
SYMPLECTIC TORIC VARIETIES.

PAUL NORBURY

Abstract. These are the notes of two lectures given at the Mini Spring School
An introduction to the mathematics of string theory held at Adelaide Uni-
versity in November 2002. It is a leisurely introduction to the mathematics
surrounding toric varieties.

Lecture I.

Aims of Lecture I.
(i) To contrast topological, Riemannian, symplectic and complex structures;
(ii) to set up various topological objects that will be given Riemannian, sym-

plectic and complex structures in the next lecture.

Toric varieties: a topological construction.
Toric varieties are simple examples of Riemannian, symplectic and complex man-

ifolds. There won’t be a lot of toric varieties in the first lecture, since I am more
concerned with the basic mathematics that surrounds them. For that reason, I will
begin with a short description of toric varieties.

Consider the following two examples consisting of an interval and a triangle.

Figure 1. S2 and CP2

Associate to each interior point of the interval a circle and to each vertex a point.
Putting these together gives a two-sphere, S2. The interval is the quotient of S2

by rotations.
Associate to each interior point of the triangle a torus, T 2, and to each interior

point of an edge a circle, and to each vertex a point. Putting these together gives
the complex projective plane,

CP
2 = {(z0, z1, z2) ∈ C

3 − {0}}/{(z0, z1, z2) ∼ (λz0, λz1, λz2), λ ∈ C
∗}.

We can see this via the map

(z0, z1, z2) 7→

(

|z1|
2

|z0|2 + |z1|2 + |z2|2
,

|z2|
2

|z0|2 + |z1|2 + |z2|2

)

which has image {(x, y)|x ≥ 0, y ≥ 0, x+ y ≤ 1}. The preimage of a point (x, y) is
|z1|

2 = x, |z2|
2 = y (when we set |z0|

2 + |z1|
2 + |z2|

2 = 1) which is T 2 when (x, y)
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lies in the interior, and a circle or a point otherwise. The one-dimensional case lives
inside, since the preimage of each edge is S2. The image triangle is the quotient of
CP2 by an action of the torus.

The construction generalises to higher dimensions. For any polyhedron, one
would associate to each interior point a 3-torus, T 3, and then associate T 2, S1, or
a point to each of the points of a face as in the two-dimensional case. And so on,
in higher dimensions.

Basic geometry.
Consider polygons in the plane. When are two polygons the same? Fix the

number of sides. The answer is different depending on what structure we choose to
put on the polygon. Topologically, every n-sided polygon looks the same, whereas if
we can measure distance only triangles related by rigid motions look the same. The
ability to measure area or angles allows the motions to have a flexibility somewhere
between rigid and topological.

Figure 2. Polygons.

Rigid motions of triangles can move an edge to lie along the x-axis with one vertex
at the orgin. The remaining freedom is the length of the edge and the coordinate
of the vertex off the x-axis. This is a three-dimensional space of triangles, and we
gain two-dimensions as each extra edge is added.

Linear area preserving maps are given by elements g ∈ SL(2, R). In this case
total area is the only freedom since under an element g ∈ SL(2, R) any triangle
can be moved to a right-angle isosceles triangle with edges along the axes. This
gives a one-dimensional parameter space of triangles, and as we add sides this adds
two dimensions to the parameter space. It is interesting that a linear map that
preserves the total area necessarily preserves area locally.

Exercise 1. Show that the area of a polygon with vertices on the integer lattice is
given by I +B/2−1 for I and B the number of integer lattice points in the interior,
respectively on the boundary, of the polygon.

Angle preserving maps are governed by complex analysis. By the Riemann
mapping theorem, there exists an angle-preserving map from any polygon to the
unit disk in the plane, sending the vertices to points on the unit circle. (Angles
are only preserved at interior points, so in particular the angles at the vertices are
sent to 180 degrees.) Thus we may think of n-sided polygons as ordered n-tuples of
points on the unit circle. For triangles, ordered triples of points on the unit circle
are all equivalent under conformal, or angle-preserving, self maps of the disk, so
any triangle is unique. As we add sides, or points on the unit circle, this adds one
dimension to the parameter space. These results are summarised below.
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topological
0-dimensional family

distance preserving
triangles ⇒ 3-dimensional family
quadrilaterals ⇒ 5-dimensional family

area preserving and linear
triangles ⇒ 1-dimensional family
quadrilaterals ⇒ 3-dimensional family

angle preserving
triangles ⇒ 0-dimensional family
quadrilaterals ⇒ 1-dimensional family

We have just looked at simple examples of Riemannian, symplectic and complex
geometry.

Definition 1. A Riemannian metric is a smooth assignment of positive definite
symmetric bilinear forms gx to the tangent space of a manifold.

Definition 2. A symplectic form is a smooth assignment of non-degenerate skew-
symmetric bilinear forms ωx to the tangent space of a manifold.

Definition 3. An almost-complex structure is a smooth assignment of automor-
phisms Jx of the tangent space of a manifold that satisfy J2

x = −I.

In these lectures, we will not be too concerned with the difference between an
almost complex structure and a complex structure. The latter is an almost complex
structure that arises from a complex manifold—a manifold with local charts given
by open sets in Cn and complex coordinate charts.

Locally, a metric is more complicated than a symplectic form or a complex
structure. At a point, after a change of basis, each of these can be put in standard
form. Express the tangent space at a point as V = W ⊕ W , since V is necessarily
even-dimensional. Then the standard forms are

(

I 0
0 I

)

,

(

0 I
−I 0

)

,

(

0 −I
I 0

)

(1)

respectively for a positive definite symmetric bilinear form, a non-degenerate skew-
symmetric bilinear form, and an automorphism J , such that J2 = −I.

Facts.

(i) If we take a smooth assignment from U ⊂ R2n to the space of positive definite
symmetric bilinear forms, then it is no longer true that the standard form can
be realised continuously, whereas this can be done for symplectic and complex
structures.

(ii) By combining a symplectic form ω and an almost complex structure J , we
can get a metric g(u, v) = ω(u, Jv). We say that any two of these structures
are compatible.

(iii) The first standard form in (1) is the product of the other two, which reflects
fact (ii). In general, the metric cannot be locally constant, so this shows that
the standard forms cannot usually hold concurrently.

(iv) Beginning with an almost complex structure, respectively a symplectic struc-
ture, by considering the space of all compatible metrics we can produce ob-
structions to two spaces being equivalent under complex, respectively sym-
plectic, transformations. This is the idea behind conformal invariants, and
Gromov’s pseudoholomorphic curves. The metric serves an auxillary purpose.
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(v) Both a symplectic form and a metric allow one to calculate the area of a
submanifold surface. In two dimensions, they give the same thing. In higher
dimensions this isn’t the case. It is a little deceiving to say that a symplectic
form calculates area. The boundary 2-sphere of a small 3-ball has non-zero
area if one uses the metric and zero area if one uses the symplectic form. More
generally, any zero-homologous surface has zero area using the symplectic
form. When we combine symplectic, complex and Riemannian structures,
the metric area dominates the symplectic area, with equality on a class of
surfaces—symplectic submanifolds.

Next lecture we will want to put such geometric structures on the toric varieties
that have been described only topological so far. Before that, we will describe an-
other important topological construction.

Blow-ups.
Consider a point p on a surface Σ. Replace p with the family of tangent lines

at p to get Σ̃. Is Σ̃ a manifold? Yes. In fact, it is homeomorphic to the manifold
obtained by removing a disk from Σ and replacing the circle boundary with an RP1,
i.e. identifying opposite points of the circle. The Euler characteristic (the quantity

F − E + V associated to a triangulation) changes by χ(Σ̃) = χ(Σ) − 1.
Recall the classification of surfaces without boundary. Essentially, there are two

surfaces for even Euler characteristic and one surface for odd. Precisely, for each
integer less than or equal to 1 there is a unique non-orientable surface with that
Euler characteristic, and for each even integer less than or equal to 2 there is a
unique orientable surface with that Euler characteristic.

Exercise 2. The non-orientable surface of Euler characteristic -1 can be con-
structed by blowing up the torus at a point or blowing up the two-sphere at three
points. Explicitly construct a homeomorphism between the two surfaces.

One can alternatively describe the blow-up Σ̃ as the unique surface with a map
π : Σ̃ → Σ satisfying π−1(p) ∼= RP

1 and the restriction π : Σ̃ − π−1(p) → Σ − {p}
is a homeomorphism.

p

Figure 3. There is a map from the blow-up to the original surface.

This construction works in the complex world, and is better behaved. Notice in
the real case we needed only define a blow-up at 0 ∈ R2 since the construction is
local, i.e. a point in a manifold is homeomorphic to 0 ∈ R2. We will define the
blow-up of 0 ∈ C

2 and this will apply to a point in any complex surface.
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Define C̃2 ⊂ C2 × CP1 by

C̃
2 = {(x, y, [z0, z1]) ∈ C

2 × CP
1|xz1 = yz0}.

Projection onto the first coordinates gives the map π : C̃2 → C2 satisfying π−1(0) =

CP1 and the restriction π : C̃2 − π−1(0) → C2 − {0} is an isomorphism. We have
replaced 0 ∈ C2 by the (complex) lines through 0, to get the blow-up of C2 at 0.
Facts:

(i) The blow-up is orientable.

(ii) When we blow up at p ∈ X we call π−1(p) ⊂ X̃ the exceptional divisor;
(iii) the construction can be described locally using two charts: replace the lo-

cal coordinates (x, y) of a complex surface X by the coordinates (x0, y0) =
(x/y, y) in one chart and (x1, y1) = (x, y/x) in another chart. The expressions

x = x0y0 and y = y0 give the map from X̃ to X and the exceptional divisor
is defined by y0 = 0 (and the same can be done in the other chart.)

(iv) S2 × S2 blown up at one point is isomorphic to CP
2 blown up at two points.

(v) The blow-up operation works in all dimensions.

What do we do with the constructions of toric varieties and blow-ups? Put extra
structure on them. For example, suppose we want to do a blow up in the presence
of a metric or a symplectic structure. It seems a strange thing, the requirement
that the exceptional divisor has non-trivial area.
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Lecture II.

In the last lecture, I promised to put geometric structures on the topological
constructions of symplectic varieties and blow-ups. Before I do that, I want to
study a special class of algebraic varieties.

Fans.
A fan in the plane is a collection of rational convex cones in the plane. (A rational

cone is spanned by rational slopes.) The integer lattice points in a fan represent
monomials in C[x−1, x, y−1, y]. The final three diagrams represent the rings

Figure 4. Cones.

C[x, y],

C[x, xy, xy2] = C[u, v, w]/{uv − w2},

C[xy, xy2, xy3, x2y] = C[t, u, v, w]/{tv − u2, t3 − uw}.

These are the ring of functions on affine varieties, or more accurately, local singu-
larities.

Prove the statements in the following exercise, where we allow slopes of a cone
to be irrational and rational.

Exercise 3. (i) The integer lattice points in a fan form a semi-group.
(ii) The semi-group is finitely generated if and only if the slopes are rational.
(iii) Find the set of generators for the fan in the first diagram.
(iv) Calculate the number of generators of a fan with rational slopes p/q and r/s.

The dual of a cone C is the cone

Ĉ = {v ∈ R
2|〈u, v〉 ≥ 0, ∀u ∈ C}.

The duals of the fans above are given in Figure 5. A collection of cones in the
plane, a fan, produces a variety that is the union of affine varieties with rings of
functions given by the dual cones. Consider the following three examples. The
dual of a fan is the collection of dual cones. The dual fans for the first two fans
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Figure 5. Dual cones.

blow-up

CP2

Hirzebruch surface

Figure 6. Fans.

CP2

blow-up

Figure 7. Dual fans.

in Figure 6 are given in Figure 7. The ring of functions is read off from these dual
fans. In the first case, we have C[x, x−1y] ∪ C[y, y−1x]. These both contain C[x, y]
and give the two charts for the blow-up of C2 at 0. In the second case we have
C[x, y]∪C[x−1, x−1y]∪C[y−1, y−1x] which gives the ring of functions on CP2 in its
three charts.
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Fans and polygons.
There is a relationship between polygons and fans. Let P be a polygon in the

plane and Q be an edge or a vertex of P . Associate a cone to Q by:

σQ = {v ∈ R
2|〈u, v〉 ≤ 〈u′, v〉, ∀u ∈ Q, u′ ∈ P}.

The union of these cones defines the fan associated to P . The polygons associated
to the fans in Figure 6 are given below.

blow-up

CP2

Hirzebruch surface

Figure 8. Polygons associated to fans.

Delzant polygons.
The polygons associated to fans are convex, the slopes of their boundaries are

rational, and the slopes at each vertex satisfy an integrality and nondegeneracy
condition. These properties are given below in the definition of a Delzant polygon.

We have mainly worked in the plane although almost everything generalises
easily to all dimensions. In this section we will state results in full generality. One
can always take the dimension to be 2 and polytopes to be polygons in each of the
statements.

We need to describe the moment map on a symplectic manifold (M, ω) that
admits an ω-preserving action of a group G.

Exercise 4. Prove the following result due to Schur. Let M be an n×n Hermitian
matrix with diagonal elements {a1, a2, . . . , an} and eigenvalues {λ1, λ2, . . . , λn}.
Then (a1, a2, . . . , an) lies in the convex hull of the points (λσ(1), λσ(2), . . . , λσ(n))
where σ runs over all the permutations of n numbers.

The group U(n) acts on Hermitian matrices preserving eigenvalues. The orbits
of the action are symplectic manifolds, and the diagonal elements give the moment
map of the action of T n ⊂ U(n). Atiyah [2] and Guillemin and Sternberg [6]
generalised this to any symplectic manifold.

Let G be a compact connected Lie group that acts on the symplectic manifold
(M, ω) preserving the symplectic form. Any element ξ ∈ g defines a vector field on
M , which in turn defines a Hamiltonian Hξ that satisfies dHξ(v) = ω(ξ, v) for any
v ∈ TpM . Define the moment map µ : M → g∗ by

(µ(p), ξ) = Hξ(p).

Theorem 1. If G = T n acts on (M, ω) preserving the symplectic form then the
image of µ is a convex polytope in R

n = t∗.
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We call such a symplectic manifold a toric variety. Delzant [3] completely char-
acterised the convex polytopes arising from toric varieties. In fact, he showed that
the polytopes and toric varieties determine each other.

Definition 4. A convex polytope ∆ in Rn is Delzant if:

(1) There are n edges meeting in each vertex p.
(2) The edges meeting in the vertex p are of the form p + tvi, t ≥ 0, vi ∈ Zn.
(3) The v1, . . . , vn in (2) can be chosen to be a basis of Zn.

Theorem 2. Each Delzant polytope gives rise to a symplectic manifold (M2n, ω)
with an action of T n that preserves ω, and all such symplectic manifolds arise this
way.

The proof of this result uses symplectic quotients. We will sketch it here.
Put M0 = µ−1(0) ⊂ M . If G acts freely on M0, then 0 is a regular point of µ,

so M0 is a closed submanifold of M of codimension dim G. Put B = M0/G. There
exists a symplectic form ωB on B satisfying i∗ωM = π∗ωB, where π : M0 → B and
i : M0 → M .

For our purposes, G will be a torus T d−n and the symplectic manifold will be
the space of λi’s. Note that the torus should not be confused with the torus T n

acting on the toric variety.
Define a convex d-sided polygon P in the plane by

〈x̃, ui〉 ≥ λi

where x̃ = (x, y), i = 1 . . . d, ui ∈ Z2 is a primitive vector giving the inward pointing
normal vector to the ith edge, and λi ∈ R. Notice that the fan depends only on
the ui and not the λi. The symplectic structure does depend on the λi.

Consider the map

π : Z
d → Z

n, ei 7→ ui

that maps the standard basis of Zd to the normal vectors in Zn. This extends to
π : Rd → Rn and induces a map π : T d → T n. The kernel of this map, T d−n acts
on Cd with moment map µ. In [5] it is proven that µ−1(−λ1, . . . ,−λn)/T d−n is
a symplectic manifold with an action of T n. Furthermore, the polytope P is the
image of its moment map.

Symplectic blow-ups.
The following definitions and results are taken from [5] where further references

are given. Let X be the blow-up of Cn at the origin, described in the first lecture,
given by π : X → Cn and represent the exceptional divisor, π−1(0), by i : CPn−1 →
X . Equip Cn with the standard symplectic form ω0.

Definition 5. A symplectic form ω on X is a blow-up of ω0 if it is U(n)-invariant
and ω − π∗ω0 is compactly supported.

Theorem 3. Two blow-ups of ω0 are equivalent under a U(n)-equivariant diffeo-
morphism if and only if i∗ω1 = i∗ω2.

Theorem 4. Given δ > 0 there exists an ǫ > 0 and an ω with the property that
the volume of the exceptional curve is ǫ and ω = π∗ω0 on the set |z| ≥ δ.

It might seem disconcerting to have the symplectic structures agree off a small
neighbourhood. The same type of thing happens with the Darboux theorem. One
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can see it explicitly in terms of Delzant polytopes. The blow-up P̃ of a Delzant
polytope P replaces a vertex p by the n vertices p + ǫvi where the vi are the basis
of Zn pointing along edges of P at p. Alternatively, one can use the moment map
of a circle action ot get a one parameter family of symplectic manifolds giving ǫ
blow-ups.

Kähler manifolds.
Kähler structures, the metric arising from compatible symplectic structures and

complex structures, are of central importance to the subject.
A polytope determines a unique complex structure and a unique symplectic

structure. It does not determine a unique Kähler structure. When we say that the
complex structure is unique we mean unique up to diffeomorphisms. Similarly, the
symplectic structure is unique up to diffeomorphisms. If we fix a complex structure,
then equivalent symplectic structures gives rise to inequivalent Kähler structures.

There are two types of natural local coordinates on Kähler manifolds: complex
(holomorphic) and symplectic (Darboux) coordinates. One can parametrise all
compatible symplectic structures on a complex manifold via its potential whilst
no such nice description exists for compatible complex structures. Abreu gave a
nice description in the toric case [1], based on Guillemin’s description of the Kähler
potential of a toric variety in terms of combinatorial data in the polytope [4].
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Progress in Mathematics, 122. Birkhäuser Boston, Inc., Boston, MA, 1994.
[6] Guillemin, V. and Sternberg, S. Convexity properties of the moment mapping. Invent. Math.

67 (1982), 491–513.

Department of Mathematics and Statistics, University of Melbourne, Australia 3010

E-mail address: pnorbury@ms.unimelb.edu.au


