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Introduction

In his book Liber Abaci, Leonardo Pisano, or Fibonacci, described rabbit breeding accord-
ing to the rule that a baby rabbit matures in one month and produces a new baby rabbit every
month thereafter. This can be represented using the substitution a 7→ A,A 7→ Aa, where
a represents a baby rabbit, and A represents a mature rabbit. This rabbit breeding problem
led to the famed Fibonacci sequence 1, 1, 2, 3, 5, . . ., where the nth Fibonacci number, Fn

is given by the recurrence Fn+1 = Fn + Fn−1, with F0 = 1, and is the total number of
rabbits in successive months starting with one baby rabbit. This in turn led to the related
Fibonacci substitution sequence AaAAaAaAAa . . . specifying the evolution of the rabbit
population. The sequence has the feature that the ratio of A’s to a’s in a sequence of length
n converges to φ = 1+

√
5

2 , the golden ratio, as n →∞ [15].

The Fibonacci substitution sequence turns out to have many interesting properties that can
be generalized to a wider class of sequences. Fibonacci words are two-distance, meaning
that for each subword of length n they have at most two different weights. Also, for each
of these lengths n, they have n + 1 distinct subwords, which is a property that defines
Sturmian words. It is possible to produce the Fibonacci substitution sequence geometri-
cally by looking at the sequence of intersections between a straight line of slope φ and the
unit grid, which is known as a cutting sequence. Substitution sequences such as the Fi-
bonacci substitution sequence may also be reduced using an inverse substitution, and these
sequences are commonly called characteristic words, studied by Series [16] in relation to
cutting sequences created from tesselations of the hyperbolic plane. That the Fibonacci
substitution sequence has these properties implies that there is a relationship between them,
and it is their equivalence that we seek to display in the first chapter, following Lunnon and
Pleasants [11].
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The study of doubly infinite binary sequences is important in the field of quasicrystals, and
it has been shown that the one-dimensional analogue of Penrose tilings, a model for these
quasicrystals, is the Fibonacci substitution sequence. If we wish to build this sequence up
through substitution from an initial seed, it is necessary to define two words f lower and
fupper, which are doubly infinite analogues of the Fibonacci substitution sequence and they
differ at only two positions. The difference between these two words is displayed in the
second chapter when we deal with mechanical words.

The second chapter of this thesis aims to answer a question posed by de Bruijn, ”which
sequences have infinitely many predecessors?”, or equivalently, which sequences can be
infinitely reduced with inverse transforms [3]. We look at classifying mechanical words
into different equivalence classes, which we accomplish by studying different algebraic
transformations which are analogous to the substitution rules examined in the first chapter.
Our approach is different to that of Litvin and Litvin [9], as we show that the sets of
subwords for different words with the same slope are the same.

The transformation θm also leads us to study continued fractions, which have in turn been
studied since antiquity, and are associated with the work of Euclid. In particular, Euler’s
great memoir, De Fractionibus Continius, laid the groundwork for the modern theory in
1737 [13]. Allouche and Shallit investigate transformations of mechanical words s, and
their relationship to the continued fraction expansions of the slope α of s.

α = [m0,m1,m2,m3, . . .] = m0 +
1

m1 +
1

m2 +
1

m3 +
1

. . .

This is accomplished by investigating the fixed points of sequences of θm transformations
acting on mechanical words that intersect one grid point, but focus only on the right infinite
word that begins at the first element to the right of the grid point [1]. We also extend this
theory by deriving a formula for the fixed point of a sequence transformations acting on a
word that doesn’t intersect a grid point, and consequently the continued fraction expansions
of α and ρ in the resulting word sα,ρ.
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Chapter 1

Equivalence of models of
doubly-infinite sequences

A sequence in which each member is chosen from a finite number of elements is often called
a word, and it’s elements letters. Such sequences have been studied by mathematicians
for centuries, most famously (at least implicitly) by Leonardo of Pisa (c. 1170 -1250),
or Fibonacci. His simple model of rabbit breeding, characterised by the growth of baby
rabbits, a to adult rabbits A, and the birth of a new baby rabbit at each time step can
be specified at the substitution rules a 7→ A,A 7→ Aa. Starting with one baby rabbit
a, successive words can be generated. These have the property that the total number of
elements after n steps is equal to the nth Fibonacci number. After an infinite number of
time steps, a semi-infinite word, known as the Fibonacci word, is obtained and it is invariant
under the substitutions a 7→ A,A 7→ Aa.

More recently mathematicians have examined the properties of several different types of
words and sequences, such as characteristic words, cutting sequences, two-distance words,
and linear sequences. The aim of this chapter, following Lunnon and Pleasants [11], is to
prove the equivalence of these words and to then show that they are Sturmian by showing
that non-periodic two-distance words are in fact Sturmian words.
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1.1 Doubly-infinite words

We define a doubly-infinite word to be a sequence that takes it’s letters from a finite alphabet
A ⊂ Z+ ∪ {0}, say {0, 1}, and is infinite to the left and right of a fixed origin. If |A| = 2,
we call the words created from A binaryand we shall only consider binary words below.
Similarly, a semi-infinite word is a sequence indexed by the positive integers. Hence it
takes on values to the right of the origin only.

Probably the most well known semi-infinite word is the Fibonacci word, f = 1011010 . . .,
generated by repeated application of the substitution rule 0 7→ 1, 1 7→ 10 applied to the seed
1. To generate doubly infinite Fibonacci words, we can repeatedly apply the substitution
0 7→ 1, 1 7→ 10 to an initial seed 11, with the 0th element underlined, to give

11
1010

101101
1011010110

1011010110110101
10110101101101011010110110

...

Here the rule for the location of the origin in successive substitutions is that it is equal
to the rightmost symbol of the substitution mapping of the previously underlined element.
The resulting word appears to be invariant under the substitution, except at the positions
n = −1, 0, where it alternates between 10 and 01. With this in mind, we define the lower
doubly infinite Fibonacci word, f lower to be the word with 10 in positions n = −1, 0,
and the upper doubly infinite Fibonacci word fupper to be the word with 01 in positions
n = −1, 0. We shall see in Chapter 2 that these words are so named due to their relationship
with mechanical words.

The Fibonacci word exhibits a number of special features which in fact apply to a wider
class of words. One feature relates to its complexity. To make this notion precise, denote
by p(s, n) the number of distinct subwords of length n of a word s. For the Fibonacci word,
f , the possible subwords of length n, for n small, are as given in the following table.
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n allowed subwords

2 10, 01, 11
3 101, 011, 010, 110
4 1010, 1011, 0110, 0101, 1101
5 10101, 10110, 01101, 01011, 11010, 11011

Thus it appears that p(f, n) = n + 1 and in particular that p(f, n) is strictly increasing. In
fact, this latter feature is necessary for the Fibonacci word to be non-periodic.

Theorem 1.1.1. Suppose there exists an m such that

p(s,m) = p(s,m + 1).

Then the doubly infinite word, s, must be periodic.

Proof. Suppose p(s,m) = p(s,m + 1), and let p(s,m) = r.

Consider a fixed subword of length m, say

x = a1a2 . . . am

Then,

‘every occurrence of x must be followed by the same letter’, (1.1.1)

as otherwise the equality p(s,m) = p(s,m + 1) would not hold.

Consider now the r + 1 strings of letters

b0b1 . . . bm−1

b1b2 . . . bm

...

brbr+1 . . . br+m−1
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Since p(s,m) = r, these r + 1 subwords cannot all be distinct. Hence there must exist
indices i, j such that for 0 ≤ i < j ≤ r we have

bi . . . bi+m−1 = bj . . . bj+m−1

But according to (1.1.1), bi+m = bj+m, and so

bi+1 . . . bi+m = bj+1 . . . bj+m

Repeating the argument shows that

bi+l = bj+l, for all l ≥ m

or in other words
bl = b(j−i)+l, for all l ≥ m + i,

telling us that the word is, for l ≥ m + i, periodic to the right of period (j − i).

We see that it is also true that

‘every occurrence of x must be preceded by the same letter’ (1.1.2)

Repeating the above argument, but now using (1.1.2), we see that

bi−l = bj−l, l = 1, 2, . . .

and so
b−l = bj−i−l, l = 1, 2, . . .

telling us that, for l = 1, 2, . . ., the word is periodic to the left of period (j − i).

Since the choice of origin is completely arbitrary, ‘left’ and ‘right’ overlap. We conclude
that the word is periodic. �

Corollary 1.1.2. For a non-periodic binary word s,

p(s, n) ≥ n + 1.
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Proof. Let s be a non-periodic binary word. Therefore from Theorem 1.1.1 we require that
p(s, n− 1) < p(s, n), or equivalently that

p(s, n− 1) + 1 ≤ p(s, n), (1.1.3)

as otherwise s would be periodic. Repeatedly making use of (1.1.3) tells us that

p(s, 1) + n− 1 ≤ p(s, n),

and as the word is binary, p(s, 1) = 2, so we have the required result. �

Words that satisfy Corollary 1.1.2, but with strict equality, are a special type of word which
we shall call Sturmian words. These words have studied extensively due to their connection
to quasicrystals, and we shall look at special properties of these words later.

1.2 Two-distance words

Define the weight of a subword to be the number of 1’s it contains. A sequence is said to
be two-distance if for every length l there are at most two weights for subwords of length
l.

In relation to the Fibonacci subwords listed in the previous table, the weights are read off
as

l weights

2 1, 1, 2
3 2, 2, 1, 2
4 2, 3, 2, 2, 3
5 3, 3, 3, 3, 3, 4

This is consistent with the Fibonacci word being two-distance. A basic property relating to
the notion of weights is the following.

Lemma 1.2.1. Suppose that for a given length l, there are subwords of weights w1 and w2

where w1 < w2. Then there are subwords of all weights w1, w1 + 1, . . . , w2.

12



Proof. The weights of two subwords with starting points which differ by 1 can differ by
at most 1. Hence, by moving from the subword of weight w1 by a shift of 1 at a time, all
subword weights between w1 and w2 must be encountered. �

Corollary 1.2.2. For a doubly-infinite word s,

(i) If s is two-distance, then for every length l there is a number w(l) such that every
subword of length l has weight either w(l) or w(l) + 1.

(ii) If s is not two-distance then there exists an l such that there are subwords of length l

with weights w(l) and w(l) + 2.

1.3 Characteristic words

Substitution such as that used to define the Fibonacci word is a well-used method for the
creation of doubly-infinite two-distance words. de Bruijn [3] called this deflation for it’s
relation to Penrose tilings. We can also look at the opposite of this, inflation, which involves
applying this substitution in reverse. Obviously, not all substitutions produce two-distance
sequences.

A reverse of a substitution is to remove the element directly before isolated elements. For
example, . . . 000100100 . . . would become . . . 00/010/0100 . . . = . . . 0010100 . . . by remov-
ing the 0 before every isolated 1.

With this in mind, characteristic words can be defined in terms of the concept of certain
reductions.

(i) For a word without consecutive 1’s, define the 0-reduction to be the word obtained
by removing the 0 immediately before each 1.

(ii) For a word without consecutive 0’s, define the 1-reduction to be the word obtained
by removing the 1 immediately before each 0.

(iii) A word is said to be characteristic if there is an infinite chain of reductions.

This is closely related to the two-distance property. In fact the following result holds.
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Theorem 1.3.1. Every two-distance word is characteristic.

Proof. A two-distance word, s, either has no consecutive 0’s or no consecutive 1’s for if it
did there would be weights 0 and 2 for words of length 2. Suppose it has no consecutive
1’s, so that it can be 0-reduced. We wish to show that the resulting word s′ is two-distance.

Proceeding by contradiction, we suppose that s′ is not two-distance. Then there are sub-
words w1 and w2 of lengths l in s′ with weights w and w + 2, from Corollary 1.2.2(ii).
In w2, we insert an extra 0 between each pair of 1’s. This gives us a word in s of length
l + w + 1 of weight w + 2. In w1, insert an extra 0 between every pair of 1’s and also to the
left of the leftmost 1, and to the right of the rightmost 1. This gives a word in s of length
l +w +1 and of weight w. There cannot be words in s of the same length of weights w and
w + 2, so we have a contradiction. �

1.4 Cutting sequences

Similar to the billiards problems presented by Kinsley and Moore [7] where a billiard ball
is struck with an initial direction on a frictionless billiard table, cutting sequences can be
thought of as the sequence created by labelling the horizontal and vertical sides of a square
billiard table with two distinct labels, and studying the sequence of collisions between the
ball and the sides of the table.

Consider the square grid of vertical and horizontal lines through integer points in R2. On
an arbitrary line L of positive slope mark the points where it crosses the grid lines and label
them 0 for a vertical grid line, and 1 for a horizontal grid line. For lines that pass through
the intersection of two grid lines mark them either 01 or 10. It is not important which
convention you choose, as long as it is consistent, and the significance of this statement
will be shown in Chapter 2. The sequence created by these intersections is our cutting
sequence.

We observe that this sequence will always have one of the elements 0 or 1 only appearing
in isolation. Also, there are either bαc or bαc + 1 of the non-isolated element appearing
between consecutive isolated elements, where α is the slope of the line L, and bxc is the
floor function.
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Figure 1.1: A cutting sequence . . . 11011 . . .

This is equivalent to saying that a cutting sequence created by the line L can be uniquely
factored into parts that are either 10n or 10n−1 if α < 1, and 01n and 01n−1 if α > 1,
where n = bαc+ 1.

We see that this is analogous to folding out infinitely many copies of our square billiard
table into a square grid in R2 and striking the ball again, where the horizontal sides of the
billiard table were labelled with a 1, and the vertical sides with a 0. As for characteristic
sequences, this idea is closely related to the two-distance property, which we see in the
following theorem.

Theorem 1.4.1. Every cutting sequence is two distance

Proof. Let S be the cutting sequence associated with the line L in the plane. Let W be
a subword in S of length l and weight w. Let M be the segment of the line L whose
end-points are the points corresponding to the first and last symbols of W .

Let u be the length of the projection M onto the x-axis. Then

(#of 0’s in W )− 1 ≤ u < (#0’s in W ) + 1.
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Figure 1.2: A line segment M

but # 0’s in W = l − w, so

l − w − 1 ≤ u < l − w + 1.

Since the set up is such that u > 0, this inequality can be improved for w = l and w = l−1
to

0 < u < 1, w = l,

0 < u < 2, w = l − 1.

Let v be the length of the projection of M onto the y-axis. Then

(#of 1’s in W )− 1 ≤ v < (#1’s in W ) + 1.

But, we know that there are w 1’s in W by definition, so

w − 1 ≤ v < w + 1

16



Since v > 0, we can see that for w = 0 and w = 1 this can be improved to

0 < v < 1, w = 0,

0 < v < 2, w = 1.

Now for w 6= l, l − 1 the inequalies

l − w − 1 ≤ u and v < w + 1

together imply

v

u
<

w + 1
l − w − 1

(1.4.1)

Similarly the inequalities

w − 1 ≤ v and u < l − w + 1

together imply

w − 1
l − w + 1

<
v

u
(1.4.2)

Now, with l fixed let w1 and w2 be two different weights, w1 < w2. Substituting w1 in
(1.4.1) and w2 in (1.4.2) it follows that

w2 − 1
l − w2 + 1

<
w1 + 1

l − w1 − 1
, w1 6= l − 1.

Multiplying both sides by the positive number (l − w1 − 1)(l − w2 + 1) and cancelling
terms gives

w2 − 1 < w1 + 1 (1.4.3)

For w2 = w1+1 (1.4.3) obviously holds true. Conversely, for w2 > w1+1 the inequality in
(1.4.3) implies that all integers≥ w1+1 are less than w1+1, which is a clear contradiction,
so we must have that w2 = w1 + 1, and so the cutting sequence is two-distance. �
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1.4.1 Linear sequences

If a subword can be obtained from a finite portion of a cutting sequence, we shall call it lin-
ear. Therefore if we concatenate an infinite number of linear sequences that belong to the
same cutting sequence we can recreate that cutting sequence, or a translation of it, provided
it is still two-distance. We shall now prove that the subwords of a characteristic sequence
are linear, and therefore the corresponding infinite sequence must also be linear.

Lemma 1.4.2. If a subword W is linear, then so are W |0 7→10 and W |1 7→01.

Proof. Let L be a line segment corresponding to W . If W begins with a 0, let us adopt the
convention that L begins just above a horizontal grid line. If W begins with a 1, we adopt
the convention that L begins just to the right of a vertical grid line. If W ends with a 0, let
it stop on a vertical line, and if W ends with a 1, let it stop on a horizontal grid line. With
these conventions, we can now consistently join line segments.

Now suppose that L undergoes the linear transformation (x, y) 7→ (x, x + y). We consider
separately portions of L between successive vertical lines, extended downwards to just
below the nearest horizontal line if it starts with a 0, and extended upwards to just on the
closest horizontal line if it ends with a 1.

Due to the invariance of the lattice under translations by integer multiples, we can consider
the transformation as leaving the intercept with the first vertical line it crosses unchanged,
and shifting up by one unit the intercept with the second vertical line it crosses, as we are
considering separate portions of L that are one unit wide in the x direction. From this, we
see that in all cases the effect of the transformation is the substitution 0 7→ 10. In particular,
this tells us that W |0 7→10 is linear.

To study the substitution W |1 7→01, we suppose that L undergoes the linear transformation
(x, y) 7→ (x + y, y). We consider separately portions of L between successive horizontal
lines, extended downwards to just before the closest vertical line if it starts with a 1, and
extended upwards to the closest vertical line if it starts with a 0.

Once again, the invariance of the lattice under transformations by integer multiples shows
that the transformation can be considered as leaving the intercept with the first horizontal
line it crosses unchanged, and shifting the intercept with the second horizontal line it crosses

18



by one unit. We see that the effect of the transformation is the substitution 1 7→ 01, showing
that W |1 7→01 is linear. �

Now that we have proven that the transformations W |0 7→10 and W |1 7→01 produce linear se-
quences, we are able to use them as inverse reductions to prove the following Theorem.

Theorem 1.4.3. Every subword of a characteristic sequence is linear, and consequently
every characteristic sequence is linear.

Proof. By definition, a characteristic sequence has an infinite descending chain of reduc-
tions r1, r2, . . . where each rj corresponds to 10 7→ 0 or 01 7→ 1.

Focus attention now on a particular subword and apply this chain of reductions, but now
according to the interpretation 10 7→ /10 or 01 7→ /01, where we are removing the elements
before the ‘isolated’ 0’s or 1’s. Therefore, we are thinking of the elements in a subword
retaining their position, unless (or until) they are deleted by the reduction procedure. This
must result in either

(i) deleting all the elements in a subword;

(ii) the only remaining elements are all 0’s or all 1’s, as are all the remaining elements in
the word itself.

In situation (ii) the original word must have been (0k1)∞ or (1k0)∞ which are both linear.

In situation (i), locate the closest remaining element on the left (for definiteness). This
element is itself linear. The subword can be reconstructed by applying the operations
r−1
p , r−1

p−1, . . . , r
−1
1 , where p is the number of reductions it took to delete the subword.

By Lemma 1.4.2 we see that this sequence of operations produces a linear sequence.

Suppose now that the subword Wi is chosen to have i elements on either side of the element
at position 0, so that |Wi| = 2i + 1. Let Li be the corresponding linear sequence which
reproduces Wi. We then must have that the subword Wi is contained about position 0 in
each Ln, n ≥ i. Let L∞ be the line constructed out of the point of accumulation (y0, λ)
of the y-intercepts, 0 ≤ y0 < 1 and the slopes of the Ln, λ. Then the elements about the
origin are those of Ln for Ln large enough, and thus those of the Wi, telling us that L∞

corresponds to a word formed out of the subwords Wi. As every word formed purely out of
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characteristic subwords is characteristic itself, we see that every characteristic word must
be linear. �

Corollary 1.4.4. Every characteristic sequence is a cutting sequence.

1.5 Sturmian words

We define a Sturmian word to be an infinite word s, with the property that p(s, n) = n + 1.
We seek to show, following Lothaire [10], that non-periodic, binary two-distance words
are Sturmian, but first we need an upper bound on the number of subwords in a set of
two-distance binary subwords of length n.

If u, v ∈ Xn where Xn is the set of subwords of some infinite word x of length n , we shall
make use of the quantity |w(u)−w(v)|, where |w(u)−w(v)| = 1 if x is two-distance and
|w(u)− w(v)| ≥ 2 if x is not two-distance (from Corollary 1.2.2(ii)).

We see that for a doubly-infinite binary word s to be two-distance, we require that for any
length n, it has subwords that are of weights differing by at most 1. This concept is clearly
displayed in the following.

Lemma 1.5.1. Let x be an infinite binary word. If the word x is not two-distance then there
exists a word t such that 0t0 and 1t1 are both subwords of x.

Proof. Let Xn be the set of subwords of x of length n. Assume x is not two-distance, and
hence Xn is not two-distance for n ≥ n∗, where n∗ is the minimal length for the loss of the
two-distance property. Let u, v ∈ Xn∗ be subwords of x that are not two-distance. As u

and v are of finite length and n∗ is minimal, their first and last letters are distinct. Therefore,
we can assume, without loss of generality, that the first letter of u is 0, and the first letter of
v is 1. Therefore, we can factorize u and v into u = 0tau′ and v = 1tbv′ for some words
t, u′ and v′ and letters a and b, where a 6= b, again without loss of generality. We have

|w(u)− w(v)| = |w(0tau′)− w(1tbv′)|

= |w(0ta)− w(1tb)|+ |w(u′)− w(v′)|

20



If b = 0 and a = 1, |w(0t1) − w(1t0)| = 0, and this implies |w(u) − w(v)| = |w(u′) −
w(v′)|, which contradicts the minimality of n∗. Therefore we must have that a = 0 and
b = 1, and so

|w(u)− w(v)| = |w(0t0u′)− w(1t1v′)|.

Again enforcing minimality, we have that u = 0t0 and v = 1t1. �

This now allows us to provide an upper bound on the number of subwords of length n of
any infinite two-distance binary word.

Lemma 1.5.2. Let x be an infinite two-distance binary word. Then,

p(x, n) ≤ n + 1.

Proof. Let Xn be the set of subwords of x of length n. The statement obviously holds for
n = 0, 1 and it holds for n = 2 as X2 cannot contain both 00 and 11 if x is two-distance.

We proceed by contradiction. Let n ≥ 3 be the smallest integer such that the statement is
false. Therefore, for our statement to be true, p(x, n− 1) ≤ n and p(x, n) ≥ n + 2.

The suffix of each xn in Xn of length n − 1 must be in Xn−1. Using the pigeonhole
principle, we see that there must exist two distinct words u, u∗ ∈ Xn−1 such that the words
0u, 1u, 0u∗ and 1u∗ are elements of Xn.

Since u 6= u∗, there exists a word v such that v0 and v1 are prefixes of u and u∗. But, this
means that 0v0 and 1v1 are both words in Xn, so by Lemma 1.5.1 Xn is not two-distance
and we have a contradiction. �

With an upper bound on the number of subwords of length n for any non-periodic two-
distance word, we can now prove the following theorem.

Theorem 1.5.3. Every non-periodic two-distance word, s, is Sturmian.

Proof. If s is non-periodic, then p(s, n) ≥ n+1, ∀n by Corollary 1.1.2. If s is two-distance,
then by Lemma 1.5.2 p(s, n) ≤ n + 1, ∀n. Therefore s is Sturmian. �
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We now see that we have proven

Theorem 1.5.4. For a non-periodic binary word s, the following statements are equivalent

(i) s is two-distance,

(ii) s is a cutting sequence,

(iii) s is linear,

(iv) s is characteristic,

(v) s is Sturmian.

Proof. From Theorem 1.3.1, Theorem 1.4.1, Theorem 1.4.3, Corollary 1.4.4 and Theorem
1.5.3 the result follows. �
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Chapter 2

Mechanical words and the θm

transformation

In this chapter transformation properties of mechanical words are studied. We seek to an-
swer a problem proposed by de Bruijn [3], as a prelude to his study of Penrose tilings.
For some specified substitution transformation, the problem is to classify characteristic se-
quences with the property that remain in the same equivalence class.

A local equivalence class (LE-class), is a collection of sequences such that if S1 and S2 are
in the LE-class, then all the subwords of S1 occur in S2 and all the subwords of S2 occur in
S1. To appreciate the significance of this notion, we begin by making note of the following
result.

Theorem 2.0.5. Let x1 6= x2 ∈ (0, 1) and suppose α is irrational. Then the lines L1 and
L2 with slope α passing through the points (x1, y) and (x2, y) define different sequences.

In preparation for the proof of this result, a number of lemmas are required.

Lemma 2.0.6. For all positive integers K there exists an integer k 6= 0 such that for any
irrational number α, the fractional part of kα, denoted {kα}, is such that {kα} < 1

K .
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Proof. Divide [0, 1] into K subintervals of length 1
K . Consider the numbers

0, {α}, {2α}, . . . , {Kα}.

Since there are K + 1 numbers, and K subintervals, by the pigeonhole principle there is at
least one subinterval containing two numbers. Hence there exists distinct positive integers
q1, q2 such that

|{q1α} − {q2α}| ≤
1
K

.

Noting that
|{q1α} − {q2α}| = |{(q1 − q2)α}|

the result follows with |q1 − q2| = k. �

Lemma 2.0.7. Let α be irrational. The sequence of fractional parts

{α + β}, {2α + β}, . . . , {nα + β}, . . .

is dense in [0, 1].

Proof. We must show that for any x ∈ (0, 1) and for any δ > 0 such that [x− δ
2 , x + δ

2 ] ⊂
[0, 1], there exists a positive integer k such that {kα + β} ∈ [x − δ

2 , x + δ
2 ]. By Lemma

2.0.6, there exists an integer m such that {mα} = δ′ < δ. Now, let j be an integer such
that

jδ′ + β ∈ [x− δ

2
, x +

δ

2
]

(note that the interval [x− δ
2 , x+ δ

2 ] is of length δ, so such an interval can always be found).
But jδ′ + β = {jδ′ + β} = {j{mα} + β} = {jmα + β}, so taking k = jm gives the
required result. �

With the lemmas established, the proof of Theorem 2.0.5 can now be given.

Proof of Theorem 2.0.5. It is sufficient to show that there is always an grid point between
the lines L1 and L2.

Let x2 > x1, and let X1, X2 be points on L1, L2 with the same y coordinates. If there
is no grid point in between L1 and L2 then we must always have {X2} > {X1}. But
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X2 = Y−ρ2

α2
for some Y . Lemma 2.0.7 tells us that Y can be chosen to be an integer such

that 0 < X2 < δ for any δ. Choosing δ small enough implies {X1} > {X2} and thus
establishes the result. �

Given two lines L1 and L2 with the same slope, by Theorem 2.0.5 we know that they must
produce cutting sequences S1 and S2 respectively such that S1 6= S2. Nonetheless, we can
show that the sequences S1 and S2 belong to the same equivalence class.

Theorem 2.0.8. Cutting sequences S1 and S2 defined by lines L1 and L2 are in the same
LE-class if and only if they have the same slope.

Proof. Suppose S1 and S2 are in the same LE-class. Let the proportion of #1′s : #0′s
be µ1 and µ2 respectively (note that these proportions are the slope of the lines). Suppose
µ1 6= µ2. Recalling that all cutting sequences are two-distance, and so have two possible
weights for a word of length n, it must be that for some n = n∗ the two possible weights
differ in S1 and S2. Let these weights be w11, w12 for S1 and w21, w22 for S2, with w11 6=
w21, w22. This means that the subword of length n∗ with weight w11 is not in S2, which
contradicts S1 and S2 being in the same LE-class.

Suppose next that L1 and L2 both have slope µ, so that #1′s : #0′s = µ in both S1 and
S2. If S1 and S2 are not in the same LE-class, then there is a subword of length n in S1

which is not in S2. Without loss of generality, let 1 be the symbol in S1 which may occur
consecutively. Let the number of times it can occur consecutively be k or k+1 in subwords
of length n in L1, and be j or j + 1 in subwords of length n in L2. By the assumption
that there is a subword of length n in S1 which is not in S2, it must be that j 6= k. But
this would mean that 1 occurs consecutively k or k + 1 times in all subwords of length
n + m in L1, (m ≥ 0), while it occurs consecutively j or j + 1 times in all subwords of
length n + m in L2. This would imply that #1′s : #0′s is different for L1 and L2, giving
a contradiction. �
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2.1 Mechanical words

The geometrical picture of a cutting sequence suggests a class of {0, 1} sequences known
as mechanical words. These words can be expressed as an arithmetic function of two real
numbers, a form which is conducive for algebraic manipulation. In particular, it allows for
the precise determination of the action of certain substitutions. In the following sections,
we are mainly following Lothaire [10] and Allouche and Shallit [1].

Consider a straight line y = αx + ρ where α > 0, and ρ is unrestricted. If we look at
the intersections of this line and the lines of the grid x = j, y = k where (j, k ∈ Z), we
get a doubly infinite sequence of intersection points . . . P−1P0P1 . . . where Pn is the nth

intersection point from a point which we choose to be an origin, denoted n = 0. We see
that if Pn = (xn, yn) has yn ∈ Z, then y = αx + ρ intersects a horizontal line in the grid,
and similarly if xn ∈ Z, then y = αx + ρ must intersect a vertical line.

There are two natural classes of sequences of points with integer coordinates which can
be associated with {Pn}. One is the sequence {An}, where An = (xn, bync) which is
the closest lattice point at or below each vertical intersection. The other is the sequence
{A′n}, where A′n = (xn, dyne) which is the closest lattice point at or above each vertical
intersection. The two sequences of integer points are in turn associated with two binary
sequences {sα,ρ(n)} and {s′α,ρ(n)} referred to as the lower and upper mechanical words
respectively. These are defined, up to a constant, as the difference between successive y-
coordinates in the sequences {An}, {A′n}. Thus

sα,ρ(n) = byn+1c − bync − bαc

= b(n + 1)α + ρc − bnα + ρc − bαc (2.1.1)

and

s′α,ρ(n) = dyn+1e − dyne − bαc

= d(n + 1)α + ρe − dnα + ρe − bαc (2.1.2)

The cutting sequence introduced in Section{1.4} can be expressed as a mechanical word.
For definiteness, the convention that intersections with lattice points are denoted 10 will
be adopted. We begin by introducing a further sequence of lattice points associated with
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Figure 2.1: The mechanical words sα,ρ and s′α,ρ when y = αx + ρ doesn’t intersect a grid
point

{Pn}. These are the points {Bn}, with Bn = (un, vn) such that Bn is the point below Pn

if Pn corresponds to a vertical intersection, and is the point below and to the right if Pn is
horizontal. We can write this as

Bn = (un, vn) =

(xn, bync) if Pn is a vertical cut,

(dxne, yn − 1) if Pn is a horizontal cut

Noting that Bn+1 is either one unit above, or one unit to the right of each Bn, it fol-
lows

un + vn = n, ∀n.

The motivation for introducing {Bn} is the fact that the cutting sequence {Kα,ρ(n)} for the
line y = αx + ρ is given by

Kα,ρ(n) = vn+1 − vn = 1 + un − un+1 (2.1.3)

and with the result of the following Lemma, we can display the equivalence between cutting
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sequences and mechanical words.

Lemma 2.1.1. For α > 0 and general ρ,

vn =
⌊

α

1 + α
n +

ρ

1 + α

⌋
.

Proof. As the equation of the line is y = αx + ρ, it follows that Pn is vertical if and only if

vn ≤ unα + ρ < 1 + vn

which using un + vn = n can be rewritten as

vn ≤ (n− vn)α + ρ < 1 + vn.

This in turn is equivalent to

vn(1 + α) ≤ nα + ρ < 1 + (1 + α)vn

which gives

vn ≤ n
α

1 + α
+

ρ

1 + α
<

1
1 + α

+ vn.

Hence the formula holds for vertical Pn.

We observe that Pn is horizontal if and only if

1 + vn ≤ unα + ρ < 1 + vn + α.

Since un + vn = n this can be rewritten as

1 + vn ≤ (n− vn)α + ρ < 1 + vn + α

or equivalently
1 + (1 + α)vn ≤ nα + ρ < (1 + α)vn + (1 + α)

which gives

vn +
1

1 + α
≤ α

1 + α
n +

ρ

1 + α
< vn + 1.

Hence, the formula also holds for horizontal Pn, and so holds for all Pn. �
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Proposition 2.1.2. For α > 0 and general ρ,

Kα,ρ(n) = s α
1+α

, ρ
1+α

(n).

Proof. From (2.1.1), (2.1.3) and Lemma 2.1.1 the result follows. �

Another convention for cutting sequences passing through lattice points is to denote this by
the two letters 01 instead of 10. In this case, with the cutting sequence denoted {K ′

α,ρ(n)},

K ′
α,ρ(n) = v′n+1 − vn

while the analogue of Lemma 2.1.1 gives

v′n =
⌈

α

1 + α
n +

ρ

1 + α

⌉
.

Consequently
K ′

α,ρ(n) = s′ α
1+α

, ρ
1+α

. (2.1.4)

This formula is consistent with the fact that sα,ρ = s′α,ρ for αn + ρ /∈ Z, which in turn
is immediate from the geometrical definition, and further that if αn + ρ = k ∈ Z, then
(sα,ρ(n− 1), sα,ρ(n)) = (1, 0), while (s′α,ρ(n− 1), s′α,ρ(n)) = (0, 1).

Let’s consider the particular cutting sequence {Kφ,φ(n)} where φ is the golden ratio. It
follows from Proposition 2.1.2 that

Kφ,φ(n) =
⌊

1
φ

(n + 2)
⌋
−
⌊

1
φ

(n + 1)
⌋

.

The first few members are

Kφ,φ = (. . . , 0, 0, 1, 1, 2, 3, 3, 4, . . .)− (. . . ,−1, 0, 0, 1, 1, 2, 3, 3, . . .)

= . . . , 1, 0, 1, 0, 1, 1, 0, 1, . . .

where we have underlined the element corresponding to n = 0 .

This seems to be the word f lower, a fact which can be confirmed by studying the transfor-
mation properties of mechanical words with respect to substitution. Before this study can
be undertaken, a variant of an upper mechanical word needs to be introduced.
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Figure 2.2: The mechanical words sα,ρ and s′α,ρ when y = αx + ρ intersects a grid point

2.2 The reciprocal mechanical word, gβ,γ

We define the reciprocal mechanical word gβ,γ by gβ,γ = {gβ,γ(n)}∞n=−∞, where

gβ,γ(n) =

1 if n = bkβ + γc for some integer k,

0 otherwise.

with β > 1.

This word is useful for its mathematical equivalence to certain mechanical words. We shall
make use of this relationship when we look at the E and G transforms, which we shall
introduce later.

As an example, if we take β = φ and γ = 0, we can generate the first few members of the
reciprocal mechanical word by calculating bkφc for consecutive integer k
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k . . . -1 0 1 2 3 4 5 . . .

kφ . . . -1.62.. 0 1.62.. 3.24.. 4.85.. 6.47.. 8.09.. . . .

bkφc = n . . . -2 0 1 3 4 6 8 . . .

We see here that gβ,γ = 1 for n = -2, 0, 1, 3, 4, 6, 8, . . . and 0 for n = -1, 2, 5, 7, . . . The
reciprocal mechanical word gφ,0 is therefore gφ,0 = . . . 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1 . . ., with
the 0th element underlined, which appears to be the doubly infinite upper Fibonacci word,
fupper.

Theorem 2.2.1. If β > 1, then

gβ,γ(n) = s′1
β

,− γ
β

(n).

Proof. Suppose first that n is such that gβ,γ(n) = 1. Then n = bkβ + γc for some integer
k. It follows that

n ≤ kβ + γ < n + 1.

Writing kβ + γ = n + ε where n and ε are the integer and fractional parts respectively of
kβ + γ, where obviously 0 ≤ ε < 1, shows that

(k − 1)β + γ = kβ + γ − β and (k + 1)β + γ = kβ + γ + β

= n + ε− β = n + ε + β

< n > n + 1

Hence
(k − 1)β + γ < n ≤ kβ + γ < n + 1 < (k + 1)β + γ

which is equivalent to

k − 1 <
n− γ

β
≤ k <

n + 1− γ

β
< k + 1.

It follows from this that⌈
n + 1− γ

β

⌉
= k + 1, and

⌈
n− γ

β

⌉
= k.
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Consequently,
s′1

β
,− γ

β

(n) = (k + 1)− k = 1.

Now we consider n values such that gβ,γ(n) = 0. Then, ∀k ∈ Z, n 6= bkβ + γc. The
condition β > 1 implies that there must exist, for each n 6= bkβ +γc, an integer b such that

b(b− 1)β + γc < n < n + 1 < . . . < bbβ + γc.

Thus
(b− 1)β + γ < n < n + 1 < . . . < bβ + γ

or equivalently

(b− 1) <
n− γ

β
<

n + 1− γ

β
< . . . < b.

It follows that ⌈
n− γ

β

⌉
=
⌈

n + 1− γ

β

⌉
= b

and so in this case
s′1

β
,− γ

β

(n) = b− b = 0.

�

2.3 The E and G transforms

We define the transforms

E :=

0 7→ 1

1 7→ 0

and

G :=

0 7→ 0

1 7→ 01
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These transforms operate on mechanical words to create new mechanical words, and we
shall use them later to define a new transform, θm. Lothaire [10] studied these transforms
in detail.

Lemma 2.3.1. For any irrational number α and real number ρ, the following relations hold

E(sα,ρ) = s′1−α,1−ρ

and
E(s′α,ρ) = s1−α,1−ρ

Proof. For n ≥ 0,

s′1−α,1−ρ(n) = d(1− α)(n + 1) + 1− ρe − dn(1− α) + 1− ρe

= 1− (d−αn− ρe − d−α(n + 1)− ρe)

and as −d−re = brc for every real number r,

= 1− (bα(n + 1) + ρc − bαn + ρc)

= 1− sα,ρ(n)

Hence, the first equality is proven, and the second is analogous. �

Lemma 2.3.2. Let 0 < α < 1, 0 < ρ ≤ 1. Then

G(s′α,ρ) = s′ α
α+1

, ρ
α+1

and if 0 ≤ ρ < 1, then
G(sα,ρ) = s α

α+1
, ρ
α+1

Proof. As s′β,γ(n) = g 1
β

,− γ
β

(rewriting Theorem 2.2.1), we wish to prove

G(s′α,ρ) = g1+ 1
α

,− ρ
α

(2.3.1)
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This result is established by showing that the position N of the mth digit 1 in the sequence
G(s′α,ρ) satisfies the condition for the occurence of a digit 1 in the reciprocal mechanical
word g1+ 1

α
,− ρ

α
. From the definition of g1+ 1

α
,− ρ

α
,

N + 1 =
⌊
(1 +

1
α

)m− ρ

α

⌋

or equivalently
N −m + 1 =

⌊m

α
− ρ

α

⌋
. (2.3.2)

In obtaining the left hand side of the first equation, the fact that the positions are counted
from the origin at position 0 accounts for the +1.

On the left hand side of (2.3.1) , from the 0th sequence member and to the right we have

G(s′α,ρ) = G(s′α,ρ(0))G(s′α,ρ(1)) . . . G(s′α,ρ(n)) . . .

As G(0) = 0 and G(1) = 01, the mth digit 1 to the right of and including the origin occurs
as the output of G(s′α,ρ(m

∗)) where s′α,ρ(m
∗),m∗ ≥ 0 is the mth digit 1 in the sequence

s′α,ρ(0)s′α,ρ(1) . . . It follows that

# 0’s up to the mth 1 in output = m∗

# 1’s up to the mth 1 in output = m− 1

and so

N = position of the mth 1

= # 0’s + # 1’s up to the mth 1

= m∗ + m− 1 (2.3.3)

There is another consequence of s′α,ρ(m
∗) being the mth digit 1 in s′α,ρ(0) s′α,ρ(1) . . . This

is that

m = s′α,ρ(0) + s′α,ρ(1) + . . . + s′α,ρ(m
∗)

= dα(m∗ + 1) + ρe − dρe

= dα(m∗ + 1) + ρe − 1 (2.3.4)
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where to obtain the second equality, the definition (2.1.2) of s′α,ρ has been used, together
with it’s telescoping property under summation, and that 0 < α < 1. In the final equality
the fact that 0 < ρ ≤ 1 has been used. Using this equation, the fact that s′α,ρ(m

∗) = 1, and
the definition (2.1.2), it follows

dαm∗ + ρe = m (2.3.5)

Considering (2.3.4) and (2.3.5) together shows

αm∗ + ρ ≤ m < α(m∗ + 1) + ρ

⇒ m∗ ≤ m

α
− ρ

α
< m∗ + 1

⇒ m∗ =
⌊m

α
− ρ

α

⌋
Substituting (2.3.6) into (2.3.3), and comparing with (2.3.2), we see that N , the position of
the mth1 is the same for both sides of (2.3.1).

It remains to consider the equality (2.3.1) for positions to the left of the origin. For such
positions G(s′α,ρ) = . . . G(s′α,ρ(−n)) . . . G(s′α,ρ(−2))G(s′α,ρ(−1)).

Again, as G(0) = 0 and G(1) = 01, we have that the mth digit 1 to the left of the origin
occurs at the output of G(sα,ρ(−m∗)), where sα,ρ(−m∗) is the mth digit 1 reading from
right to left in the sequence . . . s′α,ρ(−2)s′α,ρ(−1). We see from this that the position −N

of the mth digit 1 to the left of the origin satisfies (2.3.3). The analogue of (2.3.4) is that

m = s′α,ρ(−m∗) + s′α,ρ(−m∗ + 1) + . . . + s′α,ρ(−1)

= dρe − dα(−m∗) + ρe

= 1 + bα(−m∗)− ρc (2.3.6)

Since s′α,ρ(−m∗) = 1, it follows from this that

dα(−m∗ + 1) + ρe = −m + 2

or equivalently
bα(m∗ − 1)− ρc = m− 2. (2.3.7)
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Together (2.3.6) and (2.3.7) imply

α(m∗ − 1)− ρ < m− 1 ≤ αm∗ − ρ

which is equivalent to

m∗ =
⌈

m− 1
α

+
ρ

α

⌉
(2.3.8)

On the right hand side of (2.3.1), from the definition of g1+ 1
α

,− ρ
α

−N =
⌊
(1 +

1
α

)(−m + 1)− ρ

α

⌋
= −

⌈
(1 +

1
α

)(m− 1) +
ρ

α

⌉
= −m + 1−

⌈
m− 1

α
+

ρ

α

⌉
(2.3.9)

where the term +1 in (−m + 1) accounts for the positions being counted from −1. This
agrees with the equation for N obtained from (2.3.8) and (2.3.3) taken together.

The proof for G(sα,ρ) = s α
α+1

, ρ
α+1

is analogous. �

2.4 The θm transform

We can now use the E and G transforms to define a new transform, θm, specified by

θm = Gm−1 ◦ E ◦G :=

0 7→ 0m−11

1 7→ 0m−110
(2.4.1)

This transform and a slight variation were studied by de Bruijn [3]. We see that the spe-
cial case m = 1 is the substitution rule that uniquely defines the Fibonacci substitution
sequence.

Theorem 2.4.1. For m ≥ 1 and 0 < α, ρ < 1, one has

θm(sα,ρ) = s′ 1
α+m

, 1+α−ρ
α+m

. (2.4.2)
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Proof. Using Lemma 2.3.1, Lemma 2.3.2 and (2.4.1), the result follows, by successive
application of the corresponding transformation rules. �

Corollary 2.4.2. For m ≥ 1 and α > 0,

θm(sα,α) = s′ 1
m+α

, 1
m+α

.

Corollary 2.4.3. For m ≥ 1 and α = −m+
√

m2+4
2 , one has

θm(sα,ρ) = s′α,α(1−ρ−m)+1.

From Corollary 2.4.3, we see that taking m = 1, we indeed have that s 1
φ

,0 = f lower and
s′1

φ
,0

= fupper, confirming the statements made in Section{2.1} and Section{2.2}.

As mechanical words are equivalent to cutting sequences, we see from Theorem 2.0.8 and
Corollary 2.4.3 that words created from a line with slope α = −m+

√
m2+4

2 ,m ≥ 1 are
invariant under transformation by θm. Hence these words remain in the same LE-class after
transformation by θm, which answers our original question posed at the beginning of this
chapter.

2.5 Continued fractions and the θm transform

It is also interesting to study the effect of consecutive θm transformations acting on a me-
chanical word sβ,γ , where m can vary after each transformation, as α and ρ in the resulting
word sα,ρ have special properties.

Restrict attention now to irrational α. Consider the line y = αx + ρ. Let (x0, y0) be a point
on this line. Then all other points (x, y) on the line satisfy

α =
y − y0

x− x0
. (2.5.1)

Suppose furthermore that both x0 and y0 are integer. Because α is irrational, it follows
immediately from (2.5.1) that there are no other points (x, y) on the line which are both
rational. A consequence is that there is at most one grid point that the line y = αx + ρ

passes through for α irrational.
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Now, as sα,ρ and s′α,ρ only differ at the points where our line intersects a grid point, we
can define a binary sequence {cα,ρ(n)} which is formed from the elements of either sα,ρ or
s′α,ρ to the right of this intersection. We shall call this sequence the coequal word, and it is
defined as

cα,ρ(n) = sα,α(n), n > n∗ (2.5.2)

where n∗ is the sequence member corresponding to a grid point intersection. The simplest
case is when ρ = α and thus n∗ = −1. Let us write cα,α = cα.

From Corollary 2.4.2 we see that

θm(cα) = c 1
m+α

. (2.5.3)

This can be used to connect continued fractions to coequal - and hence mechanical - words.
Every irrational number γ > 0 has a unique simple continued fraction expansion

γ = m0 +
1

m1 +
1

m2 +
1

m3 +
1

. . .

(2.5.4)

where m0,m1, . . . are integers and m0 ≥ 0, mi > 0 for i ≥ 1. This information can be
written in a more compact form

γ = [m0,m1,m2, . . .],

where the integers mi are called the partial quotients of γ. If a number α has a contin-
ued fraction expansion which is eventually periodic, we overline the part of the continued
fraction expansion which is repeated periodically, ie.

α = [0, a1, a2, . . . , an, an+1, an+2, . . . , an+i]

for some integers i, n ≥ 0. If α = [0,m1,m2, . . .] is the continued fraction expansion of an
irrational number α, where 0 < α < 1 and if for some irrational β, with 0 < β < 1,

β = [0,mi+1,mi+2, . . .]
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we shall write
α = [0,m1,m2, . . . ,mi + β].

With these notations established, the following result is a consequence of Corollary 2.4.3
and (2.5.3).

Corollary 2.5.1. If α = [0,m1,m2, . . . ,mi + β] for some irrational α and 0 < α, β < 1,
then

cα = θm1 ◦ θm2 ◦ . . . ◦ θmi(cβ)

From this result in turn the substitution mapping leaving invariant a class of coequal words
can be determined.

Corollary 2.5.2. If 0 < α < 1 is an irrational real number with the purely periodic
continued fraction expansion

α = [0,m1,m2, . . . ,mn].

then the coequal word cα is a fixed point of the sequence of transforms

θm1 ◦ θm2 ◦ . . . ◦ θmn

Define ρk to be the value of ρ and αk to be the value of α after k transformations θmj to
sβ,γ , so that

sαk,ρk
= θmi−k+1

◦ θmi−k+2
◦ . . . ◦ θmi(sβ,γ), 1 ≤ k ≤ i.

Applying the transforms θmi , θmi−1 , . . . consecutively, we find that

{α1, α2, . . .} =


1

mi + β
,

1

mi−1 +
1

mi + β

, . . .

 . (2.5.5)

and

{ρ1, ρ2, . . .} =

{
α1(1 + (β − γ)), α2(1−

β − γ

mi + β
), α3(1 +

β−γ
mi+β

mi−1 + 1
mi+β

), . . .

}
(2.5.6)
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From (2.5.6) we see that there seems to be a pattern to the consecutive values of ρ′ks, 1 ≤
k ≤ i. In fact if we define α0 = 1, then the following holds true.

Proposition 2.5.3. If the mechanical word sβ,γ does not pass through a grid point and
0 < β, γ < 1, then

α = αk = [0,mi−k+1,mi−k+2, . . . ,mi + β]

and
ρk = αk(1− (−1)kαk−1αk−2 . . . α1α0(β − γ))

are such that

sαk,ρk
= θmi−k+1

◦ θmi−k+2
◦ . . . ◦ θmi(sβ,γ), 1 ≤ k ≤ i. (2.5.7)

Proof. We proceed by induction. As s does not pass through a grid point, (2.4.1) can be
rewritten as

θm(sβ,γ) = s 1
β+m

, 1+β−γ
β+m

. (2.5.8)

This shows (2.5.7) is true for k = 1. We suppose now that it is true for general k < i, and
seek to show that it is true for k + 1 substituted in (2.5.7). Now

sαk+1,ρk+1
= θmi−k

(sαk,ρk
)

= s 1
αk+mi−k

,
1+αk−ρk
αk+mi−k

Hence

αk+1 =
1

αk + mi−k
,

ρk+1 =
1 + αk − ρk

αk + mi−k

= ak+1(1 + αk − ρk)

Substituting in the formulas for αk in the first formula and ρk in the second, as assumed in
the induction step, indeed gives the same formulas back with k 7→ k + 1. �
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In the case k = i, Proposition 2.5.3 states that

sαi,ρi = θm1 ◦ θm2 ◦ . . . ◦ θmi(sβ,γ)

with

αi = [0,m1,m2, . . . ,mi + β],

ρi = αi(1− (−1)iαi−1αi−2 . . . α1α0(β − γ)).

Note that this reduces to the statement of Corollary 2.5.1 in the case γ = β.
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Chapter 3

Further Research

We can consider doubly infinite substitution sequences to be tilings of one-dimensional
spaces, where the alphabet A is the set of tiles. This perspective has higher dimensional
analogues such as the Penrose kite and dart tiling of the plane, introduced by Penrose in
1978 [14]. Penrose tilings can contain infinite chains of long and short ‘bow ties’ which
display similar properties to those of the one-dimensional Fibonacci substitution sequence.
We can grow Penrose tilings by repeated substitution of a starting patch of tiles using the
kite-dart substitution rule (See Figure 3.11) D 7→ D + K, K 7→ 2K + D, which can be
written as a substitution matrix

P =

(
1 1
1 2

)

Long and short bow ties become a copy of themselves with added tiles around the extrem-
ities after substitution, and this copy is aligned along the same axis. The ratio of long to
short bow ties in these infinite chains (and also the ratio of kites to darts) is φ : 1. To see
this note that the substitution matrix for the Fibonacci substitution sequence is

Mf =

(
0 1
1 1

)
1Figure 3.1 provided by E. O. Harriss,

The Tiling Encyclopedia
http://tilings.math.uni-bielefeld.de/tilings/substitution rules/penrose kite dart

44



and so P = M2
f . If we label long bow ties L and short bow ties S then the substitution rule

for the long and short bow ties is S 7→ L,L 7→ L + S, which is the Fibonacci substitution
sequence.

Figure 3.1: The deflation of Penrose’s kite and dart

In addition to the notion of a cutting sequence, there is a further geometrical perspective on
mechanical words, which is of particular interest for its generalization to higher dimensions
and corresponding application to aperiodic (non-periodic) tilings of the plane. For this, let
α be irrational and consider the reciprocal mechanical word gα,0. Draw the lines y = αx

and y = αx − 1 on the square lattice. Because nα ≥ bnαc ≥ nα − 1, we see that
gα,0(n) = 1 if (k, bkαc) with bkαc = n is inside the strip for some integer k. Hence the
y−coordinates of the set of all integer points inside the strip gives the values of n such that
gα,0(n) = 1. Translating the strip by drawing the lines y = αx+ρ and y = αx−1+ρ, the
same statement now applies to the reciprocal mechanical word gα,ρ. Further, the word can
be represented geometrically by projecting these integer points onto the line y = αx + ρ.
Only two segment lengths are possible, with the short length corresponding to a 0 and the
long length corresponding to a 1.

This so called projection method gives further insight into the invariance of certain cutting
sequences under substitutions. Consider in particular the θ1 transform. The substitution
0 7→ 1 with 0 relating to crossing the x-axis and 1 to crossing the y-axis can be viewed as
the linear transformation x 7→ y, while the substitution 1 7→ 10 can be viewed as the linear
transformation y 7→ x + y. These two linear transformations are specified by the matrix
Mf defined above.
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The eigenvalues and corresponding eigenvectors for this transformation are

λ± =
1±

√
5

2
, ~u± =

(
1

λ±

)

Note that ~u+ · ~u− = 0, which can be anticipated from the transformation matrix being
symmetric. The directions parallel to ~u+ are expanded by the factor λ+ (note |λ+| > 1)
while the directions parallel to ~u− are contracted by the factor λ− (note |λ−| < 1). The
strip between y = λ+x and y = λ+x − 1 is mapped to the strip between y = λ+x − λ−

and λ+x. The same sequence of long and short segments (now multiplied by λ+) is seen in
the transformed strip.

Penrose rhomb tilings, which are equivalent to Penrose kite and dart tilings, can be con-
structed by choosing a plane of irrational slope through the 5-dimensional integer lattice,
and projecting all points within a certain perpendicular distance onto the plane [3]. The
associated theory could more than fill a further Honours year thesis...
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