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Abstract

We show that the zero curvature limit of the space of hyperbolic monopoles
gives the FKuclidean monopoles, settling a conjecture of Atiyah. We also
study the infinite curvature limit of the space of hyperbolic monopoles and
show that the associated rational maps appear explicitly here.
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1 Introduction.

A monopole is a pair (A, ®) consisting of a connection and a section of
the adjoint bundle of a trivial SU(2) bundle E over R? satisfying the
Bogomolny equation

dA(I) = *FA

where d 4 is the covariant derivative defined by A and F4 is the curvature of
A. We also require that (A, ®) have finite energy and || @] — 1 as r — oc.

The Hodge star uses a metric on R3. We will consider hyperbolic and
Euclidean metrics. Atiyah [1, 2] conjectured that the zero curvature limit of
the space of hyperbolic monopoles yields the space of Euclidean monopoles.
Chakrabarti [8] confirmed Atiyah’s conjecture in the cases where he has
explicit formulae for monopoles.

There are various ways of interpreting how the limit of the moduli space
of hyperbolic monopoles should converge to the moduli space of Euclidean
monopoles. One natural way is to use the fact that each of the moduli
spaces is diffeomorphic to the space of rational maps from the two-sphere
to itself [1, 10]. By fixing a rational map we can ask if the path of associated
monopoles—one for each metric—is continuous. This is essentially what
we do, except that we use a different correspondence between the moduli
space of monopoles and the space of rational maps. Instead of framing
the bundle at a point at infinity, we frame the bundle at 0 € R? or in
other words require that gauge transformations are the identity at 0. The



dimension of this moduli space is larger than the dimension of the usual
moduli space since there are no preferred frames at 0. With this condition
on the gauge transformations we can associate to a monopole a rational
map via radial scattering from the centre of hyperbolic or Euclidean space
rather than scattering from infinity. In previous work [14, 15] it was shown
that these moduli spaces correspond to the space of unbased rational maps
from the two-sphere to itself which contrasts with the more usual space of
based maps. This reflects the fact that there is no longer a distinguished
direction in R3. We can now state the main result of this paper.

Theorem 1 The sequence of hyperbolic monopoles obtained by fixing a ra-
tional map and sending the curvature of hyperbolic space to zero converges
to the corresponding Euclidean monopole.

More precisely, we prove that any subsequence of this convergent sequence
of hyperbolic monopoles possesses a further subsequence that converges
uniformly on compact subsets.

Our approach uses a non-linear heat flow to construct the monopoles
as well as to supply estimates for the monopoles. It ends up that the
initial data for the flow corresponds in some sense to the infinite curvature
limit of hyperbolic monopoles. The infinite curvature limit, or equivalently
the renormalised zero mass limit, of hyperbolic monopoles is interesting in
itself due to the work of Atiyah and Murray [4, 5] relating this limit to
solutions of the Yang-Baxter equations.

In the next four sections we will summarise the results from [14, 16] re-
garding the construction of monopoles using the non-linear heat flow equa-
tion. We will only consider SU(2) monopoles here, although the method
of proof works for any compact group G.

2 Monopoles and rational maps.

In this paper we will consider the following family of metrics:

dsz — SinhQ("W) 4dwdw o
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where r gives the radial distance outwards from the centre and w is a
holomorphic coordinate for the spheres of constant radius. The metric ds?
is the hyperbolic metric of curvature —x and ds? is the Euclidean metric.
Notice that as k — 0, ds? converges to ds} uniformly on compact sets.

Put dy = 97 - dw + 92 - dw + 07 - dr. Locally, the Bogomolny equation
can be expressed by the following two equations:

(02,04 —i®] = 0 (1)



—2isinh?(kr) 4
——20. P 2
k2(1 4 |w]?)? o (2)

and in the Euclidean case the second equation is given by
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The asymptotic conditions on the monopole ensure along each radial geodesic
the existence of a bounded solution of the scattering equation

(04 —i®)s =0 (4)

which is unique up to a constant factor. We can choose a family of solutions
to (4) that depend smoothly on w. It follows from (1) that (92 —i®)04s =

0 so 945 = &(w)s for some &(w) € C. In particular, 955(0) = &(w)s(0)

since by the choice of coordinate system 92 = 9, at r = 0. In other words,

5(0) : CP' — CP!

is a holomorphic map.

3 Hermitian metrics.

We can use the scattering equation to produce a unique smooth frame g
of F satisfying
A .
(0; —i®)g =0, g(0) = I. (5)

Since gauge transformations are required to be the identity at 0, they
preserve these properties of g. A consequence of (1) is that ¢~ '92¢ is
independent of r and furthermore, since 92 = 9, at r = 0 in any gauge,
we have 9:4¢g = 0.

Define the Hermitian metric H = g’g. Notice that H is independent
of the choice of gauge. By expressing the monopole in the gauge defined

by g the monopole can be retrieved from H as follows:

o —i® =0,, 02 = 0y (6)
oM +i® =0, +H '0,H, 9) =0, + H '0,H.

w

We will find it convenient to work with H instead of the monopole. We
think of H as taking its values in the space SL(2,C)/SU(2) which comes
equipped with the complete metric d given locally by tr(H '6H). Tt is
also useful to use

o(Hy, Hy) = tr(H; "Hy) +tr(H Hy ') — 4 (7)

which satisfies ¢1d? < o < cod? for positive constants ¢; and cs.



For any Hermitian metric H, define its Bogomolny tensor as follows:

K21+ |w|?)?

Bn(H) - 8T(H718TH)+ . 192 8@(H718wH)a
sinh”(kr)
2\2
Bo(H) = o, o,m) + L G o, m).
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If H arises from a monopole using the construction described above, then
Bi(H) =0 by (2) or (3).

In order to show that each rational map gives rise to a monopole we
use the non-linear heat flow equation

H '9H/0t = Bx(H), H(w,r,0) = H.(w,7)

for any metric H,(w,r) defined over R3. The non-compactness of R* and
the fact that B,(H) blows up at r = 0 forces us to instead consider a
sequence of boundary value problems defined on {ry <r < R}.

H'9H/dt = B,(H) } ®)

H(w,rt) =He(w,r), {r=ro}U{r=R}U{t =0}

where the second condition includes the boundary condition throughout
the flow as well as the initial state of H.

Proposition 1 ([14, 16]) There is a unique solution H.(w,r,t) of (8)
converging to a metric H,(w,r, 00) that is smooth on the interior {ry <
r < R} and satisfies By (Hy(w,r,00)) = 0. Furthermore,

o
d(H,(w, 1), Hy(w, r,0)) g/ min{r, s}|Hy(w, r)|ds.
Jo
The right choice of H,(w,r) will guarantee that as we let rg — 0 and

R — oo the sequence of limiting metrics will converge to a metric defined
over all of R3.

4 Hyperbolic monopoles.

Let u : S — SU(2) be a lift of the rational map f : S — S2. The lift is
only defined up to a right action of U(1). This ambiguity is used to patch
together f across S2. Nevertheless,

6721" 0 1
Hy(w,r) = u(w) 0 e u - (w)

is well-defined. Now, |By(H,)| < Ck?r/sinh?(kr) for some constant C,
independent of x. The factor of r comes from the fact that |By(H.))



vanishes at r = 0 and is differentiable there. The other factors are made
clear by the term

_ e’r 0 _ e 2" 0 _ _
Hﬁlaw";'-[ﬁ—u< 0 e |U LO,u 0 e U U Opu-ut

which is bounded since u ' 9y, u is lower triangular (by holomorphicity). So
we get

oo
d(H(w,r,t), H(w,r,0)) < / Ck*s min{r, s}/ sinh?(xs)ds (9)
Jo

and the right hand side is dominated by C [ In(1 —e *)ds/k = Ci/k and
vanishes as r — 0.
Define
K21+ |w|?)?

Dy, = -0}
: " sinh? (kr)

OO - (10)
If H'F and H"™® are the respective solutions of (8) for o = r; and
ro = 19, then o(H™ % H™ 1) defined in (7) satisfies 0 > 0 and Do < 0
onry <r < R (for ry > ry). Since Dy is elliptic, o takes its maximum
value on the boundary. At r = R, 0 = 0 since H™""® and H">" have
the same boundary condition there. The maximum at r = r; is given by
a constant times (9), since the boundary value of H™F gives the initial
metric for the flow used to produce H™f. For fixed R, as ro — 0 the
expression in (9) tends to 0 so we have a Cauchy sequence that converges
to a metric H on the ball r < R.

Now we will show that as R — oo, the metrics HF converge uniformly
on compact subsets to a metric H, that satisfies B;(H,) = 0. For R; > R
consider o(Ht, HF1). Notice that D(o(r) — cr) < 0 for any constant c. If
we choose ¢ = sup,_po/R, then 0 —cr <0 at r = 0 and r = R. By the
maximum principle, o(r) < rsup,_go/R for r < R. Again (9) shows that
sup,_p o is bounded as R — oo. Thus

d(HE (w,r), H® (w,r)) < Cr/R

so as R — oo, {H[} converges uniformly on compact subsets. The con-
vergence can be improved to C* [9, 18] so the limiting metric has vanish-
ing Bogomolny tensor. This produces a hyperbolic monopole defined on
R? — 0. A removable singularities theorem [17] enables us to conclude that
the connection is smooth on all of R?.

Notice that as k — oo, the metrics Hy(w,r) converge uniformly to the
initial metric, H,(w,r). This is the infinite curvature limit. The metric
H(w,r) is associated to a “monopole” on hyperbolic space of infinite
curvature as follows. For a lift u of the rational map, put

1 o Mw) p(w)
U 8“,11,—( 0 —A(w))



and define (A, ®) by

B AMw) e 2 p(w) _ i 0
Aw“'( 0 —Aw) )’q)“'(o 7> (11)
Ap=—Ay , A, =0

where A and ® transform under u respectively as a connection and an
endomorphism. We need to include the transformation u for two reasons.
It is not the identity at » = 0 so it doesn’t qualify as a gauge transformation
and, although the lift « is not unique, (11) only depends on the rational
map. The pair (A, ®) comes from (6) for H = H,(w,r) and satisfies (1)
and

o2® =0 (12)

which is the limit of (2) as K — oo. We have not shown that in the infinite
curvature limit the monopoles converge to pairs of the form (11). Rather,
we have proven a weak analogue of Theorem 1.

Theorem 2 Consider the sequence of hyperbolic monopoles obtained by
fixing a rational map and sending the curvature of hyperbolic space to in-
finity. Then the corresponding Hermitian metrics converge uniformly to
the Hermitian metric corresponding to the infinite curvature “momnopole”.

5 Euclidean limit.

Consider the sequence of hyperbolic monopoles obtained by fixing a ratio-
nal map and sending the curvature of hyperbolic space to zero. In order to
show that this sequence converges to the Euclidean monopole correspond-
ing to the rational map, we will begin with a result that gives a uniform
bound on the curvature of a monopole depending only on its charge. It will
follow that any sequence of hyperbolic monopoles possesses a subsequence
that converges to a Euclidean monopole.

Lemma 1 Any hyperbolic monopole (A, ®) satisfies
\Fa(w,r)|,|da®(w,r)| < C cosh(kr)

where 1 is the hyperbolic distance from the centre of H? and C' is a constant
depending only on the charge of (A, ®).

Proof. We can rescale the hyperbolic monopole by setting

(Awa Aﬂ)a Ara i))(w,r) = (Awa A’lI)a Ar/”a q)/ﬁ)(wa ’)"/Ii)

so (A, ®) is a hyperbolic monopole of mass 1/k over hyperbolic space of
curvature —1. The monopole (A, ®) defines a U(1)-invariant instanton on
S* — S? with respect to the round metric on S* of charge 2k/k where
k is the charge of the monopole. The conformal change from the product



metric on H3 x S to the round metric changes the length of each S' in the
product from 27 to 27/ cosh(kr). This yields the fact that the charge over
a ball in S* centred at (w,r,0) € H? x S! of radius § = exn/2k cosh(rr)
is less than e. Choosing € to be that required by Uhlenbeck’s theorem [11]
we get

|Fi(w,r)| < ¢/6% = ¢ cosh(kr)/K?

for a constant ¢/ (k). Thus
|Fa(w,r)| = 6?|F;(w,r/K)| < ¢ cosh(kr) .

This gives uniform bounds on the curvature of monopoles at interior points
as k — 0. O

Remark. This uniform bound on the curvature contrasts with a simi-
lar result for Euclidean monopoles [13]. In that case, the bound is uniform
in 7 but depends on the monopole whereas in this case it is uniform over
the space of monopoles but depends on r.

The uniform bound on the curvature of a sequence of monopoles com-
bined with the fact that the sequence of hyperbolic metrics converges uni-
formly on compact subsets to the Euclidean metric implies that there is a
subsequence of connections that converges smoothly on compact subsets to
a Euclidean monopole. It may be the case, however, that the charge of the
sequence of monopoles tends towards the sphere at infinity so in the limit
we get the trivial monopole. This seems likely since we obtain monopoles
over hyperbolic space of small curvature by renormalising monopoles of
large mass over usual hyperbolic space. The normalisation involves a scal-
ing which pushes the charge of each monopole out towards the sphere at
infinity. In other words, if the limit is to converge to a non-trivial Eu-
clidean monopole, then the unrenormalised limit should concentrate at
0 € R3. This should not be too surprising since if we were to calculate the
centre of any Euclidean monopole using the hyperbolic construction [6] it
would be 0 € R3.

We will show that for a fixed rational map {H,} — Hy where Hy is
the Hermitian metric associated to the monopole over hyperbolic space of
curvature xk and Hy is the (non-trivial) Hermitian metric associated to the
Euclidean monopole. The fact that the underlying monopoles converge
smoothly to a Euclidean monopole implies that the sequence {H,} con-
verges uniformly. A priori we could get convergence of {H,} to the trivial
Hermitian metric H = I (corresponding to the trivial monopole) but in
the rest of this section we will prove that this cannot in fact arise.

In the previous section we defined HF to be the unique Hermitian met-
ric over the ball of radius R in H? that satisfies B.(H) = 0, H(0) = I
and the boundary condition given in (8). No such problems with the
zero curvature limit on this compact set occur so we get immediately
that {HE} — H{? uniformly because the underlying connections converge



smoothly since the curvature is uniformly bounded and hence cannot con-
centrate. Now HE — H, uniformly on compact subsets as R — oo. If
this convergence is uniform in k then by taking a diagonal sequence we see
that {H.} — Hj as required. To appreciate the issue here we will describe
what it would mean for the charge of the connections to move out towards
infinity. In that case, each sequence HY — H, would converge uniformly
on compact subsets as R — oo, however the convergence would get slower
as K — 0. Thus a diagonal sequence could easily degenerate to a trivial
metric.

We have reduced the problem to showing that given € > 0, there ex-
ists an R, large enough so that for R > R,, d(HE, H,) < € for all &.
Unfortunately the initial conditions in the heat flow used in Section 4 sup-
ply estimates that do not satisfy this uniform bound. We have to specify
better initial conditions for the heat flow for HF. These are given to us
from a combination of the Euclidean monopole heat flow and the following
explicit formula for symmetric monopoles [7] in the radially free gauge:

ksinh((k+2)r)—(k+2) sinh(kr 0 0 —
A = e ) () ( 1 0o ) u”! (w),

. ; i 0\ (13)
¢ = % (tanh((ti?)r) o taﬂh(KT‘)) u(w) ( 0 —3 ) u l(w)’

AH) = *A'zuTa A?" = Oa

where —k is the curvature of hyperbolic space and

(w) = 1 w —1
T ey 2\ 1w )

Notice that in the limit Kk — oo, away from r = 0, (13) converges uniformly
o (11). Ask — 0, (13) converges uniformly on compact sets to the Prasad-
Sommerfield monopole.

For the Euclidean monopole heat flow, put

67277"]“)(]9(7") 0

Ho = u(w) ( 0 2k (1) ) u ! (w)

where x(r) is a smooth cut-off function satisfying rx(r) = 1 near r = 0
and x(r) = 1 near r = oo. Then |By(Ho)| < C(r)/r? where C(r) = O(r)
as r — 0 and C(r) = O(1) as r — oo. For the solution of (8) using the
Euclidean metric we get

d(H(w,r,t), H(w,r,0)) S/ C(s)min{r,s}/s%ds
Jo

and this vanishes as r — 0 and is O(In(r)) = o(r) as r — oco. Thus, we
again get a Cauchy sequence when we fix R and let 1o — 0. As R — ¢
we also get a Cauchy sequence since for Ry > R

d(H®(w,r), H® (w,r)) < Crin(R)/R

8



so convergence is uniform on compact subsets. Nontriviality of the limit
follows from the fact that the limiting metric is at most In(r) away from
the initial metric, so in particular, unbounded.

We are now in a position to give a better set of initial conditions for
hyperbolic monopoles. Put

for £(r) = e~ (2+#0)7 (y . () sinh(kr) /k)*. The cut-off function satisfies
Xx(r)e " sinh(kr)/k =1, r <1/2

xx(r) =1, r>3/2

and is smooth in between. Also, xx(r) < xu(r) for kK > k'. The two
inequalities

e " sinh(kr)/k <r and 92 In(e " sinh(kr)/k) < 02 In(r)

guarantee that the convergence HF as R — oc is dominated by the con-
vergence in the Euclidean case and hence is uniform in k.

It follows that the limit of the sequence of hyperbolic monopoles with
fixed rational map tends to the corresponding Euclidean monopole as the
curvature of hyperbolic space tends to zero. We have shown only that
there exists a subsequence that satisfies this. It then follows that the
entire sequence converges to the corresponding Euclidean monopole since
any subsequence possesses a further subsequence that converges to this
unique limit. Thus, Theorem 1 is proven.
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