
UNFOLDING POLYNOMIAL MAPS AT INFINITYWALTER D. NEUMANN AND PAUL NORBURY1. IntroductionLet f : C n ! C be a polynomial map. The polynomial describes a familyof complex a�ne hypersurfaces f�1(c), c 2 C . The family is locally trivial, sothe hypersurfaces have constant topology, except at �nitely many irregular�bers f�1(c) whose topology may di�er from the generic or regular �ber off . We would like to give a full description of the topology of this family interms of easily computable data. This paper describes some progress.We will restrict mostly to the case that f has only isolated singularities.We show that the data then needed are local monodromy maps obtainedby transporting a �xed generic �ber F around the irregular �bers, and the\Milnor �bers" of the singular points and singularities at in�nity of f : theseare certain submanifolds of F that describe the loss of topology at irregular�bers.It is convenient to subdivide this necessary data as follows. For eachirregular �ber we need� the Milnor �bers associated with it;� the local monodromy for the irregular �ber restricted to each Milnor�ber;� the embeddings of the Milnor �bers into a �xed \reference" regular�ber F .The �rst two items are local ingredients, while the third is global. We areable to give complete computation of the local ingredients for n = 2 (seeTheorem 5.1). The remaining problem for n = 2 is therefore the third item,although we obtain enough constraints that the complete topology can besometimes be deduced.We use the Brian�con polynomial as an illustrative example. In this caseour general results quickly yield the previous homological monodromy com-putations of Artal-Bartolo, Cassou-Nogues, and Dimca [1] and Dimca andNemethi [6]. Since our computations are geometric, we obtain sharper in-formation (action on the intersection form, etc.). In fact, our computationsstrongly suggest a candidate description for the complete topology. How-ever, this description remains conjectural, so the example illustrates boththe strengths and current limitations of our approach.1991 Mathematics Subject Classi�cation. 14H20, 32S50, 57M25.This research was supported by the Australian Research Council.1



2 WALTER D. NEUMANN AND PAUL NORBURYAs in the paper [19], we also give a detailed description on the level ofhomology. That paper shows that, if f is good, that is, it has only isolatedsingularities and no singularities at in�nity, then for n > 3 the homologicaldata describes the complete topology. Our results prepare the ground foran extension of this result to the case that there are singularities at in�nity(at least if the singularities at in�nity are also isolated), by extending thetopological model of [19] to allow singularities at in�nity.Before we describe our results in more detail, we say a bit more aboutthe basic set-up.A �ber can be irregular in two ways:� it may have singularities;� it may be \irregular at in�nity": failure of local triviality near thegiven �ber occurs outside arbitrarily large compact sets.Of course a �ber can be both singular and irregular at in�nity; this will,for instance, always be the case if the �ber has non-isolated singularities.There have been many papers dealing with algebraic conditions that implyregularity at in�nity (M-tameness of [14] which asks that the given �ber andall nearby �bers be transverse to su�ciently large spheres; �-regularity of [26]and [27] which generalizes this to allow non-round spheres; the stronger t-regularity of [23], equivalent to the \Malgrange condition" of [22]). For n = 2these conditions are all equivalent to regularity at in�nity (see [8], [27]), butin higher dimensions they are not mutually equivalent. For our purposes theweakest concept of irregularity at in�nity, namely the topological one givenabove, su�ces.In [18] we described results that hold under no conditions on singularities.As already mentioned, we will here be particularly interested in �bers whichhave only isolated singularities, but no restriction on singularities at in�nity.There have been several recent studies of polynomial maps for which thesingularities at in�nity are also restricted to be isolated in an appropriatesense (e.g., [1], [3], [4], [23], [20], [21]). However most of our results are neweven for this case. In particular, the second part of this paper deals onlywith the case of dimension n = 2, in which case singularities at in�nity arealways isolated.At an irregular �ber there is a loss of topology compared with the regular�ber. For an isolated singularity the change in topology is captured by theMilnor �ber [13] of the singularity. If f is \good" (no singularities at in�nity)then these Milnor �bers account for all the topology of the regular �ber ina way that is made precise by Neumann and Rudolph [19].For a singularity at in�nity there is a \Milnor �ber at in�nity," �rstdescribed by Suzuki [24] for n = 2. One point of this paper is to extendthe theory of [19] to encompass the Milnor �bers at in�nity also, and toshow that the new ingredients | the topology of the singularities at in�nityof an irregular �ber, as encoded by the Milnor �bers at in�nity and themonodromy maps on these Milnor �bers | are recoverable for n = 2 in fullfrom the link at in�nity of the irregular �ber.



UNFOLDING POLYNOMIAL MAPS AT INFINITY 32. Homological resultsTo clarify what we mean by \loss of topology at an irregular �ber" westart with a simple homological result which is true under no assumption onf .De�nition 2.1. For any �ber f�1(c) of f : C n ! C choose � su�cientlysmall that all �bers f�1(c0) with c0 2 D2� (c) � fcg are regular (D2� (c) is theclosed disk of radius � about c) and let N(c) := f�1(D2� (c)). Let F = f�1(c0)be a regular �ber in N(c). ThenVq(c) := Ker�Hq(F ;Z)! Hq(N(c);Z)�is the group of vanishing q-cycles for f�1(c).Let � be the set of irregular values of f . Choose a regular value c0 for fand paths 
c from c0 to c for each c 2 � which are disjoint except at c0. Weuse these paths to refer homology of a regular �ber near one of the irregular�bers f�1(c) to the homology of the \reference" regular �ber F = f�1(c0).From now on F will always mean this particular regular �ber.Theorem 2.2 ([3], [18]). For q > 0 the maps Vq(c) ! Hq(F ;Z) induce anisomorphism Mc2� Vq(c) �= Hq(F ;Z):Moreover, the map Hq(F ;Z)! Hq�N(c);Z� with kernel Vq(c) is surjective,so Hq�N(c);Z� �=Lc02��fcg Vq(c0).Thus the group of vanishing cycles measures homologically the \loss of topol-ogy" at an irregular �ber, and these groups account for all the homology ofthe regular �ber.We now restrict to a �ber f�1(c) with at most isolated singularities (butpossibly singular at in�nity). The \nonsingular core" of f�1(c) is obtainedby intersecting f�1(c) with a very large ball and then removing small regularneighborhoods of its singularities. More precisely, there is a radius R(c)such that for any r � R(c) the sphere S2n�1r � C n of radius r about theorigin intersects f�1(c) transversally. Choose any r � R(c) and denoteF co(c) := f�1(c) \D2nr (0), where D2nr (0) is the disk of radius r about theorigin in C n . This F co(c) is the compact core of the �ber f�1(c). The �berf�1(c) is topologically the result of adding an open collar to the boundary ofF co(c). Any singularities of f on f�1(c) lie on F co(c) and we remove smallopen regular neighborhoods of these singularities to form a boundaried 2n-manifold F ns(c), the non-singular core of f�1(c).There may be boundary components of F co(c) outside of which the topol-ogy of nearby �bers of f is the same as that of f�1(c), in the sense thatf restricted to the appropriate component of f�1�D2� (c)� \ �C n � �D2nr (0)�gives a locally trivial �bration for r � R(c) and � su�ciently small. We



4 WALTER D. NEUMANN AND PAUL NORBURYcall such boundary components regular and call the other boundary compo-nents of F co(c) irregular. Thus f�1(c) is regular at in�nity if and only if allboundary components of F co(c) are regular.By standard arguments (see Section 4) we can embed� : F ns(c)�D2� (c) ,! C n(if � is small enough) so that �(x; c) = x for x 2 F ns(c) and f � � isthe projection to D2� (c). By restricting � to F ns(c) � fc0g we thus get anembedding of F ns(c) into a nearby regular �ber F 0 = f�1(c0) of f . The com-plement F 0 � �F ns(c) then consists of the disjoint union of the Milnor �bersof the singularities of f on f�1(c) and certain non-compact pieces. Thesenon-compact pieces will be half-open collars on the regular boundary com-ponents of F co(c) and other pieces which meet F ns(c) at irregular boundarycomponents of F co(c). We call the latter the Milnor �bers at in�nity forf�1(c).Terminology. By Milnor �bers of f we will mean all Milnor �bers of iso-lated singularities of f and all Milnor �bers at in�nity. If we want to em-phasize that a Milnor �ber is not at in�nity we will call it a �nite Milnor�ber. Let F1(c); : : : ; Fsc(c) and Fsc+1(c); : : : ; Ftc(c) be all the Milnor �bersat in�nity respectively �nite Milnor �bers for f�1(c).We will consider the Milnor �bers to lie in our standard regular �ber F ,by transporting the �ber F 0 = f�1(c0) along the path 
c. Topologically, the�ber f�1(c) results from F by collapsing each �nite Milnor �ber to a pointand removing each Milnor �ber at in�nity. This is the sense in which theMilnor �bers capture the loss of topology of the �ber f�1(c). We can usethe local monodromy to relate this to vanishing cycles.For each irregular �ber f�1(c), by transporting a nearby regular �berF 0 in a small loop around the �ber f�1(c) we get a local monodromy mapF 0 ! F 0. By using the path 
c to refer this monodromy to the referenceregular �ber F = f�1(c0) we consider it as a map h(c) : F ! F . Thismonodromy map is well de�ned up to isotopy.If f�1(c) has isolated singularities, the local monodromy h(c) : F ! Fcan be normalized to be the identity on the image in F of the non-singularcore of f�1(c) (use the above embedding � : F ns(c)�D2 ,! C n). Thus, h(c)restricts to a local monodromy map on each Milnor �ber Fi(c). We denotethis local monodromy map h(c) : Fi(c)! Fi(c)also by h(c), or simply h.This map is the identity on @Fi(c), so it induces a map in homology calledthe variation (introduced by [12], but with di�erent sign convention)var : Hq�Fi(c); @Fi(c)�! Hq�Fi(c)�;



UNFOLDING POLYNOMIAL MAPS AT INFINITY 5obtained by taking a relative cycle C to the closed cycle C � h]C. Let(vi)q : Hq�Fi(c); @Fi(c)�! Hq(F )be the composition of variation with the map Hq(Fi(c)) ! Hq(F ) inducedby inclusion.Theorem 2.3. For q � 1 the maps (vi)q : Hq(Fi(c); @Fi(c)) ! Hq(F ) areinjective and induce an isomorphismtcMi=1 Hq�Fi(c); @Fi(c)� �=�! Vq(F )to the subgroup Vq(F ) � Hq(F ) of vanishing cycles.We will prove this theorem in section 4. We �rst re�ne it and Theorem2.2 by describing how monodromy, intersection form, and Seifert form relateto these sum decompositions of homology.3. Monodromy and Seifert form in homologyTheorem 3.1. With respect to the sum decomposition in Theorem 2.2 themap in homology induced by the local monodromy h(c) has the form0BBBBB@I 0 : : : 0 0 : : : 0... ... ...� � : : : hc � : : : �... ... ...0 0 : : : 0 0 : : : I
1CCCCCAwhere hc is the restriction of H�(h(c)) to Vq(c).If f�1(c) has only isolated singularities, then hc respects the sum decom-position of Theorem 2.3 and thus has block form0BBB@hc;1 0 : : : 00 hc; 2 : : : 0... ... ...0 0 : : : hc;tc1CCCAwhere hc;i is induced by the local monodromy h(c) : Fi(c)! Fi(c).The link at in�nity of a �ber f�1(c) with isolated singularities is the link�S2n�1; S2n�1 \ f�1(c)�, where S2n�1 is any sphere around the origin ofradius greater than the number R(c) mentioned above. For a regular �berthis link is independent, up to equivalence, of the choice of �ber and iscalled the regular link at in�nity for f . A standard construction shows thata Seifert surface of this regular link at in�nity (S2n�1; Lreg) is di�eomorphicto the compact core F co of a regular �ber (for n = 2 this gives the minimalSeifert surface, and this minimal Seifert surface is unique, see [16]).



6 WALTER D. NEUMANN AND PAUL NORBURYThe Seifert linking form Hq(F co)
H2n�2�q(F co) ! Z on the homologyof a Seifert surface is a useful invariant of a link.For each Fi(c) we have a form:(Lc;i)q : Hq(Fi(c); @Fi(c))
H2n�2�q(Fi(c); @Fi(c))! Z;�
 � 7! var(�):�;(1)where the dot represents intersection formHq�Fi(c)�
H2n�2�q�Fi(c); @Fi(c)�! Z:Theorem 3.2. Suppose f has only isolated singularities, so Theorems 2.2and 2.3 give a direct sum decompositionMc2� tcMi=1 Hq�Fi(c); @Fi(c)� �=�! Hq(F ) �= Hq(F co):If we order the set � so that the paths 
c, c 2 �, depart the point c0 inanti-clockwise order, then with respect to this direct sum decomposition theSeifert form of the regular link at in�nity has lower triangular block form,with diagonal blocks given by the forms Lc;i of (1), and with o�-diagonalblocks equal to zero for pairs of summands with the same c:0BBBBBBBBBBBB@
: : : 0 0 : : : 0 0 : : : 0... ... ...� � : : : Lc;1 0 : : : 0 0 : : : 0� � : : : 0 Lc;2 : : : 0 0 : : : 0� � : : : ... ... ... 0 : : : 0� � : : : 0 0 : : : Lc;tc 0 : : : 0... ... ...� � : : : � � : : : �

1CCCCCCCCCCCCAIf f is good, that is, there are no Milnor �bers at in�nity, these resultsare in [19] in slightly di�erent formulation, as follows. The variation mapvar: Hq�Fi(c); @Fi(c)� ! Hq(Fi(c)) is an isomorphism for the Milnor �berof an isolated singularity1. Moreover, in this case the homology Hq(Fi(c))vanishes for q 6= n � 1 by [13]. Thus, we can replace (vi)q in Theorem 2.3by the map Hn�1�Fi(c)� ! Hn�1(F ) induced by inclusion when q = n� 1(and ignore it when q 6= n � 1). Moreover, in this case the form of (1) isthe Seifert form pulled back to H�(Fi; @Fi) via the variation isomorphism.Thus Theorem 2.3 can be formulated in terms of the Seifert forms of thesingularities of f , which is the form in which these results were given in [19].In this case that f is good the Seifert form is a particularly strong invari-ant (see [19]): the local homological monodromies of Theorem 3.1 are allcomputable from the the above block decomposition of the Seifert form on1This is a general fact about �bered links, see [12].



UNFOLDING POLYNOMIAL MAPS AT INFINITY 7Hn�1(F ), and for n > 3 the complete topology of f : C n ! C is determinedby this block decomposition of the Seifert form.To describe further relations on the above block decompositions, we sup-pose the irregular values are numbered c1; : : : ; ck in the order they occurin Theorem 3.2. We abbreviate hcj as hj and write the decompositions ofmonodromy and Seifert form of Theorems 3.1 and 3.2 as:H�(h(cj)) = 0BBBBBBB@ I 0 : : : 0 0 : : : 0... ...0 0 : : : I 0 : : : 0hj1 hj2 : : : hj;j�1 hj : : : hjk... ...0 0 : : : 0 0 : : : I
1CCCCCCCA(2)

L = 0BBBBBBB@L1 0 : : : 0 0 : : : 0L21 L2 : : : 0 0 : : : 0... ...Lj1 Lj2 : : : Lj 0 : : : 0... ...Lk1 Lk2 : : : lkj : : : : : : Lk
1CCCCCCCA :(3)As described above, hj and Lj may decompose further as the block sums ofthe hcj ;i respectively Lcj ;i, i = 1; : : : ; tcj .It is a standard result that the intersection form S on H�(F ) may bewritten S = L� Ltwhere L is the Seifert form discussed above, and Lt is the appropriate gradedtranspose, Lt(x; y) = (�1)(p+1)(q+1)L(y; x) if x 2 Hq(F ) and y 2 Hp(F ) (see,e.g., [7]; in [19] this formula is mistakenly written S = L+Lt, and the secondinstance of (�1)(s+1)(n�s) on the same page 418 should be (�1)s+1). Theintersection form is, of course, preserved by all the local monodromies h(cj).The Seifert form, on the other hand, is only preserved by the \monodromyat in�nity" h(1) = h(ck)h(ck�1) : : : h(c1). There are, nevertheless, somerelationships between local monodromy and Seifert form which can giveuseful constraints. The following generalizes Theorem 3.5 of [19].Theorem 3.3. With notation as above,Ljhj = Ltj;Lihij = Ltji for i < j,Lihij = �Lij for i > j.This theorem, in fact, implies all the obvious constraints between Seifertform and monodromy, such as the fact that S = L � Lt is preserved bythe local monodromies, as well as the relation LH�(h(1)) = Lt, discussedbelow in the proof of this theorem.



8 WALTER D. NEUMANN AND PAUL NORBURY4. The topological modelIn this section we will prove the results of sections 2 and 3.Assume that f�1(c) has just isolated singularities. We �rst describe atopological model for the set N(c) = f�1(D2� (c)) of De�nition 2.1.Let F̂ (c) be the result of removing the interiors of the Milnor �bers Fi(c),i = 1; : : : ; tc, from F . Topologically, F̂ (c) results by gluing half-open collarson the regular boundary components of F ns(c). The local monodromy maph(c) : F ! F can therefore be taken to be the identity on F̂ (c).De�ne N0 := (F̂ (c)�D2) [ (F �h(c) S1)� I;where F�h(c)S1 is the mapping torus for the local monodromymap h(c) : F !F and  is the embedding : F̂ (c)� S1 = F̂ (c)�h(c) S1 ! (F �h(c) S1)� f0g � (F �h(c) S1)� I;(See Fig. 1). The boundary of N0 is the disjoint union of (tc + 1) pieces:
F

2
F

1

Figure 1. Schematic picture of N0. Here F1 is a Milnor�ber at in�nity, F2 a �nite Milnor �ber.@N0 = �(F �h(c) S1)� f1g�[ tc[i=1 �(Fi(c)�h(c) S1) [ (@Fi(c) �D2)�= @0N0 [ tc[i=1 @iN0 (notation):



UNFOLDING POLYNOMIAL MAPS AT INFINITY 9When Fi(c) is a �nite Milnor �ber, that is sc+1 � i � tc,@iN0 = (Fi(c)�h(c) S1) [ (@Fi(c)�D2) �= S2n�1is a standard picture of the sphere with its Milnor �bration for the link ofthe singularity in question (see e.g., [19]). Let N be the result of pastingballs D2n to N0 along these spheres @iN0 for i = sc+1; : : : ; tc.Proposition 4.1. N is a partial compacti�cation of N(c) in the followingsense: N(c) is homeomorphic2 to the result of removing from N all boundarycomponents except the \outer" boundary component @0N = F �h(c) S1.Proof. If Di be a small enough ball around the i-th singularity of f�1(c)for i = sc+1; : : : ; tc then f�1(c) is transverse to each @Di and also to@D2nr (0). By compactness, there exists � so that f�1(c0) is also transverseto each of these spheres for jc0 � cj � �. Let D0 = D2nr (0) � Ssci=1 �Di andX = f�1(D2� (c)) \ D0. Then f jX is a submersion of a compact manifoldwith boundary, so by Ehresmann's theorem (see, e.g., [10]) it is a locallytrivial �bration. Since it is a �bration over a disk it is a trivial �bration, soX �= F ns(c) � D2� (c). This gives the embedding � : F ns(c) � D2� (c) ,! C nused in the de�nition of Milnor �bers at in�nity. We can extend � to thecollars outside the regular boundary components of F ns(c) (by de�nition ofregular boundary components) to get � : F̂ (c) � D2� (c) ,! C n compatiblewith the map f and with the trivial structure of f outside regular boundarycomponents of F ns(c).Let A = D2� (c)� �D2�=2(c). Then it is clear that X [ f�1A is di�eomorphicto N0 so we will identify N0 with this subset X [f�1A of N(c). The closureof N(c)�N0 consists of tc pieces, of which the last tc� sc are \Milnor disk"neighborhoods of the singularities of f�1(c). Gluing these back in to N0gives an embedding N ! N(c), the closure of whose complement consistsof pieces Yi attached at the boundary components @iN := (Fi(c)�h(c) S1)[(@Fi(c) � D2) of N for i = 1; : : : ; sc. If we show each Yi is homeomorphicto a half-open collar on @iN , then adding Yi to N has the same e�ect up tohomeomorphism as removing @iN , so the proof is complete.To see Yi is a collar we can use a standard vector-�eld argument. Sincef�1(c) is transverse to large spheres about 0, we can �nd a vector-�eld w ina neighborhood of any point of f�1(c) outside D2nr (0) so that w is tangentto �bers of f and has radially outward component of magnitude 1. Gluingthese local w's by a partition of unity, we can �nd a vector-�eld w which isde�ned on all Yi, is zero o� a neighborhood of f�1(c)\Yi, is tangent to �bersof f , and has radially outward component of magnitude 1 on f�1(c) \ Yiand of magnitude at most 1 elsewhere. We can also assume w is non-zeroon the part @Fi(c)�D2� of @Yi.2We will prove homeomorphism, but using standard angle straightening arguments, cf[10], one can get a di�eomorphism.



10 WALTER D. NEUMANN AND PAUL NORBURYLet v0 be the inward radial vector-�eld v0(x; y) = �(x; y) on D2� . Again,by gluing local choices by a partition of unity, we can �nd a vector-�eld von Yi whose image under f is v0, which is tangent on the part @Fi(c) �D2�of @Yi, and which has globally bounded magnitude.The sum v + w is then a vector-�eld on Yi whose 
ow-lines all lead inbackwards time to @Yi and intersect @Yi transversally, and whose forward
ow lines continue for in�nite time. Integrating the vector-�eld from @Yithus gives a homeomorphism of Yi with @Yi � [0;1), completing the proof.Lemma 4.2. If N0 is constructed as for the above proposition then Vq(c) =ker�Hq(F ) ! Hq(N0)� for q = 1; : : : ; 2n � 3 and Vq(c) = 0 otherwise.Moreover, Hq(F )! Hq(N0) is surjective for q 6= 2n� 1.Proof. In the previous proof we identi�ed N0 with a subset of N(c) in such away that N(c) di�ers from N0 by closing some S2n�1 boundary componentsby disks and adding collars to some other boundary components. It followsthat the homology of N(c) and N0 di�er only in degree 2n � 1. SinceVq(c) vanishes if q is not in the range 1; : : : ; 2n� 3, the lemma follows fromTheorem 2.2.Proof of Theorem 2.3. The above lemma implies that Vq(c) �= Hq+1(N0; F )by an isomorphism that �ts in a commutative diagram:0 ���! Hq+1(N0; F ) ���! Hq(F ) ���! Hq(N0) ���! 0??y�= 


 


0 ���! Vq(c) ���! Hq(F ) ���! Hq(N0) ���! 0We identify N0 with a subset of N(c) as in the proof of Proposition 4.1.Thus f maps N0 to the disk D2� (c). Moreover, N0 is the union of theouter shell Nout := f�1(A), where A = D2� (c) � �D2�=2(c), and an inner coreNinn = N0 �Nout isomorphic to F̂ (c)�D2�=2(c).Express the disk D2� (c) as the union of two half-disks D2� and D2+ bycutting along a diameter. Let N� and N+ be the parts of Nout that lie overD� and D+ and put N1 := N� [Ninn. We haveN0 = N+ [ N1;with N+ �= F � I � I;N1 �= F � I � I [F̂ (c)�I�f0g F̂ (c) �D2:Thus N1 has F � I� I as a deformation retract and the pair (N+; N+ \N1)has its intersection with F�I�f0g (isomorphic to �F�I; (F�@I)[F̂ (c)�I�)as a deformation retract. In particular, we see that each of the following



UNFOLDING POLYNOMIAL MAPS AT INFINITY 11maps induces an isomorphism in homology, since they are, respectively, ahomotopy equivalence, an excision map, and a homotopy equivalence:(N0; F ) ,! (N0; N1)(N+; N+ \N1) ,! (N0; N1)�F � I; (F � @I) [ (F̂ (c)� I)� ,! (N+; N+ \N1):Since �F � I; (F � @I) [ (F̂ (c)� I)� = (F; F̂ (c)) � (I; @I);we get a homology isomorphismHq+1(N0; F ) �= Hq+1�(F; F̂ (c)) � (I; @I)�:The K�unneth theorem thus givesHq+1(N0; F ) �= Hq(F; F̂ (c))
H1(I; @I) = Hq(F; F̂ (c)):Summarizing, we have an isomorphismHq(F; F̂ (c)) �= Vq(c):The composition Hq(F; F̂ (c)) �=�! Vq(c) ! Hq(F ) is the variation map(up to sign). Indeed, for the isomorphism Hq(F; F̂ (c)) ! Hq+1(N0; N1), arelative cycle C is taken to a relative cycle C � I, mapped by C � I !F � I � f0g � N+ � N0 (we are identifying N+ with F � I � I). We areinterested in the boundary of this cycle as a cycle for Hq(N1) �= Hq(F ).When we retract N1 to F , the subset of N+ \N1 given by @(F � I � f0g)maps to F by the identity on one component and by h on the other. Theresulting cycle in F thus represents � var([C]).Theorem 2.3 now follows because Hq(F; F̂ (c)) �= Ltci=1Hq(Fi; @Fi) byexcision.Proof of Theorem 3.1. The �rst part of Theorem 3.1 just says that the im-age Im(Hq(h(c)) : Hq(F ) ! Hq(F )) is contained in Vq(c), which is part ofTheorem 1.4 of [18] (it is also proved in section 2 of [6]). The second partof Theorem 3.1 is immediate from the above proof of Theorem 2.3.Proof of Theorem 3.2. We �rst recall from [19] (see also [16]) how the Seifertlinking form for the regular link at in�nity can be de�ned on Hq(F co). LetD2 be a large disk in C which contains all c 2 C for which f�1(c) is eithersingular or fails to be M-tame at in�nity (in the sense of [14], see also [27];there are �nitely many such c and they include all irregular values of f).Then there is a radius R so that for any r � R the boundary of the diskD2nr (0) intersects all �bers f�1(t) with t 2 @D2 transversally. Then D :=f�1(D2) \ D2nr (0) is homeomorphic to D2n. The embedding of F co 2 @Das f�1(t) \ D with t 2 @D2 gives a Seifert surface for the regular link atin�nity. Let F co+ be a neighboring copy of F co, obtained by replacing t by a



12 WALTER D. NEUMANN AND PAUL NORBURYnearby point t+ of @D2. If a is a cycle for homology Hq(F co), let a+ be acopy of the cycle in F co+ . The Seifert form is the formHq(F co)
H2n�2�q(F co)! Z; a
 b 7! `(a+; b);where ` is linking number in S2n�1 = @D. It can be computed (up to a signwhich depends on conventions; following [7] and [19] the sign is (�1)q+1) byletting a+ and b bound chains A+ and B in D and taking the intersectionnumber A+ � B.We now choose our base point c0 for which f�1(c0) is our \standard"regular �ber to be the above point t, so we have paths 
c (as chosen beforeTheorem 2.3) from t to the irregular values c. We can assume these pathsrun in the disk D2.Suppose that we have a homology class [a] in the image of the mapvi(c) : H�(Fi(c); @Fi(c)) ! H�(F ). Here, we will consider, for the moment,F to be a regular �ber f�1(c0) with c0 2 @D2� (c), so F is on @N(c). We writethe cycle a as var(�) with � a relative cycle in (Fi; @Fi). By transportingFi around the circle @D2� (c) we obtain a map of �� I to Fi �h S1 � @N(c).The boundary of this chain � � I consists of the union of �, h(�), and@� � I. The part @� � I bounds a mapping of @� � D2� (c) mapping to@Fi �D2� (c) � N(c), so we can glue this to �� I to get a chain A0 in N(c)with boundary @A0 representing var(�) = a mapping to F .If we want a be a cycle for homology of our standard �ber F = f�1(t)we glue onto the above A0 a copy of a � I mapping into f�1(
c). We callthe resulting chain A. Note that A0 lies completely in the \shell" (Fi �hS1) [ (@Fi � D2� (c) � N0 � N(c). We can also construct A0 in a smallershell obtained by replacing � by �=2 and removing a thin collar from @Fi.We denote the version of A constructed this way by Athin.Suppose now the two homology classes [a]; [b] are in the image of the mapvi(c) : H�(Fi(c); @Fi(c)) ! H�(F ), where F is now our standard regular�ber. We can assume they both lie in F co, since F retracts to F co. Wecan then make b bound a cycle B as above. We can also make a+ bounda cycle Athin+ constructed as above but using a path (
c)+ running parallelto 
c to a point on @D2�=2(c). This path runs through a point c0+ next toc on @D2� (c). The chains Athin+ and B intersect only in the �ber f�1(c0+)and the intersection number Athin+ �B is, up to sign, the intersection numberin f�1(c0) of a and �. (See Fig. 2.) With standard sign conventions,the sign is in fact +1 (this is most easily checked by using the standardformulae Lt = LH and S = L � Lt relating Seifert form L, intersectionform S and monodromy H, since for a knot the relationship to be proved isL(I �H) = S). This proves the claim of Theorem 3.2 about the diagonalblocks of the Seifert form. The claim about vanishing of appropriate o�-diagonal blocks is the same as the corresponding proof in [19], as suggestedby Fig. 3.
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Figure 2 Figure 3Proof of Theorem 3.3. LetM be a 0-codimensional submanifold (with bound-ary) of the sphere Sm and supposeM is �bered over the circle S1 with �berF . Then we can de�ne a Seifert form L and homological monodromy Hon the homology of F as for �bered links and the obvious geometric rela-tion L(x;Hy) = `(x+;Hy) = `(x; y+) = Lt(y; x) can be written in matrixform as LH = Lt (this is a well-known relation in the case of �bered links,see, e.g., [7]). If we apply this in the situation of Theorem 3.3 it gives theequation LH�(h(ck))H�(h(ck�1)) : : : H�(h(c1)) = Lt:An inductive argument, which we omit, shows that this equation is equiva-lent to the collection of equations of the theorem.5. Polynomials in dimension 2In the remainder of this paper we describe results speci�c to dimension2. We assume that f : C 2 ! C has only isolated singularities.The regular link at in�nity determines and is determined by a certain�bered multilink [16], which we will call the fundamental multilink. By [17]the link at in�nity of any irregular �ber is obtained by splicing additionallinks onto this multilink; we can call these the splice components at in�nity.They may decompose further as splices of �bered and non-�bered parts, andthe �bered parts are called the �bered splice components at in�nity.Theorem 5.1. For n = 2 the Milnor �bers at in�nity and their monodromymaps arise as the �bers and monodromy of the �bered splice components atin�nity.We describe below how the �bered splice components at in�nity are deter-mined by the splice diagram for the link. This only depends on the topologyof the link (see [9]), so we have the important corollary:Corollary 5.2. For n = 2 the Milnor �bers at in�nity and their monodromymaps are completely determined by the link at in�nity of the irregular �bersthey belong to (and are e�ectively computable from their splice diagrams, asdescribed in [9]).The splice diagram of the link at in�nity of a complex a�ne plane curve([16]), which from the point of view of classical algebraic geometry is simply



14 WALTER D. NEUMANN AND PAUL NORBURYan encoding of the Puiseux tree at in�nity, also encodes the splice decom-position of the link at in�nity ([9]). It is a weighted tree with some leavesdrawn as arrowheads to stand for link components of the link. Splicinglinks corresponds to gluing such diagrams at arrowheads. Conversely, dis-connecting a splice diagram by cutting an edge and drawing two arrowheadson the resulting ends corresponds to the inverse operation of splice decom-position. Any link obtainable via repeated splice decomposition is called a\splice component." Splice components are thus represented by connectedsubgraphs of the splice diagram.The �bered splice components at in�nity are the splice components corre-sponding to the maximal connected subgraphs of the splice diagram havingonly negative vertex linking weights. The example below will clarify this.Before proving Theorem 5.1, we illustrate it using the example of the\Brian�con polynomial"f(x; y) = x2(1 + xy)4 + 3x(1 + xy)3 + (3� 83x)(1 + xy)2 � 4(1 + xy) + y:This polynomial was shown to have no �nite singularities by Brian�con, see[2] where it is also shown that all �bers of f are connected. It has twoirregular �bers (over 0 and �16=9). The Jordan normal forms for action inhomology of the monodromy generators h(0) and h(�16=9) were computedby Artal-Bartolo, Cassou-Nogues, and Dimca [1]. Dimca and Nemethi [6]computed these with respect to a common basis of homology, thus determin-ing the complex monodromy representation for this example. We will showhow the splice diagrams make these computations \routine" and give thegeometric monodromy rather than just the action on homology. However,as the example will make clear, our approach still falls short of achievingour goal of a practical complete algorithmic description of the topology.The splice diagrams for the links at in�nity of the �bers of f were com-puted in [2]. The regular splice diagram is as follows, where we have includedthe linking weights (also called multiplicity weights) at vertices in parenthe-ses: (0)�2�3 1 � 1 �1(2)�21 �7(3)�3(0) � (1) � (1) � :The fact that vertices with zero linking weights occur is equivalent to eachof the following two facts (see [9], [16] and [17]):� the regular link at in�nity is not a �bered link;� f has �bers that are irregular at in�nity.



UNFOLDING POLYNOMIAL MAPS AT INFINITY 15We write the link as the splice of the part with zero linking weights and a�bered multilink:(0)�2�3 (6) (4) �1 1 �1(2)�21 �7(3)�3(0) � (1) � (1) �The �bered multilink is the multilink associated with the regular link atin�nity for f as described in [16]. We call it the fundamental multilinkfor f . As described there, it is a �bered multilink which determines andis determined by the regular link at in�nity. Its �bers are, up to isotopy,the regular �bers of f over the points of a large circle in C so its �brationgives the monodromy at in�nity for f (which is the product of the localmonodromies around the irregular �bers). We will return to this later and�rst examine the irregular �bers.The Brian�con polynomial has irregular �bers f�1(0) and f�1(�16=9).The link at in�nity for f�1(0) has splice diagram(0)�2�2�3 1 � 1 �1(2)�21 �7(3)�3(�1)� (1) � (1) �It follows that f�1(0) has Euler characteristic �2. Since it has 4 boundarycomponents, it is a four-punctured sphere.We express the link at in�nity of this irregular �ber as the splice of theparts with positive, zero, and negative linking weights respectively:(0)�2�3 (6) (4) �1 1 �1(2)�21 �7(3)�3(2)(3) (1) � (1) �(�1)��2The part with positive linking weights is always the fundamental multilink(see [17]). We call the parts with negative total linking weights (in this casethere is just one) the �bered splice components at in�nity. So the �bered



16 WALTER D. NEUMANN AND PAUL NORBURYsplice component at in�nity is given by the splice diagram:(3)(�1)��2Its �ber has Euler characteristic �1 and 3 boundary components, so it is athrice-punctured disk (see Fig. 4). If we remove the boundary component
Figure 4marked with a dashed curve (corresponding to the arrowhead where the�bered splice component at in�nity splices to the rest of the irregular spliceddiagram) we obtain the Milnor �ber at in�nity for this irregular �ber. Thiswould be F1(0) in our earlier notation, but there is just the one Milnor �berat in�nity for f�1(0), so we call it F (0).The local monodromy for this Milnor �ber is given by the monodromyof the �bered splice component at in�nity. The book [9] describes how tocompute this monodromy from the splice diagram. We need the monodromyin which the boundary of F (0) (consisting of the two circles at the left of the�gure) is �xed. By Theorem 13.5 of [9] it is the result of doing a Dehn twiston an annulus parallel to each of these boundary components. It followsthat the variation mapvar: Z�= H1(F (0); @F (0)) ! H1(F (0))takes a generator of H1(F (0); @F (0)) to the homology class of the di�erenceof the two boundary components. Following the orientation conventions of[9] the bilinear form occurring in Theorem 3.2 (given by equation (1)) thushas matrix (2).The regular �ber F is the result of gluing the Milnor �ber at in�nity tothe irregular �ber (Fig. 5). By Theorem 2.3, the subgroup V1(0) � H1(F )of vanishing cycles for the �ber f�1(0) is generated by the di�erence of thetwo separating curves in this �gure. This is �xed by the local monodromy,so the monodromy matrix is (1).
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Figure 5We will number our irregular values c1 = �16=9; c2 = 0, since this is theordering Dimca and Nemethi use in [6]. So, in the notation of equations (2)and (3) in section 3 we haveL2 = (2); h2 = (1);(4) H1(h(c2)) = � I 0h21 h2� = 0BB@ 1 0 0 00 1 0 00 0 1 0p q r 1 1CCA(5)with h21 = (p; q; r) still to be determined.We now do a similar analysis for the irregular �ber f�1(�16=9). Thesplice diagram for the link at in�nity of this �ber is:(�6)��15 12 (0)�2�3 1 � 1 �1(2)�21 �7(3)�3(�3) � (0) � (1) � (1) �so the irregular �ber f�1(�16=9) has Euler characteristic 0 and is thus anannulus. Moreover, the �bered splice component at in�nity for this irregularlink at in�nity has diagram: (�6)��152 (12)(�3) �The �ber of this �bered multilink is a thrice-punctured torus (right handpiece of Fig. 6) which glues to the irregular �ber as in Fig. 6 to give a copy ofthe regular �ber F . We call this Milnor �ber at in�nity F (�16=9). The localmonodromy on it is isotopic to an order 6 map (because of the linking weight�6) and it exchanges the two boundary components at the right (the circlescorresponding to a single edge of the splice diagram of a �bered multilinkare always permuted transitively by the monodromy for the �bration). The



18 WALTER D. NEUMANN AND PAUL NORBURY
Figure 6local monodromy on F is thus also isotopic to this order 6 map, since F andF (�16=9) just di�er by a collar.Again we can use this description to compute the local monodromy andthe block L1 of the Seifert form. We describe this in greater detail later,but a quick approach is to note that there are exactly two di�erent order 6transformations of the surface in question with given action on the bound-ary, di�ering only in orientation. The correct orientation can be deducedfrom the boundary twist computations in [9] or by means of the equivariantsignature computation of Theorem 5.3 of [15] (as generalized in section 6 ofthat paper). In any case, with respect to a suitable basis of homology, theanswer is: L1 = 0@1 1 00 1 00 0 01A ; h1 = 0@ 0 �1 01 1 00 �1 �1 1A(6) H1(h(c1)) = �h1 h120 I � = 0BB@ 0 �1 0 a1 1 0 b0 �1 �1 c0 0 0 1 1CCA(7)with h12 = (a; b; c)t still to be determined.At this point we can write down the Seifert matrix L asL = �L1 0L21 L2� = 0BB@ 1 1 0 00 1 0 00 0 0 0x y z 2 1CCA(8)with L21 = (x; y; z) still to be determined. However, applying the relationsof Theorem 3.3 gives:a+ b = x; b = y; 0 = z; 2p = �x; 2q = �y; 2r = �z;so in fact we just have three unknown integers in equations (5), (7), (8),namely p; q; c, and the others are then determined asr = z = 0; x = �2p; y = �2q; a = 2q � 2p; b = �2q:(9)



UNFOLDING POLYNOMIAL MAPS AT INFINITY 19The product of the two local monodromy maps is the monodromy atin�nity for the regular �ber. This monodromy at in�nity is the monodromyof the fundamental multilink (by the de�nition of this multilink in [16]),so it can be computed from the splice diagram for this multilink. In ourparticular case that splice diagram (as an unrooted diagram) is(4) (2)��1 21 �7(3)�3(1) � (1) �The �ber of this �bered multilink decomposes according to the splice com-ponents determined by the two nodes of this diagram as in Fig. 7, and the

Figure 7monodromy restricted to the left part is isotopic to a map of order 2 and re-stricted to the right part is isotopic to a map of order 3. The sixth power ofthis monodromy gives a single Dehn twist on the joining circle by Theorem13.1 of [9].This monodromy map in H1(F ) has eigenvalues �1; 1; e�2�i=3, so its char-acteristic polynomial is (t+1)(t3 � 1) = t4 + t3 � t� 1. On the other hand,equations (5), (7), and (9) show the monodromy map isH1(h(c2))H1(h(c1)) = 0BB@1 0 0 00 1 0 00 0 1 0p q 0 11CCA0BB@0 �1 0 �2p+ 2q1 1 0 �2q0 �1 �1 c0 0 0 1 1CCA= 0BB@0 �1 0 �2p+ 2q1 1 0 �2q0 �1 �1 cq �p+ q 0 �2p2 + 2pq � 2q2 + 11CCA :This has characteristic polynomial(t� 1)(t3 + 2(p2 � pq + q2 � 1)(t2 � t)� 1);



20 WALTER D. NEUMANN AND PAUL NORBURYso p2 � pq + q2 � 1 = 0:This equation has six solutions:(p; q) = �(1; 1); �(1; 0); �(0; 1)with corresponding values(a; b) = �(0;�2); �(�2; 0); �(2;�2):But, by changing our choice of basis on H1(F (�16=9)) by powers of thelocal monodromy we cycle through these six possibilities, so they are allequivalent. Choosing (p; q) = (1; 0) gives the conclusion:H1(h(c2)) = 0BB@1 0 0 00 1 0 00 0 1 01 0 0 11CCAH1(h(c1)) = 0BB@0 �1 0 �21 1 0 00 �1 �1 c0 0 0 1 1CCAL = 0BB@ 1 1 0 00 1 0 00 0 0 0�2 0 0 21CCAHere c is still undetermined, and we know no way of �nding it with ourcurrent methods. However, one calculates easily that the isomorphism typeof the monodromy representation over C depends only on the vanishing ornot of 3c+2, which is non-vanishing since it is not divisible by 3. An equiv-alent non-vanishing issue arose in the computation of complex monodromyin [6] and was resolved by a more complicated argument.We have described what can be read directly and easily from the splicediagrams. To complete the information about the global monodromy takesmore work, since we must identify the three di�erent pictures of the regular�ber F of Figs. 5, 6, and 7 to fully understand the global picture. It is easyto see that the boundary component at the right of Fig. 7 corresponds to theone at the left in Fig. 6 and one of the ones at the left in Fig. 5. The issueis to determine how the two circles in Fig. 5 lie with respect to the order 6map of Fig. 6. This would also determine how they lie with respect to theseparating circle of Fig. 7. The homology information gives strong hints,but no obvious complete answer. In the next section we give a conjecturalanswer. 6. A tentative picture of the Brianc�on topologyLet F denote the three-punctured torus. We will describe explicit mapsh1 and h2 of F that satisfy all the properties of the local monodromy maps



UNFOLDING POLYNOMIAL MAPS AT INFINITY 21h(c1) and h(c2) for the Brian�con polynomial that were computed in theprevious section. Namely, h1, h2, and h2h1 are conjugate in the group oforientation preserving di�eomorphisms of F to the maps h(c1), h(c2), andh(1) of the previous section.We will represent F as the 2-fold cover of a punctured disk branched atthree points, described by branch cuts as in Fig. 8. The inner boundary

Figure 8. F as a 2-fold cover; the dashed lines representbranch cutscomponent is thus covered by two boundary components of F and the outerboundary component is double covered by one boundary component of F .Our map h1 will be the order 6 map which rotates the picture by one-thirdof a turn clockwise and exchanges the two branches.Consider now the curves on F labeled �, �0, �, as in Fig. 9. The curves �
δ

β
β ’Figure 9. The dashed portions of curves lie on the \back"branch of F ; � is double covered in Fand �0 cut F into two pieces of genus zero as in Fig. 5. We therefore de�neh2 to be the product of the Dehn twists on these two curves. The curve �



22 WALTER D. NEUMANN AND PAUL NORBURYcuts F into two pieces as in Fig. 7. By drawing a careful picture one �ndsthat the e�ect of h2 on h1(�) is to take it to �, so h2h1 takes � to itself.In fact, h2h1 is conjugate to the map h(1), with � playing the role of theseparating curve in Fig. 7. This can be seen by drawing careful pictures,but it is also forced by the fact that � is mapped to itself together with thehomology computation below.Now let � and 
 be the curves of Fig. 10 and let 
0 be the curve represented
α

γ

Figure 10by a dashed circle in place of 
 (this is the image of 
 under h1). Theintersection number � � � is 1, so � and � form a basis for the homologyH1(F ) of the closed torus obtained by �lling the punctures of F . A basisfor the homology of F is therefore given by �, �, 
, 
0. However, computingthe images of the variation maps for h1 and h2 leads to the basis�; �; 
 � 
0; � + �0 = 2� + 
0;which we therefore use instead. With respect to this basis it is easily checkedthat the actions of h2 and h1 on homology are by the matrices0BB@1 0 0 00 1 0 00 0 1 01 0 0 11CCA and 0BB@0 �1 0 �21 1 0 00 �1 �1 �10 0 0 1 1CCA :These are the matrices for H1(h(c2)) and H1(h(c1)) of the previous sectionwith c = �1.As already stated, we do not know if the above is really the appropriatemonodromy. The computation of the previous section implies that the twocurves of Fig. 5 are �+r(
�
0) and �+r(
�
0)�
0 in homology for somer 2 Z (and it then follows easily that the c in H1(h(c2)) is odd: namelyc = �4r � 2 � 1). There are many pairs of disjoint simple closed curvesthat satisfy this, but the fact that h(c2)h(c1) has to �x a separating closedcurve and be isotopic to order two and three maps on the resulting pieces of



UNFOLDING POLYNOMIAL MAPS AT INFINITY 23F seems a very strong constraint, and may well eliminate most or all otherpossibilities. 7. Proof of Theorem 5.1We �rst need to recall some basics about multilinks and splicing. See [9]for details.For the moment, by a \link" we will understand a pair (�; L) consistingof an oriented submanifold L of dimension 1 in a 3-dimensional homologysphere �. It is a \knot" if L consists of a single closed curve. Our homologysphere � will always be S3 in applications in this paper, but the discussionof splicing is easier without this restriction.The link exterior for a link (�; L) is the manifold with boundary �� �N(L),where N(L) is a (small) closed regular neighborhood of L in �.A multilink is a link (�; L) with an integer \multiplicity" m(K) assignedto each componentK of L, with the convention that reversing the orientationof a component K and simultaneously changing the sign of m(K) gives thesame multilink. In other words, the multilink structure is a given by a 1-cycle m supported on L. Equivalently, and more conveniently, it is givenby the cohomology class � 2 H1(� � L;Z) whose value on a 1-cycle c isthe linking number `(m; c). A Seifert surface for the multilink is a map of acompact oriented surface S to � which maps @S to L, is an embedding onS � @S, and, considered as a 2-chain, has the above 1-cycle m as boundary.If N(L) is a regular neighborhood of L that intersects the Seifert surface Sin a collar on @S then the surface S�S\ �N(L) in the link exterior �� �N(L)is also called a Seifert surface.If (�1;K1) and (�2;K2) are knots, we form the splice� = �1K1 K2�2by pasting together link exteriors of each knot as follows:� = (�1 � �N1) [@ (�2 � �N2);where the pasting along boundaries @N1 and @N2 is done so as to match ameridian of K1 to a longitude of K2 and meridian of K2 with longitude ofK1. A simple homology calculation shows � is again a homology sphere.If K1 and K2 are components of links L1 � �1 and L2 � �2 and L =(L1 �K1) [ (L2 �K2) then we write(�; L) = (�1; L1)K1 K2 (�2; L2);the splice of (�1; L1) to (�2; L2) along K1 and K2.If (�; L) has a multilink structure then we get induced multilink structureson each (�i; Li) by restricting the cohomology class that de�nes the multilinkstructure. Note that, even if the multilink (�; L) is a link (all multiplicitiesare 1), the multiplicities of K1 and K2 will in general be di�erent from 1.



24 WALTER D. NEUMANN AND PAUL NORBURYThus decomposing links via splicing leads one naturally into the realm ofmultilinks.If (�; L) results from splicing two links as above then there is a torus T 2in the link exterior �� �N(L) along which the splicing occurred. Conversely,suppose (�; L) is a link and T 2 � � � �N(L) an essential torus (i.e., theinduced mapping �1(T 2)! �1(�� �N(L)) is injective and T 2 is not isotopicto a boundary component of � � �N(L)). Then (�; L) is the result of anon-trivial splicing operation along this torus: cutting � along T 2 gives twohomology solid tori, and we obtain �1 and �2 from � by replacing each ofthese homology solid tori in turn by a genuine solid torus.In this situation, if � is S3 then �1 and �2 are also S3. In the followingwe will start with a link in S3 and splice decompose it, so we never seehomology spheres other than S3.We will study the topology of f : C 2 ! C by intersecting �bers with alarge disk in C 2 . In fact our basic topological object will be a 4-disk Dobtained as follows: take a large disk D2 that contains all irregular valuesof f , intersect f�1(D2) with a very large 4-disk in C 2 , and then push in\holes" around the �bers that are irregular at in�nity as in the models Nof Proposition 4.1. See Fig. 11.

Figure 11We will need to do this carefully to con�rm the desired properties of theresulting space. As in [16], it is convenient to use a polydisk D(q; r) :=f(x; y) 2 C 2 : jxj � q; jyj � rg for our \very large 4-disk". We recall Lemma2.1 of [16]:



UNFOLDING POLYNOMIAL MAPS AT INFINITY 25Lemma 7.1. By a linear change of coordinates we may assume f(x; y) isof degree n and of the form f(x; y) = xn + fn�1(y)xn�1 + � � � + f0(y). Wechoose s so all irregular values of f lie in the disk D2s(0) � C . Then for rsu�ciently large and q su�ciently large with respect to r the �bers f�1(t)for t 2 @D2s(0) intersect @D(q; r) only in the part jxj < q; jyj = r, anddo so transversely | in fact they intersect each line y = y0 with jy0j � rtransversely.We sketch a slight modi�cation of the argument in [16]. The �ber f�1(t)fails to be transverse to the line y = y0 if and only if y0 is the image of abranch point of the projection f�1(t) ! C given by the y-coordinate. Iff�1(t) is reduced (no multiple components) there will be �nitely many suchbranch points on f�1(t). The locus of such branch points as t varies is analgebraic curve B in C 2 (given by the equation �(y; f(x; y)) = 0, where�(y; t) is the discriminant of the polynomial f(x; y) � t 2 C [y; t][x]). A�ber f�1(c) is irregular at in�nity if and only if it is not reduced (in whichcase it has a component in common with B) or if intersection points ofB with nearby �bers f�1(t) move o� to in�nity as t approaches c. Thusf�1(@D2s(0)) \ B is compact, and if we choose r large enough that thiscompact set lies in the domain jyj < r of C 2 then r does what is desired.This proof actually shows more. Choose � small enough that the disksD2� (c) about the irregular values of f are pairwise disjoint and lie in theinterior of D2s(0). Denote X = D2 �Sc2� �D2�(c). ThenScholium. With notation as above, if the radius r is su�ciently large thenthe �bers f�1(t) for t 2 X intersect each line y = y0 with jy0j � r trans-versely.As described in [16], if r is chosen as in the above Lemma, thenD := f�1(D2s(0)) \ fjyj � rgis a 4-disk in C 2 . (This can be seen by noting that C 2 results by gluingf�1(D2s(0))\fjyj � rg to D along part of @D and then gluing f�1(C� �D2s(0))along the boundary of the result. The �rst part glued on is a collar becausef�1(D2s(0)) \ fjyj � rg ! [r;1), (x; y) 7! jyj is a locally trivial �bration,and the second part is obviously a collar.)We now assume r0 was chosen su�ciently large that all irregular �bersf�1(c); c 2 �, are transverse to the lines y = y0 with jy0j � r0. In particular,the irregular �bers are transverse to the cylinders fjyj = rg with r � r0.Then assume � was chosen small enough that all �bers f�1(t) with t inSc2�D2� (c) are transverse to the cylinders fjyj = r0g. Then r is chosen asin the Scholium above.For each c 2 � the set f�1� �D2� (c)� \ �jyj > r0	 consists of components�f�1� �D2�(c)� \ �jyj > r0	�i, i = 1; : : : ; rc corresponding to places wheref�1(c) is irregular at in�nity, and maybe additional components where



26 WALTER D. NEUMANN AND PAUL NORBURYf�1(c) is regular at in�nity. LetD = D ��[c2� rc[i=1�f�1� �D2�(c)� \ �jyj > r0	�i�;see Fig. 11 above. The argument of Section 4 easily adapts to show that Dresults topologically by adding a collar to part of the boundary of D , so Dis homeomorphic to D4.We will need names for the parts of the boundary of D . DenoteE := f�1�@D2s(0)� \ D ; S := @D � �E:Then S is the union of the partS0 := S \ fjyj = rg;and S � �S0, which is the union of piecesTi(c) �= (Fi(c)�h S1) [ �@Fi(c) �D2�for c 2 � and i = 1; : : : ; sc (recall that Fi(c) �h S1 denotes the mappingtorus of the local monodromy on the Milnor �ber Fi(c) at in�nity).Lemma 7.2. S is a union of solid tori and each Ti(c) is homeomorphic toa solid torus.Proof. Let S0 = @D � �E. That S0 is a union of solid tori was proved in[16]. The argument (due to L. Rudolph) is that for jy0j = r the intersectionS0\fy = y0g is transverse and the result is a union of disks by the maximummodulus principle, since it is equivalent to the set fx 2 C : jf(x; y0) � sg.On the other hand, S0 �= S by the argument that identi�es D � �D withcollars on the Ti(c)'s, so S is a union of solid tori.The same argument applies to show the sets f�1�D2� (c)� \ fjyj = rgare unions of solid tori for c 2 �. But the components of these sets arehomeomorphic to the Ti(c)'s.The above decomposition of @D gives splice decompositions of the linksat in�nity of the �bers of f . The basic fact was described earlier in thissection: if (S3; L) is a link and we cut the link exterior S3 � �N(L) intopieces along embedded tori, then this represents (S3; L) as the result of asplicing operations.In particular, the piece E of @D is the exterior of a splice component(S3; L), where L � S3 = @D is the link consisting of the cores of the solidtori making up S. This splice component is the fundamental multilink forf as described in [16]. The �bration of the the exterior E of this multilinkis simply given by the restriction f jE.We shall see that, possibly after minor modi�cation to eliminate paralleltori, the above splice decomposition of the link at in�nity of an irregular�ber of f is as described in Theorem 5.1.



UNFOLDING POLYNOMIAL MAPS AT INFINITY 27Note that f jS0 : S0 ! X is a �bration of S0 over the punctured disc Xwith each �ber a union of circles (isotopic to the regular link at in�nityof f). We can extend this map over the solid tori Ti(c) to get a Seifert�bration of S. But S is a disjoint union of one or more solid tori and,up to isotopy, the only Seifert �brations of a solid torus are the standard(p; q)-�brations in which the core circle is a �ber and the general �ber p-foldcovers this core circle (we do not rule out the possibility of (p; q) = (0; 1),called a \generalized Seifert �bration" in [11]3). Thus, each component ofS �Si Ti(c) is a solid torus with a collection of thinner solid tori removed,all or all but one of which run parallel to �bers of this Seifert �bration, andmaybe one running parallel to the core circle.The link at in�nity of an irregular �ber f�1(c) can be seen as the inter-section of f�1(c) with @D . We thus have a splice decomposition of this linkat in�nity into:� the fundamental multilink,� �bered multilinks based on the pieces Ti(c),� multilinks with exteriors given by the components of the Seifert �beredpiece S �Si Ti(c).The latter will lead to the non-�bered components mentioned in the theorem.However, some components of S�Si Ti(c) could be of the form: solid torusminus a thinner solid torus parallel to the core circle, giving a toral annulusT 2 � I. In this case the two torus boundary components of this piece areparallel, so to obtain an irredundant splice decomposition we must omitone of them and absorb this toral annulus as a collar on an adjacent splicecomponent.To complete the proof of Theorem 5.1 we must show the splice decom-position we have found is as described in that theorem. We do this byexamining our construction in terms of a compacti�cation of C 2 . Since therelationship between the compacti�cation divisor and the splice diagram isalready worked out in detail in [9] and [17], this then does what we require.We extend the polynomial map f : C 2 ! C to a map f : Z ! C P 1 of asmooth compact complex surface Z to C P 1 . The compacti�cation divisorY := Z�C 2 is a union of smooth rational curves with dual intersection grapha tree. A component of Y on which f is non-constant is called horizontal. Acomponent of Y on which f is constant is called �nite or in�nite accordingto the value of f on it.By blowing up if necessary, we can assume that the only singularities of�bers of f that occur on Y are normal crossings between components of the�ber and components of Y .We can encode the topology of Y in the usual way by a plumbing graph.This is a tree, with vertices corresponding to components of Y and edges forintersections between components. It has a weight at each vertex to showthe self-intersection number of the corresponding component of Y . We draw3One can show it cannot occur here, but we do not need this.



28 WALTER D. NEUMANN AND PAUL NORBURYarrows at vertices to indicate where �bers of f intersect Y . The followingdiagram, which gives a compacti�cation divisor for the Brian�con polynomial,uses solid arrows for the general �ber and dashed respectively dotted arrowsfor the two irregular �bers. Note that the three curves on the left could beblown down if we only wanted a compacti�cation on which f is well de�ned;they arose from blowing up to resolve a singularity of an irregular �ber onY . �2� �1� �3� �1� �2� �2� �2� �2��2 � �2 � �2 ��2 ��1 �Fig. 12 is a schematic picture of the compacti�cation divisor in this case.

Figure 12



UNFOLDING POLYNOMIAL MAPS AT INFINITY 29We have shaded the domains that are removed in constructing the manifoldD above:� Removing the lightest shaded region removes everything whose imageunder f lies outside the disk D2s(0).� Removing the next lightest shaded region then removes jyj > r, to givethe 4-disk that we called D.� Finally, removing the dark regions then removes the components of setsf�1� �D2�(c)�\�jyj > r0	 where a �ber f�1(c) is irregular at in�nity (wehave also indicated the components where these �bers are regular atin�nity, which are not removed).Thus D is represented by what has been left white. Recall that the pa-rameters in this construction are chosen in the order s (su�ciently large),r0 (su�ciently large), � (su�ciently small), r (su�ciently large). Thus thesecond lightest region, which removes a neighborhood of the horizontal and�nite curves of Y , is in fact much the thinnest, although we have picturedthe regions all of comparable size. Most of the boundary between the darkregions and D is parallel to �bers of f , with just the small parts near theintersection with the irregular �bers being transverse to �bers of f (theseparts are solid tori).In [17] it is shown that the splice diagrams at in�nity are derived fromthe plumbing graph as above, with the parts of the splice diagram havingrespectively positive, zero, or negative total linking weights correspondingto respectively in�nite, horizontal, or �nite curves of Y . We thus see thatthe tori along which the splice decomposition of @D occurs are as claimedin Theorem 5.1, completing the proof (in the picture these are the placeswhere two di�erent grey-tones meet white).We close with a comment about the minimal Seifert surface for an irreg-ular link at in�nity. We �rst describe how one can see such a Seifert surfacein terms of the construction in the above proof.Choose a generic line interval I from a point x of @D2� (c) to a point y of@D2s(0). We can assume, by choosing � su�ciently small, that I does notintersect any of the �-disks around irregular values except at its end pointx. Then V := f�1(I)\ @D will be a Seifert surface for the link at in�nity off�1(c) (considered as a link in @D ). This V is the union of Seifert surfacesfor each of the splice components described in the proof (we work with thesplice decomposition before the elimination of the redundant toral annuluscomponents):� f�1(y) is a �ber of the fundamental multilink and is the compact coreof a regular �ber.� f�1(x) is the disjoint union of the Milnor �bers f�1(x)\Ti(c) at in�nityfor f�1(c); these are the �bers of �bered splice components correspond-ing to the Ti(c).� f�1(I)� int(f�1fx; yg) is a union of annuli giving Seifert surfaces forthe Seifert �bered pieces.



30 WALTER D. NEUMANN AND PAUL NORBURYSince these are minimal Seifert surfaces for these splice components, V is aminimal Seifert surface for our link at in�nity (see Theorem 3.3 of [9]).Note that the complement of the above minimal Seifert surface V in theboundary of f�1(I) \ D �= F � I is the result F0 of removing the Milnor�bers Fi(c) from f�1(x)\ D . This F0 � D has boundary isotopic to the linkat in�nity that we are considering and it realizes the minimal slice genusof this link, by the solution of the Thom Conjecture. The minimal Seifertsurface V is the result of pasting doubles of the Milnor �bers at in�nity ontoboundary components of a copy of F0.Summarizing, our link at in�nity, as a link in the boundary of a 4-ballD4, has the property: there is a 2-manifold F containing a sub-2-manifoldF0 and an embedding F � [0; 1] � D4 such that F0�f0g � D4 is a minimalslice surface for the link while the rest of @(F � [0; 1]) lies in @D4 and isa minimal Seifert surface for the link. This is a presumably already veryspecial property of links at in�nity of a�ne curves, not shared by generallinks. Also special is the fact that F � f1g � @D4 and the components of(F � �F 0)� f0g are the �bers of �bered splice components of the link.References[1] Artal Bartolo, E., Cassou-Nogu�es, P. and Dimca, A., Sur la topologie des polynomescomplexes. Proceedings of Oberwolfach Singularities Conference, (1996), BrieskornFestband, Editors: V.I.Arnold, G.-M.Greuel and J.H.M. Steenbrink.[2] E. Artal-Bartolo, P. Cassou-Nogu�es, I. Luengo Velasco, On polynomials whose �bersare reducible with no critical points, appear. Math. Annalen 299 (1994), 477{490.[3] Broughton, S. A., On the topology of polynomial hypersurfaces, Proc. AMS Symp.Pure Math. 40,I (1983), 165{178.[4] Broughton, S. A., Milnor number and the topology of polynomial hypersurfaces, Inv.Math. 92 (1988), 217{241.[5] Dimca, A., Monodromy at in�nity for polynomials in two variables, Preprint, (1998).[6] Dimca, A., Nemethi, Thom Sebastiani construction and monodromy of polynomials,Pr�epublication 98 (1999), Laboratoire de Math. Pures de Bordeaux C.N.R.S.[7] Durfee, A., Fibered knots and algebraic singularities, Topology 13 (1974), 47{59.[8] Durfee, Alan H. Five de�nitions of critical point at in�nity. Singularities (Oberwol-fach, 1996), Progr. Math., 162, 345{360[9] Eisenbud, D. and Neumann, W.D., Three-dimensional link theory and invariants ofplane curve singularities. Ann. Math. Stud. 110, Princeton. Princeton Univ. Press(1985).[10] Hirsch, M. Di�erential Topology, Graduate Texts in Math. 33 (Springer Verlag, 1976).[11] M. Jankins andW.D. Neumann, Lectures on Seifert manifolds, Brandeis Course Notes2 (1983).[12] Lamotke, Klaus, Die Homologie isolierter Singularit�aten. Math. Z. 143 (1975), 27{44.[13] Milnor, J., Singular points of complex hypersurfaces, Ann. Math. Stud. 101, PrincetonUniversity Press, (1968).[14] N�emethi, A., Zaharia, A., On the bifurcation set of a polynomial and Newton bound-ary, Publ. RIMS 26 (1990), 681{689.[15] Neumann, W.D., Splicing algebraic links, in Complex Analytic Singularities, Ad-vanced Studies in Pure Math. 8 (1986), 349{361.[16] Neumann, W.D., Complex algebraic curves via their links at in�nity, Invent. Math.3, (1989), 445-489.
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