow up if necessary to separate intersection points
of the sections on F0. Then F0 is semi-stable and the stable reduction process is
unnecessary. The nearby generic fibre decomposes F −{n points} = F (1)∪ ...∪F (k)

along circles known as vanishing cycles, which correspond to the singular points
when pinched. The monodromy is given by one full positive twist around each
vanishing cycle, so in particular it is trivial on each F (i). A string of k rational
curves, each containing exactly two singular points and hence of self-intersection
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(-2), has k + 1 vanishing cycles, so the monodromy twists exactly k + 1 times
along the common homology cycle of each vanishing cycle. If we blow down the
string of (-2) rational curves the fibre becomes a stable curve, and the node is a
Zk+1 quotient singularity in the ambient surface. The theorem states that the JSJ
decomposition of Y −L is the union of S1 × F (i) along the boundary tori, and the
gluing of the boundary tori encodes the quotient singularities. The tori correspond
to intersections of neighbourhoods of irreducible components of F0. The intersection
of two components looks locally like xy = 0 and Y is locally {|x| = ǫ} ∪ {|y| = ǫ}
which intersects along the torus {|x| = |y| = ǫ}.

Proof. Properties (i) and (ii) are proven in [1]. There it is shown that Y −L decom-
poses along tori into Seifert-fibred pieces corresponding to the nodes of valency > 2
and of positive genus. The decomposition coincides with the JSJ decomposition so
in particular it is canonical. The fibration p : Y − L → S1 equips Y − L with an
element of H1(Y − L,Z). An element of H1(Y − L,Z) is sometimes known as a
multilink structure on L since it assigns a multiplicity to each component by eval-
uating along a meridian circle. Any fibre F of the map Y − L→ S1 has boundary
the multilink L. Thus when the multiplicities of all components of L are 1, F is
a Seifert surface for L, and if a multiplicity of a component Li is di > 1 then the
boundary of F near Li gives di copies of Li. If di = 0 then one can attach a disk
to the ith boundary component of F which meets Li transversally. The fibre F
decomposes as in (1) and each F (i) is the fibre of a fibration of the correspond-
ing Seifert-fibred piece over the circle. The monodromy decomposes and since the
monodromy of any Seifert-fibred piece is finite this gives (ii).

Using the definition of a stable curve in terms of its homological monodromy
being unipotent, (iii) follows from (i) and (ii), since on a cover where the lift of h is
trivial on each F (i), only twisting along separating circles remains. In the cover, the
twisting is integral, not merely fractional. A precise description of how to calculate
the fractional twisting of the monodromy along circles is given in [1]. We will show
this in calculations below and thus verify (iv). �

The homology class of a polynomial map, i.e., the image of [P1] ∈ H2(P
1,Q) into

H2(P
1,Mg,n), is trivial if and only if all generic fibres are isomorphic. Since the

stable reduction of such a family is necessarily a trivial fibre bundle, a necessary
condition for the generic fibres to be isomorphic is that the stable reduction of any
exceptional fibre is smooth. Theorem 2 shows that this occurs precisely when the
dual graph of the exceptional fibre has only one node of valency > 2 since this is
equivalent to the monodromy having finite order. Applying this idea to the fibre
over infinity of a polynomial p : C2 → C gives a severe restriction on polynomials
with isomorphic general fibres. Kaliman classified all polynomials p : C2 → C with
isomorphic generic fibres [5]. It seems likely that the classification can be reproven
beginning from the restriction just described.

2.3. Efficient dual graphs. Many calculations involving the dual graph require
only some of the nodes. Examples are:

(i) the Euler characteristic of the generic fibre;
(ii) a description of branched covers of the dual graph;
(iii) determinants of intersection forms of subgraphs;
(iv) the canonical class supported on the dual graph.
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An efficient dual graph hides valency 2 rational components, retaining compo-
nents of valency 6= 2 or genus > 0. An efficient dual graph for the fibre over infinity
of p = (x2 − y3)2 + xy is given in Figure 5.

10

5

6 12

  4

Figure 5. The efficient dual graph hides valency 2 genus 0 nodes.

We have labeled the multiplicity of the polynomial p on each node. The cal-
culation of the Euler characteristic of the generic fibre using the fibre at infinity
gets a contribution of zero from the rational valency 2 nodes and hence one needs
only the efficient dual graph. In Figure 5 a node of multiplicity m and valency v
is replaced by m copies of a v-punctured 2-sphere and the Euler characteristic is
6+4+5−12−10 = −7 so the generic fibre is a genus 4 curve minus a point at infinity.

A cyclic branched cover along a singular fibre behaves quite generally as in the
example in Section 2.1. A cyclic branched cover along a linear chain of genus zero
components gives another linear chain of genus zero components. The example
in Section 2.1 shows this explicitly. The most interesting behaviour occurs on
components intersecting at least two other components, corresponding to nodes of
valency > 2 in the dual graph, and on positive genus components.

By simply understanding the behaviour of a cyclic cover on the nodes of valency
> 2 and of positive genus, we can much more efficiently take cyclic covers of splice
diagrams, hiding all chains arising from Hirzebruch-Jung singularities. The long
calculation shown in Section 2.1 is substantially shortened.

An efficient dual graph that hides valency 2 rational nodes, and equipped with
enough information to reproduce the full dual graph, is known as a splice diagram.
Integer weights assigned to the graph supply the information required to reproduce
the full dual graph and in particular the multiplicities of each node. Determinants
of intersection matrices of subgraphs have the property that they are unchanged
by blowing up the subgraph. In particular, to each edge of the efficient dual graph
there is a well-defined edge determinant given by the determinant of the intersection
matrix of nodes in the full dual graph along that edge, excluding the endpoints.
The efficient dual graph is called a splice diagram when we use a set of weights on
half edges. The weight on a half edge is the determinant of the intersection matrix
of the branch of the dual graph disconnected from the half edge if we cut along that
edge. Figure 6 shows Figure 5 with weights on half-edges replacing multiplicities
on nodes. The weights give back the whole dual graph. In particular, to get the
multiplicity of a node take a path from the node to an arrow and multiply all
weights adjacent to, but not on, the path. The black node has weights 3 and 2
adjacent to the path to the arrow so its multiplicity is 3× 2 = 6. The closest node
to the arrow has weights 5 and 2 adjacent to its path so its multiplicity is 5×2 = 10.
When there are several arrows do this for each path joining a node to an arrow and
add.
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3

1 5

2

11 2

Figure 6. Splice diagram

We will not go further into the calculation of the weights, nor will we emphasise
the important fact that the splice diagram encodes a 3-manifold containing a link
spliced together from Seifert-fibred pieces. See [1] for full details. In this particular
case the multiplicities in Figure 5 are determined by, and determine, the weights in
Figure 6.

Given a polynomial map p : X → B, we may assume the canonical class KX is
supported on fibres of p and sections. This is because any irreducible component
of a divisor Σ ⊂ X is either contained in a fibre of p or it maps onto B and in the
latter case we can pass to a cover B′ → B so that the pull-back of Σ is a collection
of sections, introducing new support only in fibres.

Let ∪iDi denote the support of K and put K =
∑

i kiDi. Define D =
∑

i diDi

where di = −ki − 1. Although D resembles a divisor it is not really well-defined
since we can add zero times any curve to K and this will change D. Nevertheless,
D is a useful tool to study the support of K.

The important property of D is that for each Di

D ·Di = χ(Di) − valency Di

where the valency of Di is its valency in the dual graph of ∪iDi. This expression
vanishes on rational curves of valency 2, precisely those curves hidden in the efficient
dual graph. In particular K · D uses only the multiplicities on the nodes of the
efficient dual graph.

For a polynomial p : C2 → C the multiplicities of D are easily calculated from
the splice diagram. The node corresponding to the line at infinity in P2, indicated
by the black node in the diagrams, has multiplicity 2 since K has multiplicity -3
there. From any other node v take a path toward the black node to get to the
previous node v′ of valency > 2. Then the multiplicity of D is given recursively by
m(v) = w ·m(v′) + edge determinant of the edge E joining v and v′, and w is the
product of the edge weights adjacent to v and not on E. See [9] for a thorough
description of the calculation of D from weights in the splice diagram. In Figure 6
the multiplicities of D on the two valency 3 nodes are 5 and 3 respectively.

Another feature of D is that it behaves well under branched covers. Locally
along a curve of ramification x = 0 the canonical divisor is given by xmdx ∧ dy,
and hence a d-fold cover zd = x transforms zmd+d−1dz ∧ dy, and along unramified
curves the multiplicity remains the same. Thus D is given locally by x−m−1dx∧dy
transforming to zd(−m−1)dz ∧ dy so the multiplicity simply multiplies by d.

2.4. Decomposing dual graphs. Figure 7 shows how to decompose Figure 5
into pieces and how the Euler characteristic decomposes. Each node of valency > 2
corresponds to a Seifert-fibred piece of the JSJ decomposition of Y − L. The (2)
on the arrow indicates that a fibre of the left piece consists of two identical disjoint
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components. The greatest common divisor of the (0) on an arrow and the default
value of (1) on the right arrow is 1 which is the number of components of the fibre
of the right piece. The numbers (2) and (0) are calculated using the weights of the
splice diagram in the same way as multiplicities are calculated, by taking a path
from the edge to an arrow and multiply all weights adjacent to, but not on, the
path. Thus the left piece has fibre two genus 1 surfaces each with one boundary
component and the right piece has fibre a genus 2 surface with three boundary
components. The genus 4 generic fibre with one point removed decomposes along
two circles as shown in Figure 10. By pinching along these circles, or vanishing
cycles, one gets the stable curve in Figure 4.

.

(2) (0)6 12 10

54

χ=−2 χ=−5

Figure 7. JSJ decomposition

1/6 twist

7/60 twist

order 12 monodromy
order 10 monodromy

Figure 8. The monodromy acts with finite order on each piece
and fractionally twists along the decomposing annuli.

This demonstrates (i) of Theorem 2. The decomposition in Figure 7 gives the JSJ
decomposiiton of Y − L into pieces Y (i) each fibring over the circle and containing
a multilink L(i). The numbers (2) and (0) in Figure 7 are the multiplicities of the
multilink components. The monodromy on the fibre of Y − L decomposes to give
the monodromy of the fibre of Y (i) − L(i). The latter has finite order given by the
multiplicity of the valency > 2 component. This uses the fact that the monodromy
on Seifert-fibred spaces is completely understood. Thus the multiplicity is 12 on the
left component - this consists of an order 6 map on the once-punctured torus and a
swapping of the two components - and the multiplicity is 10 on the right component.
A 60:1 cover will pull back the monodromy to be trivial on each component and thus
this will give the stable reduction of the fibre over infinity as seen in the calculation
in Section 2.1. Thus (iii) and part of (ii) Theorem 2 are seen.

It remains to understand the twisting of the monodromy along the annuli in
Figure 10. Upstairs, in the 60:1 cover we expect some whole number of Dehn twists
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along the annuli, so downstairs we expect fractional twists. This calculation is
subtler and it is completely solved in terms of the JSJ decomposition as Theorem
13.1 in [1]. It is subtle only because we are choosing to emphasise the more intuitive
multipicities of the polynomial p̂ on each component of the efficient dual graph,
rather than the weights of the splice diagram. The fractional twisting requires the
weights of the splice diagram. It is given along an annulus corresponding to the
edge E by

twist(h|A) =
−dE

l · l′
∆E

where dE is the number of annuli corresponding to E, l and l′ are the multiplicities
of the neighbouring nodes, and ∆E is the determinant of the intersection matrix of
the nodes from the full dual graph lying on the edge. In the example above, dE = 2,

coresponding to the 2 annuli, l · l′ = 12 · 10 = 120 and ∆E =

∣

∣

∣

∣

∣

∣

−2 1 0
1 −2 1
0 1 −2

∣

∣

∣

∣

∣

∣

=

−7 = 5 · 1 − 2 · 3 · 2 · 1. (We have given the calculation of the edge determinant
twice, the second using the splice diagram weights in Figure 6, not explained here
further.) Thus the fractional twisting is 7/60 and upstairs in the 60:1 cover it is
a Dehn twist of order 7. This tells us that locally the node of the stable curve is
given by xy = t7 and there is a Z7 quotient singularity in the ambient surface.

3. Cohomology classes

In this section we evaluate the homology class associated to p : X → B on
rational cohomology classes

δ, κ1, λ1, ψi ∈ H2(Mg,n,Q), i = 1, ..., n.

Since we consider 1-dimensional bases B, we will abuse notation and treat the
cohomology classes as numbers δ, κ1, λ1, ψi ∈ Q by pulling back to H2(B,Q).

A non-trivial homology class in H2(Mg,n) is detected by the non-vanishing of at
least one of the cohomology classes above. This follows from work of Wolpert [13]
where he shows that κ1 +

∑n
i=1 ψi is a positive multiple of the Kähler class ω. The

integral of ω over any non-trivial homology class is positive and hence at least one
of κ1 or ψi is non-zero on the homology class.

There are obstructions to a dual graph appearing as the fibre at infinity of a
polynomial p : C2 → C. The obstructions are not complete so there are dual
graphs where it is not known if they appear as the fibre at infinity of a polynomial
p : C2 → C. We do not know if the positivity condition κ1 +

∑n
i=1 ψi > 0 gives a

new obstruction on dual graphs.

3.1. Definitions. The class δ ∈ H2(Mg,n) is represented by the boundary divisor

Mg,n−Mg,n. Thus it counts the number of singularities of a polynomial p : X → B.
The contribution from a stable fibre is its number of nodes, where a node locally
given by xy = tk contributes k to the count. Equivalently, if we insist that the total
space X be non-singular and thus allow semi-stable fibres then the contribution
from a semi-stable fibre is simply its number of nodes. The contribution from an
unstable fibre is calculated by first passing to the stable reduction. In particular,
the contribution is not necessarily an integer.
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Definition 1. Let p′ : X ′ → B′ be the semi-stable reduction of p : X → B equipped
with n sections, for X ′ a smooth surface that d-fold covers X. Define

δ =
# singularities p′

d

κ1 = 2δ +
3σ(X ′)

d

λ1 =
δ

4
+
σ(X ′)

4d

ψi = −
si(B

′) · si(B
′)

d
, i = 1, ..., n

where σ(X ′) is the signature of X ′ and si(B
′) · si(B

′) is the self-intersection of the
ith section of X ′ → B′.

It is not hard to see that if we take a further cover the number of singularities
multiplies by the degree of the cover and hence δ is well-defined. It is subtler that
the signature behaves the same way. The signature of a branched cover is in general
not easily calculated. The definition above is given for simplicity whereas for the
purpose of calculations we give a better definition below in which the classes κ1 and
λ1 in families κm and λm for m ∈ Z+. The relation between the two definitions of
λ1 is due to Smith [11] and the others easily follow.

The forgetful map π : Mg,n+1 → Mg,n is defined by forgetting the (n + 1)st
point and possibly blowing down rational components of some fibres. It defines a
universal bundle over Mg,n equipped with n sections si : Mg,n → Mg,n+1. Over

Mg,n+1 define the vertical canonical bundle to be the complex line bundle

γ = K
Mg,n+1

⊗ π∗K−1

Mg,n

→ Mg,n+1.

The bundle γ is used to define the classes κ1, λ1, ψi as follows.
Define the Hodge classes

λm = cm(π∗(γ)) ∈ H2m(Mg,n).

The push-forward sheaf π∗(γ) is a rank g vector bundle over Mg,n best understood
in terms of the fibres which are the g-dimensional vector spaces of holomorphic
1-forms on the curve associated to a point of Mg,n. Over a stable curve, one uses
1-forms holomorphic outside the singular set that have at worst simple poles at the
singular points with residues summing to zero.

Define the Mumford-Morita-Miller classes

κm = π![c1(γ)
m+1] ∈ H2m(Mg,n).

where π! : Hk(Mg,n+1) → Hk−2(Mg,n) is the umkehr map, or Gysin homomor-
phism, obtained by integrating along the fibres.

For each i = 1, ..., n pull back the line bundle γ to s∗i γ = γi → Mg,n and define

ψi = c1(γi) ∈ H2(Mg,n).

The classes are related [2] by

λ1 =
κ1 + δ

12
.
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3.2. Calculations. The main purpose of this paper is to enable calculations of the
homology class of a polynomial map p : X → B with 1-dimensional base B and in
particular, calculations of the rational numbers δ, κ1, λ1, ψi. We will calculate these
rational numbers for infinite families of polynomial maps p : C2 → C. We first do
the calculations for the specific example p = (x2 − y3)2 + xy.

The contribution from the fibre over infinity to δ comes from the two nodes of
the stable fibre over infinity, each counted with multiplicity 7. The stable reduction
is obtained from a 60:1 cover hence the contribution to δ is 7

30 . This is the frac-
tional twisting of the geometric monodromy and we have given it a cohomological
interpretation. There are 8 finite singularities so

δ = 8
7

30
.

To calculate κ1 we need to understand the canonical class on the surface X ′

which gives the stable family X ′ → B′. The stable fibre over infinity is given in
Figure 9 where the numbers in brackets are self-intersection numbers as usual and

−20

(−2)
g=1

(−1)

(−2)

(−2)

(−2)

(−6)

(−1)

g=2

(−2)(−2)(−2)(−2)

(−2)
(−2)

(−2)

(−2)

g=1

(−6)

6 59−19
−20

−21
−22

−23

−24
−25

−26

−26 −25 −24 −23 −22 −21

Figure 9. Canonical divisor

the multiplicities are now the multiplicities of the canonical class.
We deduce the canonical class by the fact that it can be supported on the infinite

fibre plus 59 copies of the fibre of p. This is because the canonical class can be
supported on the divisor at infinity X − C2 since it can be supported on P2 − C2

and blowing up introduces support only on the exceptional divisiors. A branched
cover introduces canonical class along the ramification set so the 60:1 cover means
59 copies of the fibre of p contributes to the canonical class and the rest remains
supported on the fibre over infinity. Apply the adjunction formula K ·Σ = −χ(Σ)−
Σ · Σ to a fibre to see K · F = −6 so the section is given multiplicity 6 in the
canonical class. To calculate the other multiplicities in Figure 9, similarly apply
the adjunction formula to irreducible components of the fibre over infinity.

Thus

60κ1 = K2
X′/B′ = (KX′ + 2F )2 = 274.

and

λ1 =
κ1 + δ

12
=

4 17
30 + 8 7

30

12
=

16

15
.

Note that λ1 times the degree of the cover is an integer, so the relation λ1 =
(κ1+δ)/12 puts a mod 12 condition on κ1+δ. Finally ψ1 is given byKX′/B′ ·s1[B

′] =
−B′ · B′ by the adjunction formula. Thus

ψ1 =
6

60
=

1

10
.
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The self-intersection (−6) used to calculate ψ1 is encoded in the fractional twisting
of the geometric monodromy. It gives the fractional twisting of the generic fibre on
the annulus around the marked point. In terms of the efficient dual graph, or splice
diagram, the annulus A corresponds to the edge E joining the fibre over infinity to
the section. Thus ψ1 is given by

ψ1 = −twist(h|A) =
dE

l
=

1

10

where dE = 1 is the number of annuli corresponding to E, and l is the multiplicities
of the node of E. The formula for the twist is Theorem 13.5 in [1].

3.2.1. Calculations in Mg,1. The example p = (x2 − y3)2 + xy is a particular case
of the general class of polynomials with one point at infinity. The splice diagram
for the general polynomial with one point at infinity is given in Figure 10.

m

1

1

p p
q

2

q
2

q
m

p

Figure 10. Family in Mg,1.

The stable reduction of the fibre over infinity is easily calculated from Theorem 1.
We refer to the node with weights pi, qi as the ith node and the edge between the
ith and (i + 1)th nodes as the ith edge. The ith node corresponds to

∏

j>i qj
components of Euler characteristic pi + qi − piqi, each meeting qi of the

∏

j>i−1 qj
components corresponding to the (i − 1)th node. The monodromy permutes the
∏

j>i qj components and acts internally with order piqi, so its total order on the

components corresponding to the ith node is piqi
∏

j>i qj which is the multiplicity
of the polynomial on that node. Thus the stable reduction uses a cover of order
∏

piqi (or more efficiently gcd(p1, ..., pn)
∏

qi.)
From the fractional twisting along annuli we see that the quotient singularity at

each annulus above the ith edge has order piqiqi+1 − pi+1, and the self-intersection
of the section in the stable reduction is −

∏

i<n piqi. We calculate inequalities for
the rational numbers δ, κ1, λ1 since their maximum value is taken when the fibre
of p over infinity is the only unstable curve, and the rational numbers δ, κ1, λ1 are
upper-semicontinuous.

We have no good interpretation of the messy expressions for δ and κ1 so we show
them only for the cases m = 1 and m = 2. For m = 1 the Euler characteristic of
the generic fibre is

χ = p1 + q1 − p1q1, (m = 1).

The stable reduction of the fibre over infinity uses a degree p1q1 cover and results
in a smooth fibre over infinity. To calculate δ we use a result of Suzuki [12]

(2)
∑

c∈C

(χc − χ) = 1 − χ

where χc = χ(p−1(c)) which expresses the Euler characteristic of the generic fibre
as a sum of the number of vanishing cycles near exceptional fibres. If all fibres over
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finite values c ∈ C are stable, which is the generic case that gives an upper bound
on δ, then χc − χ counts the number of nodes in the fibre p−1(c). Thus

δ ≤ 1 − χ, (m = 1).

The fractional twisting along the boundary annulus is given by −1/pmqm so

ψ1 =
1

pmqm
.

If all finite fibres are stable, the canonical class upstairs in the p1q1-fold cover is
K = (−2 − χ)F + (−1 − χ)C where F is the generic fibre and C is the section.
The fractional twisting −1/p1q1 shows that C ·C = −1 in the cover. Thus K ·K =
−(1 + χ)2 + 2(1 + χ)(2 + χ) = (1 + χ)(3 + χ) and

κ1 ≤
K ·K − 4(χ+ 1)

p1q1
=
χ2 − 1

p1q1
, (m = 1).

When m = 2, the stable reduction of the fibre over infinity uses a cover of order
p1q1p2q2 and consists of an irreducible component with Euler characteristic 1+p2+
q2−p2q2 plus q2 irreducible components with Euler characteristic 1+p1+q1−p1q1,
joined along q2 nodes with quotient singularities of order p1q1q2 − p2. Now

χ = q1q2 + p1q2 + p2 − p1q1q2 − p2q2, (m = 2)

and

δ ≤ 1 − χ−
1

p1q1
+
q2
p2
, (m = 2)

uses (2) to get an upper bound for nodes away from infinity, plus 1/(p1q1p2q2) times
the q2 nodes over infinity, each counted with multiplicity p1q1q2 − p2.

To calculate κ1 we need a more efficient method than has been used so far. We
use the divisor D introduced in Section 2.3. The expression

(3) K ·K = −K ·D −
∑

i

(χ(Ci) + Ci · Ci)

consists of K · D which is independent of rational valency 2 nodes in the dual
graph, and

∑

i(χ(Ci) + Ci · Ci) which does depend on rational valency 2 nodes in
the dual graph, however it behaves well on the semi-stable reduction of a family. A
semi-stable curve contains strings of (−2) rational curves in place of the quotient
singularities at nodes of stable curves. The expression

∑

i(χ(Ci)+Ci ·Ci) vanishes
on (−2) rational curves and hence (3) uses only the multiplicities of K on the
irreducible components of the stable fibres, and on sections. From this we calculate

κ1 ≤ 2 − 2χ+
1

p2q2
− p1q1 − p2q2 +

p1

q1
+
q1

p1
+
p2

q2
, (m = 2).

3.2.2. Calculations in M0,n. When p : C2 → C has rational fibres λ = 0 = κ + δ
and in particular we get equalities instead of inequalities for κ and δ, i.e. the generic
behaviour always occurs, since if the sum of two upper-semicontinuous functions is
continuous then the two functions are both continuous.

When the n points at infinity are sections, no branched covering is required for
stable reduction. We use the classification in [10] to see that either the homology
class is trivial or κ1 = 1 − n, δ = n − 1, ψi = 1, i = 1, ..., n − 1 and ψn = n − 3.
The homology class depends only on n. There are many inequivalent polynomials
for each n showing that the homology class is a rather course invariant. The
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homological monodromy is trivial in both cases when κ1 = 0 or κ1 = 1 − n so the
homology class is useful to distinguish these two cases.

Kaliman [6] classified all polynomials with rational fibres and one fibre isomor-
phic to C∗. We find that κ1 = −1 and δ = 1 on the whole family.
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