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Introduction: Summary of the research topic

Random matrix ensembles are typically defined by specifying a probability density function
(p.d.f.) in terms of the matrices. A typical example is the ensemble of real symmetric ma-
trices where a matrix, M = MT with p.d.f. proportional to exp(−1

2TrM2). In applications,
one is interested in the p.d.f. not of the matrices but rather their eigenvalues. For these,
there are a number of known evaluations in terms of Painlevé transcendents.

Painlevé transcendents are specified as the solution of particular non-linear differential equa-
tions. To compute the p.d.f.’s and their moments to high precision, it is necessary to
compute the Painlevé transcendents to high precision. Such high precision calculations are
the topic of this thesis. In particular, the high precision evaluations of the Painlevé tran-
scendents is obtained by performing a power series solution of the corresponding differential
equation and these are used to give power series expansions of the corresponding p.d.f.’s,
which also yield high precision evaluations.

The details of the high precision calculations are given in this thesis, as are the corresponding
Mathematica programs. The theoretical results so obtained are compared against the empirical
computation of eigenvalue p.d.f.’s for certain random matrix ensembles.
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Chapter 1

1.1 Some different types of matrices

Real orthogonal matrices

An orthogonal matrix is a N ×N square matrix R whose transpose is its inverse and so RT R =
IN . An orthogonal matrix with real elements is known as a real orthogonal matrix. Taking
the determinant of both sides of the defining equation and using the general properties of a
determinant detR = det RT , det AB = det A det B we see that (det R)2 = 1 and thus detR = 1
or det R = −1.

Real orthogonal matrices are special cases of unitary matrices, to be discussed subsequently.
One general feature of unitary matrices is that the modulus of the eigenvalues equals 1, and so
this must be true of real orthogonal matrices.

For an N × N real orthogonal matrix R with detR = 1 and simple (i.e. non-degenerate)
eigenvalues, it must be that the eigenvalues come in complex conjugate pairs exp (±iθj) (j =
1, . . . , N

2 and 0 < θj < π) for N even, while for N odd there will be an eigenvalue λ = 1, with
the remaining eigenvalues coming in complex conjugate pairs. For this reason, real orthogonal
matrices with odd rank ((2N + 1) × (2N + 1) matrices) should be considered separately from
those with even rank ((2N) × (2N) matrices). In the case that det R = 1, these matrices are
denoted O+(2N + 1) and O+(2N) respectively..

The set of all (2N + 1)× (2N + 1) real orthogonal matrices with determinant −1 is denoted
O−(2N + 1). For such matrices, there must exist one eigenvalue of λ = −1 and the remaining
2N eigenvalues in complex conjugate pair. The set of all (2N) × (2N) real orthogonal matrices
with determinant −1 is denoted O−(2N) and such matrices have two eigenvalues λ = ±1 and the
remaining 2N − 2 eigenvalues in complex conjugate pairs

We remark that multiplication by (−1) takes a matrix from O+(2N+1) to a matrix O−(2N+1)
and vice versa.

Hermitian matrix

A Hermitian matrix is a square matrix H whose conjugate transpose (also called the Hermitian
adjoint) (H∗)T = Ht is equal to the matrix H, which means (H∗)T = Ht = H.

There are two distinct classes of Hermitian matrices, depending on whether the elements are
real or complex. According to the finite-dimensional spectral theorem, any Hermitian matrix
can be diagonalised by a unitary matrix and the resulting diagonal matrix, which gives the
eigenvalues, has only real elements. In general, all eigenvalues of Hermitian matrices are real and
eigenvectors with distinct eigenvalues are orthogonal (see Appendix A).

Unitary matrices

A unitary matrix is a square matrix U with the property that the conjugate transpose (U∗)T U =
U tU = IN . As with Hermitian matrices, there are two distinct classes of unitary matrices of
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interest, depending on whether the elements are real or complex
Our interest is in the eigenvalues of these unitary matrices. Let v be a normalized eigenvector

of U with corresponding eigenvalue λ, Uv = λv. Let ( , ) denote the inner product. We see that

(Uv, Uv) = (λv, λv)
= |λ|2(v,v)
= |λ|2

On the other hand

(Uv, Uv) = (U tUv,v)
= (v,v)
= 1

So, in general, for a unitary matrix |λ| = 1. A general reference for the above theory is [6].

1.2 Definition of random matrix ensembles

Gaussian random matrices

Hermitian matrices with real entries are referred to as real symmetric matrices. They have the
property that X = XT .

Definition 1 The Gaussian orthogonal ensemble (GOE) refers to random real symmetric N×N
matrices X such that the diagonal and upper diagonal elements are independently chosen with
probability density functions (p.d.f.’s) 1√

2π
exp

−x2
jj

2 and 1√
π

exp−x2
jk respectively.

The p.d.f.’s in the GOE’s definition are examples of the normal (Gaussian) distribution
1√

2πσ2
exp −(x−µ)2

2σ2 which is to be denoted N[µ, σ]. In terms of this notation, the diagonal ele-
ments have p.d.f. N[0, 1] and the off diagonal elements p.d.f. N[0, 1√

2
]. We note that the joint

p.d.f. of all the independent elements is given by

P (X) =
N∏

j=1

1√
2π

exp
−x2

jj

2
∏

1≤j<k≤N

1√
π

exp−x2
jk

= AN exp (−
N∑

j,k=1

x2
jk

2
)

= AN exp (−1
2
Tr(X2)) (1.1)

where AN is the normalization and Tr denotes the trace. Let R be a real orthogonal matrix
(RRT = I). The above formula and the property of the trace that Tr(AB) = Tr(BA) gives

P (RT XR) = AN exp(−1
2
Tr(RT XR)2)

= AN exp(−1
2
Tr(RT RX)2)

= AN exp(−1
2
Tr(X2))

= P (X) (1.2)
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Thus the GOE joint p.d.f. has the property that it is unchanged by similarity transformations
with orthogonal matrices. By similarity transformations, it means to transform an N ×N matrix
A into an N × N matrix B such that P−1AP = B, where A and B share the eigenvalues (but
not necessarily the same eigenvectors). This is the reason for the word ’orthogonal’ in Definition 1.

Next, the case of Hermitian matrices with complex entries is considered.

Definition 2 The Gaussian unitary ensemble (GUE) refers to random Hermitian N × N ma-
trices X such that the diagonal elements (which must be real) and the upper triangular elements
xjk = ujk + ivjk are independently chosen with p.d.f. 1√

π
exp−x2

jj and 2
π exp−2(u2

jk + v2
jk) =

2
π exp−2|xjk|2 respectively. Equivalently, the diagonal entries have distribution N[0, 1√

2
], while

the upper triangular elements have distribution N[0, 1
2 ] + iN[0, 1

2 ]

The joint p.d.f. of all the independent elements is

P (X) =
N∏

j=1

1√
π

exp−x2
jj

∏
1≤j<k≤N

2
π

exp−2|xjk|2

= AN

N∏
j,k=1

exp−|xjk|2

= AN exp−Tr(X2) (1.3)

where AN is the normalization. The invariance P (U−1XU) = P (X), which is obtained similarly
through the steps shown in Eq. (1.2), for any unitary matrix U follows immediately.

Unitary matrices

At a technical level, there is a unique meaning to choosing a unitary matrix uniformly at random.
At a practical level, such matrices can be generated by diagonalising Gaussian random matrices.

Generally, a Hermitian matrix X is diagonalised by a unitary matrix U according to the
formula U−1XU = diag(λ1, . . . , λN ). The jth column of U is the normalised eigenvector corre-
sponding to the eigenvalue λj . If the elements of X are of a particular number system (real or
complex) then so will be the elements of U . These unitary matrices have the sought property
that they are generated uniformly at random provided the Hermitian matrix is from the GOE
(real case) or from the GUE (complex case).

Real orthogonal matrices

As with unitary matrices, there is a technical meaning to choosing a real symmetric matrix
uniformly at random. Real orthogonal matrices are the restrictions of unitary matrices to have
real elements. As remarked above, random matrices of this type can therefore be generated as
the matrix of eigenvectors which results from diagonalising matrices from the GOE. An expanded
discussion on the definition of random matrix ensembles can be found in [7].
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Chapter 2

2.1 Empirical eigenvalue distributions

2.1.1 Gaussian ensembles

In application of Gaussian random matrices to physics (see e.g. [3] ), the p.d.f. for the spacing
between consecutive eigenvalues near the middle of the spectrum can be compared against ex-
perimental data. A very accurate approximate analytic form is known for this p.d.f. [4]. To state
this:
Let β = 1 represent GOE and β = 2 represent GUE.
Let pw

β (s) denote the corresponding p.d.f. where the superscript stands for Wigner who gave this
approximation in the case β = 1. Then

pw
1 (s) =

πs

2
exp(−πs2

4
)

pw
2 (s) =

32s2

π2
exp(−4s2

π
)

In these formulae, we have
∫∞
0 pw

β (s)ds = 1 and the mean spacing between the eigenvalues has
been normalized to unity as well, where

∫∞
0 spw

β (s)ds = 1. Furthermore, it is assumed that the
rank of the matrix is large (i.e. size of each matrix is N ×N , for N large). These formulae reveal
the phenomenum of eigenvalue repulsion, as they all have the property pw

β (0) = 0. For small s,
pw

β (s) ∝ sβ so the strength of the repulsion depends on the ensemble under consideration.
The first task to be undertaken is the empirical determination of pw

β (s) for the GOE and GUE
using matrices of rank N = 16. This will be presented in the form of bar graphs and superim-
posed will be the corresponding approximate analytic form pw

β (s). The p.d.f.’s are determined
empirically by the following procedure:

• An N×N matrix is generated from the appropriate ensemble (GOE or GUE). It’s eigenval-
ues and the spacing between the

[
N
2

]
th and (

[
N
2

]
+ 1)th eigenvalues are computed. In this

project, N is chosen to be 16 and, thus, the spacing is between the 8th and 9th eigenvalues.
This spacing is then denoted by y1. The above procedure is then repeated M times, for
large M , leading to an array of spacings {y1, y2, y3, . . . , yM}.

• From the array above, calculate the average spacing, % as :

% =
1
M

M∑
j=1

yj

The array of yj values is then scaled :

yj =
yj

% for each j = 1, 2, . . . ,M.
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• For each interval ( j
20 , j+1

20 ) with j = 0, . . . , 50, one computes

number of yj ∈ (
j

20
,
j + 1
20

)

We remark that we want to normalise the above expression, given length of each subinterval
= 1

20 , such that ∑
subintervals

number of scaled yj × length of each subinterval = 1 (2.1)

As a result, we need to divide number of yj ∈ ( j
20 , j+1

20 ) by M
20 to give the height of the bar

in the interval ( j
20 , j+1

20 ) of the corresponding bar graph.

2.1.2 Unitary random matrices

The spectrum of a unitary random matrix U has the special property that it is unchanged by
rotation on the unit circle in the complex plane since U exp iφ is also a unitary random matrix.
This means the spacings between all pairs of consecutive eigenvalues are statistically equivalent.

In practice, with U as 16 × 16, we choose to record the (angular) spacings θ2 − θ1, θ6 − θ5,
θ10−θ9, θ14−θ13 from the list of eigenvalues exp iθj for j = 1, . . . , 16 and 0 < θ1 < θ2 < . . . < 2π.
This enlarges the list of data, while avoiding the strong correlation between spacings that are in
immediate succession.

Theoretically, it is known that in the large M limit, the p.d.f. for the spacings between
consecutive eigenvalues of unitary random matrices is the same as the p.d.f. for the spacings
between consecutive eigenvalues near the middle of the spectrum in matrices from the GUE, and
hence, well approximated by pw

2 (s). See, for example, [7].
To illustrate this, the empirical spacing distribution is computed according to the following

procedure (similar to the one used for the Gaussian ensemble) :

• A 16× 16 matrix X is generated from the GUE and diagonalised according to the formula
of diagonalising a unitary matrix mentioned previously. We know that the matrix U in this
formula is a random unitary matrix. The eigenvalues of U are computed and the angular
spacings denoted by the following ϕ(1)

1 = θ2 − θ1, ϕ(2)
1 = θ6 − θ5, ϕ(3)

1 = θ10 − θ9, ϕ(4)
1 =

θ14 − θ13 are stored. The above procedure is then repeated M times, for large M , leading
to an array of ϕ(i)

k values {ϕ(1)
1 , ϕ(2)

1 , ϕ(3)
1 , ϕ(4)

1 , ϕ(1)
2 , ϕ(2)

2 , ϕ(3)
2 , ϕ(4)

2 , . . . , ϕ(1)
M , ϕ(2)

M , ϕ(3)
M , ϕ(4)

M }.
• From the array above, calculate the average spacing %,

% =
1

4M

M∑
k=1

(ϕ(1)
k + ϕ(2)

k + ϕ(3)
k + ϕ(4)

k )

The array of ϕ(i)
k values is then scaled

ϕ(i)
k =

ϕ(i)
k

% for each k = 1, 2, . . . ,Mand i = 1, . . . , 4.

• For each interval ( j
20 , j+1

20 ) for j = 0, . . . , 50, one computes

(number of ϕ(1)
k ∈ (

j

20
,
j + 1
20

)) + (number of ϕ(2)
k ∈ (

j

20
,
j + 1
20

))

+(number of ϕ(3)
k ∈ (

j

20
,
j + 1
20

)) + (number of ϕ(4)
k ∈ (

j

20
,
j + 1
20

))

Using Eq. (2.1), this number is divided by 4M
20 to give the height of the bar in the interval

( j
20 , j+1

20 ) of the corresponding bar graph.
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2.1.3 Real orthogonal random matrices

As mentioned previously, the spectrum is dependent on the rank being even or odd. For
definiteness, we only consider matrices of odd rank. For matrices in O+(2N + 1), there is
an eigenvalue at θ = 0. Labelling the angles of the remaining N independent eigenvalues,
0 < θ1 < θ2 < . . . < θN < π, our interest is in the distribution of θ1 and the distribution
of θN . We are interested in the distribution of the same angles in the case of matrices from
O−(2N + 1). However, here the fixed eigenvalue is at θ = π, since multiplying a matrix from
O−(2N + 1) by (−1) transforms the matrix to O+(2N + 1). This property also implies the
distribution of θ1 and θN for O−(2N + 1) must coincide with the distribution of θN and θ1 for
O+(2N + 1) respectively. It therefore suffices to computes the p.d.f. p+(s) of θ1 in O+(2N + 1)
and the p.d.f. p−(s) of θ1 in O−(2N + 1). Approximate formula analogous to these noted in the
Gaussian case are

p+w(s) = pw
2 (s)

=
32s2

π2
exp(−4s2

π
)

p−w(s) =
2
π

exp(−s2

π
)

The empirical distribution of θ1 in O+(2N + 1) and O−(2N + 1) can be computed according to
the following procedure:

• A 15 × 15 matrix X is generated from the GOE and diagonalised. As already noted, the
matrix of eigenvectors, U say, is a random real orthogonal matrix. The matrix will belong
to O+(15) if the det X = 1 or O−(15) if the det U = −1. In both cases, θ1 and θ7 are
computed. If the matrix belongs to O+(15) then θ1 is set equal to ϕ+

1 while θ7 is set equal
to ϕ−1 . If the matrix belongs to O−(15) then θ1 is set equal to ϕ−1 , while θ7 is set equal to
ϕ+

1 . The above procedure is then repeated M times, for large M , leading to two array of
ϕ+

j and ϕ−j values: {ϕ+
1 , ϕ+

2 , . . . , ϕ+
M}, {ϕ−1 , ϕ−2 , . . . , ϕ−M}.

• Using the procedure detailed above, we form two histograms which give the empirical dis-
tribution of θ1 and θ7 approporiately scaled.

2.2 Results

The procedures stated in sections 2.1.1, 2.1.2 and 2.1.3 have been coded into Matlab programs,
’GAUENSEM.m’, ’URM.m’ and ’ORM.m’ respectively, and their outputs displayed as bar graphs
in Figs. 2.1 to 2.5.

In Fig. 2.1, the bar graph in blue is generated using random matrices belonging to the GOE
according to the procedure mentioned in section 2.1.1, while the bar graph in red is plotted using
pw
1 (s). In Fig. 2.2, the bar graph in blue is generated using random matrices belonging to the

GUE according to the procedure mentioned in section 2.1.1, while the bar graph in red is plotted
using pw

2 (s).
In Fig. 2.3, the bar graph in blue is generated using unitary matrices obtained by diagonalising

random matrices belonging to the GUE according to the procedure mentioned in section 2.1.2.,
while the bar graph in red is plotted using pw

2 (s).
For the 2 figures, Figs. 2.4 and 2.5, both the blue bar graphs are generated using real orthog-

onal matrices obtained by diagonalising random matrices belonging to the GOE according to the
procedure mentioned in section 2.1.3, with ϕ+

j and ϕ−j respectively. The 2 bar graphs in red are
plotted using p+w(s) and p−w(s) respectively.

So as we can see, in all 3 cases, Wigner’s approximations give accurate approximations to the
empirical distributions.
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Chapter 3

3.1 Spacing distribution in terms of Painlevé transcendents

In the limit of N →∞, all the eigenvalue distributions discussed in the previous sections can be
expressed in terms of particular solutions of some non-linear equations [7]. These equations are
examples of the σ-form of the Painlevé equations [2] and [5].

The Painlevé equations are certain non-linear second order equations with a special property:
the only movable singularities are poles. On this point, one recalls in general, non-linear dif-
ferential equations have singularities which depend on the initial conditions. One would like to
distinguish non-linear equations with movable poles from those with moveable essential singular-
ities. For example dy

dt = y2 + 1 has the general solution y = tan(t + c) where c is determined by
the initial condition . Hence, in this case, all the singularities are movable first order poles.

On the other hand, the non-linear equation dy
dt = 1

αyα−1 for α = 2, 3, . . . has the general so-

lution y = (t − c)
1
α . Here the singularity is a movable branch point, and hence, an essential

singularity.

The non-linear equation relevant to the eigenvalue spacing distributions is

(t
d2u

dt2
)2 − a2(

du

dt
)2 +

du

dt
(4

du

dt
− 1)(u− t

du

dt
) = 0 (3.1)

for values of the parameter a = +1
2 . This equation is an example of the σ-form of the third

Painlevé equation [1]. The following evaluations are known, where u(t, a) is the solution to
Eq. (3.1)

p−(s) = − d

ds
exp

(
−

∫ (πs)2

0
u(t;−1

2
)
dt

t

)
(3.2)

p+(s) = − d

ds
exp

(
−

∫ (πs)2

0
u(t;

1
2
)
dt

t

)
(3.3)

p1(s) =
d2

ds2
exp

(
−

∫ (πs
2 )2

0
u(t;−1

2
)
dt

t

)
(3.4)

p2(s) =
d2

ds2
exp

(
−

∫ πs
2 )2

0

[
(u(t;−1

2
) + u(t;

1
2
)
]
dt

t

)
(3.5)

The function u(t; a) satisfies Eq. (3.1) subject to the boundary conditions:

u(t;−1
2
) ∼

t→0

t
1
2

π
(3.6)

u(t;
1
2
) ∼

t→0

t
3
2

3π
(3.7)
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An eigenvalue distribution more general than p−(s) and p+(s) for O−(2N + 1) and O+(2N + 1)
respectively, can also be evaluated in terms of solutions of Eq. (3.1). We denote the angles of
the N independent complex eigenvalues by 0 < θ1 < θ2 < . . . < θM < π and let p−(s; k) be the
distribution of θk in O−(2N + 1) and p+(s; k) be the distribution of θk in O+(2N + 1). It is
known that from [7].

p−(s; k) = p−(s; k − 1)− (−1)k

k!
d

ds

∂k

∂ξk

{
exp

(
−

∫ (πs)2

0
u(t;−1

2
; ξ)

dt

t

)}∣∣∣∣
ξ=1

p+(s; k) = p+(s; k − 1)− (−1)k

k!
d

ds

∂k

∂ξk

{
exp

(
−

∫ (πs)2

0
u(t;

1
2
; ξ)

dt

t

)}∣∣∣∣
ξ=1

Here the function u(t; a; ξ) satisfies Eq. (3.1) subject to the boundary conditions

u(t;−1
2
; ξ) ∼

t→0

ξt
1
2

π
(3.8)

u(t;
1
2
; ξ) ∼

t→0

ξt
3
2

3π
(3.9)
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3.2 A brief introduction: Solving the third Painlevé differential
equation

Given the third Painlevé differential equation (D.E.) Eq. (3.1) subject to boundary conditions
(B.C.) Eqs. (3.6) and (3.7), or more generally Eqs. (3.8) and (3.9), we seek power series solutions

u(t) =
{

ct
1
2 +

∑∞
p=0 cpt

1+ p
2 , a = −1

2 ,

dt
3
2 +

∑∞
p=0 dpt

2+ p
2 , a = 1

2 ,

where c and d are non-zero constants. For definiteness, we will only be dealing with the second
power series solution involving d throughout this article.

To begin, the power series solution u(t) is substituted into the D.E. (3.1) in order to derive
some important recurrence formulae. It turns out that u(t) expanded about t = 0 only has a
finite radius of convergence. Let t0 be a point inside this radius and compute u(t0) and du(t0)

dt .
A new power series u(t) =

∑∞
n=0 dn(t − t0)n where d0 = u(t0) and d1 = du(t0)

dt is then sought.
Again, the power series is substituted into the D.E. (3.1) and the recurrence relations for the
coefficients dn are obtained. This procedure is repeated many times and so u(t) is represented
by many overlapping power series. These are then computed into a Mathematica file ’Solutions
of the Third Painlevé’.

The Mathematica file ’Solutions of the Third Painlevé’ is divided into 4 main segments. The
first three segments depict the usage of Mathematica in calculating the power series solutions of
the D.E. (3.1) numerically, while the last segment depicts two graphs and their relevant moments
for comparison and will be explained thoroughly in sections later on.
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3.3 Solving the third Painlevé D.E. using power series solution
expanded about t = 0

3.3.1 Power series solution expanded about t = 0

Using the power series expansions about the point t = 0, we determine the coefficients of dp,
p = 0, . . . in terms of d using recurrence relations.

To see how this works, keep only the first 3 terms. Then,

u(t) = dt
3
2 + d0t

2 + d1t
5
2

du

dt
=

3
2
dt

1
2 + 2d0t +

5
2
d1t

3
2

d2u

dt2
=

3
4
dt−

1
2 + 2d0 +

15
4

d1t
1
2

Subsituting into the D.E. (3.1) gives

3
2
dd0t

3
2 + (3d2

0 +
7
2
dd1 +

3
2
d2)t2 = 0

Equating the coefficients of t to zero then shows

3
2
dd0 = 0 ⇒ d0 = 0 since d += 0 is a non-zero constant.

3d2
0 +

7
2
dd1 +

3
2
d2 = 0 ⇒ d1 = −3

7
d

Proceeding similarly, by extending u(t) to include more terms, we can determine the recurrence
relation of dp in terms of d. First note

u(t) = dt
3
2 +

∞∑
p=0

dpt
2+ p

2

du

dt
=

3
2
dt

1
2 +

∞∑
p=0

dp(2 +
p

2
)t1+

p
2

d2u

dt2
=

3
4
dt−

1
2 +

∞∑
p=0

dp(2 +
p

2
)(1 +

p

2
)t1+

p
2

These power series must be substituted into the D.E. (3.1) and the power series of each of the
individual terms computed. The main tool is the formula for the multiplication of power series

(
∞∑

n=0

anxn)(
∞∑

n=0

bnxn) =
∞∑

n=0

cnxn

with cn =
n∑

l=0

albn−l

We’ll work out each term before subsitituting into the D.E. (3.1).

First term:

(t
d2u

dt2
)2 = t

(3
4
d +

∞∑
p=0

dp(2 +
p

2
)(1 +

p

2
)t

p+1
2

)2
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= t
∞∑

p=0

γpt
p
2 (3.10)

where

γp =
p∑

l=0

γlγp−l

γ0 =
3
4
d

γl = dl−1(2 +
l − 1

2
)(1 +

l − 1
2

), l = 1, 2, . . . , p

Second term:

(
du

dt
)2 = t

(3
2
d +

∞∑
p=0

dp(2 +
p

2
)t

p+1
2

)2

= t
∞∑

p=0

βpt
p
2 (3.11)

where

βp =
p∑

l=0

βlβp−l

β0 =
3
2
d

βl = dl−1(2 +
l − 1

2
)

Third term:

du

dt
(4

du

dt
− 1)(u− t

du

dt
) =

(3
2
t

1
2 d +

∞∑
p=0

dp(2 +
p

2
)t1+

p
2

)

×
(

t
3
2 [−1

2
d +

∞∑
p=0

dp(−p

2
− 1)t

p+1
2 ]

)

×
(

t
1
2 [−t−

1
2 + 6d +

∞∑
p=0

dp(8 + 2p)t
p+1
2 ]

)

=
(

t2
∞∑

p=0

δpt
p
2

)(
t

1
2 [−t−

1
2 +

∞∑
p=0

Apt
p
2 ]

)
where

δp =
p∑

l=0

blBp−l

b0 =
3
2
d

B0 = −1
2
d

A0 = 6d

bl = dl−1(2 +
l − 1

2
)

Bl = dl−1(
1− l

2
− 1)

Ap = dp−1[8 + 2(p− 1)]
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The equation can be further simplified to

du

dt
(4

du

dt
− 1)(u− t

du

dt
) = t

5
2 [
∞∑

p=0

t
p
2 Xp]− t2

∞∑
p=0

t
p
2 δp (3.12)

where

Xp =
p∑

l=0

δlAp−l

Substitute Eqs. (3.10), (3.11), (3.12) into D.E. (3.1):

t
∞∑

p=0

γp −
1
4

(
t
∞∑

p=0

βpt
p
2

)
+ t

5
2

∞∑
p=0

Xpt
p
2 − t2

∞∑
p=0

δpt
p
2 = 0

Equating like powers

It remains to equate like powers of t

t:

γ0 −
1
4
β0 = 0

But γ0 = γ0
2, β0 = β0

2, so this reads

γ0
2 − 1

4
β0

2 = 0

Further γ0 = 3
4d and β0 = 3

2d, so this equation is satisfied identically.

t
3
2 :

γ1 −
1
4
β1 = 0

But γ1 = 3dd0, β1 = 6dd0 and so

3dd0 − 6
4
dd0 = 0

which in turn implies d0 = 0.

t2:

γ2 −
1
4
β2 − δ0 = 0

But γ2 = 2γ0γ2 + γ1
2 and β2 = 2β0 + β1

2, further γ2 = 15
4 d2 and so,

30
8

dd1 + 3d2
0 +

3
4
d2 = 0

which in turn implies

d1 = −1
5
d
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t
5
2 :

γ3 −
1
4
β3 − δ1 + X0 = 0

Using similar procedure for the previous three powers of t, we obtained

9dd2 − 9
4
dd2 + 15d0d1 − 5

2
d0d1 − 9

2
d3 +

5
2
dd0 = 0

which implies

d2 =
2
3
d2

tn, n ≥ 5
2 :

γp+3 −
1
4
βp+3 − δp+1 + Xp = 0 for p = 0, 1, . . . (3.13)

Recurrence formula for dp+2

It will turn out that the highest subscripted dj in Eq. (3.13) is dp+2. It appears linearly and
can be expressed in terms of lower subscripted dj which are regarded as having already been
computed. To make this explicit, we first recall the definitions of γ, β, δ and X and compute the
terms γp+3, βp+3, δp+1 and Xp that appeared in (3.13):

γp+3 =
p+3∑
l=0

γlγp+3−l

= 2γ0γp+3 +
p+2∑
l=1

γlγp+3−l

= 2(
3
4
d)(dp+2)(2 +

p + 2
2

)(1 +
p + 2

2
) +

p+2∑
l=1

γlγp+3−l (3.14)

βp+3 =
p+3∑
l=0

βlβp+3−l

= 2β0βp+3 +
p+2∑
l=1

βlβp+3−l

= 2(
3
2
d)(dp+2)(2 +

p + 2
2

) +
p+2∑
l=1

βlβp+3−l

=
3
2
d(6 + p)(dp+2) +

p+2∑
l=1

βlβp+3−l (3.15)

δp+1 =
p+1∑
l=0

blBp+1−l (3.16)

Xp =
p∑

l=0

δlAp−l (3.17)

Subsitute Eqs. (3.14), (3.15), (3.16), (3.17) into Eq. (3.13):

3
8
d(6 + p)(4 + p)dp+2 +

p+2∑
l=1

γlγp+3−l − 1
4

{3
2
d(6 + p)dp+2 +

p+2∑
l=1

βlβp+3−l

}

−
p+1∑
l=0

blBp+1−l +
p∑

l=0

δlAp−l = 0

22



Next, we group the terms with dp+2 to arrive at the recurrence formula for dp+2:

3
8
(6 + p)(4 + p)− 3

8
(6 + p)}(d)(dp+2) = −

p+2∑
l=1

γlγp+3−l +
1
4

p+2∑
l=1

βlβp+3−l

−
p∑

l=0

δlAp−l +
p+1∑
l=0

blBp+1−l

and hence

dp+2 =
8

3(6 + p)(3 + p)d

{
−

p+2∑
l=1

γlγp+3−l +
1
4

p+2∑
l=1

βlβp+3−l

−
p∑

l=0

δlAp−l +
p+1∑
l=0

blBp+1−l

}
(3.18)

At this point of the study, the coefficients in the power series solution in the case of the pa-
rameter a = 1

2 have been fully determined by a recurrence. This recurrence cannot be solved
analytically. However, it is well suited to computation via a symbollic computer algebra package.
For this, the package Mathematica is used. Its implementation forms Segment 1 of ’Solutions of
the Third Painlevé’ .
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3.3.2 ’Solutions of the Third Painlevé’: Segment 1

Recursive solution expanded about t = 0

Segment 1 is produced according to the equations derive in section 3.3.1. Below are the definitions
of the variables used in the code with references to the variables used in the equations previously:

mygamma↔ γ, mybeta↔ β, smallb↔ b, bigB ↔ B, mydelta↔ δ, myA↔ A, myverybigX ↔
X, d↔ d (remains the coefficient d)

Initial conditions

Initialise the variables by the base cases :

γ0 = 3
4d, β0 = 3

2d, b = 3
2d, B = −1

2d, δ0 = b0B0 = −3
4d2

Recursive definitions

Definitions:

mygati ↔ γp, mybeet ↔ βp, myverybigX ↔ Xp

This part merely transforms the Eqs. (3.10) to (3.12) and (3.18) to its recursive definitions.
The last definition is for dp+2 which calls upon the required definitions of each variable. This is
used to compute each dp+2 for p = 0, 1, . . . in terms of d only.

The first 150 such coefficients are calculated, d[n] for n = 0, 1, . . . , 150. The variable d is as-
signed with the special value 1

3π before storing as a table into the file ’dcoe.dat’.

Analysing the radius of convergence

For a power series of the form f(z) =
∑∞

n=0 anzn the root test, sometimes known as Cauchy’s
radical test, gives for the radius of convergence R, the formula

1
R

= lim
n→∞ sup n

√
|an|

where an refers to the coefficients of the power series.

Using Mathematica, we retrieve the coefficients of our power series from the ’dcoe.dat’. However,
u(t) = d(t

1
2 )3 +

∑∞
n=0 dn(t

1
2 )(n+4) so we need to let t

1
2 = z and apply the root test. The list of

values found for 1

|d[n]| 2
n

, n = 130, . . . , 150, is displayed in the relevant segment in ’Solutions of the

Third Painlevé’.

Power series expansion of the τ function

The following segment corresponds to Eqs. (3.2) to (3.6), in particular Eq. (3.3). We replaced
u(t, a) with the power series solution of u(t) for the coefficient d. We define:

iu(s) =
∫ s

0

u(x)
x

dx

=
∫ s

0

dx
3
2 +

∑∞
p=0 dpx

2+ p
2

x
dx

=
2
3
ds

3
2 +

∞∑
p=0

dps
p
2+2

p
2 + 2
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f(x) is then defined to be the power series expansion of exp(−iu(x)) and truncated to a normal
series ff(t) such that

ff(t) = Series[exp−
{2

3
dt

3
2 +

∞∑
p=0

dpt
p
2+2}] (3.19)

Then replace ff(t) with ff(x2), differentiate it w.r.t. x and assign dvff(x) to be the Mathematica
definition equivalent to Eq. (3.3),

dvff(x) = Series[− d

dx
ff(x2)] (3.20)

The logical flow of thought is to insert this subpart in Segment 1. Howver, due to technical
computation limitations, the moments have to be computed numerically, which require the vari-
ables to be initialised first. Hence, this subpart is brought back to Segment 2 in ’Solutions of the
Third Painlevé.
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3.4 Solving the third Painlevé D.E. using power series solution
expanded about a general point

3.4.1 Power series solution expanded about a general point

The power series will only converge for t values smaller than R2 because of the finite radius
of convergence R. Let t0 be a point inside the radius of convergence. We then seek a power
series expansion solution of the D.E. (3.1) with the knowledge of u(t0) and du(t0)

dt as initial data.
Equivalently, introducing a new variable s = t− t0 into the D.E. (3.1), which then reads

((s + t0)
d2u

dt2
)2 − 1

4
(
du

dt
)2 +

du

dt
(4

du

dt
− 1)(u− (s + t0)

du

dt
) = 0 (3.21)

the task is to find the power series solution

u(s) =
∞∑

p=0

aps
p (3.22)

where a0 = u(t0), a1 = du(t0)
dt and are thus known.

Following the similar procedure as section 3.3.1, we find the derivatives of the power series and
subsitute into Eq. (3.21).

First term:

(s + t0)
d2u

dt2
=

∞∑
p=0

app(p− 1)sp−1 + t0
∞∑

p=0

app(p− 1)sp−2

=
∞∑

p=0

ap+1(p + 1)(p)sp + t0
∞∑

p=0

ap+2(p + 2)(p + 1)sp

((s + t0)
d2u

dt2
)2 =

∞∑
p=0

Aps
p (3.23)

where

Ap =
p∑

l=0

AlAp−l

Al = l(l + 1)al+1 + t0(l + 1)(l + 2)al+2

Second term:

(
du

dt
)2 = (

∞∑
p=0

appsp−1)2

= (
∞∑

p=0

ap+1(p + 1)sp)2

=
∞∑

p=0

Bps
p (3.24)

where

Bp =
p∑

l=0

BlBp−l

Bl = al+1(l + 1)
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Third term:

u− (s + t0)
du

dt
=

∞∑
p=0

aps
p − (s + t0)

∞∑
p=0

appsp−1

=
∞∑

p=0

aps
p −

∞∑
p=0

appsp − t0
∞∑

p=0

ap+1(p + 1)sp

=
∞∑

p=0

(
ap(1− p)− t0ap+1(p + 1)

)
sp

Hence

du

dt
(u− (s + t0)

du

dt
) =

∞∑
p=0

ap+1(p + 1)sp
∞∑

p=0

(
ap(1− p)− t0ap+1(p + 1)

)
sp

=
∞∑

p=0

Rps
p (3.25)

where

Rp =
p∑

l=0

rlRp−l

rl = al+1(l + 1)
Rl = al(1− l)− t0al+1(l + 1)

Also

4
du

dt
− 1 =

∞∑
p=0

4ap+1(p + 1)sp − 1

= (4a1 − 1) +
∞∑

p=1

4ap+1(p + 1)sp (3.26)

Combining the Eqs. (3.25) and (3.26), we obtained the third term

du

dt
(u− (s + t0)

du

dt
)(4

du

dt
− 1) =

∞∑
p=0

Tps
p (3.27)

where

Tp =
p∑

l=0

XlRp−l

X0 = 4a1 − 1
Xp = 4ap+1(p + 1)

Substitute the Eqs. (3.23), (3.24) and (3.27) into Eq. (3.19)

∞∑
p=0

Ap − 1
4

∞∑
p=0

Bps
p +

∞∑
p=0

Tps
p = 0 (3.28)

Equating like powers

Following the similar procedure of equating like powers as seen in section 3.3.1, we equate like
powers of s in Eq. (3.28),
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Ap − 1
4
Bp + Tp = 0 (3.29)

Rewrite (3.29) in terms of the definitions of Ap, Bp, Tp:

2A0Ap +
p−1∑
l=1

AlAp−l − 1
4

p∑
l=0

BlBp−l +
p∑

l=0

XlRp−l = 0, for p = 1, 2, . . . (3.30)

Recurrence formula for ap+2

After further substitution and simplification similar to those performed in section 3.2.2, we arrive
at the recurrence formula for ap+2:

ap+2 =
1

4(t0)2a2(p + 1)(p + 2)

{
− 4t0a2p(p + 1)ap+1

−
p−1∑
l=1

AlAp−l +
1
4

p∑
l=0

BlBp−l −
p∑

l=0

XlRp−l} (3.31)

The right hand side involves smaller subscripted coefficients a0, a1, . . ., ap+1 for all p except
p = 0. In the latter case, a quadratic results for a2. Using Eq. (3.29) and definitions of A0, B0,
T 0, we find that

a2 = ±

√
(a2

1
4 − (4a1

2 − a1)(a0 − a1t0)) 1
t20

2
(3.32)

where the sign is chosen to equal the sign of d2u(t0)
dt2 .

3.4.2 ’Solutions of the Third Painlevé’: Segment 2

Recursive solution expanded about a general point

This segment makes reference to section 3.4.1 where we now introduce a new parameter, n, for
generalising the point of expansion. Then n refers to the nth expansion point. The stratgey
here is to follow up from the code in Segment 1 so that u(t) is to be expanded about a general
point t0 = s0 + is[n], where s0 is initialised to 1 as the starting point of expansion and is[n] is
initialised to n

2 as an increment for the point of expansion. As n increments, the point of expan-
sion increases. The essential feature of this procedure is that the point s0 + is[n] is always inside
the radius of convergence of successive power series. It allows for the function to be accurately
computed over a large range of t values.

Initial condition

The initial values are a0 = u(s0 + is[n]), a1 = du(s0+is[n])
dt , while a2 is calculated from the formula

given in Eq. (3.32)

a2 = Sign
[
d2u(s0 + is[n])

dt2

]√
(a2

1
4 − (4a1

2 − a1)(a0 − a1t0)) 1
t20

2
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Initialise the variables by the base case:

a0 = u(s0), a1 =
du(s0)

dt

as well as the formula for a2 given above. zxX[0, 0] and zaAt[1, 0] give the base case of Xp and
Ap used in Eq. (3.27) and Eq. (3.23) respectively, where the first expansion point is set to t0 = 1.

Recursive definitions

Definitions:
zaA↔ Al, zaAt↔ Ap, zbB ↔ Bl, zbBt↔ Bp

zr ↔ rl, zrR↔ Rl, zrRt↔ Rp, zxX ↔ Xp, ztT ↔ Tp, , a↔ a(remainsthecoefficienta)

As in section 3.3.2, the following segment is the recursive definitions of Eqs. (3.23) to (3.27) and
(3.31) using Mathematica. In particular, the last formula, ap+2, calls upon the required defini-
tions of each variable and uses the Eq. (3.31).

Plotting the power series solution of D.E. (3.1)

The solution of the D.E. (3.1) is now given by a total of nn + 2 power series. These power
series have finite radius of convergence and so only represent the function inside certain intervals.
Denoting the function by f(t), we choose the specific intervals implied by setting

f(t) = gg(t) +
nn∑

jj=0

g[t, jj] (3.33)

where

gg(t) =
{

u(t), 0 ≤ t ≤ s0 ,
0, otherwise ,

g(t) =
{

zu[t, jj], s0 + is[jj] ≤ t ≤ s0 + is[jj + 1] ,
0, otherwise ,

Using this, we plot the graph of f(t) for 0 ≤ t ≤ 100 as shown in Mathematica file.

Power series expansion of the τ function about a general point

Here, we want to extend the recursive definitions used in computing the τ function in Segment
1, using the strategy mentioned at the beginning of this section so that the point of expansion is
about s0+is[n]. From the power series solution u(s), Eq. (3.22), we substitute s with t−(s0+is[n])
(since s = t− t0 = t− (s0 + is[n])) and replace ap with a[k, n] (where p↔ k) to come up with a
new power series solution zu[t, n] expanded about s0 + is[n]:

zu[t, n] =
∞∑

k=0

a[k, n](t− (s0 + is[n]))k (3.34)
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and its first and second derivative w.r.t. t. To compute the τ function, we require Eq. (3.3) to be
evaluated using the power series solution Eq. (3.34) in place of u(t; 1

2) about t0 = s0 + is[n]. But
first, rewrite 1

t in terms of a power series.

1
t

=
1

t− t0 + t0

=
1
t0

(
1

1 + t−t0
t0

)

=
1
t0

∞∑
p=0

(−1)p (t− t0)p

(t0)p

=
∞∑

p=0

Ap(t− t0)p (3.35)

where

Ap =
1
t0

(− 1
t0

)p

And we define bigA = Ap in ’Solutions of the Third Painlevé’. Using Eqs. (3.34) and (3.35) we
can write zu

t in its power series form.

zu

t
=

∞∑
p=0

bigA[p, n](t− t0)p
∞∑

k=0

a[k, n](t− t0)k

=
∞∑

k=0

at[k, n](t− t0)k (3.36)

where

at[k, n] =
k∑

p=0

a[p, n]bigA[k − p, n]

Next, define

iy[t, n] =
∫ t

t0

zu[x, n]
x

dx

=
∞∑

k=0

at[k, n](t− t0)k+1

k + 1
(3.37)

g(x) is then defined to be the power series expansion of exp(−iy[x, n]) about t = t0 and truncated
to a normal series sj[t, n] such that

sj[t, n] = Series[exp−
{ ∞∑

k=0

at[k, n](t− t0)k+1

k + 1
}] (3.38)

Finally, replacing t with x2, we differentiate sj[x2, n] w.r.t. x and assign dvsj[x, n] to be the
Mathematica definition of Eq. (3.3) for the calculations of τ function in this case, so that

dvsj[x, n] = Series[− d

dx
sj[x2, n]] (3.39)

The procedure must be iterated. We reinitialise the base cases a0, a1 and a2 with numeric

30



evaluations using definitions of Eqs. (3.34) to (3.36) to extend the τ function calculations about
any general point.

a0 = N[zu[t0, j], ac]
a1 = N[zud[t0, j], ac]

a2 = Sign[zsd[t0, j]]×

√
(a2

1
4 − (4a1

2 − a1)(a0 − a1t0)) 1
t20

2
Recall that a[k, n] refers to the coefficients of the power series solution Eq. (3.34). We then set
a[0, n], a[1, n], a[2, n] equal to a0, a1, a2. Next, we set zxX[0, 0] equal to the first term of Xp in
Eq. (3.27) and zaAt[1, 0] equal to the second term of Ap in Eq. (3.23), where the expansion point
is arbitrary.

Calculating moments of the τ function

In general, we are interested in evaluating the different n moments of the τ function as seen in
Eq. (3.20) and seek to extend the calculations of the nth moment about a general point s0 + is[n].

Given that the general formula for the nth moment of a positive real-valued function p(t) of
a real variable is m(n) =

∫∞
0 tnp(t)dt , we are able to evaluate m(n) for the τ function by substi-

tuting p(t) by the power series of τ function.

However, we note that the power series of the τ function, first calculated in Eq. (3.20), has
a finite radius of convergence. So, in order to extend the integration of tnp(t) from 0 to ∞, we
need to split the calculation of m(n) into 2 distinct parts, the first corresponds to expanding
about the starting point t = 0 and the second about a general point s0 + is[j]. Denoting the split
function by tq(n), we choose the specific intervals implied by setting

tq(n) = jaq(n) +
∞∑

j=0

jol[j, n]

where

jaq(n) =
∫ √

s0
π

0
sn

{
− d

ds
exp

(
−

∫ (πs)2

0
u(t;−1

2
)
dt

t

)}
ds (3.40)

jol[j, n] =
∫ √

s0+is[j+1]
π√

s0+is[j]
π

sn
{
− d

ds
exp

(
−

∫ (πs)2

0
u(t;−1

2
)
dt

t

)}
ds (3.41)

About point of expansion t = 0

The τ function in Eq. (3.40) has already been computed in section 3.3.2, and evaluated to as
being dvff(x) in Eq. (3.20). Hence, after replacing s with s

π , Eq. (3.40) simplifies to

jaq(n) =
∫ √

s0

0
(
s

π
)n

{
− d

ds
exp

(
−

∫ (s)2

0
u(t;−1

2
)
dt

t

)}
ds

= (
1
π

)n
∫ √

s0

0
sndvff(s)ds (3.42)

About point of expansion s0 + is[j]

Define a new power series

s[x2, j] =
∞∑

k=0

gia[k, j]
(

x2 − (s0 + is[j])
)k

(3.43)
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where j = 0, . . . such that s[x2, j] = exp(− ∫ x2

0 u(t;−1
2)dt

t ). After differentiating s[x2, j] in
Eq. (3.43) w.r.t. x, we substitute it into Eq. (3.3) to obtain the equivalent Mathematica defi-
nition for the τ function

ds[x, j] = − d

dx
s[x2, j]

=
∞∑

k=0

gia[k, j]k(2x)
(

x2 − (s0 + is[j])
)k−1

(3.44)

Since the Mathematica function ds[s, j], when replaced x by s, is defined as having the up-
per limit of the integration to be s2 instead of (πs)2, we need to replace s by s

π in Eq. (3.41).
This allows us to use Eqs. (3.43) and (3.44) in expressing Eq. (3.41) in terms of the power series
s[x2, j] and ds[x, j]. By doing so, the contribution for the nth moment of the τ function becomes

jol[j, n] = (
1
π

)n
∫ √s0+is[j+1]

√
s0+is[j]

sn
[
− d

ds

(
exp

(
−

∫ s2

0
u(t;−1

2
)
dt

t

))]
ds

= (
1
π

)n
∫ √s0+is[j+1]

√
s0+is[j]

xn
(
− d

dx
s[x2, j]

)
dx

= (
1
π

)n
∫ √s0+is[j+1]

√
s0+is[j]

xnds[x, j]dx (3.45)

Recall the definitions of s[x2, j] and ds[x, j], we rewrite Eq. (3.45)

(
1
π

)n
∫ √s0+is[j+1]

√
s0+is[j]

xn
{
− d

dx

( ∞∑
k=0

gia[k, j]
(

x2 − (s0 + is[j])
)k)}

dx

= (
1
π

)n
∞∑

k=0

k × gia[k, j]
∫ √s0+is[j+1]

√
s0+is[j]

xn
{

(2x)
(

x2 − (s0 + is[j])
)k−1}

dx

To remove the square roots on the limit, let y = x2, dy = 2xdx

= (
1
π

)n
∞∑

k=0

k × gia[k, j]
∫ s0+is[j+1]

s0+is[j]
y

n
2

{(
y − (s0 + is[j])

)k−1}
dy

To change the lower limit of the integration to 0, replace y with y + (s0 + is[j])

= (
1
π

)n
∞∑

k=0

k × gia[k, j]
∫ (s0+is[j+1])−(s0+is[j])

0

(
y + (s0 + is[j])

)n
2

yk−1dy

Replace y with (s0 + is[j])y

= (
1
π

)n
∞∑

k=0

k × gia[k, j](s0 + is[j])
n
2 +k

∫ s0+is[j+1]
s0+is[j] −1

0
yk−1(y + 1)

n
2 dy

Let er = s0+is[j+1]
s0+is[j] − 1

= (
1
π

)n
∞∑

k=0

k × gia[k, j](s0 + is[j])
n
2 +k

∫ er

0
yk−1(y + 1)

n
2 dy

32



We note that
∫ er
0 yk−1(1 + y)

n
2 dy can be easily evaluated using the special Mathematica function,

incomplete beta function Beta[z, a, b] =
∫ z
0 ya−1(1−y)b−1dy. And so to change

∫ er
0 yk−1(1+y)

n
2 dy

into the form of the ’Beta function’, we replace y with −y∫ er

0
yk−1(1 + y)

n
2 dy =

∫ −er

0
(−y)k−1(1− y)

n
2 d(−y)

=
∫ −er

0
(−1)kyk−1(1− y)

n
2 dy (3.46)

Hence jol[k, n] becomes

jol[j, n] = (
1
π

)n
∞∑

k=0

(−1)kk × gia[k, j](s0 + is[j])
n
2 +kBeta[−er, k, 1 +

n

2
]

(3.47)

Finally, substituing Eqs. (3.42) and (3.47) into the equation of tq[n], we compute the corre-
sponding nth moment and tabulate the results.

Computation of the nth moment
n p+(s)
0 0.999999999999999999999999999999999999997731767405
1 0.78271575829254364686477177982432925449821388120
2 0.7192336365093331884273890064852259171308740817
3 0.745693053967521055814661677407593453848340621
4 0.85156873600003934808214859905582137675863047
5 1.0540205779357301438902439126011597302270349
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3.5 Solving the third Painlevé D.E. using special power series
involving ξ expanded about general point of expansion

3.5.1 Power series solution involving ξ

We now introduce a variable ξ, first seen in section 3.1, as a parameter of the power series
solution u to the D.E. (3.1) so that u = u(t; ξ). Let u(t; 1) = u(t) and ∂u(t;1)

∂ξ = w. The power
series solution for the B.C. (3.9) has already been obtained from the theory of section 3.2. In
particular, the parameter d in that section is equal to ξ

3π . Hence

w = d
∂u(t)
∂d

∣∣∣∣
t→0

=
1
3π

(3.48)

where u(t) is the power series solution of section 3.2, while u itself is the power series obtained
from the coefficients computed in section 3.3.

Taking partial derivative of the new D.E. w.r.t. ξ and setting ξ = 1, gives the following equation

2t2
d2u

dt2
d2w

dt2
− 1

2
du

dt

dw

dt
+

dw

dt
(4

du

dt
− 1)(u− t

du

dt
)

+4
du

dt

dw

dt
(u− t

du

dt
) +

du

dt
(4

du

dt
− 1)(w − t

dw

dt
) = 0 (3.49)

We seek a power series solution for w(t) about a general point t0 , w(t) =
∑∞

k=0 ck(t − t0)k,
with the power series soluton of u(t) =

∑∞
k=0 ak(t− t0)k, regarded as known. For this, a similar

procedure to that of section 3.4.1 is used. However, here we consider the terms in Eq. (3.49)
according to factors of d2w

dt2 , dw
dt and w. Let s = t− t0, where t0 is the point of expansion.

d2w
dt2 :

2t2
d2u

dt2
= 2(s2 + 2st0 + t20)

∞∑
k=0

k(k − 1)aks
k−2

=
∞∑

k=0

(
2k(k − 1)ak + 4t0(k + 1)kak+1 + 2t20(k + 2)(k + 1)ak+2

)
sk

Hence

2t2
d2u

dt2
d2w

dt2
=

∞∑
p=0

γps
p (3.50)

where

γp =
p∑

k=0

µkνp−k

µk = 2k(k − 1)ak + 4t0(k + 1)kak+1 + 2t20(k + 2)(k + 1)ak+2

νk = (k + 2)(k + 1)ck+2

dw
dt : (

− 1
2

du

dt
+ (4

du

dt
− 1)(u− t

du

dt
) + 4

du

dt
(u− t

du

dt
)− t

du

dt
(4

du

dt
− 1)

)

=
(
− 1

2
du

dt
+ (8

du

dt
− 1)(u− (s + t0)

du

dt
)

+(s + t0)
du

dt
(1− 4

du

dt
)
)

(3.51)

Rewrite each term in Eq. (3.51) in terms of the power series solution u(t).
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First term:

−1
2

du

dt
= −1

2

∞∑
k=0

(k + 1)ak+1s
k (3.52)

Second term:

8
du

dt
− 1 = 8

∞∑
k=0

(k + 1)ak+1s
k − 1

= (8a1 − 1) + 8
∞∑

k=1

(k + 1)ak+1s
k

and

u− (s + t0)
du

dt
=

∞∑
k=0

(
ak(1− k)− t0(k + 1)ak+1

)
sk

Combining the 2 equations

(8
du

dt
− 1)(u− (s + t0)

du

dt
) =

∞∑
p=0

τps
p (3.53)

where

τp =
p∑

k=0

µkνp−k

µk = ak(1− k)− t0(k + 1)ak+1

νk = 8(k + 1)ak+1 (k += 0)
ν0 = 8a1 − 1

Third term:

(s + t0)
du

dt
=

∞∑
k=0

(
kak + t0(k + 1)ak+1

)
sk

and

1− 4
du

dt
= (1− 4a1)− 4

∞∑
k=1

(k + 1)ak+1s
k

Combining the 2 equations

(s + t0)
du

dt
(1− 4

du

dt
) =

∞∑
p=0

εps
p (3.54)

where

εp =
p∑

k=0

fkgp−k

fk = kak + t0(k + 1)ak+1

gk = −4(k + 1)ak+1 (k += 0)
g0 = 1− 4a1
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Substitute Eqs. (3.52) to (3.54) into Eq. (3.51) and equate only the factors of dw
dt in Eq. (3.51)

to
∑∞

p=0 χpsp, where

χp = −1
2
(p + 1)ap+1 + τp + εp (3.55)

Hence
dw

dt

(
− 1

2
du

dt
+ (8

du

dt
− 1)

(
u− (s + t0)

du

dt

)
− (s + t0)

du

dt
(4

du

dt
− 1)

)

=
∞∑

p=0

Jps
p (3.56)

where

Jp =
p∑

k=0

χkwp−k

wk = (k + 1)ck+1

w:

du

dt
(4

du

dt
− 1) =

( ∞∑
k=0

(k + 1)ak+1s
k
)(

4a1 − 1 + 4
∞∑

k=1

(k + 1)ak+1s
k
)

=
∞∑

p=0

Wps
p (3.57)

where

Wp =
p∑

k=0

hkHp−k

hk = (k + 1)ak+1

Hk = 4(k + 1)ak+1 (k += 0)
H0 = 4a1 − 1

Hence

du

dt
(4

du

dt
− 1)w =

∞∑
p=0

Kps
p (3.58)

where

Kp =
p∑

k=0

Wkcp−k

Finally, substituting Eqs. (3.50),(3.56) and (3.58) into Eq. (3.49) gives
∞∑

p=0

(
γp + Jp + Kp

)
sp = 0

and thus

γp + Jp + Kp = 0

Recalling that γp =
∑p

k=0 µkνp−k shows

µ0νp +
p∑

k=1

µkνp−k + Jp + Kp = 0
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while the definitions of µ0 and ν0 then give

4t20a2(p + 2)(p + 1)cp+2 +
p∑

k=1

µkνp−k + Jp + Kp = 0

Simplifying the above expression, we arrive at the recurrence formula for cp:

cp = −
( 1

4t20a2(p)(p− 1)

)(
γp−2 + Jp−2 + Kp−2

)
(3.59)

We note that setting p = 2 gives an explicit expression for c2

8t20a2c2 + J0 + K0 = 0

Recall the definitions of J0 and K0

J0 = χ0w0

= (− a1

2
+ τ0 + ε0)c1

= (− a1

2
+ µ0ν0 + f0g0)c1

= (− a1

2
+ (a0 − t0a1)(8a1 − 1) + t0a1(1− 4a1))c1

K0 = W0c0

= h0H0c0

= a1(4a0 − 1)c0 (3.60)

And so

c2 =
1

16a2t20

(
2c1(a0 − 2t0a1) + a1((2− 8a0)c0 + c1 − 16a0c1 + 24c1t0a1)

)
(3.61)
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3.5.2 ’Solutions of the Third Painlevé’: Segment 3

As before, this segment corresponds to section 3.5.1. However, there are 2 distinct cases to be
considered here. The first case corresponds to expanding w(t) about t = 0 as depicted in Segment
3.1, while the second case corresponds to expanding w(t) about a general point t0 = s0 + is[n] as
depicted in Segment 3.2.

Segment 3.1: Recursive solution involving ξ expanded about t=0

Below are the definitions of the variables used with references to the variables seen in section
3.5.1.
Definitions:

ud(s)↔ w(t), a[k, n]↔ ak, derivd[p]↔ cp, xvt↔ νk, xbh↔ Hk, xg ↔ g0

Recursive definition for the coefficient of ud(= w(t)) expanded about t = 0

From Eq. (3.48), we note that the coefficients cp in w(t) can in fact be computed using the
recurrence relation of dp+2 in Eq. (3.18). This is done by differentiating Eq. (3.18) w.r.t. d and
multiplying d to it. Hence, the recursive definitions for cp is in terms of d, where d is the coefficient
belonging to the power series u(t), have been computed previously in Segment 1. We named this
definition as derivd[p] and use it to compute the first 150 coefficients belonging to the power
series solution, w(t) and the variable d is again assigned to 1

3π before storing as a table into the
file derivdcoe.dat.

Initial condition

ud(s) is defined to be equal to the power series w(t). d0 and d1 are initialised using the power
series ud(s), computed numerically . Initialise the variables by the base case:

ν0 = 8a1 − 1, H0 = 8a1 − 1, g0 = 1− 4a1, d0 = w(s0), d1 =
dw(s0)

ds

Power series expansion of the τ function for p+(s; 1) about t = 0

The τ function we are interested in calculating here corresponds to the special case of w(t) when
t = 0. First define

xdiu(s) =
∫ s

0

w(t)
t

dt

=
∫ s

0

ct
3
2 +

∑∞
k=0 cpt

2+ p
2

t
dt

=
2
3
cs

2
3 +

∞∑
p=0

cps
p
2+2

p
2 + 2

(3.62)

In order to derive the recursive definition for the τ function in Mathematica, we recall from
section 3.1, the equation p+(s; k) which is the τ function we seek. Thus, letting k = 1,

p+(s; 1) = p+(s; 0) +
d

ds

∂

∂ξ

{
exp

(
−

∫ (πs)2

0
u(t;

1
2
; ξ)

dt

t

)}∣∣∣∣
ξ=1
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Since the integration of u is w.r.t. t only, we can first differentiate u w.r.t. ξ and replace it by

w, given that w = ∂u(t,ξ)
dξ

∣∣∣∣
ξ=1

. Also, noting that p+(s; 0) is in fact equal to p+(s), we substitute

Eq. (3.3) into the above equation. And so, p+(s; 1) equates to

− d

ds

{
exp

(
−

∫ (πs)2

0
u(t)

dt

t

)}
− d

ds

{(
exp

(
−

∫ (πs)2

0
u(t)

dt

t

))( ∫ (πs)2

0
w(t)

dt

t

)}
= − d

ds

{
exp

(
−

∫ (πs)2

0
u(t)

dt

t

)
+

(
exp

(
−

∫ (πs)2

0
u(t)

dt

t

))( ∫ (πs)2

0
w(t)

dt

t

)}
(3.63)

Recalling from Segment 1, Series[exp(− ∫ (s)2

0 u(t)dt
t )] is defined to be ff(s), whereas Series[

∫ (s)2

0 w(t)dt
t ]

has been defined to be xdiu(s). We sought to simplify the above τ function in terms of the cor-
responding Mathematica defintitions ff(s) and xdiu(s),

vvb(s2) = Series[ff(s2)(1 + xdiu(s2))]

Hence, the Mathematica function equivalent of the τ function p+(s; 1) is

dv(s) = Series[− d

ds
vvb(s2)] (3.64)

Segment 3.2: Recursive solution involving ξ expanded about a general point

Recursive definitions

Definitions:
xu↔ µk, xv ↔ νk, xga↔ γp, xut↔ µk, xvt↔ νk, xt↔ τp

xf ↔ fk, xg ↔ gk, xe↔ εp, xxi↔ χp, xw ↔ wk, xj ↔ Jp

xh↔ hk, xbh↔ Hk, xbw ↔Wp, xbk ↔ Kp, d↔ c (coefficients belonging to w(t))

The following segment is the recursive Mathematica definitions for Eqs. (3.50) to (3.59). In par-
ticular, the last recursive definition corresponds to the recurrence formula dp as seen in Eq. (3.59)
and calls upon the previously defined variables.

Power series expansion of the τ function for p+(s; 1) about a general point

After computing the τ function for the first point of expansion, the next step is to extend the
recursive definitions in this segment so as to compute the τ function for p+(s; 1), similar to those
carried out in section 3.4.2. To do so, we define a power series, similar to that of Eq. (3.34),
about s0 + is[n]:

xuz[t, n] =
∞∑

k=0

d[k, n](t− (s0 + is[n]))k (3.65)

and compute its first derivative w.r.t. t.
After substituting the power series solution xuz, Eq. (3.65), and the power series expansion of 1

t ,
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Eq. (3.35), into Eq. (3.3) , the integrand of Eq. (3.3) becomes

xuz[t, n]
t

=
∞∑

p=0

bigA[p, n](t− t0)p
∞∑

k=0

d[k, n](t− t0)k

=
∞∑

k=0

xdat[k, n](t− t0)k

where

xdat[k, n] =
k∑

p=0

d[p, n]bigA[k − p, n]

Next, we define xdiy[t, n] =
∫ t
t0

xuz[x,n]
x dx so that

xdiy[t, n] =
∞∑

k=0

xdat[k, n](t− t0)k+1

k + 1
(3.66)

Again, the procedure must be iterated and the base cases d0 and d1 are reintialised with the
numeric evaluations as below

d0 = N[xuz[t0, j], ac]
d1 = N[xdz[t0, j], ac]

Calculating moments of the τ function

This section follows from section 3.4.2 under the same name of ’Calculating moments of the τ
function’. However, in that section, we are interested in calculating the moments of the τ function
for u(t). Whereas, in this section, we are interested in calculating the moments of the τ function
for p+(s; 1) that is m(n) =

∫∞
0 snp+(s; 1)ds. We split the calculation of m(n) into two distinct

parts due to the same reasoning given in section 3.4.2. Hence, using Eq. (3.63), we denote the
split function xdtq(n) as

xdtq(n) = mj(n) +
∞∑
0

xdjol[j, n]

where

mj(n) =
∫ √

s0
π

0
snp+(s; 1)ds (3.67)

xdjol[j, n] =
∫ √

s0+is[j+1]
π√

s0+is[j]
π

snp+(s; 1)ds (3.68)

and

p+(s; 1) = − d

ds

{
exp

(
−

∫ (πs)2

0
u(t)

dt

t

)
+

(
exp

[
−

∫ (πs)2

0
u(t)

dt

t

])( ∫ (πs)2

0
w(t)

dt

t

)}
About point of expansion s0

The τ function in Eq. (3.67) has been computed in Segment 3.1 as being dv(s). Hence, after
replacing s with s

π , Eq. (3.67) becomes

mj(n) = −(
1
π

)n
∫ √

s0

0
sndv(t)dt (3.69)

40



About point of expansion s0 + is[j]

To be able to extend the calculations of the moment for the τ function, define a new power series

app[x2, j] =
∞∑

k=0

xdgia[k, j]
(

x2 − (s0 + is[j])
)k

(3.70)

where j = 0, . . . such that app[x2, j] equals to the terms inside the curly brackets of p+(s; 1)

app[x2, j] = exp
(
−

∫ x2

0
u(t)

dt

t

)
+

(
exp

[
−

∫ x2

0
u(t)

dt

t

])( ∫ x2

0
w(t)

dt

t

)
= exp

(
−

∫ x2

0
u(t)

dt

t

)
×

{
1 +

∫ x2

0
w(t)

dt

t

}

Next, we try to define app[x2, j] in terms of previously defined Mathematica definitions by re-
placing the right hand side of the above equation.

Using Eq. (3.43), s[x2, j] = exp(− ∫ x2

0 u(t)dt
t ), expanded about s0 + is[j] and noting from the

definition of xdiy[t, n], Eq. (3.66), that

1 +
∫ x2

0
w(t)

dt

t
= 1 + xdiu(s0) +

j−1∑
n=0

xdiy[s+is[n + 1], s0 + is[n]] + xdiy[x2, j] (3.71)

which is to be denoted by xds[x2, j] gives

app[x2, j] = xds[x2, j]× s[x2, j]

Substitute app[x2, j] into p+(s; 1), we have

dpp[x, j] = − d

dx
app[x2, j]

=
∞∑

k=0

xdgia[k, j]k(2x)
(

x2 − (s0 + is[j])
)k−1

(3.72)

We note that in app[x2, j], replacing x with s, the upper limit is s2, instead of (πs)2 as seen
in Eq. (3.68). And so, we need to replace s with s

π in Eq. (3.68) to be able to use those Math-
ematica definitions. Hence, the contribution for the nth moment of the τ function for p+(s; 1)
becomes

xdjol[k, n] = (
1
π

)n
{ ∫ √s0+is[k+1]

√
s0+is[k]

sn
[
− d

ds

{
exp

(
−

∫ s2

0
u(t)

dt

t

)
×

{
1 +

( ∫ s2

0
w(t)

dt

t

)}]
ds

}

= (
1
π

)n
{ ∫ √s0+is[k+1]

√
s0+is[k]

sndpp[s, j]ds
}

(3.73)

Similar algebraic manipulations as seen from Eq. (3.45) to Eq. (3.46) are performed on Eq. (3.73),
where the upper limits of the integration is now set as xder(j) = s0+is[j+1]

s0+is[j] − 1. So using the
incomplete beta function, Beta[z, a, b], in the same manner as before, xdjol[k, n] becomes

xdjol[k, n] = (
1
π

)n
∞∑

k=0

(−1)kk × xdgia[k, j](s0 + is[j])
n
2 +k

×Beta[−xder[j], k, 1 +
n

2
] (3.74)

41



Finally, substitute Eqs. (3.68) and (3.74) into the equation of xdtq(n), we compute the cor-
responding nth moment for p+(s; 1) and tabulate the results.

Computation of the nth moment
n p+(s;1)
0 0.9999999999999999999999999219306
1 1.76454678940017569780582656626
2 3.26498044185987864525719869820
3 6.3064271456737087320662405114
4 12.668147588875690318749478761
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3.6 Comparing Wigner approximation with exact results
’Solutions of the Third Painlevé’: Segment 4

In this section, we seek to compare the Wigner approximation p+w(s) and the exact form p+(s)
using two different methods, the first is by comparing the graphs and the second by comparing
their respective moments.

In section 2.1.3, the Wigner approximation p+w(s) is derived under the assumption that the
first moment

∫∞
0 sp+w(s)ds = 1. Whereas, in Segment 2 ’Computing moments’, the first moment

of the exact form, p+(s) is calculated to be
∫∞
0 sp+(s)ds ≈ 0.7827.

Therefore, in order to compare the 2 resultant graphs of p+w(s) and p+(s), we need to introduce
a scale factor α into p+w(s):

p+w(s)ds =
32
π2

(
s

α
)2 exp

(
− 4

π
(
s

α
)2

)
ds

α

such that
∫∞
0 p+w(s)ds remains equal to 1, while its first moment becomes∫ ∞

0
sp+w(s)ds = α =

∫ ∞

0
sp+(s)ds

Hence, choosing α = 0.7827, p+w(s) becomes
1

0.7827
32
π2

(
s

0.7827
)2 exp

(
− 4

π
(

s

0.7827
)2

)
By replacing the scaled equation p+w(s) into the procedure of section 2.1.3 and superimpose it
onto the graph of p+(s), we are now able to compare the two graphs as shown in ’Solutions of the
Third Painlevé’. A colour printed version of the graphs is provided on the page after ’Solutions
of the Third Painlevé’, where the graph in red corresponds to the Wigner approximation p+w(s)
and the one in black p+(s).

The moments of the scaled p+w(s) can be evaluated exactly. Given the nth moment is
∫∞
0 snp+w(s)ds

, substitute the above formula for p+w(s),∫ ∞

0
sn

{ 1
α

(
32
π2

)(
s

α
)2 exp

(
− 4

π
(
s

α
)2

)}
ds = αn

∫ ∞

0
sn 32

π2
s2 exp

(
− 4

π
s2

)
ds

Let 4
πs2 = t, 8

πsds = dt, then∫ ∞

0
snp+w(s)ds = αn(

π

8
)(

32
π2

)
∫ ∞

0
(
πt

4
)

n+1
2 exp(−t)dt

= αn(
4
π

)(
π

4
)

n+1
2

∫ ∞

0
t

n+1
2 exp(−t)dt

where
∫∞
0 t

n+1
2 exp(−t)dt is in the form of a known Γ function, Γ(z) =

∫∞
0 tz−1 exp(−t)dt, with z

replaced by n+3
2 giving ∫ ∞

0
snp+w(s)ds = αn(

π

4
)

n−1
2 Γ(

n + 3
2

) (3.75)

Computation of the nth moment
n p+w(s) p+(s)
1 0.7827 0.7827
2 0.7217 0.7192
3 0.7532 0.7457
4 0.8681 0.8516
5 1.0872 1.0540
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Concluding remarks: Further computations
In this thesis, a high precision computation of the p.d.f. p+(s) as defined by Eq. (3.3) has been

performed. Similarly, an analogous computation of p+(s; 1) has been performed. The method of
computation has relied on high precision power series solution of the particular Painlevé equation,
Eq. (3.1), subject to the boundary conditions, (3.7) and (3.9).

By retaining 150 coefficients in the power series and expanding the solution about 802 points
of expansion with overlapping radii of convergence, moments of these distributions have been
obtained to an accuracy of around 48 decimals for p+(s) and 31 decimals for p+(s; 1).

This same program could be carried out for the p.d.f.’s p−(s), p1(s) and p2(s) as specified by
Eqs. (3.2), (3.4) and (3.5). Similarly, p−(s; 1) could be similarly computed. With more effort
p+(s; k) and p−(s; k) could be computed for k ≥ 2. However, this involves coupling k + 1 depen-
dent variables (recall Eq. (3.49) in the case k = 1) which makes the programming more complex.
Also, for each higher value of k, our experience in going from computing p+(s) to p+(s; 1) is that
the accuracy will decrease.
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Appendix A

A.1 Some theorems for Hermitian matrices
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The follwing results are well known (see e.g.[8]).

Theorem 1 Let H be a N ×N Hermitian matrix. Then all eigenvalues of H are real
numbers.

Proof: Let Hv = λv where λ is the eigenvalue and v is a column eigenvector

 v1
...

vN

 (assume

normalized). Then, using vt = (v∗)T = (v∗1, . . . , v∗M ),

vtHv = (v∗)T λv
= λ(v∗)Tv
= λ (A.1)

The final line follows because (v∗)Tv is the complex dot product,

(v∗)Tv = |v1|2 + . . . + |vN |2
= 1

for v normalised. But from Hv = λv and the fact that H is Hermitian, we have

vtH = (Hv)t

= (λv)t

= λ∗(v∗)T

= λ∗vt

Substitute that into LHS of Eq. (1):

vtHv = λ∗vtv
= λ∗

and consequently λ = λ∗ which says the eigenvalues are real.

Theorem 2 Let λ1 and λ2 be distinct eigenvalues of the N ×N Hermitian matrix H
with corresponding eigenvectors v and w. Then v and w are orthogonal.

Proof:
To show they are orthogonal, we must show that the complex dot product vtw = 0.
Using Hv = λ1v, we have

wtHv = λ1wtv

But, since H is Hermitian

wtHv = (Hw)tv
= λ2wtv

Since λ1 and λ2 are distinct, comparing the two equations, we require vtw = 0, as required.
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Appendix B

B.1 ’Solutions of the Third Painlevé’
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Appendix C

C.1 GAUENSEM.m
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C.2 URM.m
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C.3 ORM.m
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p−(s; k) = p−(s; k − 1)− (−1)k

k!
d

ds

∂k

∂ξk

{
exp

(
−

∫ (πs)2

0
u(t;−1

2
; ξ)

dt

t

)}∣∣∣∣
ξ=1

p+(s; k) = p+(s; k − 1)− (−1)k

k!
d

ds

∂k

∂ξk

{
exp

(
−

∫ (πs)2

0
u(t;

1
2
; ξ)

dt

t

)}∣∣∣∣
ξ=1

u(t) =
∞∑

p=0

ap(t− s0)p

dp−1, dp−2, . . . , d0

ap−1, ap−2, . . . , a0
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