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Anas A. Rahman

Abstract

Random matrix theory, in the most general sense, is the study of matrices with

random entries, with some constraints on these entries. Carefully choosing ‘nice’

constraints leads to many types of random matrix theories, with some key cases

having a rich theory that is deeply entrenched in the literature. In this thesis, we

review the Gaussian β ensembles before moving onto the Laguerre β ensembles. The

symbol β denotes a positive real number indexing the ensembles, with the further

significance that the special cases β = 1, 2, and 4 correspond to the orthogonal,

unitary, and symplectic symmetry respectively. Our review focuses on the cases β =

1, 2, and 4, with brief mention of the general case. In our treatment of the Laguerre β

ensembles, we use the loop equation formalism to investigate the resolvents, which

relate to the moments of the eigenvalue densities. We then investigate the special

case β = 2 through differential equations for the densities and resolvents. The

discussion draws on the literature where similar techniques have been applied to

the Gaussian β ensembles.
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Chapter 1

Preliminaries

1.1 Introduction

This thesis is directed at an audience whose knowledge is akin to that of the author

when he first embarked on this literary journey. That is, a rudimentary understand-

ing of probability theory, combinatorics, complex analysis, and differential equations;

and a vague grasp on concepts from statistical and quantum physics. Moreover, this

thesis would be of interest to those who wish to see a demonstration of the interplay

between these topics or are looking for a broad and simple introduction to random

matrix theory – the author often details ideas related to the subject at hand. Those

who are concerned with multivariate stochastics and statistics, mathematical physics,

wireless communications, finance, and other forms of data analysis may also be

interested in the content.

We begin with a discussion of ensembles. Consider a statistical system and

let V be the set of all possible states that this system could be in. The traditional

interpretation of a probability density function (p.d.f.) on such a statistical system is

that, for any measurable subset U of V, the p.d.f. tells us the probability that the

system is in a state that belongs to U. When the set of states is difficult to write down,

1
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sometimes it is easier to instead consider a similar set called an ensemble. Like our

set V above, an ensemble is a collection of all possible states that a statistical system

could be in. The distinction is that every state in the ensemble is also assigned a

weight which dictates how probable it is for the system to be in the given state.

Physicists like to interpret the ensemble corresponding to a system as a virtual

collection of infinitely many copies of the system, with copies in a more probable

state appearing relatively more often than those that are in a less probable state. Sam-

pling copies out of this virtual collection ad infinitum will reveal the underlying p.d.f.

Consider a statistical system S with corresponding ensemble A. When we say

that X is an element of A, we could mean one of two things.

• Rarely, we may mean that X is an actual realisation of the system generated

according to the appropriate p.d.f.

• Usually, X is instead taken to be a random variable which is an undetermined

representative of the ensemble A – it has no fixed value. Given a measurable

subset B of A, the probability that S is in a state that belongs to B is equal to

the probability that X ∈ B. In this way, the random variable X is synonymous

with the system S itself. In the following, we use this meaning.

The ensemble A has an associated measure dµ : A → R such that, for a state

s ∈ A, dµ(s) is the weight of the state. Let B1 and B2 be measurable subsets of A

such that the probability that X ∈ B1 is equal to the probability that X ∈ B2. Then,∫
B1

dµ =
∫

B2
dµ. For this measure, there is a partition function given by

Z :=
∫

A
dµ.

The partition function calculates the total measure of all of the states in A, and acts

as a normalisation constant. It is of fundamental importance in physical applications

which we shall remain ignorant of; it is not itself an observable. The partition

2 1.1. INTRODUCTION
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function allows us to form a probability measure dν = 1
Z dµ: If B is a measurable

subset of A, then the probability that X ∈ B is given by
∫

B dν. Of course,
∫

A dν = 1.

Let K be an operator dependent on the system S with corresponding ensemble A.

For example, if the system involves only a single particle, K could be the position

or momentum of the particle; if the system is a gas in a domain A, K could be the

temperature or pressure of the gas. The ensemble average of K is

〈K〉 :=
∫

A
K(X)dν(X) =

1
Z

∫
A

K(X)dµ(X).

In this setting, when K consists of scalar functions, we interpret them as the operation

equivalent to multiplying by said scalar. For example, for K = ∂
∂x f (x), K(X) means,

“multiply X by f (x), and then take the partial derivative of the resulting product

with respect to x”.

1.1.1 Random Matrix Ensembles

We now introduce random matrix ensembles, where the underlying systems are

matrices.

Definition 1.1. A random matrix ensemble is a set of matrices which satisfy some

constraints and are weighted according to some p.d.f. It is commonplace to define a

random matrix ensemble by specifying a distribution on the entries of its representa-

tive random matrix. Then, the p.d.f. on the ensemble is equal to the joint probability

density function (j.p.d.f.) formed by multiplying the p.d.f.s on the independent

elements of said random matrix. The independent elements of a matrix are the real

components of the entries which are independent of all other such components.

We are interested in real, complex, and quaternion random matrix ensembles be-

cause, according to the Frobenius theorem [Frobenius, 1878], [Artz, 2009, p. 26], every

finite-dimensional associative division algebra over the real numbers is isomorphic to

either R, C, or H. Hence, only these types of random matrix ensembles correspond

to irreducible matrix algebras over the real numbers [Dyson, 1962, p. 1202].

CHAPTER 1. PRELIMINARIES 3
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In the proceeding constructions, we shall treat real, complex, and quaternion

random matrices simultaneously, by utilising the Dyson index β [Dyson, 1962,

pp. 1214-1215]. Given a random matrix, the Dyson index counts the maximal

number of real components in the entries. As complex numbers can be written in

the form x + yi for x, y ∈ R, and quaternions can be written in the form

a + bi + cj + dk ≡

 a + bi c + di

−c + di a− bi

 for a, b, c, d ∈ R,

β = 1 corresponds to real matrices, β = 2 to complex matrices, and β = 4 to

quaternion matrices. These β values come into play due to the fact that the p.d.f.

of a given random matrix depends on the p.d.f.s of the independent elements. The

Dyson index may be used as an adjective. e.g. β matrix, β ensemble.

A reasonable candidate for initial study is the random matrix whose entries are

independent and identically distributed (i.i.d.) according to the standard Gaussian

distribution.

Definition 1.2. The real (β = 1), complex (β = 2), and quaternion (β = 4) M × N

random matrix ensembles of standard Gaussian matrices are represented by M × N

standard Gaussian β matrices G with i.i.d. entries such that the real components of the

entries are Gaussian with mean 0 and standard deviation 1√
β

. For each entry z, the

j.p.d.f. of the entry is given by
(

β
2π

) β
2 exp

(
− β

2 |z|2
)

, where |z| is the standard norm

of z. In the case that M = N, these are called the Ginibre β ensembles [Ginibre, 1965].

The Ginibre β matrices are not self-adjoint. In the case M = N, the eigenvalues

will typically be complex. Nonetheless, simple combinations of Ginibre β matrices,

involving either a sum or a product, allows for the construction of self-adjoint

matrices. These matrices lead to interesting ensembles, our first example of which

are termed the Gaussian β ensembles.

4 1.1. INTRODUCTION
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1.2 The Gaussian β Ensembles

As already remarked, one may argue that it is intuitive to use the Ginibre β ensembles

as stepping stones to create ensembles of self-adjoint random matrices. We first

do this in possibly the most obvious way that also enables relatively simple yet

insightful calculations.

Definition 1.3. Fixing β as 1, 2, or 4, let G be an element of the N × N Ginibre β

ensemble as in definition 1.2. Then, let X = 1
2(G

† + G), where G† is the adjoint of

G; in the real case, G† is simply the transpose GT of G, while in the complex case,

G† is the conjugate transpose GT
of G. In the quaternion case, we interpret G as a

2N × 2N matrix with the quaternions as 2× 2 blocks. Then G† = Z2NGTZ−1
2N , where

Z2N is the 2N × 2N block diagonal matrix with the 2× 2 blocks 0 −1

1 0


down the diagonal, and 0s everywhere else; if N = 1, then G†G is a real number

times the identity matrix I2. The N× N Gaussian β ensemble (GβE) is the ensemble of

self-adjoint random matrices represented by X [Forrester, 2010, pp. 1,11,12].

For fixed β = 1, 2, or 4, let X be an element of the Gaussian β ensemble. Then

X is self-adjoint. Moreover, X has real diagonal entries drawn from the Gaussian

distribution of mean 0 and standard deviation 1√
β

, and upper triangular entries

consisting of β real components, each drawn from the Gaussian distribution of

mean 0 and standard deviation 1√
2β

. Due to the self-adjoint nature of X, the lower

triangular entries depend on the upper triangular entries, and X has real eigenvalues.

For β = 1, 2, or 4, the Gaussian β ensembles have specific names: As the ensem-

bles consist of self-adjoint matrices, they can be diagonalised by unitary matrices.

Let X be an element of the N×N Gaussian β ensemble. The aforementioned unitary

matrices will have entries from the same field as X, and will thus form the matrices

groups of orthogonal, unitary, and symplectic matrices, respectively. This explains

CHAPTER 1. PRELIMINARIES 5
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why the G1E is also called the Gaussian orthogonal ensemble (GOE), the G2E is called

the Gaussian unitary ensemble (GUE), and the G4E is called the Gaussian symplectic

ensemble (GSE).

Considering the number of physical models that involve self-adjoint matrices,

it isn’t difficult to imagine the applications of the Gaussian β ensembles. For

example, in the theory of quantum mechanics, all physical observables are self-

adjoint operators. In particular, the GOE, GUE, and GSE are used to model quantum

Hamiltonians that have time reversal symmetry with an even number of spin 1
2

particles, no time reversal symmetry, and time reversal symmetry with an odd

number of spin 1
2 particles, respectively [Forrester, 2010, pp. 3,11,12]. Thus the

existence of a time reversal symmetry restricts the generically complex entries of

the matrix representation of the Hamiltonian. The simplest case is when the time

reversal is represented by complex conjugation, telling us that the entries must be

real and the relevant ensemble is the GOE. Related to this viewpoint is a celebrated

application of the GUE to the statistics of the zeroes of the Riemann ζ function [Berry

and Keating, 1999] (see subsection 1.2.2).

For another example, consider an ecology of N species such that in a pairing

(i, j), species i and j are of equal detriment to each other. Then, in the style of [May,

1972] one may model the evolution of the ecology about equilibrium by constructing

a symmetric N × N random matrix whose (i, j) element represents the stochastic

effect of species j on species i.

It is moreover typical in statistical mechanics [Thomson, 1971] that there are

physical regimes where all couplings (i, j), as above, can be weighted equally – this

is referred to as a mean field approximation. The Gaussian β ensembles have this

feature and can thus be thought of as mean field models. The main observables of

interest involve the eigenvalues; for example, in the quantum mechanics applications,

the eigenvalues represent the energy levels (see subsection 1.2.2).

These applications naturally motivate us to explore the eigenvalue densities of

6 1.2. THE GAUSSIAN β ENSEMBLES
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the Gaussian β ensembles. Moreover, most applications of the Gaussian β ensembles

reveal themselves upon calculation of the eigenvalue densities.

1.2.1 The Eigenvalue Densities of the Gaussian β Ensembles

Let X be a member of the N × N Gaussian β ensemble, for some β = 1, 2, or 4. Let

xi,j denote the (i, j) entry of X, so that X = [xi,j]. We denote the sth real component

of xi,j by xi,j,s, with s = 1 corresponding to the real part. As the diagonal entries of X

are real, xi,i = xi,i,1 for 1 6 i 6 N. Moreover, each xi,i has p.d.f.
(

β
2π

) 1
2 exp

(
− β

2 x2
i,i

)
,

and for 1 6 i < j 6 N, each xi,j,s has p.d.f.
(

β
π

) 1
2 exp

(
−βx2

i,j,s

)
. As X is self-adjoint,

these are all of the independent elements of X. Hence, the j.p.d.f. of the independent

elements of X is given by

p(G)(X) :=
(

β
2π

) N
2
(

β
π

) N(N−1)β
4 exp

(
− β

2

N

∑
i=1

x2
i,i − β ∑

16j<k6N

β

∑
s=1

x2
j,k,s

)
. (1.2.1)

This leads to the probability measure p(G)(X)(dX) where

(dX) :=
N

∏
i=1

dxi,i ∏
16j<k6N

β

∏
s=1

dxj,k,s (1.2.2)

is the product of the independent elements of dX := [dxi,j]. To obtain the eigenvalue

density of the Gaussian β ensembles, we must change variables in p(G)(X)(dX) to

the eigenvalues and quantities related to the eigenvectors of X. We calculate the

Jacobian via metric forms [Forrester, 2010, p. 9], [Hitchin, 2012, pp. 76-79].

Metric Forms

Let M be a smooth manifold (e.g. Rn) with coordinates (x1, . . . , xn). At each point

p ∈ M, there is a tangent space TpM with basis
(

∂
∂x1
|p, . . . , ∂

∂xn
|p
)

. The tangent bundle is

TM = äp∈M TpM. Moreover, at each point p ∈ M, there is a cotangent space T∗p M that

is dual to the tangent space TpM. The cotangent space has basis (dx1|p, . . . , dxn|p),

where dxi|p
(

∂
∂xj
|p
)
= δij. The cotangent bundle is T∗M = äp∈M T∗p M.

CHAPTER 1. PRELIMINARIES 7
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Definition 1.4. A Riemannian metric on M is a function g : TM× TM→ R which as-

signs to each p ∈ M an inner product gp : TpM× TpM→ R on the tangent space at p.

As gp acts on TpM× TpM, it lives in T∗p M× T∗p M. Hence, gp = ∑n
i,j=1 gpij dxi|p dxj|p,

where gpij = gp

(
∂

∂xi
|p, ∂

∂xj
|p
)

. Globally, g = ∑n
i,j=1 gij(p)dxi dxj, with smooth func-

tions gij : M→ R given by gij(p) = gp

(
∂

∂xi
|p, ∂

∂xj
|p
)

. The metric tensor corresponding

to g is the n× n symmetric matrix [gij].

Thus far we have been working locally, with our dxi|p being basis vectors of

the tangent space at p. Henceforth, for a manifold M, we use the notation dxi to

represent a global notion of these basis vectors. The differential 1-form dxi is defined

smoothly over all of M and is interpreted locally as dxi|p at each point p ∈ M.

Definition 1.5. Let M be a manifold with coordinates (x1, . . . , xn), and let g be a

Riemannian metric on M. Then the volume form on M induced by g is

dV :=
√
|det[gij]|dx1 . . . dxn.

The volume form is usually defined as an exterior product using wedges ∧ between

the differentials dxi, in order to account for orientation. We drop these wedges, and

instead choose to take the positive orientation in all cases. Let A be a measurable

subset of M. Then
∫

A dV is the volume of A, according to the metric g.

Change of Coordinates

We think of the N × N GβE as RN+
β
2 N(N−1) with coordinates xi,i and xj,k,s in some

unspecified ordering, with 1 6 i 6 N, 1 6 j < k 6 N, and 1 6 s 6 β. We give this

space the Riemanninan metric

g :=
N

∑
i=1

(dxi,i)
2 + ∑

16j<k6N

β

∑
s=1

2(dxj,k,s)
2 (1.2.3)

so that the induced volume form is

dV = 2
β
4 N(N−1)

N

∏
i=1

dxi,i ∏
16j<k6N

β

∏
s=1

dxj,k,s.

8 1.2. THE GAUSSIAN β ENSEMBLES
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Referring back to (1.2.2), we see that (dX) = 2−
β
4 N(N−1)dV. We choose this metric

because we wish to take advantage of the fact that the above g is equal to Tr(dX dX†).

Proposition 1. Let X = [xi,j] be an element of the N × N GβE. If an entry xi,j has

multiple real components, we denote its sth real component xi,j,s. As X is self-adjoint, we

may diagonalise it as X = UDU†, where D is the diagonal matrix of eigenvalues λj of X,

and U is the matrix with columns uj = [ui,j]16i6N, the corresponding eigenvectors of X;

U is orthogonal in the real case, unitary in the complex case, and unitary symplectic in

the quaternion case. We stipulate that the first component of each eigenvector be real and

positive, and that the eigenvalues be ordered, so that the diagonalisation is a bijection. Then

the Riemannian metric defined above (1.2.3) is given by

g = Tr(dX dX†) =
N

∑
i=1

(dλi)
2 + ∑

16j<k6N

β

∑
s=1

2(λk − λj)
2(ωj,k,s)

2,

where the differential 1-form ωi,j,s is the sth real component of the (i, j) entry of U†dU.

Proof. We differentiate both sides of X = UDU† to obtain

dX = dU DU† + UdD U† + UDdU†,

U†dX U = U†dU D + dD + DdU†U

= U†dU D + dD− DU†dU,

where we have used the fact that U†U = UU† = IN, the N × N identity matrix,

and thus 0 = d(IN) = d(U†U) = U†dU + dU† U. These matrices have the form

dD = diag(dλ1, . . . , dλN) and dU = [du1 · · ·duN], so the (i, j) entry of U†dX U is

given by
[
(λj − λi)ui

†duj + δi,jdλi
]
. Moreover,

(
U†dX U

)†
= U†dX†U. As the trace

is invariant under cyclic permutation of its arguments, we thus have that

Tr(dX dX†) = Tr(U†dX UU†dX† U)

= Tr
(
(U†dX U)(U†dX U)†

)
.

CHAPTER 1. PRELIMINARIES 9



Moments of the Laguerre β Ensembles

The ith diagonal entry of (U†dX U)(U†dX U)† is

(dλi)
2 +

N

∑
j=1
j 6=i

(λj − λi)
2(ui

†duj)(ui
†duj)

†.

As ui
†duj is the (i, j) entry of U†dU, we have that (ui

†duj)(ui
†duj)

† = ∑
β
s=1(ωi,j,s)

2.

Moreover, (U†dU)† = −U†dU, so (ωi,j,s)
2 = (ωj,i,s)

2 for i 6= j, 1 6 s 6 β. Hence,

Tr(dX dX†) =
N

∑
i=1

(dλi)
2 +

N

∑
i,j=1
i 6=j

β

∑
s=1

(λj − λi)
2(ωi,j,s)

2

=
N

∑
i=1

(dλi)
2 + ∑

16j<k6N

β

∑
s=1

2(λk − λj)
2(ωj,k,s)

2,

where we have grouped the upper and lower triangular terms.

We’ve already seen that the volume form induced by g is dV = 2
β
4 N(N−1)(dX).

Here, we see that we may assign new coordinates relating to the eigenvalues λi

and eigenvectors ui of X and write the Riemannian metric g in terms of these new

coordinates. With respect to these new coordinates, the metric tensor is a diagonal

matrix with N diagonal entries equal to 1, and the remaining β
2 N(N − 1) diagonal

entries given by 2(λk − λj)
2 for all combinations 1 6 j < k 6 N and 1 6 s 6 β.

Hence, the volume form induced by g is

dV = 2
β
4 N(N−1)

N

∏
i=1

dλi ∏
16j<k6N

(λk − λj)
β

β

∏
s=1

ωj,k,s.

Writing (U†dU) for the product of independent elements ωj,k,s of U†dU and using

absolute values so that, if required, we may relax the requirement of the eigenvalues

being ordered, we thus have that

(dX) =
N

∏
i=1

dλi ∏
16j<k6N

|λk − λj|β(U†dU). (1.2.4)

10 1.2. THE GAUSSIAN β ENSEMBLES
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It remains to change coordinates in p(G)(X) (1.2.1). Retaining our notation from

proposition 1,

− β
2

N

∑
i=1

x2
i,i − β ∑

16j<k6N

β

∑
s=1

x2
j,k,s = −

β
2 Tr(XX†) = − β

2 Tr(D2) = − β
2

N

∑
i=1

λ2
i ,

where we have used the facts that X is self-adjoint so XX† = X2, that U†U = IN,

and that the trace is invariant under cyclic permutations of its arguments. Hence

our probability measure is

p(G)(X)(dX) =
(

β
2π

) N
2
(

β
π

) N(N−1)β
4 e−

β
2 ∑N

i=1 λ2
i ∏

16j<k6N
|λk − λj|β

N

∏
i=1

dλi(U†dU).

(1.2.5)

Remark 1. The probability measure p(G)(X)(dX) is invariant under orthogonal, uni-

tary, and symplectic transformations, for β = 1, 2, and 4 respectively: Let Q be a fixed

orthogonal, unitary, or symplectic matrix, whichever is appropriate. Let Y = QXQ†,

where X is as above. Then, Y = ŨDŨ† where Ũ = QU. As Ũ†dŨ = U†dU and X

and Y share eigenvalues, we immediately obtain that p(G)(Y)(dY) = p(G)(X)(dX).

In our expression for p(G)(X)(dX) (1.2.5), we see that the eigenvalue and eigen-

vector dependence decouples into a product. Thus, we obtain our eigenvalue j.p.d.f.

by simply integrating out the eigenvector dependence.

Definition 1.6. The N × N GβE eigenvalue j.p.d.f. is

p(G)(λ1, . . . , λN; β) :=
1

GN(β)

N

∏
i=1

e−βλ2
i /2 ∏

16j<k6N
|λk − λj|β, (1.2.6)

where GN(β) =
(

1
2π

)N/2
∏N

i=1
Γ(1+β/2)
Γ(1+iβ/2) is a normalisation constant [Dumitriu and

Edelman, 2002, p.5831]. Here, Γ is the Gamma function, and we no longer constrain

the eigenvalues to be ordered, so that λi ∈ R for all 1 6 i 6 N.

While it is possible to calculate GN(β) by integrating (U†dU), we provide a

computation via the Selberg integral in subsection 1.4.1. Indeed, this will give an

indirect method for evaluating
∫
(U†dU), if required.
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Definition 1.7. The N × N GβE eigenvalue density is

ρ
(G)
(1) (λ; β, N) := N

∫
RN−1

p(G)(λ, λ2, . . . , λN)dλ2 . . . dλN, (1.2.7)

with support R. Let X be a member of the N × N GβE. By definition of the

density, the expected number of eigenvalues of X in the interval [a, b] is given by∫ b
a ρ

(G)
(1) (λ; β, N)dλ.

Remark 2. Orthogonal polynomials are invaluable tools for working with the eigen-

value densities of random matrix ensembles; see remark 5 in subsection 1.4.1. For

now, we note that for β even, the eigenvalue density of the N × N GβE is a polyno-

mial multiplied by factors of e−βλ2
i /2, for each eigenvalue λi, 1 6 i 6 N. We recall

that the Hermite polynomials are orthogonal with respect to the weight e−x2/2. It is

for this reason that the Gaussian β ensembles are also called the Hermite β ensembles.

1.2.2 Applications of the Gaussian β Ensembles

We now present a few examples of the applications that the Gaussian β ensembles

have enjoyed, extending the discussion at the beginning of this section. For now,

we forego discussion of combinatorial interpretations, instead mentioning them in

subsections 1.4.3 and 1.4.4.

Heavy Atom Spectra

In 1955, Eugene P. Wigner introduced random matrices to the field of nuclear physics

in [Wigner, 1955]. This work was based off of [Lane et al., 1955], where the energy

levels of heavy nuclei were investigated. The idea is to treat the Hamiltonians of

the nuclei as real symmetric random matrices of large dimension, and to define the

so-called strength function as a function of the eigenvectors. Under certain conditions,

the integral of the strength function over an interval gives the average strength of

absorption by all energy levels within said interval. Moreover, Wigner shows that

the strength function is actually the eigenvalue density of the Hamiltonians.
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The initial paper treated relatively simple random matrix ensembles. This raised

the question of which type of random matrix ensemble could best model heavy

atom spectra. Thus began the investigation of many types of ensembles, with the

Gaussian β ensembles a favourite example. Foundational to this theme were a series

of papers by Dyson, and Dyson and Mehta, written in the early 1960s. In particular,

it was Dyson [Dyson, 1962] who introduced Gaussian ensembles in correspondence

with global time reversal symmetry, as we already noted in subsection 1.1.1. Wigner

provided a review [Wigner, 1967] which presents some of these advances, as applied

to the statistics of the energy levels of U239. Yet again, Hamiltonians are taken to be

random matrices of large dimension, with the eigenvalues representing the energy

levels of U239.

Log-Gases

Consider N particles of charge +1 on an infinitely long and thin conducting line, say

the x-axis, at positions x1, . . . , xN . Suppose that they repel according to 2-dimensional

electrostatics confined to the xy-plane. Equivalently, think of infinitely long parallel

charged lines in the z-direction which intersect the xy-plane at x1, . . . , xN ; in this case,

repulsion via traditional 3-dimensional electrostatics is treated as 2-dimensional due

to symmetry. For the time being, we allow our particles to have unfixed y-ordinates.

Then for 1 6 i, j 6 N, the electrostatic potential Φp at (xi, yi) due to the particle at

(xj, yj) is given by the solution to the 2-dimensional Poisson equation

(
∂2

∂x2 +
∂2

∂y2

) ∣∣∣
(xi,yi)

Φp
(
(xi, yi), (xj, yj)

)
= −2πδ(xi − xj)δ(yi − yj),

where δ is the Dirac delta function (distribution) [Forrester, 2010, pp.20-21]. By

differentiating the result when (xi, yi) 6= (xj, yj) and otherwise using the divergence

theorem in the plane, it can be seen that Φp
(
(xi, yi), (xj, yj)

)
= − log |(xi − xj, yi −

yj)| up to some scaling, which we choose to be trivial – hence the term log-gas.

Then, by the superposition principle, the total potential energy of the gas due to
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particle-particle interactions is given by

Up.p = − ∑
16i<j6N

log |xi − xj|,

where we’ve again restricted to the x-axis by setting y1 = . . . = yN = 0.

To prevent the particles from repelling off to infinity, we trap them in a harmonic

well so that the background potential Φb at xi is given by Φb(xi) =
1
2 x2

i . Thus the

total potential energy of the gas is

U = 1
2

N

∑
i=1

x2
i + Up.p = 1

2

N

∑
i=1

x2
i − ∑

16j<k6N
log |xj − xk|.

A fundamental postulate of statistical mechanics is that the j.p.d.f. for the particles

to be at positions x1, . . . , xN is Ẑ−1
N exp

(
− 1

kBT U
)

, where kB is the Boltzmann constant,

T is the temperature, and ẐN is a normalisation constant. But then our j.p.d.f. is

exactly p(G)(x1, . . . , xN; β) as given in (1.2.6), with β = 1
kBT the inverse temperature.

This seems to suggest a meaning to general β ∈ R>0. After all, our eigenvalue

j.p.d.f. (1.2.6) is sensible for β ∈ R>0. It turns out that there exists random matrix

ensembles with eigenvalue j.p.d.f. (1.2.6) for β ∈ R>0. See [Forrester, 2010, pp.43-48]

for a full account, and subsection 1.3.1 for the Laguerre analogue.

The Riemann Hypothesis

The Hilbert-Pólya conjecture states that the non-trivial zeroes of the Riemann ζ

function correspond to the eigenvalues of 1
2 id + iH for some unbounded self-adjoint

operator H [Derbyshire, 2003, pp.277-278]. The proof of this conjecture would

immediately prove the Riemann hypothesis, as such an H would admit only real

eigenvalues. Montgomery’s pair correlation conjecture states that the 2-point corre-

lation function of the non-trivial zeroes of ζ is identical to that of the eigenvalues

of the GUE [Montgomery, 1973, p.184]. It has been numerically shown that the

spacing distribution of the non-trivial zeroes of ζ is statistically equal to the spacing

distribution of the eigenvalues of the GUE [Odlyzko, 1987].
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1.3 The Laguerre β Ensembles

In the previous section we studied Gaussian β ensembles whose elements were of

the form 1
2(G

† + G) for standard Gaussian β matrices G. We stated that this was

an obvious method of introducing Hermitian structure to the ensemble of standard

Gaussian matrices. However, there is an equally obvious method that we have

circumvented thus far, due to the relative complexity of the computations involved.

Now that we have familiarised ourselves with random matrices, and have beared

witness to their applications, we construct the Laguerre β ensembles.

Definition 1.8. Fixing β as 1, 2, or 4, let G be an M× N standard Gaussian β matrix,

as in definition 1.2, with M > N. Then, let X = G†G, where G† is the adjoint of G,

with the notion of adjoint being the same as the one given in definition 1.3. The (a,N)

Laguerre β ensemble (LβE) is the ensemble of self-adjoint matrices represented by X,

where a := M− N is called the exponent [Forrester, 2010, pp.86,90]. Note that X is

an N × N matrix.

Remark 3. The matrix X given above is a Wishart matrix, so these ensembles are also

called the Wishart β ensembles or Wishart-Laguerre β ensembles. The name “Laguerre β

ensembles” is due to the intimate connection they have with the Laguerre orthogonal

polynomials; see remark 5 in subsection 1.4.1.

For fixed β = 1, 2, or 4, let X be an element of the (a, N) Laguerre β ensemble.

Then like the Gaussian case, X is self-adjoint with real eigenvalues. However, unlike

the Gaussian case, the entries are not drawn from Gaussian distributions. Indeed,

write M = a + N, X = [xi,j], and G = [gi,j], where G is the M×N standard Gaussian

β matrix used in the construction of X above. Then, for 1 6 i 6 N and i < j 6 N,

xi,i =
β

∑
s=1

M

∑
k=1

g2
k,i,s, xi,j =

M

∑
k=1

g†
k,igk,j.

Here, gi,j,s denotes the sth real component of gi,j. By considering the Chi-squared

distribution, which is related to the sum of squares of independent Gaussian vari-

ables, and applying appropriate scaling, we see that the diagonal entries of X are
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drawn from the Gamma distribution Γ( βM
2 , 2

β ) with shape parameter βM
2 and scale

parameter 2
β ; a variable x is distributed according to Γ(k, θ) if it has p.d.f.

1
Γ(k)θk xk−1e−x/θ,

where here the Γ is the Gamma function. Thus, our diagonal terms have p.d.f.

( β
2 )

βM/2

Γ( βM
2 )

xβM/2−1
i,i e−βxi,i,/2.

The off-diagonal terms are far more complicated, and do not beg discussion.

Like the Gaussian ensembles, the L1E is also called the Laguerre orthogonal ensemble

(LOE), the L2E is called the Laguerre unitary ensemble (LUE), and the L4E is called

the Laguerre symplectic ensemble (LSE). These names are again due to invariance

properties of the eigenvalue densities of these ensembles. Leaving motivations to

subsection 1.3.2, we now calculate these eigenvalue densities.

1.3.1 The Eigenvalue Densities of the Laguerre β Ensembles

We will derive the eigenvalue densities of the Laguerre β ensembles in two ways.

The first, via metric form methods, as seen in the Gaussian case in subsection 1.2.1.

The second, via Householder transformations, in an effort to offer more insight.

Laguerre β Ensemble Eigenvalue Densities via Metric Form Methods

We begin by outlining a proof found in [Forrester, 2010, pp.92-97], [Muirhead, 1982,

pp.63-67] of the following proposition.

Proposition 2. Fix β = 1, 2, or 4. Let X = G†G be a member of the (a, N) Laguerre β

ensemble, with G an M× N standard Gaussian β matrix, where M = a + N. Then, the

j.p.d.f. of the independent elements of X is

p(L)(X) :=
1

Cβ,a,N
det(X)

β
2 (a+1)−1 exp

(
− β

2 Tr(X)
)

, (1.3.1)

where Cβ,a,N is a normalisation constant that we are not interested in [Forrester, 2010, p.94].

16 1.3. THE LAGUERRE β ENSEMBLES



Moments of the Laguerre β Ensembles

Proof. Indeed, we need to show that the probability measure of X is p(L)(X)(dX),

where we recall that (dX) denotes the product of the independent elements of the

matrix dX = [dxi,j], with X =: [xi,j].

As G is merely a standard Gaussian β matrix, we cannot necessarily diagonalise

it. However, we can use Gram-Schmidt orthogonalisation to write G = UT, where

T = [ti,j] is an N × N upper triangular β matrix with diagonal entries positive and

real, and U is an (M× N) β matrix such that U†U = IN. We can also extend U to

an M×M orthogonal, unitary, or symplectic matrix V := [U U′] (depending on β)

by defining an (M× a) β matrix U′ whose columns are orthonormal to each other

and to the columns of U. Then,

IM = V†V =

 IN U†U′

(U′)†U (U′)†U′

 ,

so U†U′ and (U′)†U are both zero matrices, and (U′)†U′ = Ia. Using these facts, we

may obtain that

(dG) =
N

∏
j=1

tβ(M−j)+κ
j,j (dT)(V†dU), (1.3.2)

where κ = 0 in the real case, κ = 1 in the complex case, and κ = 2 in the quaternion

case. We provide a proof of this fact in appendix A.

Moving on, we have X = G†G = (UT)†(UT) = T†T, so dX = dT† T + T†dT

and the (i, j) entry of dX is [∑
j
k=1 tk,jdt†

k,i + t†
k,idtk,j]. Since the diagonal terms of T

are real and dX† = dX, the diagonal of dX consists of terms of the form 2ti,idti,i

for 1 6 i 6 N, and we may also ignore all lower triangular terms when extracting

independent elements. Focusing on upper triangular terms, the (i, j) entry of dX

contains the term t†
i,idti,j = ti,idti,j. As this covers all of the differentials that appear

in dX, we have collected all of the independent elements of dX. Multiplying them,
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we have

(dX) = 2N
N

∏
i=1

tβ(N−i)+1
i,i (dT), (1.3.3)

since the differentials dti,i are completely real, but all other differentials contain β

independent real components.

Since the entries of G =: [gi,j] are all i.i.d. Gaussian variables, it immediately

follows that the probability measure of G is ∏M
i=1 ∏N

j=1

(
β

2π

) β
2 exp

(
− β

2 |gi,j|2
)
(dG),

from definition 1.2. Changing variables to that of X gives the probability measure

of X. This just requires 3 facts: First, ∑M
i=1 ∑N

j=1 |gi,j|2 = Tr(G†G) = Tr(A). Second,

(1.3.2) and (1.3.3) combine to give

(dG) = 2−N
N

∏
j=1

tβa+κ−1
j,j (dX)(V†dU)

= 2−N|det(T)|βa+κ−1(dX)(V†dU),

where the last line is due to the fact that T is upper triangular. Third, since X = T†T,

we have |det(X)| = |det(T)|2. Substituting κ = 0 for β = 1, κ = 1 for β = 2 and

κ = 2 for β = 4, and integrating out (V†dU) completes the proof.

With this proposition in hand, we may compute the eigenvalue densities of

the Laguerre β ensembles. We retain the notation of proposition 2 and denote

the eigenvalues of X by λ1, . . . , λN. Then, det(X) = ∏N
i=1 λi, and Tr(X) = ∑N

i=1 λi.

Moreover, since X is self-adjoint, we may use (1.2.4) to write (dX) as a product of

∏N
i=1 dλi ∏16j<k6N |λk− λj|β and a term involving the eigenvectors of X. Integrating

out the eigenvector terms, we find that the probability measure of X is proportional

to

N

∏
i=1

dλi λ
β
2 (a+1)−1
i e−βλi/2 ∏

16j<k6N
|λk − λj|β.

The resulting definitions are as follows.
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Definition 1.9. The (a, N) LβE eigenvalue j.p.d.f. is

p(L)(λ1, . . . , λN; α1, β) :=
1

LN(a, β)

N

∏
i=1

λα1
i e−βλi/2 ∏

16j<k6N
|λk − λj|β, (1.3.4)

where α1 := β
2 (a + 1) − 1 is a notation we will use throughout the thesis, and

LN(a, β) = 2−
β
2 MN ∏N

j=1
Γ(1+ β

2 )

Γ(1+ β
2 j)Γ( β

2 (a+j))
is a normalisation constant [Dumitriu and

Edelman, 2002, p.5832]. Here, Γ is the Gamma function, and λi ∈ [0, ∞) for all

1 6 i 6 N.

Like in the Gaussian case, the normalisation constant LN(a, β) will be indepen-

dently derived in subsection 1.4.1.

Our LβE eigenvalue j.p.d.f. has support [0, ∞)N because our eigenvalues are

non-negative: Let X = G†G be a member of the (a, N) Laguerre β ensemble, for

some β = 1, 2, or 4, and some (a + N)× N standard Gaussian β matrix G. Let λ be

an eigenvalue of X with corresponding eigenvector v. Then, we observe that

λv†v = v†Xv = (v†G†)(Gv) = (Gv)†(Gv).

But v†v = |v|2 > 0 and (Gv)†(Gv) = |Gv|2 > 0, so it must be that λ > 0.

Definition 1.10. The (a, N) LβE eigenvalue density is

ρ
(L)
(1) (λ; α1, β, N) := N

∫
[0,∞)N−1

p(L)(λ, λ2, . . . , λN; α1, β)dλ2 . . . dλN, (1.3.5)

with support [0, ∞). Let X be a member of the (a, N) LβE. For t > s > 0, the expected

number of eigenvalues of X in the interval [s, t] is given by
∫ t

s ρ
(L)
(1) (λ; α1, β, N)dλ.

Laguerre β Ensemble Eigenvalue Densities via Householder Transformations

We now derive the eigenvalue j.p.d.f.s and densities for the Laguerre β ensembles by

utilising Householder transformations. Our discussion is based on the constructions

given in [Dumitriu and Edelman, 2002, pp.5835-5842], [Forrester, 2010, pp.127-192].
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Proposition 3. Fix β = 1, 2, or 4. Let X = G†G be a member of the (a, N) Laguerre β

ensemble, with G an M× N standard Gaussian β matrix, where M = a + N. Then X is

similar to the tridiagonal matrix T := BTB, where

B :=



xM yN−1 0 · · · 0

0 xM−1 yN−2
. . . ...

0 0 xM−2
. . . 0

... . . . . . . . . . y1

... . . . . . . 0 xa+1

... . . . . . . . . . 0

... . . . . . . . . . ...

0 · · · · · · · · · 0


 a

is an M× N bidiagonal matrix with xi and yi real independent random variables drawn

from the χ(βi) distribution, which we define as follows. A variable x is distributed according

to χ(k) if x2 is distributed according to the Gamma distribution Γ( k
2 , 2

β ). i.e. if it has p.d.f.

2( β
2 )

k/2

Γ( k
2)

xk−1e−βx2/2.

In particular, X and T have the same eigenvalues.

Proof. Write G = [gi,j], let g1 be the left-most column of G, and let G(1) be the

M× (N − 1) matrix that lies directly to the right of g1 in G.

Let v1 = g1 −
√

g1†g1[1 0 · · · 0]T, and define the Householder transformation

L(1) = IM− 2
v1†v1

v1v1
† [Golub and Van Loan, 1996, p.209]. Then L(1) is a left reflector

such that L(1)g1 =
√

g1†g1[1 0 · · · 0]T. Moreover, L(1) is an orthogonal, unitary, or

symplectic matrix (depending on β). i.e. L(1)†
L(1) and L(1)L(1)†

are both equal to the

identity.

Now, g1
†g1 is a sum of the squares of all of the real components of g1,1, . . . , gM,1.

Hence, by considering the Chi-squared distribution, we see that g1
†g1 is a random

variable that is drawn from the Γ( βN
2 , 2

β ) distribution. Thus
√

g1†g1 is drawn from
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the χ(βM) distribution. Moreover, since L(1) and G(1) are independent of each other,

L(1)G(1) is an M× (N − 1) standard Gaussian β matrix (see appendix B). Hence,

L(1)G is an M×N matrix whose top left entry is drawn from χ(βM), all other entries

in the left-most column are 0, and the remaining entries form an M× (N − 1) stan-

dard Gaussian β matrix. Moreover, all of these entries are independently distributed.

Moving on, we may now repeat the exericse from the right. Let g̃1 be the top-

most row of the M× (N − 1) matrix L(1)G(1), and let G̃(1) be the (M− 1)× (N − 1)

matrix right below it. Let u1 = g̃1 −
√

g̃1g̃1
†[1 0 · · · 0], and define the Householder

transformation R̃(1) = IN−1 − 2
u1u1† u1

†u1. This matrix R̃(1) enjoys many of the

properties of L(1), as the two are constructed in very much the same way. In

particular, R̃(1) is orthogonal, unitary, or symplectic (depending on β), and R̃(1) and

G̃(1) are independent of each other.

The top left entry of G̃(1)R̃(1) is distributed according to Γ( β(N−1)
2 , 2

β ) and every

other entry in the top-most row of G̃(1)R̃(1) is 0, and all remaining entries are standard

Gaussian. All entries are of course independently distributed. The reasoning is the

same as with L(1). Defining

R(1) =

 1 0

0 R̃(1)

 ,

we have that L(1)GR(1) is an M × N matrix whose top left entry is distributed

according to Γ( βN
2 , 2

β ), the entry to its right is distributed according to Γ( β(M−1)
2 , 2

β ),

every other entry in the top-most row and left-most column is 0, and all other entries

are standard Gaussian. We may now focus on the bottom right (M− 1)× (N − 1)

block of L(1)GR(1) and repeat this whole process. Naturally, we repeat this process a

few more times, each time defining

R(n) =

 In 0

0 R̃(n)

 , L(n) =

 In−1 0

0 L̃(n)


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for appropriate n. Eventually, we arrive at

B = L(N) · · · L(1)GR(1) · · · R(N−1),

where B is as given in the statement of the proposition. We note that the process

ends when the last a entries of the Nth column are changed to 0 by L(N), as we do

not need to follow this with R(N) (which cannot even be defined).

Now, since B is a real matrix, T = BTB = B†B, so

T = B†B

= R(N−1)† · · · R(1)†
G†L(1)† · · · L(N)†

L(N) · · · L(1)GR(1) · · · R(N−1)

= R(N−1)† · · · R(1)†
G†GR(1) · · · R(N−1),

since for 1 6 n 6 N, L(n) is orthogonal, unitary, or symplectic, so L(n)†
L(n) = IM.

Moreover, for 1 6 n 6 N− 1, R(n) is also orthogonal, unitary, or symplectic. As these

matrix groups are closed under multiplication, we have that U := R(1) · · · R(N−1) is

orthogonal, unitary, or symplectic. Hence, as X = G†G, we have X = UTU†. Thus

X is similar to T.

Because of proposition 3, calculating the eigenvalue j.p.d.f.s and densities for

the Laguerre β ensembles comes down to calculating the eigenvalue j.p.d.f.s and

densities of the tridiagonal matrix defined in said proposition.

Proposition 4. Let β ∈ R>0, N ∈ N>1, and a ∈ N0. Let M = a + N and define

Tβ := BT
β Bβ, where

Bβ =



xM yN−1 0 · · · 0

0 xM−1 yN−2
. . . ...

0 0 xM−2
. . . 0

... . . . . . . . . . y1

0 · · · · · · 0 xa+1


.
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is an N × N bidiagonal matrix with xi and yi real independent random variables drawn

from the χ(βi) distribution. i.e. xi and yi have p.d.f.

2( β
2 )

βi

Γ( βi
2 )

zβi−1e−βz2/2.

where Γ is the Gamma function.

Let λ1, . . . , λN be the eigenvalues of Tβ. Then the eigenvalue j.p.d.f. of Tβ is

p(T)(λ1, . . . , λN; a, β) :=
1

Tβ,a,N
e−

β
2 ∑N

i=1 λi
N

∏
i=1

λ
β(a+1)/2−1
i ∏

16j<k6N
|λk − λj|β,

where Tβ,a,N = 2−
β
2 MN ∏N

j=1
Γ(1+ β

2 )

Γ(1+ β
2 j)Γ( β

2 (a+j))
is a normalisation constant taken from defini-

tion 1.9. The eigenvalue density follows by definition 1.10.

Proof. First, we note that the j.p.d.f. of the independent elements of Bβ is

p(T)(Bβ) :=
1

Bβ,a,N

N−1

∏
i=0

xβ(M−i)−1
M−i e−βx2

M−i/2
N−1

∏
k=1

yβk−1
k e−βy2

k/2, (1.3.6)

where Bβ,a,N is a normalisation constant. Writing (dBβ) = dxa+1 . . . dxMdy1 . . . dyN−1,

the probability measure of Bβ is then p(T)(Bβ)(dBβ). Next, we write

Tβ =



aN bN−1 0 · · · 0

bN−1 aN−1 bN−2
. . . ...

0 bN−2
. . . . . . 0

... . . . . . . a2 b1

0 · · · 0 b1 a1


,

so that aN = x2
M, and for 1 6 i 6 N − 1, ai = y2

i + x2
M−N+i and bi = yixM−N+i+1.

Differentiating these relations, and computating the Jacobian, we have

(dBβ) =

(
2MxM−N+1

N−2

∏
i=0

x2
M−i

)−1

da1 . . . daNdb1 . . . dbN−1. (1.3.7)

As Tβ is a real symmetric matrix, we may diagonalise it as Tβ = PDPT, where

D = diag(λ1, . . . , λN) and P is an N× N orthogonal matrix such that the jth column
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of P is the normalised eigenvector of Tβ that corresponds to λj. For 1 6 j 6 N, let qj

be the first component of the jth column of P. Each eigenvector has a choice in sign,

so for uniqueness, we restrict each qj to be positive. By substitution into Tβ = PDPT,

we can see that the jth eigenvector of Tβ is completely determined by qj and the

eigenvalues and entries of Tβ. In fact, since the rows of P must also be orthonormal,

qN is fully determined by q1, . . . , qN−1. Hence, Tβ is fully determined by the set

{λ1, . . . , λN, q1, . . . , qN−1}. By counting the number of independent variables on each

side of the equation BT
β Bβ = PDPT, we see that the set {λ1, . . . , λN, q1, . . . , qN−1}

must be independent.

Porposition 1.9.3 of [Forrester, 2010, p.46] tells us that the Jacobian for changing

variables in Tβ from {a1, . . . , aN, b1, . . . , bN−1} to {λ1, . . . , λN, q1, . . . , qN−1} is

J =
1

qN

∏N−1
i=1 bi

∏N
i=1 qi

, qN =

(
1−

N−1

∑
i=1

q2
i

)1/2

.

Hence by substituting into 1.3.6, and using 1.3.7, we arrive at the probability measure

p(T)(Bβ)(dTβ) =
1

Bβ,a,N
exp

{
− β

2

(
N−1

∑
i=0

x2
M−i +

N−1

∑
k=1

y2
k

)}

×
∏N−1

i=0 xβ(M−i)−2
M−i ∏N−1

k=1 yβk
k

qN ∏N
i=1 qi

dλ1 . . . dλNdq1 . . . dqN−1 (1.3.8)

Now,

N−1

∑
i=0

x2
M−i +

N−1

∑
k=1

y2
k =

N

∑
i=1

ai = Tr(Tβ) =
N

∑
i=1

λi,

N−1

∏
i=0

x2
M−i = det(Bβ)

2 = det(Tβ) =
N

∏
i=1

λi,

∏N−1
i=0 xβ(M−i)−2

M−i ∏N−1
k=1 yβk

k

∏N
i=1 qi

=
N

∏
i=1

qβ−1
i

N−1

∏
i=0

xβ(a+1)−2
M−i ∏

16j<k6N
|λk − λj|β,

where we have used proposition 1.9.2 of [Forrester, 2010, pp.45,129] in the last line.

Hence, after integrating out our qi terms, 1.3.8 simplifies to give us the eigenvalue
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j.p.d.f. of Tβ as

p(T)(λ1, . . . , λN; a, β) =
1

Tβ,a,N
e−

β
2 ∑N

i=1 λi
N

∏
i=1

λ
β(a+1)/2−1
i ∏

16j<k6N
|λk − λj|β,

as required; we compute Tβ,a,N easily via a variant of the Selberg integral.

Remark 4. In our constructions until now, we have determined the eigenvalue densi-

ties for the real, complex, and quaternion Gaussian and Laguerre ensembles. These

have corresponded to the β values 1, 2, and 4. However, our eigenvalue j.p.d.f.s and

densities given in definitions 1.6, 1.7, 1.9, and 1.10 do not have any qualms with

general β ∈ R>0. To be able to call these functions eigenvalue j.p.d.f.s and densities

for general β values, we desire random matrix ensembles whose eigenvalue j.p.d.f.s

and densities are given by said functions. That is exactly what we have done here in

the Laguerre case, as the random matrix ensemble represented by the Tβ given in

proposition 4 is valid for any β ∈ R>0. For this reason, the family of random matrix

ensembles represented by Tβ are called the general-β Laguerre ensembles, or similar.

The same construction can be performed to define the general-β Gaussian ensembles.

We observe that in the cases β = 1, 2, or 4, Bβ of proposition 4 is simply the B

given in proposition 3 with the last a rows of 0s truncated off. Then, Tβ of proposition

4 and the T given in proposition 3 are identical. Combining propositions 3 and 4, we

see that for β = 1, 2, or 4, the eigenvalue j.p.d.f.s and densities of the (a, N) Laguerre

β ensemble are as given in definitions 1.9 and 1.10.

1.3.2 Applications of the Laguerre β Ensembles

We now present some applications of the Laguerre β ensembles. Again, we forego

discussion of combinatorics, instead visiting them in subsections 1.4.3 and 1.4.4.

Principal Component Analysis

We demonstrate the concept through an example. Consider a class of M students that

must complete N tests throughout the semester. Let X = [xi,j] be the M× N matrix
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such that xi,j is the mark that student i obtained on the jth test. Let xj =
1
M ∑M

i=1 xi,j

be the empirical average of the class’s marks on the jth test, and let xj be an M× 1

column vector whose entries are all equal to xj. Let X = [x1 · · · xN], and let

Y = X− X. Let e1, . . . , eN be the standard basis on the space that Y acts on.

Let Σ = YTY. The eigenvector v1 of Σ that corresponds to the largest eigenvalue

λ1 is called the first principal component of Y, and the eigenvector v2 that corresponds

to the second largest eigenvalue λ2 is the second principal component of Y, and so on

[Jolliffe, 2002, pp.30-33]. These principal components can reveal a lot of information;

for example, if the first principal component is mainly pointed in the directions of

say e1 and e2, we can say that the first and second tests largely contribute to the

variance of the data in X. i.e. that they’re good tests. In formulating future tests,

one would like to replicate what the first and second tests have in common. On the

other hand, the data will barely vary in the direction of the Nth principal component.

In practice, the dimension of the problem is reduced by successively projecting the

data onto the hyperplane orthogonal to the Nth principal component, and then

the (N − 1)th and so on, since these components relatively offer little information.

Indeed, Σ = ∑N
i=1 λivivi

†; truncating this sum gives a low-rank approximation to Σ.

Now, assert that the jth test’s mark is normally distributed with mean µj and

standard deviation 1, with no correlation between the tests. Then, Σ has eigenvalue

j.p.d.f. given by the j.p.d.f. for the (M− N, N) Laguerre orthogonal ensemble (1.9)

[Gupta and Nagar, 2000, pp.92-93]. This gives us information about the eigenvalues

and eigenvectors of Σ, allowing us to perform principal component analysis in a

statistical sense. These concepts have applications in fields like image compression

[Clausen and Wechsler, 2000] and financial correlations [Jolliffe, 2002, p.76].

Wireless Communications

We will give a largely heuristic description of a theory that is actually rather concrete.

We again demonstrate the concepts through an example. Consider the information
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transfer from a wireless modem to a laptop. Suppose that the modem has one

transmitting antenna (transmitter) and that the laptop has one receiving antenna

(receiver). In this example, the modem is trying to send binary data. Let x(t) be the

signal emitted by the wireless modem and let z(t) be noise that is added onto x(t)

before it reaches the receiver, both in Volts. Then, the received signal y(t) is given by√
x(t)2 + z(t)2 due to conservation of power. The receiver assumes that x(t) and z(t)

are real-valued and that there exist X, Z ∈ R>0 such that |x(t)| < X and |z(t)| < Z

for all t. Then there exists Y ∈ R>0 such that |y(t)| < Y and Y
Z =

√
1 + X

Z . Now, we

subdivide the range (−Y, Y) into 2b subintervals of length 2Z so that when y(t) is

sampled, we can confidently assign it a binary value according to which of these

subintervals y(t) lies in. Then, b = 1
2 log2(1 +

X
Z ) is the number of bits that y(t) can

reliably represent. Now, if we further constrain x(t) so that in the frequency domain,

x has frequencies between fmin and fmax, the sampling theorem tells us that we can

take 2B good measurements of y(t) over one second, where B = fmax − fmin. Hence,

the number of bits we can transmit over one second is 2Bb = B log2(1 + X
Z ). The

information capacity is defined as I = log2(1 +
X
Z ), and it specifies the number of bits

that can be transmitted during one second, per frequency of bandwidth available.

The ratio X
Z is the signal-to-noise ratio. The formula I = log2(1+

X
Z ) is called Shannon’s

formula.

For physical reasons, one antenna per side is not good enough for modern needs

[Simon et al., 2001]. We now consider the situation where the wireless modem has

mT transmitting antennas and the laptop has mR receiving antennas. We let xi(t)

be the signal emitted by the ith transmitter, and yj(t) be the signal received by the

jth receiver. Then, we form the column vectors x and y so that y = Gx + z, where

G is an mR ×mT propagation matrix, and z has i.i.d. entries which represent noise.

The propagation matrix G describes how the signals xi linearly combine through

superposition before they arrive at the receivers. It accounts for factors such antenna

placement, angle spread, and angle of arrival at the receivers due scattering of the

electromagnetic waves by walls, desks, etc. [Ratnarajah et al., 2003]. We now consider
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the case that our signals are complex-valued. The receivers have no prior knowledge

of the xi, other than the fact that they are Gaussian with mean 0. Moreover, we

assume that z consists of standard Gaussian complex entries. Then, there is a well

known generalisation of Shannon’s formula [Foschini and Gans, 1998], where the

information capacity of this system is given by

I = log2 det
(

ImR +
ρ

mT
G†G

)
,

where ρ is the total power emitted by the modem. We now assume that G is a

standard Gaussian complex matrix so that G†G is a member of the Laguerre unitary

ensemble. Then, we can use our knowledge of the eigenvalue density of the Laguerre

unitary ensemble to compute statistics for the information capacity.

Quantum Entanglement

We highlight a recent application to a problem involving quantum entanglement

[Chen et al., 2010]. We consider a bipartite quantum system Q consisting of the

system of interest A, and the environment B. We let A have dimension N and B have

dimension M, with N 6 M. Let |eA
i 〉16i6N and |eB

j 〉16j6M be the complete orthogonal

bases for A and B, respectively. Then, any quantum state in Q can be written in the

form |φ〉 = ∑N
i=1 ∑M

j=1 xi,j|eA
i 〉 ⊗ |eB

j 〉, with xi,j ∈ C, so that |φ〉 is represented by the

matrix X := [xi,j]. Chen et al. consider states |φ〉 whose corresponding X matrix is a

standard Gaussian matrix with the added constraint that Tr(XX†) = 1. The j.p.d.f.

of this so-called fixed trace Laguerre ensemble is

ρ(FT)(λ1, . . . , λN) := ρ(L)(λ1, . . . , λN; α1, 2) δ

(
N

∑
i=1

λi − 1

)
.

This density allows one to compute measures of entanglement. One such measure

is the smallest eigenvalue and its p.d.f., which the authors compute. One of the

conclusions of their work is that the global constraint of Tr(XX†) = 1 does not

influence local correlations, in the large N limit.
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1.4 Further Prerequisites

We are required to explore some more ideas so that the discussion in the upcoming

chapters flow smoothly.

1.4.1 The Selberg Integral

First, we take this opportunity to choose notation for the Vandermonde determinant.

Definition 1.11. Let N ∈ N>1 and let (x1, . . . , xN) be a N-tuple of variables. Then

the Vandermonde determinant of order N in x is

∆N(x) :=

∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2
1 · · · xN−1

1

1 x2 x2
2 · · · xN−1

2
...

...
... . . . ...

1 xN x2
N · · · xN−1

N

∣∣∣∣∣∣∣∣∣∣∣∣
= ∏

16j<k6N
(xk − xj). (1.4.1)

We do not prove the right hand side of this equation; it is a famous result. The

disbelieving reader may check that the right hand side satisfies properties of the

determinant and that both sides are homogeneous monic polynomials of order
1
2 N(N − 1) which vanish at xj = xk for all 1 6 j, k 6 N.

Remark 5. As determinants are invariant under addition of rows, ∆N(x) is unchanged

if each xk
i is replaced with a monic orthogonal polynomial of orderk in xi. This hints

at how orthogonal polynomial theory interacts with random matrix theory.

Definition 1.12. Let N ∈ N>0 and let α1, α2, α ∈ C such that Re(α1), Re(α2) > 1

and Re(α) > −min{ 1
N , Re(α1+1)

N−1 , Re(α2+1)
N−1 }. The Selberg integral [Andrews et al., 1999,

p.402] is

SN(α1, α2, α) :=
∫
[0,1]N

N

∏
i=1

dxix
α1
i (1− xi)

α2 |∆N(x)|2α. (1.4.2)

Theorem 1.1. Selberg showed that for N, α1, α2, α as in the definition above,

SN(α1, α2, α) =
N−1

∏
j=0

Γ(α1 + 1 + jα)Γ(α2 + 1 + jα)Γ(1 + (j + 1)α)
Γ(α1 + α2 + 2 + (N + j− 1)α)Γ(1 + α)

, (1.4.3)
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where Γ is the Gamma function.

Proof. We present a brief outline of Aomoto’s method [Aomoto, 1987] of proving

this identity, as presented in [Andrews et al., 1999, pp.402-406]. The idea is to define

Ik =
∫
[0,1]N

N

∏
i=1

dxix
α1
i (1− xi)

α2
k

∏
j=1

xj|∆N(x)|2α, I0 = SN(α1, α2, α),

and then to compute

J :=
∫
[0,1]N

∂

∂x1

{
(1− x1)

N

∏
i=1

xα1
i (1− xi)

α2
k

∏
j=1

xj|∆N(x)|2α

}
dx1 . . . dxN

in two different ways. By the fundamental theorem of calculus, J = 0, while Leibniz’s

rule implies that

J = (α1 + 1)Ik−1 − (α1 + α2 + 2)Ik + α(N − k)Ik−1 − α(2N − k− 1)Ik,

so that we obtain the recursion relation Ik =
α1+1+(N−k)α

α1+α2+(2N−k−1)α+2 Ik−1, which allows us

to write Ik in terms of I0. But this gives

SN(α1 + 1, α2, α) =
N

∏
j=1

α1 + (N − j)α + 1
α1 + α2 + (2N − j− 1)α + 2

SN(α1, α2, α)

=⇒ SN(α1, α2, α) =
N

∏
j=1

(α1 + α2 + (2N − j− 1)α + 2)k
(α2 + (N − j)α + 1)k

SN(α1, α2 + k, α),

where ( · )k is the Pochhammer symbol and the last line is due to symmetry in α1 and

α2 in the first line. On the right hand side of the above, change variables xi 7→ xi/k

for 1 6 i 6 N, and take the limit as k→ ∞ to obtain

SN(α1, α2, α) =
N

∏
j=1

Γ(α2 + (N − j)α + 1)
Γ(α1 + α2 + (2N − j− 1)α + 2)

∫
[0,∞)N

N

∏
i=1

dxix
α1
i e−xi |∆N(x)|2α.

(1.4.4)

Writing EN(α1, α) for the integral on the right hand side, we have by symmetry in α1

and α2 that Dn(α) := EN(α1,α)
∏N

j=1 Γ(α1+(N−j)α+1)
is independent of α1 and α2 and that

SN(α1, α2, α) =
N

∏
j=1

Γ(α1 + (N − j)α + 1)Γ(α2 + (N − j)α + 1)
Γ(α1 + α2 + (2N − j− 1)α + 2)

DN(α). (1.4.5)
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Taking advantage of the symmetry between x1, . . . , xN, one has

lim
α1→−1+

(α1 + 1)SN(α1, α2, α)

= N! lim
α1→−1+

(α1 + 1)
∫ 1

0
dxNxα1

N

(∫ 1

xN

· · ·
∫ 1

x2

N−1

∏
i=1

dxix
α1
i (1− xi)

α2 |∆N(x)|2α

)
.

Taking the limit by using the fact that lim
α1→−1+

(α1 + 1)
∫ 1

0 tα1 f (t)dt = f (0) for f

continuous, realising the resultant right hand side is also a Selberg integral, and

substituting in (1.4.5) gives DN(α) = ∏N
j=1

Γ(1+jα)
Γ(1+α)

. Substituting this back into (1.4.5)

gives the stated result.

The Normalisation Constants

Here, we use limiting procedures to calculate the normalisation constants for the

Gaussian and Laguerre β ensemble eigenvalue j.p.d.f.s.

Theorem 1.2. The normalisation constant for the N × N Gaussian β ensemble is

GN(β) :=
∫

RN

N

∏
i=1

dλie−βλ2
i /2|∆N(λ)|β.

We claim that GN(β) =
(

1
2π

)N/2
∏N

i=1
Γ(1+β/2)
Γ(1+iβ/2) .

Proof. To obtain this result, change variables xi 7→ xi
b + 1

2 in the Selberg integral and

set α1 = α2 = − b2β
2 , α = β

2 , then take the limit as b→ ∞.

Thus xα1
i (1− xi)

α2 7→ (1− x2
i /b2)−b2β/2 b→∞−→ e−βx2

i /2.

Theorem 1.3. The normalisation constant for the (a, N) Laguerre β ensemble is

LN(a, β) :=
∫
[0,∞)N

N

∏
i=1

dλiλ
α1
i e−βλi/2|∆N(λ)|β,

where α1 = β
2 (a + 1)− 1. We claim that LN(a, β) = 2−

β
2 MN ∏N

j=1
Γ(1+ β

2 )

Γ(1+ β
2 j)Γ( β

2 (a+j))
.

Proof. Change variables xi 7→ xi/b in the Selberg integral and set α2 = −bβ
2 , α = β

2 ,

then take the limit as b→ ∞.
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1.4.2 Global Scaled Eigenvalue Densities

Our goal is to investigate the behaviour of the (a, N) Laguerre β ensembles in the

large N limit. However, in this limit, the eigenvalue densities of these ensembles are

unbounded both in range and domain; the largest eigenvalues move towards infinity,

and integrals of the densities (1.10) themselves diverge. To avoid these issues and

enable analysis, we introduce the global scaled eigenvalue densities.

Definition 1.13. The (a, N) Laguerre β ensemble global scaled eigenvalue density is

ρ̃
(L)
(1) (λ; α1, β, N) := ρ

(L)
(1) (Nλ; α1, β, N), (1.4.6)

where ρ
(L)
(1) is as given in definition (1.10).

The global scaled density always integrates to 1 on its support. In the large

N limit, the global scaled eigenvalue density has support (0, 4). We remark that

such a construction ρ̃
(G)
(1) (λ; β, N) also exists for the Gaussian β ensembles, and draw

attention to the much celebrated Wigner semicircle law [Wigner, 1958].

Theorem 1.4. Let X be a symmetric random matrix with i.i.d. distributed entries, with the

second moments of all entries being equal to say ν. Moreover, demand that all moments of

the entries of X exist and have an upper bound independent of the entries’ locations in X.

Then, in the large N limit, the global scaled eigenvalue density of X is

ρ̃(1)(λ) =

√
4ν2 − λ2

2πν2 χλ∈(−2ν,2ν),

where ρ̃(1)(λ) =
1√
N

ρ(1)(
√

Nλ), and χ is the character function.

There is a similar result for the Laguerre β ensembles, called the Marchenko-

Pastur law [Pastur and Shcherbina, 2011, p.188], a consequence of which is

lim
N→∞

ρ̃
(L)
(1) (λ; α1, β, N) =: ρ̃

(L)
(1),0(λ; α1, β) =

1
2π

√
4
λ − 1χ0<λ<4.

A proof of this result will be provided in subsection 4.1.1. It is important to note

that this result is very nice, but it only captures the large N data. In fact, a lot
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of the intricacies and low-order details of the density have been scaled out. Such

details are actually quite interesting. For example, the density has oscillations that

become more numerous and violent as N → ∞. The global scaled eigenvalue density

ρ̃
(L)
(1) (λ; α1, β, N) is effectively a smooth function after averaging. Thus, we often call

ρ̃
(L)
(1) (λ; α1, β, N) the smoothed eigenvalue density of the Laguerre β ensemble.

The definitions of the smoothed and regular eigenvalue densities depend on the

eigenvalue j.p.d.f.s, so we define a measure related to the scaled Laguerre β ensem-

bles. Henceforth, we will use LβE∗ to denote { 1
N X |X a member of the (a, N) LβE};

the eigenvalues of Y = 1
N X ∈ LβE∗ correspond to 1

N times the eigenvalues of X.

This is the same correspondence between ρ
(L)
(1) and ρ̃

(L)
(1) .

Definition 1.14. The LβE∗ scaled measure is

dµLβE∗(λ) := |∆N(λ)|β
N

∏
i=1

λα1
i e−βNλi/2 dλi, λi ∈ [0, ∞)

where the LβE∗ denotes we are working with the scaled eigenvalue j.p.d.f.

Definition 1.15. The LβE∗ partition function is

Z∗N :=
∫
[0,∞)N

dµLβE∗(λ),

and can be calculated using the variant of the Selberg integral given in theorem 1.3.

The partition function serves as our normalisation constant.

Definition 1.16. For an operator K, the ensemble average of K with respect to LβE∗ is

〈K〉LβE∗ :=
1

Z∗N

∫
[0,∞)N

K dµLβE∗(λ).

In the definition of the eigenvalue density (1.10), we use symmetry between the

eigenvalues to set λ as λ1. We could’ve just as easily have chosen λ2 instead. If we

have a statistic f (λ) that is dependent on the eigenvalues of the (a, N) Laguerre β

ensemble, then

〈 f (λ)〉∗ :=
∫ ∞

0
f (λ)ρ̃(L)

(1) (λ; α1, β, N)dλ =

〈
1
N

N

∑
i=1

f (λi)

〉LβE∗

. (1.4.7)

where here, the ∗ denotes an ensemble average with respect to the smoothed eigen-

value density.
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1.4.3 The Moments

We analyse the smoothed eigenvalue densities of the (a, N) Laguerre β ensembles

by investigating their moments, as the moments fully characterise the densities.

Definition 1.17. For k ∈N>0, the kth moment of ρ̃
(L)
(1) (λ; α1, β, N) (1.4.6) is

m̃k :=
∫ ∞

0
λkρ̃

(L)
(1) (λ; α1, β, N)dλ. (1.4.8)

The zeroth moment is the mean, while the second and third moments relate

to the variance and skew, respectively. Moreover, suppose that we have a statistic

f (λ) that is dependent on the eigenvalues of the (a, N) Laguerre β ensemble. If f is

analytic at 0, we may expand it as a Taylor series about 0, say f (λ) = ∑∞
k=0 fkλk for

some constants fk. We can then calculate the ensemble average of f (λ) w.r.t. ρ̃
(L)
(1)

term by term by using the moments of the density, given that the average exists:

〈 f (λ)〉∗ : =
∫ ∞

0
f (λ)ρ̃(L)

(1) (λ; α1, β, N)dλ =
∞

∑
k=0

fkm̃k.

Here, we use the ∗ to denote that the ensemble average is taken w.r.t. the smoothed

eigenvalue density, rather than the true density (1.10). By a simple change of

variables, for k ∈N>0, the kth moment of ρ
(L)
(1) is given by

mk :=
∫ ∞

0
λkρ

(L)
(1) (λ; α1, β, N)dλ = Nk+1m̃k, (1.4.9)

so we may work with the smoothed eigenvalue density without loss of information.

Proposition 5. There exist coefficients a(k)i such that each moment of the smoothed eigenvalue

density has the form

m̃k =
k

∑
i=0

a(k)i N−i. (1.4.10)

This fact was shown in [Mezzadri and Reynolds, 2015] through considerations

of Ferrers diagrams and Jack polynomials. This result has also been derived in

the β = 2 case through a counting problem regarding the bicolorings of 2k-gons

[Di Francesco, 2003]. We remark that the moments of the Laguerre β ensemble are

also linked to alternating Motzkin paths, as seen in chapters 5-6 of [Dumitriu, 2003].
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1.4.4 The Resolvent and Related Correlators

In our goal to compute the moments of the smoothed eigenvalue density, we intro-

duce the resolvent.

Definition 1.18. The resolvent of the smoothed eigenvalue density of the (a, N)

Laguerre β ensemble is

W1(s) :=
〈

N
s− λ

〉∗
=

〈
N

∑
j=1

1
s− λ1

〉LβE∗

. (1.4.11)

The resolvent W1(s) acts as a generating function for the moments of the smoothed

eigenvalue density. As s → ∞, 1
s−λ = ∑∞

k=0
λk

sk+1 , through consideration of the geo-

metric series. Hence,

1
N

W1(s)
s→∞∼ 1

s
+

∞

∑
k=1

m̃k

sk+1 . (1.4.12)

We will need higher order versions of the resolvent, which we will simply refer

to as correlators.

Definition 1.19. Consider the (a, N) Laguerre β ensemble. For 1 6 n 6 N, the

unconnected n-point correlator is

Un(s1, . . . , sn) :=

〈
N

∑
j1,...,jn=1

1
(s1 − λj1) · · · (sn − λjn)

〉LβE∗

. (1.4.13)

We call these the unconnected correlators in order to distinguish them from

similar quantities which we call the connected correlators.

Definition 1.20. In the setting above, let 1 6 n 6 N, and let X1, . . . , Xn be some

operators. Then, the connected ensemble average of the product X1 · · ·Xn is

〈X1 · · ·Xn〉LβE∗
c :=

n

∑
m=1

∑
G
(−1)m−1(m− 1)!

m

∏
j=1
〈Xgj(1) · · ·Xgj(|Gj|)〉

LβE∗ , (1.4.14)

where the sum over G is over all subdivisions G1 ∪ · · · ∪ Gm of {1, . . . , n} into m

subsets, with the gj defined by Gj = {gj(1), . . . , gj(|Gj|)} [Forrester, 2010, p.187].
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Definition 1.21. Consider the (a, N) Laguerre β ensemble. For 1 6 n 6 N, the

connected n-point correlator is

Wn(s1, . . . , sn) :=

〈
N

∑
j1,...,jn=1

1
(s1 − λj1) · · · (sn − λjn)

〉LβE∗

c

. (1.4.15)

We now present some relations between the connected and unconnected correla-

tors due to [Smith, 1995], as seen in [Witte and Forrester, 2015, pp.8-9].

∞

∑
n=1

tn

n!
Wn(s1, . . . , sn) = log

(
1 +

∞

∑
n=1

tn

n!
Un(s1, . . . , sn)

)
, (1.4.16)

Un(x1, Jn) = Wn(x1, Jn) + ∑
∅ 6=J⊆Jn

Wn−|J| (x1, Jn \ J)U|J|(J), Jn = (x2, . . . , xn).

(1.4.17)

We observe that the connected correlators are defined through an inclusion-

exclusion principle, in an effort to induce cancellations; connected correlators of

higher order in n decay faster in N, compared to the unconnected versions. The

probability theorist may prefer to think of moments and cumulants. We work with

the connected correlators because of their faster decays in N. In fact, for β, α1 ∈ R>0,

our connected correlators admit large N expansions of the form

Wn(s1, . . . , sn) = N2−nκ1−n
∞

∑
l=0

W l
n(s1, . . . , sn)

(N
√

κ)l , κ = β
2 , (1.4.18)

with W l
n not dependent on N; the unconnected correlators do not admit such expan-

sions. This large N expansion comes from the field of topological recursion, where

such an expansion is proven to be valid if the resolvent satisfies certain hypotheses –

hypotheses that our resolvent satisfies. See section 4 of [Borot and Guionnet, 2012].

This topological viewpoint also gives reasoning behind the terms “connected”

and “unconnected”. Indeed, these correlators are related to problems of enumer-

ating maps, which are graphs embedded onto 2-dimensional manifolds [Zvonkin,

1997]. A reader versed in enumerative combinatorics may recognise that the relation

between the generating functions of connected graphs and the generating functions

of unconnected graphs is the exact same as the relation (1.4.16) given above.
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1.4.5 The Stieltjes Transform

The resolvent is also given by the Stieltjes transform of ρ̃
(L)
(1) [Wall, 1948, pp.247-250].

Definition 1.22. Let ρ be a density with support I ⊂ R. Then, for all s ∈ C \R, the

Stieltjes transform of ρ is

W(s) = ST {ρ(λ); λ→ s} :=
∫

I

ρ(λ)

s− λ
dλ. (1.4.19)

It is evident that 1
N W1(s) = ST {ρ̃(L)

(1) (λ; α1, β, N); λ → s}. Moreover, we may

extract the smoothed eigenvalue density from the resolvent via the Sokhotski-Plemelj

theorem.

Proposition 6. Let W be the Stieltjes transform of a function that is continuous over some

interval I ⊂ R. Then, for all λ ∈ I, the inverse Stieltjes transform of W is given by

ρ(λ) = IST {W(z); z→ λ} :=
1

2πi
lim
ε→0

(W(λ− iε)−W(λ + iε)) . (1.4.20)

We remark that in the case that ρ(λ) extends to an analytic function in the neighbourhood of

R, this is just a simple consequence of Cauchy’s theorem.

It is relatively difficult to compute the inverse Stieltjes transform of a pole, so we

give a result here.

Theorem 1.5. Let m ∈N>0 and let δ(m) denote the mth order derivative of the Dirac delta

function (distribution). Then for a ∈ R,

IST {(z− a)−m; z→ λ} = (−1)m−1

(m− 1)!
δ(m−1)(λ− a). (1.4.21)

Proof. We prove by taking the Stieltjes transform of the right hand side. First, note

that using the chain rule, dm−1

dam−1 δ(λ− a) = (−1)m−1 dm−1

dλm−1 δ(λ− a). Thus,

(−1)m−1

(m− 1)!

∫ ∞

−∞

δ(m−1)(λ− a)
z− λ

dλ =
1

(m− 1)!
dm−1

dam−1

∫ ∞

−∞

δ(λ− a)
z− λ

dλ

=
1

(m− 1)!
dm−1

dam−1
1

z− a

=
1

(z− a)m .
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Chapter 2

The Loop Equation Analysis

We adopt the loop equation formalism as seen in [Witte and Forrester, 2015], [Witte

and Forrester, 2014], with β ∈ R>0 and a ∈N0 such that α1 = β
2 (a + 1)− 1 > 0. We

remark that the name loop equation has historical origins in quantum field theory

[Brézin, 1993, pp.798-863].

2.1 Preliminaries Particular to the Loop Equations

Throughout this chapter, we fix a, β, α1 and either fix N as a large integer, or consider

the large N limit. Our analysis is valid for β ∈ R>0, so long as α1 ∈ R>0. We remind

the reader that β = 1, 2, and 4 are special cases corresponding to the LOE, LUE, and

LSE. Whenever we deal with the n-point connected or unconnected correlator, it will

be assumed that n 6 N. As per definition 1.11 of the Vandermonde determinant in

subsection 1.4.1, we will denote the product ∏
16j<k6N

(λk − λj) by ∆(λ), dropping the

subscript N.

We are mainly concerned with the global scaled eigenvalue density and j.p.d.f.

of the (a, N) Laguerre β ensemble. To this end, we let LβE∗ denote

{ 1
N X |X a member of the (a, N) LβE},

so that the eigenvalue density of the LβE∗ is given by ρ̃
(L)
(1) (λ; α1, β, N) (1.13).
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We provide a summary of the quantities from chapter 1 that we will be using in

chapter 2.

Definition 2.1. For 1 6 n 6 N, the connected n-point correlator is

Wn(s1, . . . , sn) :=

〈
N

∑
j1,...,jn=1

1
(s1 − λj1) · · · (sn − λjn)

〉LβE∗

c

,

while the unconnected n-point correlator is

Un(s1, . . . , sn) :=

〈
N

∑
j1,...,jn=1

1
(s1 − λj1) · · · (sn − λjn)

〉LβE∗

.

Here, 〈 · 〉LβE∗ denotes the ensemble average with respect to the LβE∗ scaled

measure given in definition 1.14,

dµLβE∗(λ) := |∆(λ)|β
N

∏
i=1

λα1
i e−βNλi/2 dλi.

The identities (1.4.14) and (1.4.17) will be invaluable.

Un(x1, Jn) = Wn(x1, Jn) + ∑
∅ 6=J⊆Jn

Wn−|J| (x1, Jn \ J)U|J|(J), Jn = (x2, . . . , xn).

Wn(s1, . . . , sn) =
n

∑
m=1

∑
G
(−1)m−1(m− 1)!

m

∏
j=1

U|Gj|(sgj(1), . . . , sgj(|Gj|)),

where the sum over G is over all subdivisions G1 ∪ · · · ∪ Gm of {1, . . . , n} into m

subsets, with the gj defined by Gj = {gj(1), . . . , gj(|Gj|)}.

We are interested in these correlators because they allow us to form loop equations

that will be used to compute the resolvent W1(s1). The resolvent is of interest because

it acts as a moment generating function for the moments of the smoothed eigenvalue

density of the (a, N) Laguerre β ensemble (1.4.12).

It is important to note that the connected correlators admit large N expansions of

the form

Wn(s1, . . . , sn) = N2−nκ1−n
∞

∑
l=0

W l
n(s1, . . . , sn)

(N
√

κ)l , κ =
β

2
,

with W l
n not dependent on N. We now outline the loop equation formalism used to

calculate these large N expansions.
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2.2 Loop Equations for the Laguerre β Ensembles

In this section, we derive loop equations which allow us to recursively compute

higher order terms of our Wn(s1, . . . , sn). We introduce new variables and define yet

another measure in an effort to keep our calculations tidy.

Definition 2.2. The LβE altered measure is

dµLβE(γ) := |∆(γ)|β
N

∏
i=1

γα1
i e−γi dγi.

For present purposes, we use

ZN :=
∫
[0,∞)N

dµLβE(γ),

〈 · 〉 :=
1

ZN

∫
[0,∞)N

· dµLβE(γ),

Wn(x1, . . . , xn) :=

〈
N

∑
j1,...,jn=1

1
(x1 − γj1) · · · (xn − γjn)

〉
c

,

Un(x1, . . . , xn) :=

〈
N

∑
j1,...,jn=1

1
(x1 − γj1) · · · (xn − γjn)

〉

to denote what we will call the altered partition function, altered ensemble average, altered

connected n-point correlator, and altered unconnected n-point correlator, respectively. We

retain our meaning of “connected” versus “unconnected”, so that we have

Wn(x1, . . . , xn) =
n

∑
m=1

∑
G
(−1)m−1(m− 1)!

m

∏
j=1

U|Gi|(xgj(1), . . . , xgj(|Gi|)),

where the sum over G is over all subdivisions of {1, . . . , n} into m subsets, with the

gj defined by Gj = {gj(1), . . . , gj(|Gj|)}.

We now use these definitions to derive our unscaled loop equations, and then

scale them so that they yield relationships between our Wn(s1, . . . , sn).

Henceforth, κ = β
2 , h =

√
κ − 1√

κ
, and χ is taken to be the character function.
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2.2.1 Some Identities via Aomoto’s Method

The derivation of our loop equations is quite involved, so we first present some

identities. The proofs of these identities will be in the style of Aomoto’s method;

recall the proof in subsection 1.4.1. Thus, our first two identities will be derived by

considering the ensemble averages of partial derivatives.

Loop Equation Identity 1. The first identity we will use is

0 =

〈
N

∑
j1,...,jn=1

1
(x1 − γj1)

2(x2 − γj2) · · · (xn − γjn)

〉

+
n

∑
k=2

〈
N

∑
j1,..., ĵk,...,jn=1

χn 6=1

(x1 − γj1) · · · (xk−1 − γjk−1)(xk − γj1)
2(xk+1 − γjk+1) · · · (xn − γjn)

〉

+ α1

〈
N

∑
j1,...,jn=1

1
γj1(x1 − γj1) · · · (xn − γjn)

〉
−
〈

N

∑
j1,...,jn=1

1
(x1 − γj1) · · · (xn − γjn)

〉

+ β

〈
N

∑
j1,...,jn=1

1
(x1 − γj1) · · · (xn − γjn)

N

∑
p=1
p 6=j1

1
γj1 − γp

〉
, (2.2.1)

where j1, . . . , ĵk, . . . , jn = j1, . . . , jk−1, jk+1, . . . , jn and we require α1 > 0.

Proof. Consider the ensemble average

I1(x1, . . . , xn) :=

〈
N

∑
j1=1

∂

∂γj1

1
x1 − γj1

N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

〉
.

We interchange the sum over j1 with the integral over [0, ∞)N, noting that we’re

allowed to do so because the sum is finite for fixed N. Then, for each j1, we evaluate

the integral that corresponds to γj1 . By the fundamental theorem of calculus, our

ensemble average is then

I1(x1, . . . , xn)

=
1

ZN

N

∑
j1=1

∫
[0,∞)N−1

N

∏
i=1
i 6=j1

dγi

×
[

1
x1 − γj1

N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

|∆(γ)|β
N

∏
i=1

γα1
i e−γi

]∞

γj1
=0

.
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For each value of j1,[
1

x1 − γj1

N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

|∆(γ)|β
N

∏
i=1

γα1
i e−γi

]∞

γj1
=0

= lim
γj1
→∞

[
1

x1 − γj1

N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

|∆(γ)|β
N

∏
i=1

γα1
i e−γi

]
= 0,

where the above limit converges to 0 because it is dominated by the e−γj1 term. The

remaining factors in the integrand of I1(x1, . . . , xn) are bounded on [0, ∞)N−1, so the

integrand reduces to 0 for each value of j1. Hence, our ensemble average is zero:

I1(x1, . . . , xn) =
1

ZN

N

∑
j1=1

∫
[0,∞)N−1

0
N

∏
i=1
i 6=j1

dγi = 0.

On the other hand, we may differentiate with respect to γj1 by applying Leibniz’s

rule. The integrand of I1(x1, . . . , xn) is then given by

N

∑
j1=1

∂

∂γj1

{
1

x1 − γj1

N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

|∆(γ)|β
N

∏
i=1

γα1
i e−γi

}

=
N

∑
j1=1

1
(x1 − γj1)

2

N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

|∆(γ)|β
N

∏
i=1

γα1
i e−γi

+
N

∑
j1=1

1
x1 − γj1

∂

∂γj1

{
N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

}
|∆(γ)|β

N

∏
i=1

γα1
i e−γi

+
N

∑
j1,...,jn=1

1
(x1 − γj1) · · · (xn − γjn)

∂

∂γj1

{
|∆(γ)|β

} N

∏
i=1

γα1
i e−γi

+
N

∑
j1,...,jn=1

1
(x1 − γj1) · · · (xn − γjn)

|∆(γ)|β
(

α1

γj1
− 1

)
N

∏
i=1

γα1
i e−γi .

We compute that for n > 2,

∂

∂γj1

{
N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

}

=
N

∑
jn=1

1
xn − γjn

∂

∂γj1

{
N

∑
j2,...,jn−1=1

1
(x2 − γj2) · · · (xn − γjn−1)

}

+
1

(xn − γj1)
2

N

∑
j2,...,jn−1=1

1
(x2 − γj2) · · · (xn − γjn−1)

.
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Hence, by induction on n, we have for n > 2,

∂

∂γj1

{
N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

}

=
n

∑
k=2

N

∑
j2,..., ĵk,...,jn=1

1
(x2 − γj2) · · · (xk−1 − γjk−1)(xk − γj1)

2(xk+1 − γjk+1) · · · (xn − γjn)
.

Moreover, we compute that

∂

∂γj1

{
|∆(γ)|β

}
=

∂

∂γj1


N

∏
p=1
p 6=j1

|γp − γj1 |
β


N

∏
16j<k6N

j,k 6=j1

|γj − γk|β =
N

∏
p=1
p 6=j1

β

γj1 − γp
|∆(γ)|β.

Thus, the integrand of I1(x1, . . . , xn) simplifies to{
N

∑
j1,...,jn=1

1
(x1 − γj1)

2(x2 − γj2) · · · (xn − γjn)

+
n

∑
k=2

N

∑
j1,..., ĵk,...,jn=1

χn 6=1

(x1 − γj1) · · · (xk−1 − γjk−1)(xk − γj1)
2(xk+1 − γjk+1) · · · (xn − γjn)

+
N

∑
j1,...,jn=1

1
(x1 − γj1) · · · (xn − γjn)

(
N

∑
p=1
p 6=j1

β

γj1 − γp
+

α1

γj1
− 1

)}
|∆(γ)|β

N

∏
i=1

γα1
i e−γi ,

and I1(x1, . . . , xn) is simply equal to the right hand side of our identity (2.2.1). We’ve

shown earlier that I1(x1, . . . , xn) = 0, so the identity is proven.

We also utilise an identity that is essentially a simpler version of our first loop

equation identity.

Loop Equation Identity 2. The second identity we will use is

0 =
N

∑
k=2

〈
N

∑
j1,..., ĵk,...,jn=1

χn 6=1

(x2 − γj2) · · · (xk−1 − γjk−1)(xk − γj1)
2(xk+1 − γjk+1) · · · (xn − γjn)

〉

+ α1

〈
N

∑
j1=1

1
γj1

N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

〉
− N

〈
N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

〉
,

(2.2.2)

where we recall that j1, . . . , ĵk, . . . , jn = j1, . . . , jk−1, jk+1, . . . , jn and we retain our

requirement that α1 > 0.
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Proof. This time, we begin by considering the ensemble average

I2(x1, . . . , xn) :=

〈
N

∑
j1=1

∂

∂γj1

N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

〉
.

We immediately obtain I2(x1, . . . , xn) = 0 by the fundamental theorem of calculus,

as in the preceding proof.

Applying Leibniz’s rule, we observe that

N

∑
j1=1

∂

∂γj1

{
N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

|∆(γ)|β
N

∏
i=1

γα1
i e−γi

}

=

{
n

∑
k=2

N

∑
j1,..., ĵk,...,jn=1

χn 6=1

(x2 − γj2) · · · (xk−1 − γjk−1)(xk − γj1)
2(xk+1 − γjk+1) · · · (xn − γjn)

+
N

∑
j1,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

(
N

∑
p=1
p 6=j1

β

γj1 − γp
+

α1

γj1
− 1

)}
|∆(γ)|β

N

∏
i=1

γα1
i e−γi ,

using calculations from the preceding proof. Furthermore, we note that

N

∑
j1,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

N

∑
p=1
p 6=j1

β

γj1 − γp
= 0,

since interchanging variables j1 ↔ p and then extracting a minus sign yields

N

∑
p,j1=1
p 6=j1

β

γj1 − γp
=

N

∑
p,j1=1
p 6=j1

β

γp − γj1
= −

N

∑
p,j1=1
p 6=j1

β

γj1 − γp
.

This then completes the proof.

Our first two identities are all that are necessary to derive our loop equations via

Aomoto’s method. However, we supplement them with a few more identities that

will aide in our calculations.

Loop Equation Identity 3. We present our third loop equation identity without

proof,

∂

∂x1
Un(x1, . . . , xn) = −

〈
N

∑
j1,...,jn=1

1
(x1 − γj1)

2(x2 − γj2) · · · (xn − γjn)

〉
. (2.2.3)
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Loop Equation Identity 4. For 2 6 k 6 n, our fourth loop equation identity is

∂

∂xk

{
Un−1(x1, . . . , x̂k, . . . , xn)−Un−1(x2, . . . , xn)

xk − x1

}
=

∂

∂xk

〈
N

∑
j1,..., ĵk,...,jn=1

1
(x1 − γj1) · · · (xk−1 − γjk−1)(xk − γj1)(xk+1 − γjk+1) · · · (xn − γjn)

〉

= −
〈

N

∑
j1,..., ĵk,...,jn=1

1
(x1 − γj1) · · · (xk−1 − γjk−1)(xk − γj1)

2(xk+1 − γjk+1) · · · (xn − γjn)

〉
.

(2.2.4)

Proof. The first equality follows from the fact that

N

∑
j1=1

1
(x1−γj1

)
− 1

(xk−γj1
)

xk − x1
=

N

∑
j1=1

1
(x1 − γj1)(xk − γj1)

and that

Un−1(x1, . . . , x̂k, . . . , xn)−Un−1(x2, . . . , xn)

=
N

∑
j1=1

(
1

(x1 − γj1)
− 1

(xk − γjk)

)

×
N

∑
j2,..., ĵk,...,jn=1

1
(x2 − γj2) · · · (xk−1 − γjk−1)(xk+1 − γjk+1) · · · (xn − γjn)

.

The second equality is a simple derivative.

Loop Equation Identity 5. Our fifth loop equation identity is

α1

x1
Un(x1, . . . , xn) +

N
x1

Un−1(x2, . . . , xn) +
1
x1

n

∑
k=2

∂

∂xk
Un−1(x2, . . . , xn)χn 6=1

= α1

〈
N

∑
j1=1

1
γj1(x1 − γj1)

N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

〉
. (2.2.5)

Proof. First, we observe that by loop equation identity (2.2.2), the left hand side of

identity (2.2.5) is equal to

α1

x1
Un(x1, . . . , xn) +

α1

x1

〈
N

∑
j1=1

1
γj1

N

∑
j2,...,jn=1

1
(x2 − γj2) · · · (xn − γjn)

〉
,

which is seen to be equal to the right hand side of identity (2.2.5) upon realisation of

the fact that ∑N
j1=1

(
1

x1(x1−γj1
)
+ 1

x1γj1

)
= ∑N

j1=1
1

γj1
(x1−γj1

)
.
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Loop Equation Identity 6. Our sixth and final loop equation identity is

κUn+1(x1, x1, . . . , xn) + κ
∂

∂x1
Un(x1, . . . , xn)

= β

〈
N

∑
j1,...,jn=1

1
(x1 − γj1) · · · (xn − γjn)

N

∑
p=1
p 6=j1

1
γj1 − γp

〉
, (2.2.6)

where we recall that κ = β
2 .

Proof. Interchanging variables j1 ↔ p gives us

∑
p,j1=1
p 6=j1

1
(x1 − γj1)(γj1 − γp)

= ∑
p,j1=1
p 6=j1

1
(x1 − γp)(γp − γj1)

,

hence

2 ∑
p,j1=1
p 6=j1

1
(x1 − γj1)(γj1 − γp)

= ∑
p,j1=1
p 6=j1

1
γj1 − γp

(
1

x1 − γj1
− 1

x1 − γp

)

= ∑
p,j1=1
p 6=j1

1
(x1 − γj1)(x1 − γp)

.

Substituting this into the right hand side of our identity (2.2.6), we obtain

β

2

〈
N

∑
j2,...,jn=1

1
(x1 − γj1) · · · (xn − γjn)

N

∑
p,j1=1
p 6=j1

1
(x1 − γj1)(x1 − γp)

〉

= κ

〈
N

∑
p,j1,...,jn=1

1
(x1 − γp)(x1 − γj1) · · · (xn − γjn)

〉

− κ

〈
N

∑
j1,...,jn=1

1
(x1 − γj1)

2(x2 − γj2) · · · (xn − γjn)

〉

= κUn+1(x1, x1, . . . , xn) + κ
∂

∂x1

〈
N

∑
j1,...,jn=1

1
(x1 − γj1) · · · (xn − γjn)

〉

= κUn+1(x1, x1, . . . , xn) + κ
∂

∂x1
Un(x1, . . . , xn),

which is equal to the left hand side of loop equation identity (2.2.6).

We are now well-equipped to derive our loop equations.
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2.2.2 The Unscaled Loop Equations

We now use our loop equation identities to derive unscaled loop equations for our

altered connected correlators. We present an inductive construction.

Theorem 2.1. Our first unscaled loop equation is

0 = κW2(x1, x1) + κ
(
W1(x1)

)2
+ (κ − 1)W

′

1(x1) +

(
α1

x1
− 1
)

W1(x1) +
N
x1

. (2.2.7)

Proof. For n = 1, our loop equation identity (2.2.1) reads

0 =

〈
N

∑
j1=1

1
(x1 − γj1)

2

〉
+ α1

〈
N

∑
j1=1

1
γj1(x1 − γj1)

〉
−
〈

N

∑
j1=1

1
x1 − γj1

〉

+ β

〈
N

∑
p,j1=1
p 6=j1

1
(x1 − γj1)(γj1 − γp)

〉
.

In the above, the first term is simply − ∂
∂x1

U1(x1) by loop equation identity (2.2.3),

the second term is α1
x1

U1(x1) +
N
x1

by loop equation identity (2.2.5), and the last

term is κU2(x1, x1) + κ ∂
∂x1

U1(x1) by loop equation identity (2.2.6). Hence, the above

equation simplifies to

0 = −U
′

1(x1) +
α1

x1
U1(x1) +

N
x1
−U1(x1) + κU2(x1, x1) + κU

′

1(x1).

Noting that U1(x1) = W1(x1) and U2(x1, x1) = W2(x1, x1) +
(
W1(x1)

)2
completes

the proof.

Theorem 2.2. Our second unscaled loop equation is

0 = (κ − 1)
∂

∂x1
W2(x1, x2) +

∂

∂x2

{
W1(x1)−W1(x2)

x1 − x2

}
+

(
α1

x1
− 1
)

W2(x1, x2)

+ κ
[
W3(x1, x1, x2) + 2W2(x1, x2)W1(x1)

]
+

1
x1

∂

∂x2
W1(x2). (2.2.8)

Proof. For n = 2, our loop equation identity (2.2.1) reads

0 = − ∂

∂x1
U2(x1, x2) +

〈
N

∑
j1=1

1
(x1 − γj1)(x2 − γj1)

2

〉
+ α1

〈
N

∑
j1,j2=1

1
γj1(x1 − γj1)(x2 − γj2)

〉

−U2(x1, x2) + β

〈
N

∑
j1,j2=1

1
(x1 − γj1)(x2 − γj2)

N

∑
p=1
p 6=j1

1
γj1 − γp

〉
,
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which, upon substitution of our remaining loop equation identities, becomes

0 = − ∂

∂x1
U2(x1, x2) +

∂

∂x2

{
U1(x1)−U1(x2)

x1 − x2

}
+

α1

x1
U2(x1, x2) +

N
x1

U1(x2)

+
1
x1

∂

∂x2
U1(x2)−U2(x1, x2) + κU3(x1, x1, x2) + κ

∂

∂x1
U2(x1, x2).

Substituting

U1(xi) = W1(xi), i = 1, 2,

U2(x1, x2) = W2(x1, x2) + W1(x1)W1(x2),

U3(x1, x1, x2) = W3(x1, x1, x2) + 2U1(x1)U2(x1, x2) + U1(x2)U2(x1, x1)

− 2
(
U1(x1)

)2 U1(x2)

into the above, we obtain

0 = (κ − 1)
∂

∂x1
W2(x1, x2) + (κ − 1)W

′

1(x1)W1(x2) +
∂

∂x2

{
W1(x1)−W1(x2)

x1 − x2

}

+

(
α1

x1
− 1
) [

W2(x1, x2) + W1(x1)W1(x2)
]
+

N
x1

W1(x2) +
1
x1

W
′

1(x2)

+ κ
[
W3(x1, x1, x2) + 2W1(x1)W2(x1, x2) + W1(x2)W2(x1, x1) +

(
W1(x1)

)2 W1(x2)
]

.

Subtracting the right hand side of our first unscaled loop equation (2.2.7) multiplied

by W1(x2) completes the proof.

Theorem 2.3. Define Jn to be the ordered set (x2, . . . , xn). Then, for n > 2, the nth unscaled

loop equation is

0 =

[
(κ − 1)

∂

∂x1
+

(
α1

x1
− 1
)]

Wn(x1, Jn)

+
n

∑
k=2

∂

∂xk

{
Wn−1(x1, . . . , x̂k, . . . , xn)−Wn−1(Jn)

x1 − xk
+

1
x1

Wn−1(Jn)

}

+ κ

[
Wn+1(x1, x1, Jn) + ∑

J⊆Jn

W |J|+1(x1, J)Wn−|J|(x1, Jn \ J)

]
. (2.2.9)
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Proof. First, we present the equivalent equation for the unconnected correlators. For

n > 2,

0 =

[
(κ − 1)

∂

∂x1
+

(
α1

x1
− 1
)]

Un(x1, Jn) +
N
x1

Un−1(Jn)

+
n

∑
k=2

∂

∂xk

{
Un−1(x1, . . . , x̂k, . . . , xn)−Un−1(Jn)

x1 − xk
+

1
x1

Un−1(Jn)

}
+ κUn+1(x1, x1, Jn). (2.2.10)

This equation can be derived by substituting loop equation identities (2.2.3) to (2.2.6)

into loop equation identity (2.2.1) in the same way as in the derivation of the first

two unscaled loop equations.

We prove by induction on n, with n = 2 serving as our base case. For this purpose,

let I3(x1, . . . , xn) denote the right hand side of our nth unscaled loop equation (2.2.9)

and, for our induction hypothesis, assume that I3(x1, . . . , xm) = 0 for all 1 6 m 6

n− 1. We rewrite identity (1.4.17) in terms of the altered correlators,

Un(x1, Jn) = Wn(x1, Jn) + ∑
∅ 6=J⊆Jn

Wn−|J| (x1, Jn \ J)U|J|(J), Jn = (x2, . . . , xn).

Subtracting Un−1(Jn)I3(x1) from the right hand side of the loop equation for uncon-

nected correlators (2.2.10) then leaves us with

0 =

[
(κ − 1)

∂

∂x1
+

(
α1

x1
− 1
)]{

Wn(x1, Jn) + ∑
∅ 6=J⊂Jn

Wn−|J| (x1, Jn \ J)U|J|(J)

}

+
n

∑
k=2

∂

∂xk

{
Un−1(x1, . . . , x̂k, . . . , xn)−Un−1(Jn)

x1 − xk
+

1
x1

Un−1(Jn)

}
+ κWn+1(x1, x1, Jn) + κ ∑

∅ 6=J⊂Jn

Wn+1−|J|(x1, x1, Jn \ J)U|J|(J)

+ κ ∑
J⊆Jn

Wn−|J|(x1, Jn \ J)U|J|+1(x1, J)− κW1(x1)W1(x1)Un−2(Jn), (2.2.11)

where ⊂ denotes a strict or proper subset, and ⊆ denotes otherwise. Here, we have

used the relation

Un+1(x1, x1, Jn) = Wn+1(x1, x1, Jn) + ∑
∅ 6=J′⊆(x1,Jn)

Wn−|J′|(x1, (x1, Jn) \ J′)U|J′|(J′)
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and the fact that {∅ 6= J′ ⊆ (x1, Jn)} = {∅ 6= J′ ⊆ Jn} ∪ {J′ = (x1, J′′) | J′′ ⊆ Jn}.

Continuing on, we note that for any J ⊆ Jn,

U|J|(J)
∂

∂x1
Wn−|J|(x1, Jn \ J) =

∂

∂x1

{
Wn−|J|(x1, Jn \ J)U|J|(J)

}
,

U|J|(J)
∂

∂xk

Wn−1−|J|(x1, (Jn \ J) \ (xk))−Wn−1−|J|(Jn \ J)
x1 − xk

=
∂

∂xk

Wn−1−|J|(x1, (Jn \ J) \ (xk))U|J|(J)−Wn−1−|J|(Jn \ J)U|J|(J)
x1 − xk

, xk ∈ (Jn \ J),

U|J|(J)
∂

∂xk

{
1
x1

Wn−1−|J|(Jn \ J)
}

=
∂

∂xk

{
1
x1

Wn−1−|J|(Jn \ J)U|J|(J)
}

, xk ∈ (Jn \ J),

as the relevant partial derivatives do not depend on any of the variables present in

our U multipliers. Hence, subtracting ∑
∅ 6=J⊂Jn

I3(x1, Jn \ J)U|J|(J) from our equation

(2.2.11) results in

0 =

[
(κ − 1)

∂

∂x1
+

(
α

x1
− 1
)]

Wn(x1, Jn) + κWn+1(x1, x1, Jn)

+
n

∑
k=2

∂

∂xk

{
Wn−1(x1, . . . , x̂k, . . . , xn)−Wn−1(Jn)

x1 − xk
+

1
x1

Wn−1(Jn)

}
+ κ ∑

J⊆Jn

Wn−|J|(x1, Jn \ J)U|J|+1(x1, J)− κW1(x1)W1(x1)Un−2(Jn)

− κ ∑
∅ 6=J⊂Jn

∑
K⊆Jn\J

W |K|+1(x1, K)Wn−|K|(x1, (Jn \ J) \ K)U|J|(J) (2.2.12)

The last two lines of the above (2.2.12) then simplify as follows:

κ ∑
J⊆Jn

Wn−|J|(x1, Jn \ J)U|J|+1(x1, J)− κW1(x1)W1(x1)Un−2(Jn)

− κ ∑
∅ 6=J⊂Jn

∑
K⊆Jn\J

W |K|+1(x1, K)Wn−|K|(x1, (Jn \ J) \ K)U|J|(J)

= κ ∑
J⊆Jn

Wn−|J|(x1, Jn \ J)U|J|+1(x1, J) + κ ∑
K⊆Jn

W |K|+1(x1, K)Wn−|K|(x1, Jn \ K)

− κ ∑
J⊆Jn

∑
K⊆Jn\J

W |K|+1(x1, K)Wn−|K|(x1, (Jn \ J) \ K)U|J|(J),
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where we absorb the κW1(x1)W1(x1)Un−2(Jn) term into the latter sum, and extract

the J = ∅ terms from it. Furthermore, interchanging the order of summation, the

last two lines of (2.2.12) become

κ ∑
J⊆Jn

Wn−|J|(x1, Jn \ J)U|J|+1(x1, J) + κ ∑
K⊆Jn

W |K|+1(x1, K)Wn−|K|(x1, Jn \ K)

− κ ∑
K⊆Jn

W |K|+1(x1, K) ∑
J⊆Jn\K

Wn−|J|−|K|(x1, (Jn \ K) \ J)U|J|(J)

= κ ∑
J⊆Jn

Wn−|J|(x1, Jn \ J)U|J|+1(x1, J) + κ ∑
K⊆Jn

W |K|+1(x1, K)Wn−|K|(x1, Jn \ K)

− κ ∑
K⊆Jn

W |K|+1(x1, K)Un−|K|(x1, Jn \ K),

which, after writing L = Jn \ K, simplifies to

κ ∑
J⊆Jn

Wn−|J|(x1, Jn \ J)U|J|+1(x1, J) + κ ∑
K⊆Jn

W |K|+1(x1, K)Wn−|K|(x1, Jn \ K)

− κ ∑
L⊆Jn

Wn−|L|(x1, Jn \ L)U|L|+1(x1, L)

=κ ∑
K⊆Jn

W |K|+1(x1, K)Wn−|K|(x1, Jn \ K).

Replacing the last two lines of (2.2.12) by this result then completes the proof.

2.2.3 The Scaled Loop Equations

Thus far, we have derived unscaled loop equations which provide relationships be-

tween our Wn(x1, . . . , xn), which are the n-point connected correlators with respect to

our altered measure dµLβE(γ). We now derive loop equations for our Wn(s1, . . . , sn),

the n-point connected correlators with respect to our scaled measure dµLβE∗(λ). This

is easily done by simply scaling the Wn(x1, . . . , xn) to the Wn(s1, . . . , sn).
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We write λi =
1

Nκ γi as a change of variables. Then,

Wn(x1, . . . , xn)

=

〈
N

∑
j1,...,jn=1

1
(x1 − γj1) · · · (xn − γjn)

〉
c

=

∫
[0,∞)N ∑N

j1,...,jn=1
1

(x1−γj1
)···(xn−γjn )

|∆(γ)|β ∏N
i=1 γα1

i e−γi dγi∫
[0,∞)N |∆(γ)|β ∏N

i=1 γα1
i e−γi dγi

=

∫
[0,∞)N ∑N

j1,...,jn=1
1

(x1−Nκλj1
)···(xn−Nκλjn )

|∆(Nκλ)|β(Nκ)N(α1+1) ∏N
i=1 λα1

i e−Nκλi dλi∫
[0,∞)N |∆(Nκλ)|β(Nκ)N(α1+1) ∏N

i=1 λα1
i e−Nκλi dλi

,

where we pick up the factor of (Nκ)N(α1+1) from the γi and dγi. Recalling the

definition of the Vandermonde determinant, we have

|∆(Nκλ)| = ∏
16j<k6N

(Nκ)|λi − λj| = (Nκ)N(N−1)/2|∆(λ)|.

Hence, noting that the numerator and denominator both contain the same factor of

(Nκ)N(α1+
N
2 +

1
2 ), we find that

W1(x1, . . . , xn)

=

∫
[0,∞)N ∑N

j1,...,jn=1
1

(x1−Nκλj1
)···(xn−Nκλjn )

|∆(λ)|β ∏N
i=1 λα1

i e−Nκλi dλi∫
[0,∞)N |∆(λ)|β ∏N

i=1 λα1
i e−Nκλi dλi

=
1

Z∗N

∫
[0,∞)N

1
(Nκ)n

1
((Nκ)−1x1 − λj1) · · · ((Nκ)−1xn − λjn)

dµLβE∗(λ)

=
1

(Nκ)n

〈
N

∑
j1,...,jn=1

1
((Nκ)−1x1 − λj1) · · · ((Nκ)−1xn − λjn)

〉LβE∗

c

=
1

(Nκ)n W1

( x1

Nκ
, . . . ,

xn

Nκ

)
It is at this point that we are lead to write si =

xi
Nκ in order to obtain

Wn(x1, . . . , xn) =
1

(Nκ)n Wn(s1, . . . , sn).

Substituting these relations between the unscaled and scaled connected correlators

into our unscaled loop equations (2.2.7) to (2.2.9) give us loop equations for our

Wn(s1, . . . , sn).
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Theorem 2.4. Our first loop equation is

0 =
1
N

W2(s1, s1) +
1
N

(W1(s1))
2 +

1
N

(
1− 1

κ

)
W
′
1(s1) +

(
α1

Nκs1
− 1
)

W1(s1) +
N
s1

.

(2.2.13)

Theorem 2.5. For n > 2, our nth loop equation is

0 =

[
1
N

(
1− 1

κ

)
∂

∂s1
+

(
α1

Nκs1
− 1
)]

Wn(s1, . . . , sn)

+
1

Nκ

n

∑
k=2

∂

∂sk

{
Wn−1(s1, . . . , ŝk, . . . , sn)−Wn−1(s2, . . . , sn)

s1 − sk
+

1
s1

Wn−1(s2, . . . , sn)

}

+
1
N

Wn+1(s1, s1, s2, . . . , sn) + ∑
J⊆(s2,...,sn)

W|J|+1(s1, J)Wn−|J|(s1, (s2, . . . , sn) \ J)

 .

(2.2.14)

2.3 Calculating the Connected Correlators

2.3.1 Methodology for Calculating the Resolvent W1(s1)

With our loop equations in hand, we may now calculate our resolvent W1(s1) up to

any order in N. We begin by substituting the series expansions from (1.4.18),

W1(s1) = N
∞

∑
l=0

W l
1(s1)

(N
√

κ)l ,

W2(s1, s2) =
1
κ

∞

∑
l=0

W l
2(s1, s2)

(N
√

κ)l

into our first loop equation (2.2.13), resulting in

0 =
1

Nκ

∞

∑
l=0

W l
2(s1, s1)

(N
√

κ)l + N
∞

∑
l,k=0

W l
1(s1)Wk

1 (s1)

(N
√

κ)l+k +

(
1− 1

κ

) ∞

∑
l=0

W l
1

′
(s1)

(N
√

κ)l

+

(
α1

κs1
− N

) ∞

∑
l=0

W l
1(s1)

(N
√

κ)l +
N
s1

. (2.3.1)

This enables us to form loop equations for our resolvent coefficients W l
1(s1), as we

shall now demonstrate. Comparing terms of order N in (2.3.1), we obtain

0 =
(

W0
1 (s1)

)2
−W0

1 (s1) +
1
s1

.
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A simple application of the quadratic formula then reveals that

W0
1 (s1) =

1
2

(
1−

√
1− 4

s1

)
. (2.3.2)

Here, we have had to make a choice in sign when applying the quadratic formula.

This choice has been made definite by requiring that W0
1 (s1) behaves as 1

s1
for |s1|

large, in keeping with the roles played by our resolvent.

Moving on, comparing terms of order 1 in (2.3.1), we have that

0 = 2W0
1 (s1)W1

1 (s1) + hW0
1

′
(s1) +

α1√
κs1

W0
1 (s1)−W1

1 (s1), (2.3.3)

where we recall that h =
√

κ − 1√
κ
. Substituting in our expression for W0

1 (s1) and

rearranging (2.3.3), we find that

W1
1 (s1) =

α1

2
√

κ

(
1
t1
− 1

s1

)
− h

t2
1

, (2.3.4)

where we take this opportunity to define

ti := si

√
1− 4

si
, i ∈N>0,

as this square root appears frequently from here on out.

In general, for l > 2, the first loop equation presents us with the following loop

equation for our resolvent coefficients.

0 = W l−2
2 (s1, s1) +

l

∑
k=0

Wk
1 (s1)W l−k

1 (s1) + hW l−1
1

′
(s1) +

α1√
κs1

W l−1
1 (s1)−W l

1(s1)

(2.3.5)

We shall call this the loop equation for W l
1. We realise that in order to calculate W1(s1)

to higher orders in N, we need to calculate our 2-point connected correlator W2(s1, s2)

up to a similar order in N. Indeed, when attempting to do so, we shall see that we

require W3(s1, s2, s3), and so on. In fact, we have a triangular recursive system, the

meaning of which will be made precise in the next subsection.
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2.3.2 Loop Equations for the Correlator Coefficients W l
n

We expand our n-point connected correlators in large N as

Wn(s1, . . . , sn) = N2−nκ1−n
∞

∑
l=0

W l
n(s1, . . . , sn)

(N
√

κ)l

and substitute them into our general loop equation (2.2.14) to obtain

0 =

[
1
N

(
1− 1

κ

)
∂

∂s1
+

(
α1

Nκs1
− 1
)] ∞

∑
l=0

W l
n(s1, . . . , sn)

(N
√

κ)l

+
n

∑
k=2

∂

∂sk


∑∞

l=0
W l

n−1(s1,...,ŝk,...,sn)

(N
√

κ)l −∑∞
l=0

W l
n−1(s2,...,sn)

(N
√

κ)l

s1 − sk
+

1
s1

∞

∑
l=0

W l
n−1(s2, . . . , sn)

(N
√

κ)l


+

1
N2κ

∞

∑
l=0

W l
n+1(s1, s1, s2, . . . , sn)

(N
√

κ)l

+ ∑
J⊆(s2,...,sn)

∞

∑
l,k=0

W l
|J|+1(s1, J)Wk

n−|J|(s1, (s2, . . . , sn) \ J)

(N
√

κ)l+k . (2.3.6)

Then, for n > 2, we may extract three types of loop equations for our W l
n(s1, . . . , sn),

in analogue with the equivalent equations for W1(s1) presented in the preceding

subsection. Extracting the order 1 terms from the above equation gives

0 = −W0
n(s1, . . . , sn) + ∑

J⊆(s2,...,sn)

W0
|J|+1(s1, J)W0

n−|J|(s1, (s2, . . . , sn) \ J)

+
n

∑
k=2

∂

∂sk

{
W0

n−1(s1, . . . , ŝk, . . . , sn)−W0
n−1(s2, . . . , sn)

s1 − sk
+

1
s1

W0
n−1(s2, . . . , sn)

}
,

(2.3.7)

which we will call our first seed equation. We note that in order to calculate W0
n(s1, . . . , sn),

we only require terms relating to W0
m(s1, . . . , sm) for m < n.

For the second type of equation, we extract order 1
N terms from (2.3.6) to form
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our second seed equation

0 = h
∂

∂s1
W0

n(s1, . . . , sn) +
α1√
κs1

W0
n(s1, . . . , sn)−W1

n(s1, . . . , sn)

+
n

∑
k=2

∂

∂sk

{
W1

n−1(s1, . . . , ŝk, . . . , sn)−W1
n−1(s2, . . . , sn)

s1 − sk
+

1
s1

W1
n−1(s2, . . . , sn)

}

+ ∑
J⊆(s2,...,sn)

1

∑
k=0

Wk
|J|+1(s1, J)W1−k

n−|J|(s1, (s2, . . . , sn) \ J). (2.3.8)

In general, we extract order 1
Nl terms from (2.3.6) for l > 2 to obtain

0 = h
∂

∂s1
W l−1

n (s1, . . . , sn) +
α1√
κs1

W l−1
n (s1, . . . , sn)−W l

n(s1, . . . , sn)

+
n

∑
k=2

∂

∂sk

{
W l

n−1(s1, . . . , ŝk, . . . , sn)−W l
n−1(s2, . . . , sn)

s1 − sk
+

1
s1

W l
n−1(s2, . . . , sn)

}
+ W l−2

n+1(s1, s1, s2, . . . , sn)

+ ∑
J⊆(s2,...,sn)

l

∑
k=0

Wk
|J|+1(s1, J)W l−k

n−|J|(s1, (s2, . . . , sn) \ J), (2.3.9)

which we shall refer to as the loop equation for W l
n. We observe that in order to

calculate W l
n from the above equation, we require Wk

m for m < n and k < l. Overall,

our strategy for calculating W1(s1) can be outlined in 3 steps: First, we initialise

the recursion with our expressions for W0
1 (s1) (2.3.2) and W1

1 (s1) (2.3.4). Then, we

calculate in order, W0
2 (s1, s2), W2

1 (s1), W1
2 (s1, s2), W3

1 (s1), and so on.Following this

pattern, when we get to calculating W l
1(s1), we will have already calculated many

other correlator coefficients, and will only need to compute a few more.

If l is even, we use our first seed equation (2.3.7) to compute W0
l
2+1

(s1, . . . , s l
2+1),

and then the second seed equation (2.3.8) to compute W1
l
2
(s1, . . . , s l

2
). Finally, we

successively use the loop equation for W l
n (2.3.9) above to compute W l

n with l

increasing by 2 and n decreasing by 1 at each step.

If l is odd, we use our second seed equation (2.3.8) to compute W1
l+1

2
(s1, . . . , s l+1

2
)

and then use the loop equation for W l
n (2.3.9) above to compute W l

n with l increasing

by 2 and n decreasing by 1 at each step. We present a table whose entries describe

the order in which the first ten coefficients of W1 are calculated in thirty six steps.
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l 0 1 2 3 4 5 6 7 8 9 10

n W l
n

1 1 2 4 6 9 12 16 20 25 30 36

2 3 5 8 11 15 19 24 29 35

3 7 10 14 18 23 28 34

4 13 17 22 27 33

5 21 26 32

6 31

To better see the order of recursion, one may like to draw arrows starting at each

entry in the first two columns, pointing to the top right at a gradient of 1
2 . There is a

simple algorithm for generating this table: Assume that the last entry entered was in

the top row. If the bottom row is of length one, the next entry is added to the end of

that row. Otherwise, the next entry is placed in a new row below the current bottom

row. Then, move up one row at a time, adding an entry to the end of each row.

Remark 6. While performing the recursion, one will need to compute terms of the

form W l−2
n+1(s1, s1, s2, . . . , sn), for example in (2.3.9). When computing these terms, the

second line in each of (2.3.7), (2.3.8), and (2.3.9) may then raise alarms, as we cannot

simply set s2 = s1, due to the singularity. However, this is a removable singularity:

lim
s1→s2

∂

∂s2

{
W l

n−1(s1, s3, . . . , sn)−W l
n−1(s2, . . . , sn)

s1 − s2

}

= lim
s1→s2

(s2 − s1)
∂

∂s2
W l

n−1(s2, . . . , sn) + W l
n−1(s1, s3, . . . , sn)−W l

n−1(s2, . . . , sn)

(s1 − s2)2

= lim
s1→s2

1
s2 − s1

{
∂

∂s2
W l

n−1(s2, . . . , sn)−
W l

n−1(s1, s3, . . . , sn)−W l
n−1(s2, . . . , sn)

s1 − s2

}
.

The term in the bracket tends to 0 as s1 → s2. Thus, via L’Hôpital’s rule, we find that

the limit is actually equal to 1
2

∂2

∂s2
2
W l

n−1(s2, . . . , sn), which is well defined. In practice,

the author used Taylor expansions.
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2.3.3 The Resolvent Up to Order 3 in 1
N and Related Correlators

We now use the recursion outlined above to compute a few resolvent coefficients, and

the correlators we had to compute along the way. We present our results in order of

computation. We recall that ti = si
√

1− 4/si for i ∈N>0, κ = β
2 , and h =

√
κ − 1√

κ
.

W0
1 (s1) =

1
2

(
1−

√
1− 4

s1

)
(2.3.10)

W1
1 (s1) =

α1

2
√

κ

(
1
t1
− 1

s1

)
− h

t2
1

(2.3.11)

W0
2 (s1, s2) =

s1s2 − 2s1 − 2s2

2t1t2(s1 − s2)2 −
1

2(s1 − s2)2 (2.3.12)

W0
2 (s1, s1) =

1
t4
1

(2.3.13)

W2
1 (s1) =

s1

t5
1
+

α2
1

κt3
1
− hα1

2
√

κ

(
4− s1

t3
1

+
s2

1

t4
1

)
+ h2 2s2

1 − 3s1

t5
1

(2.3.14)

W1
2 (s1, s2) =

α1√
κ

s1s2

t3
1t3

2
− h

s1 − s2

(
1

t1t2
2

)
+

1
(s1 − s2)2

√
κ

(
s2

1(2− s2) + 2s1s2

t4
1t2

)

− h
(s1 − s2)2

(
4s1s2 − s3

2

t1t4
2

+
s2

1(s2 − 6) + 2s1(8− s2)

t4
1t2

)

+
h

(s1 − s2)3

(
s1

t1
+

s4
1(2− s2) + 2s3

1(3s2 − 5) + 8s2
1(2− s2) + 2s1(s2

2 − 8s2)

t4
1t2

)

+
1

(s1 − s2)3
√

κ

(
s3

1(s2 − 2)− s2
1s2

2 + 2s1s2
2

t4
1t2

)
(2.3.15)

W1
2 (s1, s1) =

α1√
κ

(
s2

1

t6
1

)
− h

(
s3

1 + 2s2
1 − 2s1

t7
1

)
(2.3.16)

W3
1 (s1) = −h

(
s4

1 + 6s3
1 − 6s2

1

t8
1

)
− h3

(
6s4

1 − 12s3
1 + 12s2

1

t8
1

)
+

α1√
κ

(
s3

1 + s2
1

t7
1

)

− h2α1√
κ

(
s3

1 − 6s2
1 + 8s1

t6
1

−
s4

1 + 3s3
1 − 3s2

1

t7
1

)
+

hα2
1

2κ

(
1
t3
1
−

s3
1 + 6s2

1 − 8s1

t6
1

)

+
α3

1
κ
√

κ

(
s1

t5
1

)
(2.3.17)

58 2.3. CALCULATING THE CONNECTED CORRELATORS



Moments of the Laguerre β Ensembles

This data gives us our resolvent up to order 3 in 1
N using the large N expansion

W1(s1) = N ∑∞
l=0

W l
1(s1)

(N
√

κ)l from (1.4.18).

2.4 The First 3 Moments of the Laguerre β Ensembles

We now use the data given above to compute the moments m̃k of the scaled Laguerre

β ensemble, as defined in subsection 1.4.3. We know from (1.4.12) that for large |s|,

1
N

W1(s) =
1
s
+

∞

∑
k=1

m̃k

sk+1 ,

where the equality is in an asymptotic sense. From (1.4.10), we know that there exist

coefficients a(k)i such that

m̃k =
k

∑
i=0

a(k)i N−i.

Combining these two formulae, we obtain

1
N

W1(s) =
∞

∑
k=0

k

∑
i=0

a(k)i N−i

sk+1 , a(0)0 = 1

=
∞

∑
i=0

1
Ni

∞

∑
k=i

a(k)i
sk+1 ,

where we’re allowed to interchange the order of summation due to convergence in

the large |s|, large N limit. Now, we compare with the large N expansion for W1(s)

given by (1.4.18),

1
N

W1(s) =
∞

∑
l=0

W l
1(s)

(N
√

κ)l .

Equating terms of equal order in N, we have

∞

∑
l=0

W l
1(s)

(N
√

κ)l =
1
N

W1(s) =
∞

∑
i=0

1
Ni

∞

∑
k=i

a(k)i
sk+1

=⇒W l
1(s) = κl/2

∞

∑
k=l

a(k)l
sk+1 .
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As our coefficients a(k)i are independent of N and s, this immediately tells us that for

l ∈N0, W l
1(s), is of order at most −(l + 1) in s. Referring back to (1.4.12), this tells

us that to compute m̃k (k ∈N>0), we only need W0
1 (s), . . . , W l

1(s). We now present

our resolvent coefficients as Taylor expansions in s about 0, up to order 4 in s.

W0
1 (s) =

1
s
+

1
s2 +

2
s3 +

5
s4 + O( 1

s5 ) (2.4.1)

W1
1 (s) =

1− κ + α1√
κs2 +

4− 4κ + 3α1√
κs3 − 2(8κ − 5α1 − 8)√

κs4 + O( 1
s5 ) (2.4.2)

W2
1 (s) =

2− 4κ + 2κ2 + 3α1 − 3κα1 + α2
1

κs3 +
17− 33κ + 17κ2 + 21α1 − 21κα1 + 6α2

1
κs4 + O( 1

s5 )

(2.4.3)

W3
1 (s) =

6− 17κ + 17κ2 − 6κ3 + 11α1 − 21κα1 + 11κ2α1 + 6α2
1 − 6κα2

1 + α3
1

κ3/2s4 + O( 1
s5 )

(2.4.4)

Remark 7. We point out that the coefficients in the Taylor expansion of W0
1 (s) are the

Catalan numbers. This is expected, and is a well known result in the Gaussian case

[Witte and Forrester, 2014].

Now, extracting the coefficients of 1
s2 from W0

1 (s) and W1
1 (s), we obtain that

m̃1 = 1 +
1− κ + α1

Nκ
. (2.4.5)

Extracting the coefficients of 1
s3 from W0

1 (s), W1
1 (s), and W2

1 (s), we obtain that

m̃2 = 2 +
4− 4κ + 3α1

Nκ
+

2− 4κ + 2κ2 + 3α1 − 3κα1 + α2
1

N2κ2 . (2.4.6)

Likewise,

m̃3 = 5− 2(8κ − 5α1 − 8)
Nκ

+
17− 33κ + 17κ2 + 21α1 − 21κα1 + 6α2

1
N2κ2

+
6− 17κ + 17κ2 − 6κ3 + 11α1 − 21κα1 + 11κ2α1 + 6α2

1 − 6κα2
1 + α3

1
N3κ3 . (2.4.7)

We recall that from equation (1.4.9), we can easily retreieve the moments of the

Laguerre β ensemble using the relation mk = Nk+1m̃k. These moments agree with

existing results, as we will see in subsection 4.1.2.
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Chapter 3

The Differential Equations

3.1 The Hypergeometric Function Approach

We now restrict to β = 2, and approach the problem via differential equations. Our

discussion is heavily reliant on identities [4.127], [4.133], [13.12], [13.25], [13.44]

and [13.45] from [Forrester, 2010, pp.165-168,594-606], which we present here for

completeness.

First, note that for even β, equation [13.45] tells us that the eigenvalue density of

the ( 2
β (α1 + 1)− 1, N + 1) Laguerre β ensemble is given by

ρ
(L)
(1) (x; α1, β, N + 1) =

(N + 1) LN(a, β)

LN+1(a + 2
β , β)

xα1e−βx/2
1F1

(β/2)(−N; a + 2; (x)β), (3.1.1)

where a = 2α1
β , (x)β is the β-tuple of x’s, and the LN normalisation constants

are specified in subsection 1.4.1. We warn that this a is not our usual exponent.

This identity may be retrieved from our expression for ρ
(L)
(1) (x; α1, β, N + 1) given in

subsection 1.3.1 by using identity [13.44] with m = β and t1 = . . . = tβ = x =: xN+1

to obtain

1F(β/2)
1 (−N; a + 2; (x)β)

=
1

Wa,β,N

∫
[0,∞)N

N

∏
j=1

[
dxj xα1

j e−βxj/2(xj − x)β
]

∏
16j<k6N

|xk − xj|β. (3.1.2)
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for some normalisation constant Wa,β,N . Next, we take identity [13.25] with α = β
2 ,

α1 = aα, α2 = bα, and m = β, to see that

2F1
(β/2)(−N, a + b + 2

β + N + 1; a + 2; ( x
b )

β) (3.1.3)

=
1

SN(α1 + β, α2, α)

∫
[0,1]N

N

∏
j=1

[
dxj xα1

j (1− xj)
α2(xj − x

b )
β
]

∏
16j<k6N

|xk − xj|β,

where the SN normalisation constant has been specified in subsection 1.4.1. This

quantity is of interest to us because, using this expression, it is easy to see that

1F(β/2)
1 (−N; a + 2; (x)β) = lim

b→∞
2F(β/2)

1 (−N, a + b + 2
β + N + 1; a + 2; ( x

b )
β).

We may now exploit a duality between β and N through identity [13.12] to write

the quantity given in (3.1.3) above as a β-dimensional integral,

2F(β/2)
1 (−N, λ1 − 2

β + 3; λ1 + λ2 − 4
β + 6; ( x

b )
β)

=
1

Sβ(λ1, λ2, 2
β )

∫
[0,1]β

β

∏
j=1

[
dxj xλ1

j (1− xj)
λ2(1− xxj

b )N
]

∏
16j<k6β

|xk − xj|4/β. (3.1.4)

To compare this with (3.1.3), let λ1 = a + b + N + 4
β − 2 and λ2 = −b− N − 2.

We have a related quantity given in [4.127], which we may use by substituting

N = β and λ = 2
β to obtain

I(α)p (x) =
∫
[0,1]β

β

∏
j=1

[
dxjx

λ1
j (1− xj)

λ2(xj − x)α−χj>p
]

∏
16j<k6β

|xk − xj|4/β. (3.1.5)

This object is accompanied by differential-difference equation [4.133],

(β− p)Ep I(α)p+1(x)

= −(Apx + Bp)I(α)p (x) + x(x− 1)
d

dx
I(α)p (x) + Dpx(x− 1)I(α)p−1(x), (3.1.6)

Ap = (β− p)(λ1 + λ2 + 4− 4
β (p + 1) + 2α),

Bp = (p− β)(λ1 + α + 2− 2
β (p + 1)),

Dp = p(2− 2
β p + α),

Ep = λ1 + λ2 + 5− 2
β (p + 2) + α.
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To relate this information to the object given in (3.1.4), we define an auxillary

function,

J(α)p (x) : = (− x
b )

β(α−1)+p I(α)p ( b
x )

=
∫
[0,1]β

β

∏
j=1

[
dxjx

λ1
j (1− xj)

λ2(1− xxj
b )α−χj>p

]
∏

16j<k6β

|xk − xj|4/β. (3.1.7)

Then, with the help of (3.1.6), we obtain a differential-difference equation for J(α)p (x),

b(β− p)Ep J(α)p+1(x) =
[
bAp + Bpx + (β(α− 1) + p)(x− b)

]
J(α)p (x)

+ x(b− x)
d

dx
J(α)p (x) + Dp(b− x)J(α)p−1(x), (3.1.8)

where the constants Ap, Bp, Cp, and Dp retain their definitions as given in (3.1.6).

3.2 The LUE Eigenvalue Density Differential Equation

We now let β = 2. Substituting p = 0, 1, and 2 into (3.1.8) yields

2bE0 J(α)1 (x) = [bA0 + B0x + 2(α− 1)(x− b)] J(α)0 (x) + x(b− x)
d

dx
J(α)0 (x),

bE1 J(α)2 (x) = [bA1 + B1x + (2α− 1)(x− b)] J(α)1 (x) + x(b− x)
d

dx
J(α)1 (x)

+ D1(b− x)J(α)0 (x),

0 = 2α(x− b)J(α)2 (x) + x(b− x)
d

dx
J(α)2 (x) + 2α(b− x)J(α)1 (x). (3.2.1)

Substituting the second of these equations into the third then gives

0 = D1

[
2α(x− b)− x + x(b− x)

d
dx

]
J(α)0 (x) + x2(b− x)

d2

dx2 J(α)1 (x)

+ x [b(A1 + 2) + (B1 − 3)x + 4α(x− b)]
d

dx
J(α)1 (x)

+
[
(B1 − 1)x + 4α2(b− x)− 2α (b(A1 − E1 + 1) + (B1 − 2)x)

]
J(α)1 (x).

We intend to take the limit as b→ ∞, so we discard terms of low order in b to obtain

0 = D1

[
−2α + x

d
dx

]
J(α)0 (x) + x2 d2

dx2 J(α)1 (x) + x(a− x− 2α)
d

dx
J(α)1 (x)

+
(

2α2 + 2α(x + 1)− x
)

J(α)1 (x).
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Substituting the first equation of the set (3.2.1) into this result then yields

0 = x2 d3

dx3 J(N+1)
0 (x)− x(3x− 3a− 4)

d2

dx2 J(N+1)
0 (x)

+
[
4Nx + 2x2 − 4(1 + a)x + (2a + 1)(a + 2)

] d
dx

J(N+1)
0 (x)

− 2N(2x− 2a− 1)J(N+1)
0 (x), (3.2.2)

where we have again discarded terms of low order in b, and substituted α = N + 1.

Throughout, we have been using the expressions λ1 = a + b + N + 4
β − 2 and

λ2 = −b− N − 2. With these values, we note that

J(N+1)
0 (x) = 2F(1)

1 (−N, a + b + N + 2; a + 2; ( x
b )

2).

Taking the limit as b→ ∞ in (3.2.2) then gives us the differential equation

0 = x2 d3

dx3 F(x)− x(3x− 3a− 4)
d2

dx2 F(x)

+
[
4Nx + 2x2 − 4(1 + a)x + (2a + 1)(a + 2)

] d
dx

F(x)

− 2N(2x− 2a− 1)F(x), (3.2.3)

where we define

F(x) : = 1F(1)
1 (−N; a + 2; (x)2)

=
LN+1(a + 1, 2)
(N + 1)LN(a, 2)

x−aexρ
(L)
(1) (x; a, 2, N + 1).

Finally, replacing N with N − 1, we arrive at our desired differential equation,

0 = x3 d3

dx3 ρ
(L)
(1) (x; a, 2, N) + 4x2 d2

dx2 ρ
(L)
(1) (x; a, 2, N)

− x
[

x2 − 2(2N + a)x + a2 − 2
] d

dx
ρ
(L)
(1) (x; a, 2, N)

+
[
(2N + a)x− a2

]
ρ
(L)
(1) (x; a, 2, N). (3.2.4)

3.3 The LUE Resolvent Differential Equation

We now use the results from the previous section to derive a differential equation for

the resolvent W1(s). With the resulting differential equation, we will compute the
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large N expansion of W1(s) independent to the methods used in chapter 2. We recall

that the resolvent is given by the Stieltjes transform of the smoothed eigenvalue

density ρ̃
(L)
(1) , which is given in definition 1.13. We refer the reader to subsection

1.4.5. Hence, we scale equation (3.2.4) given in the previous section to obtain a

differential equation for ρ̃
(L)
(1) . This is simply achieved by changing variables x 7→ Nx.

The resultant differential equation is

0 = x3 d3

dx3 ρ̃
(L)
(1) (x; a, 2, N) + 4x2 d2

dx2 ρ̃
(L)
(1) (x; a, 2, N)

− x
[

N2x2 − 2N(2N + a)x + a2 − 2
] d

dx
ρ̃
(L)
(1) (x; a, 2, N)

+
[

N(2N + a)x− a2
]

ρ̃
(L)
(1) (x; a, 2, N). (3.3.1)

We remark that, up to scaling, this differential equation has been stated without

proof in [Adachi et al., 2011]. We refer the reader so subsection 4.1.3. We wish to

take the Stieltjes transform of equation (3.3.1) term by term. First, we present some

identities. In the following six identities, we will represent ρ̃
(L)
(1) (x; a, 2, N) simply by

ρ̃(x). Then, 1
N W1(s) = ST {ρ̃(x); x → s}.

We use the fact that ∂s(s− x)−1 = −∂x(s− x)−1, and that our density has support

[0, ∞) with ρ̃
(L)
(1) (0; a, 2, N) = 0 and ρ̃

(L)
(1) (x; a, 2, N)

x→0−→ 0 exponentially. Then, through

integration by parts and differentiation under the integral sign, we obtain

ST
{

x
d

dx
ρ̃(x); x → s

}
= −s

∫ ∞

0

ρ̃(x)
(s− x)2 dx

=
s
N

d
ds

W1(s), (3.3.2)

ST
{

x2 d2

dx2 ρ̃(x); x → s
}

= s2
∫ ∞

0

2ρ̃(x)
(s− x)3 dx

=
s2

N
d2

ds2 W1(s), (3.3.3)

ST
{

x3 d3

dx3 ρ̃(x); x → s
}

= −s3
∫ ∞

0

6ρ̃(x)
(s− x)4 dx

=
s3

N
d3

ds3 W1(s). (3.3.4)

We also present three more identities, this time using tricks where we add and
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subtract terms to and from the numerator, or split the numerator otherwise.

ST {xρ̃(x); x → s} =
∫ ∞

0

sρ̃(x)
s− x

dx−
∫ ∞

0
ρ̃(x)dx =

s
N

W1(s)− 1, (3.3.5)

where we have used the fact that by definition 1.13 ρ̃(x), is normalised to integrate

to 1 on its support. Using this, we may compute

ST
{

x2 d
dx

ρ̃(x); x → s
}

= −
∫ ∞

0

2sx− x2

(s− x)2 ρ̃(x)dx

= −s
∫ ∞

0

x
(s− x)2 ρ̃(x)dx−

∫ ∞

0

x
s− x

ρ̃(x)dx

= s
d
ds

( s
N

W1(s)− 1
)
+ 1− s

N
W1(s)

=
s2

N
d
ds

W1(s) + 1. (3.3.6)

Our sixth and last identity is

ST
{

x3 d
dx

ρ̃(x); x → s
}

= −
∫ ∞

0

sx2 + 2x2(s− x)
(s− x)2 ρ̃(x)dx

= −s
∫ ∞

0

x2

(s− x)2 ρ̃(x)dx− 2
∫ ∞

0

x2

s− x
ρ̃(x)dx

=

[
s

d
ds
− 2
] ∫ ∞

0

x2 − s2 + s2

s− x
ρ̃(x)dx

=

[
s

d
ds
− 2
] ∫ ∞

0

(
s2

s− x
− s− x

)
ρ̃(x)dx

=

[
s

d
ds
− 2
] (

s2

N
W1(s)− s− m̃1

)
=

s3

N
d
ds

W1(s) + s + 2m̃1, (3.3.7)

where we recall that ρ̃(x) integrates to 1 on its support, and m̃1 is the first moment

(and mean) of ρ̃; see subsection 1.4.3. While it is possible to calculate m̃1 from the

very definition of ρ̃(x), we use the value (2.4.5) computed in section 2.4. That is, for

β = 2 =⇒ κ = 1, and α1 = a, m̃1 = 1 + a
N . Hence, substituting these six identities

into the Stieltjes transform of our differential equation for ρ̃(x) (3.3.1), we obtain a
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differential equation for our resolvent:

0 =
s3

N
d3

ds3 W1(s) +
4s2

N
d2

ds2 W1(s)− s
[

Ns2 − 2(2N + a)s +
a2 − 2

N

]
d
ds

W1(s)

+

[
(2N + a)s− a2

N

]
W1(s)− N2s− Na (3.3.8)

We note that this differential equation is an inhomogenous version of equation (3.3.1);

the only difference is a factor of N and the −N2s− Na term seen above.

3.3.1 The LUE Resolvent Coefficients via Differential Equations

In this section, we have κ = 1 and α1 = a. We use the differential equation (3.3.8)

given above to compute the coefficients of the large N expansion (1.4.18) of W1(s)

given in subsection 1.4.4,

1
N

W1(s) =
∞

∑
l=0

W l
1(s)
Nl .

We substitute this expansion into equation (3.3.8) to obtain

0 = s3 d3

ds3

∞

∑
l=0

W l
1(s)
Nl + 4s2 d2

ds2

∞

∑
l=0

W l
1(s)
Nl

− s
[

N2s2 − 2N(2N + a)s + a2 − 2
] d

ds

∞

∑
l=0

W l
1(s)
Nl

+
[

N(2N + a)s− a2
] ∞

∑
l=0

W l
1(s)
Nl − N2s− Na. (3.3.9)

From this, we extract order N2 terms to obtain

0 = (4s− s2)
d
ds

W0
1 (s) + 2W0

1 (s)− 1. (3.3.10)

This has the general solution

W0
1 (s) =

1
2 + c

√
±
(

1− 4
s

)
, (3.3.11)

for some constant c. Requiring our resolvent to behave as 1
s for large |s|, we immedi-

ately obtain that W0
1 (s) =

1
2

(
1−

√
1− 4

s

)
, agreeing with our result in subsection
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2.3.3. Extracting the order N terms from (3.3.9) yields

0 = (4s2 − s3)
d
ds

W1
1 (s) + 2sW1

1 (s) + 2as2 d
ds

W0
1 (s) + asW0

1 (s)− a. (3.3.12)

This equation is satisfied by the coefficients listed in subsection 2.3.3.

For l > 0, extracting order N−l terms from (3.3.9) gives us the general differential

difference equation

0 = s3 d3

ds3 W l
1(s) + 4s2 d2

ds2 W l
1(s) + (4s2 − s3)

d
ds

W l+2
1 (s) + 2as2 d

ds
W l+1

1 (s)

+ (2− a2)s
d
ds

W l
1(s) + 2sW l+2

1 (s) + asW l+1
1 (s)− a2W l

1(s). (3.3.13)

This equation is satisfied by the resolvent coefficients given in subsection 2.3.3 for

l = 0, 1. These are all of the resolvent coefficients we have at hand for checking

purposes.

We note that this family of differential difference equations is the source of a

recursive system, not unlike the recursion derived in chapter 2. Indeed, we can use

the above to calculate Wk
1 (s) by rearranging equation (3.3.13) (with l = k− 2) to a

form where the left hand side is (4s2 − s3) d
dsWk

1 (s) + 2sWk
1 (s) and the right hand

side contains terms dependent on Wm
1 for m < l. Then, it is a simple matter of

integration by parts, or perhaps series solutions.
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Conclusion

4.1 Comparisons with Existing Literature

4.1.1 The Smoothed Eigenvalue Density From the Resolvent

In this section, we compute our smoothed eigenvalue density up to O( 1
N2 ), by

applying the inverse Stieltjes transform to the resolvent coefficients that we have

given in subsection 2.3.3. We compare our results to the smoothed density given in

[Forrester et al., 2006]. We shall see that our results match.

From definition 1.13 and proposition 6, we know that

ρ̃
(L)
(1) (x; α1, β, N) =

1
2πiN

lim
ε→0

[W1(x− iε)−W1(x + iε)] . (4.1.1)

As this limit is independent of N, and we wish to work in the large N limit, we

express ρ̃
(L)
(1) (x; α1, β, N) as a large N expansion,

ρ̃
(L)
(1) (x; α1, β, N) =

∞

∑
l=0

ρ̃(1),l(x; α1, β, N)

(N
√

κ)l , κ = β
2 . (4.1.2)

Then it is immediate that

ρ̃(1),l(x; α1, β, N) =
1

2πi
lim
ε→0

[
W l

1(x− iε)−W l
1(x + iε)

]
. (4.1.3)

Before proceeding, we prove a lemma.
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Lemma 1. For n ∈N0, the inverse Stieltjes transform of
(

1− 4
s

) 1
2−n

is given by

(−1)n+1

π

(
4
x
− 1
) 1

2−n
χx∈(0,4), (4.1.4)

where χ is the character function.

Proof. We begin by considering each term in the limit separately.

lim
ε→0

(
1− 4

x− iε

) 1
2−n

=


∣∣∣1− 4

x

∣∣∣ 1
2−n

, x ∈ R \ (0, 4)∣∣∣1− 4
x

∣∣∣ 1
2−n

e−iπ( 1
2−n), 0 < x < 4

lim
ε→0

(
1− 4

x + iε

) 1
2−n

=


∣∣∣1− 4

x

∣∣∣ 1
2−n

, x ∈ R \ (0, 4)∣∣∣1− 4
x

∣∣∣ 1
2−n

eiπ( 1
2−n), 0 < x < 4

We calculate
(

1− 4
x±iε

)
=
(

x2+ε2−4x±4iε
x2+ε2

)
so
∣∣∣1− 4

x±iε

∣∣∣ ε→0−→
∣∣∣1− 4

x

∣∣∣. The argu-

ment is a little more complicated: For x ∈ R \ (0, 4),
(

x2+ε2−4x±4iε
x2+ε2

)
has positive

real part, while for 0 < x < 4,
(

x2+ε2−4x±4iε
x2+ε2

)
has negative real part. Hence,

Arg
(

x2+ε2−4x±4iε
x2+ε2

)
ε→0−→ 0 for x ∈ R \ (0, 4) while for 0 < x < 4,

(
x2+ε2−4x±4iε

x2+ε2

)
tends towards the branch cut on the negative real line. Now

(
x2+ε2−4x+4iε

x2+ε2

)
has

a positive imaginary part, so Arg
(

x2+ε2−4x+4iε
x2+ε2

)
ε→0−→ π for 0 < x < 4. Likewise,

Arg
(

x2+ε2−4x−4iε
x2+ε2

)
ε→0−→ −π for 0 < x < 4.

Moving on, we see that

1
2πi

lim
ε→0

[(
1− 4

x− iε

) 1
2−n
−
(

1− 4
x + iε

) 1
2−n
]

=
1

2πi


0, x ∈ R \ (0, 4)

−2ieiπn
(

4
x − 1

) 1
2−n

, 0 < x < 4

=
(−1)n+1

π

(
4
x
− 1
) 1

2−n
χx∈(0,4)
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Using this lemma, and theorem 1.5, we find that

ρ̃(1),0(x; α1, β, N) = IST
{

W0
1 (s); s→ x

}
= IST

{
1
2

(
1−

√
1− 4

s

)
; s→ x

}
= −1

2
IST

{(
1− 4

s

)1
2 ; s→ x

}
=

1
2π

√
4
x − 1 χx∈(0,4) (4.1.5)

ρ̃(1),1(x; α1, β, N)

= IST
{

W1
1 (s); s→ x

}
= IST

{
−h

s2 − 4s
+

α1

2
√

κ

(
1
s

(
1− 4

s

)−1
2 − 1

s

)
; s→ x

}

= −h
4
IST

{
1

s− 4
− 1

s
; s→ x

}
+

α1

2
√

κ
IST

{
1
s

(
1− 4

s

)−1
2 − 1

s
; s→ x

}

=
h
4
[δ(x)− δ(x− 4)] +

α1

2
√

κ

[
1

πx

(
4
x − 1

)−1
2

χx∈(0,4) − δ(x)

]
(4.1.6)

ρ̃(1),2(x; α1, β, N)

= IST
{

W2
1 (s)

}
= IST

{
1
s4

(
1− 4

s

)−5
2 +

α1
2

s3κ

(
1− 4

s

)−3
2 ; s→ x

}

+ h2IST
{

2
s3

(
1− 4

s

)−3
2 +

5
s4

(
1− 4

s

)−5
2 ; s→ x

}

+
hα1

2
√

κ
IST

{
1
s2

(
1− 4

s

)−3
2 − 4

s3

(
1− 4

s

)−3
2 − 1

s2 − 4s
− 4

s(s− 4)2 ; s→ x

}

=
1

πx4

(
4
x − 1

)−5
2

χx∈(0,4) −
α1

2

πx3κ

(
4
x − 1

)−3
2

χx∈(0,4)

+ h2

[
5

πx4

(
4
x − 1

)−5
2

χs∈(0,4) −
2

πx3

(
4
x − 1

)−3
2

χx∈(0,4)

]

+
hα1

2
√

κ

[
4− x
πx3

(
4
x − 1

)−3
2

χx∈(0,4) + δ
′
(x− 4)

]
(4.1.7)

As a check, we apply the Stieltjes transform to these, and retrieve our resolvent

coefficients W0
1 , W1

1 , W2
1 . Moving on, we compare with the relevant quantities given
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in [Forrester et al., 2006]. In this work, Forrester et al. treats the Laguerre unitary

ensemble. Thus, we compare by setting κ = 1 and h = 0 in our density coefficients,

and then writing X = x
4 and α = α1. Moreover, because we are dealing with the

smoothed eigenvalue density, we must ignore the oscillatory terms in [Forrester

et al., 2006]. Finally, note that we cannot simply compare our ρ̃(1),l to their ρ(1),l, as

we need to account for the change in measure due to our notational change. With

equality given by the change in notation, the O(1) non-oscillatory term in (2.7) of

[Forrester et al., 2006] corresponds to

2
π

√
1
X
− 1 χX∈(0,1)dX =

1
2π

√
4
x
− 1 χx∈(0,4)dx.

The O( 1
N ) non-oscillatory term in (2.7) of [Forrester et al., 2006] corresponds to

α

2πX
√

1
X − 1

χX∈(0,1)dX =
α1

2πx
√

4
x − 1

χx∈(0,4)dx.

The O( 1
N2 ) non-oscillatory term in (2.15) of [Forrester et al., 2006] corresponds to

1 + 4(−1 + X)α2

64π(1− X)5/2X3/2 χX∈(0,1)dX =
1 + (s− 4)α2

1

256π
(

4
x − 1

) ( x
4

)4
χx∈(0,4)dx

=

 1

πx4
(

4
x − 1

)5/2 −
α2

1

πx3
(

4
x − 1

)3/2

 χx∈(0,4)dx.

These expressions are exactly the terms in equations (4.1.5), (4.1.6) and (4.1.7) that

are not accompanied by factors of h.

4.1.2 Comparing The Moments

In section 2.4, we computed the first few moments of the Laguerre β ensemble. We

check these against two resources.

In subsection 1.4.3, we mentioned that [Mezzadri and Reynolds, 2015] developed

methods of computing these moments via Jack polynomial theory. The moments

of the Laguerre β ensemble presented in [Mezzadri and Reynolds, 2015] agree
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completely with our results, after taking care to substitute mk = Nk+1m̃k, and then

scaling N so that our eigenvalue density agrees with the eigenvalue density in

[Mezzadri and Reynolds, 2015].

The second resource is the Maple package titled Multivariate Orthogonal Poly-

nomials (Symbolically), or MOPS. This package is documented in [Dumitriu et al.,

2007]. Using the package, we computed the moments of the Laguerre β ensemble.

Again, the results agreed with our computations in section 2.4.

4.1.3 Comparing The Eigenvalue Density Differential Equation

We present some objects seen in [Forrester, 2010, pp.189-200], with N ∈ N>0 and

n ∈N0.

KN(x, x) =
w2(x)

(pN−1, pN−1)2

(
p′N(x)pN−1(x)− p′N−1(x)pN(x)

)
, (4.1.8)

(pn, pn)2 = Γ(n + 1)Γ(a + n + 1), (4.1.9)

pn(x) = (−1)nn!La
n(x), (4.1.10)

La
n(x) =

n

∑
m=0

(−1)m
(

n + a
n−m

)
xm

m!
. (4.1.11)

The KN(x, x) given here, with the appropriate substitutions, gives an expression

for the eigenvalue density of the Laguerre β ensemble. We find that this satisfies

equation (3.2.4) for N = 2 and 3, which raises our confidence in the validity of our

differential equation.

For another check of equation (3.2.4), we compare to the differential equation

given in [Adachi et al., 2011]. To make the comparison, we replace our x with

(N + a)ξ, and their ε with 1
N2 and their λ with a

N . Then, the two differential equations

are identical.
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4.2 Moving Forward

One of the advantages of the loop equation formalism is that the method used to

construct the recursion can be applied to more general cases. The ideas presented

in chapter 2 could very well be generalised to general potentials V(x). By this, we

mean that one could replace the factors of e−γi with e−V(γi) in the scaled eigenvalue

j.p.d.f.s, to obtain a more general result. Also, it may be worthwile investigating the

structure of the loop equations if α1 were to be taken to be of order N. Our work

was in the regime α1 > 0. However, we would like to allow α1 > −1, so as to allow

cases like the (0, N) Laguerre unitary ensemble. We believe that we should be able

to extend our result to the α1 > −1 regime via analytic continuation of one form or

another.

Looking at the resolvent coefficients presented in subsection 2.3.3, we suspect

that there might be nicer forms for them. For example, a lot of our coefficients are

of the form
(

α1√
κ

)k
for integers k; perhaps the α1 parameter could be redefined in

a more natural way. Also, it would be interesting to search for structure by setting

certain terms to 0 or 1. We suspect a duality between the cases β = 1 and β = 4.

Regarding chapter 3, there are a few directions that the work could be continued

in. First, in the stylings of [Witte and Forrester, 2014], one could further expand the

resolvent coefficients in large x to derive expansions for the resolvent coefficients

themselves. On the other hand, the information presented in section 3.1 is valid for

even β, so can be applied to β = 4 immediately. Moreover, once the β = 4 results

are obtained, one may exploit a duality between the β = 1 and β = 4 cases to obtain

similar results for the β = 1 case.
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Appendix A

A Fact Used in Proposition 2

Fix β = 1, 2, or 4. Let G be an M× N standard Gaussian β matrix, and use Gram-

Schmidt orthogonalisation to write G = UT, where T = [ti,j] is an N × N upper

triangular β matrix with diagonal entries positive and real, and U is an (M× N)

β matrix such that U†U = IN. Extend U to an (M×M) β matrix V := [U U′] by

defining an (M× a) β matrix U′ such that V†V = IM, where a = M− N. We show

that

(dG) =
N

∏
j=1

tβ(M−j)+κ
j,j (dT)(V†dU),

where for a matrix of differentials dY, (dY) denotes the product of all independent

elements of dY. We recall that the independent elements are the real components of

the entries that do not depend on any other such components.

Proof. Since

IM = V†V =

 IN U†U′

(U′)†U (U′)†U′

 ,

we have that U†U′ and (U′)†U are both zero matrices, and (U′)†U′ = Ia. Moreover,

G = UT implies that dG = dUT + UdT, so

V†dG =

 U†(dUT + UdT)

(U′)†(dUT + UdT)

 =

 U†dU T + dT

(U′)†dU T

 . (A.0.1)
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Now, in the style of proposition 1, we denote the jth columns of U and U′

by uj for 1 6 j 6 N and u′j for 1 6 j 6 a, respectively. Following the proof of

proposition 1, we note that since T is an upper triangular matrix, the (i, j) entry of

U†dU T + dT is
[
dti,j + ∑

j
k=1 tk,jui

†duk

]
. Since U†U = IN, we have that U†dU =

−dU†U = −
(
U†dU

)†, so ui
†duj = −uj

†dui for all 1 6 i, j 6 N. Thus, to extract the

independent elements of U†dU T + dT, it is sufficient to collect all of (dT) and then

look for terms of the form ui
†duj for all 1 6 j 6 i 6 N. For every such combination,

the (i, j) entry of U†dU T + dT contains the term tj,jui
†duj. Thus, we arrive at a

collection of independent elements of U†dU T + dT,

{dti,j | 1 6 i, j 6 N} ∪ {tj,jui
†duj | 1 6 j 6 i 6 N}.

In fact, these are all of the independent elements of U†dU T + dT; any other inde-

pendent term would have to be of the form ui
†duj for 1 6 i < j 6 N, but we already

explained that such a term would be dependent on our collection. Thus,

(U†dU T + dT) =
N

∏
j=1

tβ(N−j)+κ
j,j (dT)(U†dU), (A.0.2)

where κ = 0 if β = 1, κ = 1 if β = 2, and κ = 2 if β = 4; the κ is necessary because

U†dU = −(U†dU)† implies that for 1 6 i 6 N, ui
†dui is 0 in the real case, has only

one independent real component in the complex case, and has two independent real

components the quaternion case.

If β = 2, we write vi,j,1 + ivi,j,2 for the (i, j) entry of V†, dxi,j + i dyi,j for the (i, j)

entry of V†dG, and dgi,j,1 + i dgi,j,2 for the (i, j) entry of dG. Then,

dxi,j =
M

∑
k=1

(
vk,i,1dgk,j,1 − vk,i,2dgk,j,2

)
,

dyi,j =
M

∑
k=1

(
vk,i,1dgk,j,2 + vk,i,2dgk,j,1

)
for 1 6 i 6 M and 1 6 j 6 N. For any column 1 6 k 6 N, the Jacobian

matrix for the change of variables from (dg1,k,1, . . . , dgM,k,1, dg1,k,2, . . . , dgM,k,2) to

82



Moments of the Laguerre β Ensembles

(dx1,k, . . . , dxM,k, dy1,k, . . . , dyM,k), in the given orders, is [vi,j,1] −[vi,j,2]

[vi,j,2] [vi,j,1]

 .

This has determinant∣∣∣∣∣∣ [vi,j,1] −[vi,j,2]

[vi,j,2] [vi,j,1]

∣∣∣∣∣∣ =
∣∣∣∣∣∣ [vi,j,1] + i[vi,j,2] i[vi,j,1]− [vi,j,2]

[vi,j,2] [vi,j,1]

∣∣∣∣∣∣
=

∣∣∣∣∣∣ [vi,j,1] + i[vi,j,2] 0

[vi,j,1] [vi,j,1]− i[vi,j,2]

∣∣∣∣∣∣
= det(V†)det(V).

Thus, the Jacobian for changing variables from dgi,j,s to dxi,j, dyi,j for 1 6 i 6 M,

1 6 j 6 N, and s = 1, 2 is |det(V)|2N, as there are N columns in dG, thus N sets of

changes as given above. If β = 1, we simply remove all imaginary components, so

that the Jacobian matrix is [vi,j], and our Jacobian is |det(V)|N. If β = 4, we use the

matrix interpretation of quaternions to repeat the above with two sets of real and

imaginary parts for dG and V†dG, and find the Jacobian to be |det(V)|4N. Hence,

(V†dG) = |det(V)|βN(dG). However, V is either orthogonal, unitary, or symplectic,

so its determinant is ±1, and we have

(V†dG) = (dG). (A.0.3)

By a similar argument, we note that (U′)†dU T may be interpreted as a change of

variables from U†dU to (U′)†dU T – the only difference here is that we have T acting

from the right instead of V† acting from the left. Thus, since T is upper triangular,(
(U′)†dU T

)
= |det(T)|βa

(
(U′)†dU

)
=

N

∏
i=1

tβa
i,i

(
(U′)†dU

)
. (A.0.4)

Now, combining (A.0.2) and (A.0.4), we have that the product of the independent

elements of the right hand side of (A.0.1) is

N

∏
j=1

tβ(M−j)+κ
j,j (dT)(V†dU),
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because (V†dU), by definition, is a product of the independent elements of U†dU

and (U′)†dU. Here, we remark that our notation is different to that of the cited

references, but note that by a statement of [Muirhead, 1982, p.69], (V†dU) is not

dependent on the choice of U′, so it is equivalent to (U†dU) in some sense. Thus,

(A.0.1) with (A.0.3) and the above tells us that

(dG) =
N

∏
j=1

tβ(M−j)+κ
j,j (dT)(V†dU),

as required.
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A Fact Used in Proposition 3

Fix β = 1, 2, or 4. Let G = [gi,j] be an M × N standard Gaussian β matrix. Let

g1 be the left-most column of G and let G(1) be the M× (N − 1) matrix such that

G = [g1 G(1)].

Let v1 = g1 −
√

g1†g1[1 0 · · · 0]T, and define the Householder transformation

L(1) = IM − 2
v1†v1

v1v1
†. Then L(1)g1 =

√
g1†g1[1 0 · · · 0]T. Moreover, L(1) is an

orthogonal, unitary, or symplectic matrix (depending on β). We show that L(1)G(1)

is in fact an M× (N − 1) standard Gaussian β matrix.

Proof. Let g(1)i,j denote the (i, j) entry of L(1)G(1), with 2 6 j 6 N, and let li,k denote

the (i, k) entry of L(1). Then g(1)i,j = ∑M
k=1 li,kgk,j.

• If β = 1, L(1) is an orthogonal matrix that does not depend on G(1). Thus, all

of the gk,j are independent of the li,k and each other. Hence, the mean of g(1)i,j is

0, and the variance of g(1)i,j is ∑M
k=1 l2

i,k = 1.

• If β = 2, we write li,k = li,k,1 + ili,k,2 and gk,j = gk,j,1 + igk,j,2. Then, let

g(1)i,j,1 =
M

∑
k=1

(li,k,1gk,j,1 − li,k,2gk,j,2), g(1)i,j,2 =
M

∑
k=1

(li,k,1gk,j,2 + li,k,2gk,j,1),

so that g(1)i,j = g(1)i,j,1 + ig(1)i,j,2. Now, for each 1 6 k 6 M, ±gk,j,1 and ±gk,j,2 are

Gaussian with mean 0 and variance 1
2 from definition 1.2. Since L(1) is a unitary
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matrix, ∑M
k=1 l2

i,k,1 + l2
i,k,2 = 1. As L(1) does not depend on G(1), g(1)i,j,1 and g(1)i,j,2

are hence both Gaussian with mean 0 and variance 1
2 .

• If β = 4, we write

li,k =

 li,k,1 + ili,k,2 li,k,3 + ili,k,4

−li,k,3 + ili,k,4 li,k,1 − ili,k,2

 , gk,j =

 gk,j,1 + igk,j,2 gk,j,3 + igk,j,4

−gk,j,3 + igk,j,4 gk,j,1 − igk,j,2

 .

Then, let

g(1)i,j,1 =
M

∑
k=1

(li,k,1gk,j,1 − li,k,2gk,j,2 − li,k,3gk,j,3 − li,k,4gk,j,4),

g(1)i,j,2 =
M

∑
k=1

(li,k,1gk,j,2 + li,k,2gk,j,1 + li,k,3gk,j,4 − li,k,4gk,j,3),

g(1)i,j,3 =
M

∑
k=1

(li,k,1gk,j,3 − li,k,2gk,j,4 + li,k,3gk,j,1 + li,k,4gk,j,2),

g(1)i,j,4 =
M

∑
k=1

(li,k,1gk,j,4 + li,k,2gk,j,3 − li,k,3gk,j,2 + li,k,4gk,j,1),

so that

g(1)i,j =

 g(1)i,j,1 + ig(1)i,j,2 g(1)i,j,3 + ig(1)i,j,4

−g(1)i,j,3 + ig(1)i,j,4 g(1)i,j,1 − ig(1)i,j,2

 .

Since L(1) is symplectic, we have that ∑M
k=1 l†

i,kli,k = I2. Thus,

M

∑
k=1

(l2
i,k,1 + l2

i,k,2 + l2
i,k,3 + l2

i,k,4) = 1.

From definition 1.2, we know that for each 1 6 k 6 N, ±gk,j,1,±gk,j,2,±gk,j,3,±gk,j,4

are Gaussian with mean 0 and variance 1
4 . Hence, as L(1) does not depend on

G(1), g(1)i,j,s has mean 0 and variance 1
4 for each 1 6 s 6 4.

In all 3 cases, we thus have that L(1)G(1) is an M× (N − 1) standard Gaussian β

matrix, by the very definition of a standard Gaussian β matrix.
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