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Chapter 1

Introduction

The main theme of this thesis is to relate probability distributions of two seemingly different topics:
random matrix theory and queueing processes.

Random matrix theory is used widely in theoretical physics for its accurate prediction of a num-
ber of observable quantities. Some examples include the statistical properties of highly excited
energy levels of heavy nuclei and the conductance fluctuations in mesoscopic wires, [?] and [?]. In
the application to heavy nuclei, the Hamiltonian is approximated by an N ×N matrix. The Hamil-
tonian must have real eigenvalues and as a result of an axiom of quantum mechanics, this N × N
matrix must be Hermitian. The entries of the Hermitian matrix are not known and to compensate for
this, the entries of the matrix are taken to be random variables from a probability distribution (there
may be different distributions for the diagonal elements and the off diagonal elements). However
there is one other feature of the physical problem which can be accounted for in the random matrix
model. This is the feature that for physical systems with a time reversal symmetry, all the elements
of the matrix are taken to be real. The reason for this is that in quantum mechanics, the time rever-
sal operator corresponds to complex conjugation, so for a Hermitian matrix to be invariant under
complex conjugation it must be real symmetric. In the theoretical description of the conductance
of mesoscopic wires, the relevant quantity is MT M where M is the transfer matrix describing the
passage of the plane wave states through the system. Again a time reversal symmetry would restrict
the entries of M to be real, but in this problem there is no other restriction (note that in general,
matrices of the form MT M have all eigenvalues non-negative).

In the application of random matrix theory to queueing processes, both random Hermitian matrices
and random positive definite matrices are of relevance. However rather then having real elements
as in the applications to physical problems with time reversal symmetry, the elements are complex.
In a physical problem, time reversal symmetry can be broken by the application of a magnetic field.
Another peculiar feature particular to the queueing application is that it is the distribution of the
largest eigenvalue that is the quantity of primary interest, where previously it was the bulk or mid-
dle of the range eigenvalues for the nuclear spectrum problem and the smallest eigenvalues for the
quantum conductance problem. In chapter ?? the eigenvalue probability density function for com-

5



plex Hermitian matrices with Gaussian entries is calculated, as is the eigenvalue probability density
function for random positive definite matrices MT M with the elements of M complex Gaussians.
The characteristic polynomial for both these classes of random matrices satisfies a random three
term recurrence. Computing the largest zero of these polynomials allows the empirical distribution
of respective largest eigenvalues to be computed. These are presented in a histogram, after appro-
priate centering and scaling.

In chapter ??, the task of computing the exact form of the scaled distribution of the largest eigen-
value is considered, in the N → ∞ limit this distribution is the same for both complex Hermitian
matrices and positive definite matrices. The exact form is given in terms of a solution of a special
non-linear equation called the Painlevé II equation. To obtain high precision statistical character-
isation of the distribution, a power series solution of the differential equation is obtained (using
computer algebra) at unit intervals for a large range of the independent variable. From this, the
corresponding power series for the distribution itself are obtained at the same unit intervals.

Queueing theory can be applied to many different queueing processes, from people waiting in a
bank queue, to products passing through various stages of production. This thesis considers queues
in series. The specific model considered here is described by a series of n single servers with unlim-
ited waiting space and a first-in first-out service. Chapter ?? describes this specific queueing model
and the different ways it can be represented. One of the basic representations is a matrix of positive
entries corresponding to queueing times for each job in each queue. This data can also be repre-
sented as a set of growth models which are described by a series of non-intersecting lattice paths.
The Robinson-Schensted-Knuth correspondence [?] shows a bijection between non-negative matri-
ces and pairs of semi-standard tableaux called Young tableaux. A fundamental observable quantity
relating to the queueing process is the exit time of the final job from the final queue. When the ser-
vice times are random variables chosen from the exponential distribution, an analytic formula can
be obtained for the probability distribution of this exit time. This formula is precisely that for the
distribution of the largest eigenvalue in the Laguerre Unitary Ensemble of random complex positive
definite matrices. Its limiting form is the distribution described in chapter ??, giving a limit formula
for exit times in the queueing process.



Chapter 2

Empirical Distribution of an Eigenvalue
Probability Density Function

The basic idea of random matrix theory is to select N×N matrices according to a given probability
measure, then to diagonalise these matrices and record the statistical properties of the eigenvalues.
To record accurate statistical properties of the eigenvalues we must repeat the process a large number
of times and we present the frequencies in a histogram. This idea will be applied to Hermitian
matrices and positive definite matrices with complex Gaussian entries and the chosen statistical
property will be the scaled distribution of the largest eigenvalues.

2.1 Complex Hermitian Matrices

Definition 1. An Hermitian matrix is a square matrix with real and complex entries such that it
is equal to its own conjugate transpose (X = X

T ), which is also called the Hermitian adjoint.
Equivalently:

for each entry xjk(j ≤ k) it is required that xjk = xkj

For example the matrix  1 3− i 0
3 + i 3 −2i

0 2i 0


is Hermitian. As a result of the definition of a Hermitian matrix, only real entries can exist on the
main diagonal. In general matrix diagonalisation involves transforming a square matrix X by a
similarity transformation X 7→ B−1XB to obtain a diagonal matrix L. Let L = diag(λ1, . . . λN )
and B = [~bk]k=1,...N where ~bk thus denotes the kth column of B. Then the equation B−1XB = L
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is seen to be equivalent to the eigenvalue equations

X ~bk = λk
~bk (k = 1, . . . , n)

It is known, [?] that for an Hermitian matrix X , B = U where U is a unitary matrix such that
U

T
U = I , where I is the identity matrix. Thus the eigenvectors are mutually orthogonal and

they have their length normalised to unity. In the case that the eigenvalues are distinct, the former
property is straightforward to establish.

Proposition 1. For an Hermitian matrix,

a) the eigenvalues λ are real and

b) for distinct eigenvalues, λ1 and λ2 and corresponding eigenvectors u1 and u2 the orthogo-
nality u1 · u2 = 0 holds.

Proof a)
For an eigenvector u we have the eigenvalue equation

Xu = λu (2.1.1)

Taking the conjugate transposes of both sides we get

X
T
uT = λuT

As X is an N × N Hermitian matrix, and thus X = X
T it follows that the right hand side can be

rewritten
uT X = λuT

Acting on both sides with u gives
uuT X = uλuT

Multiplying equation ?? through by uT gives

uT Xu = uT λu

Hence
uλuT = uT λu

As u 6= 0, so that the dot product uT · u > 0 we must have λ = λ, so the eigenvalues are real as
required.

Proof b)
We begin with the eigenvalue equation

Xu1 = λ1u1

Acting on both sides with uT
2 gives

uT
2 Xu1 = λ1uT

2 u1



As X is Hermitian it follows that the right hand side can be rewritten

uT
2 Xu1 = (Xu2)Tu1

= λ2uT
2 u1

Hence
λ1uT

2 u1 = λ2uT
2 u1

As λ1 and λ2 are distinct this requires uT
2 u1 = u1 · u2 = 0, which gives us the desired result. �

2.2 The Gaussian Unitary Ensemble

Definition 2. A random Hermitian N × N matrix X is said to belong to the Gaussian Unitary
Ensemble or GUE if the diagonal entries, xjj and the upper triangular entries, xjk = ujk + ivjk

are independently chosen with the following probability density functions
The diagonal entries

1√
π

e−x2
jj

The upper triangle entries
2
π

e−2(u2
jk+v2

jk) =
2
π

e−2|xjk|2

Equivalently, the diagonal entries have Gaussian distribution N [0, 1√
2
] and the upper triangular

entries have Gaussian distribution N [0, 1
2 ] + iN [0, 1

2 ].

The probability distribution of the matrix, P (X), is defined as the product of the probability density
functions of all the independent entries

P (X) =
N∏

j=1

1√
π

e−x2
jj

∏
1≤j<k≤n

2
π

e−2|xjk|2

Proposition 2.
P (X) ∝ e−Tr(X2)

where Tr(X2) is the trace of the matrix X2.

The trace of a matrix is defined as the sum of all of the diagonal entries.
Proof
For a general N ×N matrix X = [xjk]j,k=1,...,N ;

X2 =

 N∑
p=1

xjpxpk


j,k=1,...,N



which comes from the rule for matrix multiplication. For an Hermitian matrix xpk = xkp, so in this
case

X2 =

 N∑
p=1

xjpxpk


j,k=1,...,N

Setting j = k gives the diagonal entries. Summing over j the shows

Tr(X2) =
N∑

j=1

N∑
p=1

|xjp|2

=
N∑

j=1

x2
jj + 2

∑
1≤j<p≤N

|xjp|2

the second line was obtained using the fact that xjj is real as well as the fact that |xjp|2 = |xpj |2.
Consequently

e−Tr(X2) = e−
PN

j=1 x2
jj−2

P
1≤j<p≤N |xjp|2

=
N∏

j=1

e−x2
jj

∏
1≤j<p≤N

e−2|xjp|2

which implies the stated result. �

Proposition 3. Similarity transformation by a unitary matrix maps Hermitian matrices to Hermitian
matrices.

Proof For X Hermitian and U unitary we want to show that U−1XU is Hermitian. Now:

(U−1XU)T = (U−1
XU)T

= U
T
X

T (UT )−1

= U−1XU

as required. �

Proposition 4. Tr(X2) is unchanged if X undergoes a similarity transformation by a unitary
matrix.

Proof
Tr((U−1XU)2) = Tr(U−1X2U) = Tr(X2)

where to obtain the final equality the cyclic property of the trace,

Tr(AB) = Tr(BA)

has been used. �



The result of propositions ?? and ?? show us that:

P (U−1XU) = P (X)

Because of this unitary invariance, random matrices specified as in definition ?? are given the ad-
jective ”Unitary” in the name Gaussian Unitary Ensemble.

2.3 The Eigenvalue Probability Density Function

Associated with the probability density function P (X) is the probability that an N ×N Hermitian
matrix lies within a small interval dX of the matrix X . Thus [?]:

P (X ∈ [X, X + dX]) = P (X)(dX)

= ANe−Tr(X2)(dX)

where AN is the normalisation which is chosen so that∫
P (X)(dX) = 1

and

(dX) =
N∏

j=1

dxjj

∏
j<k

dxR
jkdxI

jk

with xjk = xR
jk + ixI

jk.
We want to deduce from this the probability density function for the eigenvalues. To do this we
require a change of variables from the elements of the matrix to variables relating to the eigen-
values and eigenvectors. For an Hermitian matrix X the diagonalisation formula can be written
X = ULU

T . On the left hand side there are N + 2(N(N − 1)/2) = N2 independent variables,
where the term N is the number of diagonal variables (which are all real), while N(N − 1)/2 is
the number of upper triangular elements, which must be multiplied by 2 since they are complex.
The lower triangular elements are not independent variables, since they are equal to the complex
conjugate of the upper triangular elements.
Consider now the right hand side. The matrix L has N independent variables, which are the eigen-
values of X (recall these are all real). How many independent variables are there in an N × N
unitary matrix? A general N × N complex matrix has 2N2 variables. For a unitary matrix the
columns must be normalised to unitary and thus

uj .uj = 1 (j = 1, . . . , N)

which gives us a total of 2N real equations and thus constraints. Further the different columns of U
must be mutually orthogonal

uj .uk = 0 (1 ≤ j < k ≤ N)



which gives us a total of 2(N(N − 1)/2) real equations and thus extra constraints. There then are
a total of N2 constraints, leaving N2 independent variables out of the 2N2 variables. So both sides
of the equation have the same number of independent variables.

To implement the desired change of variables we need the Jacobian of the transformation.
Given a set of equations, written as


u1

u2
...

uN

 =


f1(x)
f2(x)

...
fN (x)


The Jacobian is defined by 

∂f1(x)
∂x1

. . . ∂f1(x)
∂xN

...
. . .

...
∂fN (x)

∂x1
. . . ∂fN (x)

∂xN


For the change of variables from the elements of X to its eigenvalues and corresponding eigenvec-
tors, the Jocabian [?] is such that

(dX) =
∏

1≤j<k≤N

(λk − λj)2dλ1 . . . dλN (UT
dU)

The notation (UT dU) means the product of all the independent differentials in UT dU of which
there are N(N − 1). It remains to change variables in the probability density. Now

e−Tr(X2) = e−Tr(UL2U
T

) = e−Tr(L2)

= e−
PN

j=1 λ2
j

where the second equality uses the cyclic property of the trace, while the third equality uses that
fact that the square of a diagonal matrix is the square of the diagonal elements. Thus we have the
change of variables formula

ANP (X)(dX) = ANe−
PN

j=1 λ2
j

∏
1≤j<k≤N

(λk − λj)2dλ1 . . . dλN × (UT
dU)

It is important to note that the eigenvalue dependent portion;
∏

1≤j<k≤N (λk − λj)2dλ1 . . . dλN

factorises from the eigenvector dependent portion; (UT
dU). Hence integrating over (UT

dU) only
contributes a constant, and we read off that the probability density function for the eigenvalues is
given by

1
C

N∏
l=1

e−λ2
l

∏
1≤j<k≤N

(λk − λj)2 (2.3.1)

where C is the normalisation.



2.4 The Characteristic Polynomial and Empirical Calculation

For a general N ×N matrix A the characteristic polynomial pN (λ) is defined by

pN (λ) = det(λIN −A) (2.4.1)

This is a polynomial of degree N which will vanish at each of the eigenvalues λ of A. It is known,
[?] and [?], that matrices belonging to the Gaussian Unitary Ensemble have characteristic polyno-
mials that satisfy the random three term recurrence

pk(λ) = (λ− ak)pk−1(λ)− b2
k−1pk−2(λ) (k = 1, 2, ...)

where ak ∈ N [0, 1], b2
k ∈ Γ[k, 1] (2.4.2)

Here the notation Γ[s, σ] refers to the Gamma distribution.
The recurrence is subject to the initial conditions

p−1(λ) = 0 p0(λ) = 1

To study the largest eigenvalue we are interested in the statistical properties of the largest zero of
pN (λ). Further scaling behaviour for large N is sought.
For matrices that belong to the Gaussian Unitary Ensemble, it is known that the mean of the largest
eigenvalue is to leading order equal to

√
2N . Furthermore, the spacing or the difference between the

largest eigenvalue and the second largest eigenvalue is of order 1

(
√

2N
1
6 )

[?]. This suggests studying

the corresponding distribution of the largest eigenvalue by changing variables in the following way

λ 7→
√

2N +
X

√
2N

1
6

(2.4.3)

where X is the scaled variable. This distribution can be calculated empirically using the following
procedure:
For a particular N the characteristic polynomial pN (x) is computed for the recurrence ??. The roots
are computed from pN (x) = 0, then we read off the largest value of λ. This procedure is repeated
M times, for large M resulting in an array of the largest eigenvalues {x1, x2, . . . , xM}. This array
is then scaled using (??) where we introduce the new scaled variable

yj =
√

2N
1
6

(
xj −

√
2N
)

for each j = 1, 2, . . . ,M .
For a particular positive integer L, consider the intervals

(
j
L , j+1

L

)
with j = −4 × L,−4 × L +

1, . . . , L (most yj lie in these intervals) and then calculate the number of yj that are in the interval(
j
L , j+1

L

)
. These numbers must be normalised so that∑

subintervals

(number of yj) (length of subinterval) = 1



The length of each interval is 1
L and the total number of yj summed over all subintervals is M∑

subintervals

(number of yj) = M

It is therefore necessary to divide the number of yj in the interval
(

j
L , j+1

L

)
by M

L . This then gives

the final height of the interval
(

j
L , j+1

L

)
in the corresponding histogram. The histogram or bar-

plot can then be generated. The histogram that was obtained using the described procedure with
N = 50 and M = 5000 is shown in Figure ??. The code to calculate the largest eigenvalues and
the corresponding histogram is given in Appendix ??.

Figure 2.1: Eigenvalue P.d.f. for Matrices from the GUE.

We can see that this distribution looks vaguely normal with a mean at around −2 and we will later
show that this is approximately equal to a distribution called the psoft

2 distribution.

2.5 The Laguerre Unitary Ensemble

In addition to the Gaussian Unitary Ensemble, the Laguerre Unitary Ensemble, LUE is also of
interest for its application to queueing processes.

Definition 3. Let X be an N × N matrix where the entries are complex Gaussians specified by
N [0, 1√

2
]+iN [0, 1√

2
]. The Laguerre Unitary Ensemble is formed out of the positive definite matrices

XT X .

Making use of the workings which led to the calculation of the eigenvalue probability density func-
tion for matrices from the GUE, the eigenvalue probability density function for the LUE can be



shown to be given by
1
C

N∏
l=1

e−λl
∏

1≤j<k≤N

(λk − λj)
2 λl ≥ 0 (2.5.1)

Further, it is known that in terms of the scaled variable X specified by

λ = 4N + 2(2N)
1
3 X (2.5.2)

According to a result from [?], the characteristic polynomial for the LUE satisfies the following
random three term recurrence

Bj(x) = (x− v
(j)
2 )Bj−1(x)− xv

(j)
1 Bj−2(x) (2.5.3)

where B−1(x) = 0, B0(x) = 1 and v
(j)
1 , v

(j)
2 have distributions Γ[j − 1, 1] and Γ[N − j + 1, 1]

respectively. For a given value of N , this allows the largest eigenvalue to be computed as the
largest root of the characteristic polynomial. From this a histogram giving the distribution of the
corresponding scaled variable X , as specified by ??, can be obtained. This histogram in shown in
figure ?? and the corresponding code is shown in Appendix ??.

Figure 2.2: Eigenvalue P.d.f. for Matrices from the LUE

This appears to be the same distribution as that in figure ?? for the empirical distribution of the
scaled largest eigenvalue in the GUE. In fact it is a known theorem [?], that in the limit N →∞ the
distribution of the largest eigenvalue for the LUE agrees with that for the GUE.





Chapter 3

Calculating the p
soft
2 Distribution

In the previous chapter an empirical determination of the scaled distribution of the largest eigenvalue
of large GUE matrices and large LUE matrices were given. In fact in the N → ∞ limit an exact
expression for this distribution, to be denoted psoft

2 (s) is known [?]. It is given by

psoft
2 (s) =

d

ds

(
exp

(
−
∫ ∞

s
(t− s)u2(t)dt

))
(3.0.1)

where u(t) is specified in terms of the solution of a nonlinear equation. The nonlinear equation in
question is

d2q

ds2
= sq + 2q3 (3.0.2)

subject to the boundary condition
q(s; ξ) ∼ ξAi(s) (3.0.3)

where Ai(s) denotes the Airy function [?]. The equation ?? can be recognised as the α = 0 case of
the Painlevé equation [?]. The function u(t) in ?? is related to q(s; ξ) in equation ?? by

u(t) = q(t; 1) (3.0.4)

3.1 Large t expansion of u(t)

According to equations ?? and ??, the leading order large t behaviour of u(t) is given by the Airy
function. The Airy function Ai(s) is defined as the solution of the Airy equation

d2y

ds2
− sy = 0 (3.1.1)

which decays as s →∞. The precise form of Ai(s) as s →∞ is given by the following asymptotic
formula.
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Proposition 5. As s →∞ [?]

Ai(s) ∼ e−
2
3
s

3
2

2
√

πs
1
4

∞∑
n=0

(−1)n

(2
3s

3
2 )n

αn (3.1.2)

where αn is determined by the recurrence

αn =
1

72n
(6n− 1)(6n− 5)αn−1 (n = 1, 2....)

subject to the initial condition: α0 = 1.

Proof
By simply substituting the expression ?? into ??, we get

e−
2
3
s

3
2

2
√

π

∞∑
n=0

(−1)nαn

(2
3)n

[s−
3n
2

+ 3
4 −

(
−3n

2
+

1
4

)
s−

3n
2

+ 3
4

−
(
−3n

2
− 1

4

)
s−

3n
2

+ 3
4 +

(
−3n

2
− 1

4

)(
−3n

2
− 5

4

)
s−

3n
2
− 9

4 ]

=
e−

2
3
s

3
2

2
√

π

∞∑
n=0

(−1)nαn

(2
3)n

s−
3n
2

+ 3
4

This simplifies to:

∞∑
n=0

(−1)nαn

(
2
3

)−n

s−
3n
2
− 9

4

(
−3n

2
− 1

4

)(
−3n

2
− 5

4

)
= 3

∞∑
n=0

(−1)nαn+1

(
2
3

)−(n+1)

s−
3n
2
− 9

4 (n + 1)

Equating coefficients gives the recurrence and so verifies the result �

As a correction to the leading s →∞ behaviour, we write

q(s) = ξAi(s) + ξ3Q(s) (3.1.3)

where |Q(s)| � Ai(s) for s →∞, and here ξ3 has been put in front of Q(s) for convenience which
will become obvious later.
Substituting this into ??, we get

ξAi′′(s) + ξ3Q′′(s) = sξAi(s) + sξ3Q(s) + 2
(
ξAi(s) + ξ3Q(s)

)3
The left hand side of this equation reduces to

sξAi(s) + ξ3Q′′(s)

upon using the Airy equation ??. Equating and dividing through by ξ3, gives

Q′′(s) = sQ(s) + 2
(
Ai(s) + ξ2Q(s)

)3



By assumption |Q(s)| � Ai(s) for s large so for s →∞ we can simplify this to read

Q′′(s) ∼ sQ(s) + 2 (Ai(s))3 (3.1.4)

Proposition 6. Replace the ∼ for an = in equation ?? to obtain the differential equation

Q′′(s) = sQ(s) + 2 (Ai(s))3 (3.1.5)

For s →∞ this admits the solution

Q(s) =
e−2s

3
2

32π
3
2 s

7
4

∞∑
n=0

(−1)n

(2
3s

3
2 )n

an (3.1.6)

where {an} satisfy the recurrence

an = α(3)
n +

3
4
nan−1 −

1
8
(n− 1

6
)(n− 5

6
)an−2 (3.1.7)

subject to the initial conditions: a−2 = a−1 = 0.

Proof
We can use equation ?? to calculate an approximation for (Ai(s))3. To do this we will need to
introduce some theory for multiplying two power series together. Consider the following two power
series A(x) and B(x),

A(x) =
∞∑

n=0

anxn B(x) =
∞∑

n=0

bnxn

Then

A(x)B(x) =
∞∑

n=0

cnxn

with

cn =
n∑

p=0

apbn−p

For example

(A(x))2 =
∞∑

n=0

a(2)
n xn

with

a(2)
n =

∞∑
p=0

apan−p

and
(A(x))3 = A(x)(A(x))2

=

( ∞∑
n=0

anxn

)( ∞∑
n=0

a(2)
n xn

)



with

a(3)
n =

n∑
p=0

apa
(2)
n−p =

n∑
p=0

an−pa
(2)
p

Noting from equation ?? that

Ai(s) ∼ e−
2
3
s

3
2

2
√

πs
1
4

∞∑
n=0

(−1)nαn

(
3

2s
3
2

)n

We can use the previous theory to show that

(Ai(s))2 ∼ e−
4
3
s

3
2

4
√

πs
1
2

∞∑
n=0

(−1)nα(2)
n

(
3

2s
3
2

)n

with

α(2)
n =

n∑
p=0

αpαn−p

Then

(Ai(s))3 ∼ e−2s
3
2

8π
1
2 s

3
4

∞∑
n=0

(−1)n

(2
3s

3
2 )n

α(3)
n

with

α(3)
n =

n∑
p=0

αpα
(2)
n−p

With these formulas established, we can prove that ?? admits the solution ?? by direct substitution.
This shows

9e−2s
3
2

32π
3
2

∞∑
k=0

(−1)kak

(
2
3

)−k

s−
3k
2
− 3

4 +
9e−2s

3
2

32π
3
2

∞∑
k=0

(−1)kak

(
2
3

)−k
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With a few index shifts and some working, this simplifies to
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Equating coefficients gives the recurrence shown in ?? and hence we have proved Proposition ??.
�

According to Proposition ??

q(s, ξ) ∼ ξAi(s) + ξ3 e−2s
3
2

32π
3
2 s

7
4

∞∑
k=0

(−1)k

(2
3s

3
2 )k

ak

As this is an asymptotic series, there is an optimal value in the k summation to truncate the series to
obtain the most accurate approximation to q(s; ξ). Working empirically, this has been calculated in

[?] to be k ≈ 4
3s

3
2
0 for s0 � 0.

3.2 Power Series Expansion of u(t)

For large s0, the results of the previous section allow q(s0, ξ) and q′(s0, ξ) to be accurately com-
puted. These values can be used to compute the coefficients in the power series expansion

q(s; ξ) =
∞∑
l=0

cl(s− s0)l (3.2.1)

by recurrence.

Proposition 7. The coefficients cn in the power series expansion ??, are specified by the recurrence

cn+2 =
s0cn + cn−1 + 2c

(3)
n

(n + 2)(n + 1)

where c
(k)
n =

∑n
j=0 cn−jc

(k−1)
j are the coefficients of (q(s, ξ))k about s0.

Proof
Let the power series expansion of (q(s; ξ))3 about s = s0 be

(q(s; ξ))3 =
∞∑

n=0

c(3)
n (s− s0)n (3.2.2)

Now we can substitute equation ?? and equation ?? into equation ?? and then equate like powers of
(s− s0) to obtain the recurrence for cn.
Firstly to calculate sq we need to write it as

sq = (s− s0)q + s0q

= s0

∞∑
l=0

cl(s− s0)l + (s− s0)
∞∑
l=0

cl(s− s0)l



Substituting into ?? we get
∞∑

n=0

n(n− 1)cn(s− s0)n−2 = s0

∞∑
l=0

cl(s− s0)l + (s− s0)
∞∑
l=0

cl(s− s0)l + 2
∞∑
l=0

c
(3)
l (s− s0)l

After some index shifts we obtain
∞∑

n=0

cn+2(n + 2)(n + 1)(s− s0)n = s0

∞∑
n=0

cn(s− s0)n +
∞∑

n=0

cn−1(s− s0)n + 2
∞∑

n=0

c(3)
n (s− s0)n

Equating coefficients of (s− s0)n gives the sought recurrence. �

In a numerical computation the series in ?? must be truncated. Because of this only values of s
sufficiently close to s0 will accurately reproduce q(s; ξ). In addition, with ξ = 1 the series ?? only
has a finite radius convergence, and s0 cannot be used outside this range, independent of the number
of terms summed over. In relation to this later point, the radius of convergence R can be calculated
from the nth root formula

1
R

= lim
n→∞

|cn|(
1
n

)

With s0 = 50, after calculating {cn}n=0,1,...,n0 with n0 = 600, it was estimated that R is between
44 and 46.
To obtain an accurate evaluation, a sequence of power series based on the points s0−is[n], is[n] = n
(n = 0, 1, . . . , nn) with nn = 90) were successively computed, starting from the power series
about s0 = 50. Here each successive power series q[s, j] is deduced from Proposition ?? with
initial condition obtained from the previous power series,

c0 = q[s0 − is[j], j − 1], c1 = q′[s0 − is[j], j − 1]

for j = 1, . . . , nn. We regard u(s) as being specified by q[s, j] for s0 − is[j + 1] < s ≤ s0 − is[j].

3.3 Power Series expansion of psoft
2

Since u(t) → 0 rapidly as t →∞, it follows from ?? that as s →∞

psoft
2 (s) ∼

∫ ∞

s
u2(t)dt

Making use of equations ?? and ?? we then have
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4π
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1
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∫ ∞
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(
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)
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=
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This bound allows us to estimate the error in replacing the infinite terminal in ?? by a finite value
s0, thus obtaining

psoft
2 (s) ≈ d

ds

(
exp

(
−
∫ s0

s
(t− s)u2(t)dt

))
(3.3.1)

Let the power series about s0 − is[j] of u2(t) be given by

u2(t) =
∞∑

n=0

c[n, 2, j](t− (s0 − is[j]))n

We use this in the range
s0 − is[j + 1] < t ≤ s0 − is[j]

Next we define

A(s, j) =
∫ s0

s
tu2(t)dt =

j−1∑
k=0

∫ s0−is[k]

s0−is[k+1]
tu2(t)dt +

∫ s0−is[j]

s
tu2(t)dt

where s0 − is[j + 1] < s ≤ s0 − is[j]. Here the key quality is the last integral, in the sense that
knowledge of it allows the computation of the integrals in the summation. This last integral can be
computed in terms of the power series of u2(t) about s0 − is[j].

Proposition 8. The quantity

a(s, j) =
∫ s0−is[j]

s
tu2(t)dt

can be written as
∞∑

n=1

d[n, j] (s− (s0 − is[j]))n

where

d[n, j] = −
(

c[n− 2, 2, j]
n

+ (s0 − is[j])
c[n− 1, 2, j]

n

)
with c[−1, 2, j] = 0

Proof
We begin by noting∫ s0−is[j]

s
tu2(t)dt =

∫ s0−is[j]

s
(t− (s0 − is[j]))u2(t)dt + (s0 − is[j])

∫ s0−is[j]

s
u2(t)dt

and substitute the power series to obtain∫ s0−is[j]

s
tu2(t)dt

=
∫ s0−is[j]

s

∞∑
n=0

(t− (s0 − is[j]))n+1c[n, 2, j]dt + (s0 − is[j])
∫ s0−is[j]

s

∞∑
n=0

(t− (s0 − is[j]))nc[n, 2, j]dt

= −
∞∑

n=0

c[n, 2, j]
n + 2

(s− (s0 − is[j]))n+2 − (s0 − is[j])
∞∑

n=0

c[n, 2, j]
n + 1

(s− (s0 − is[j]))n+1



After some index shifts and simplification this last line reads

−
∞∑

n=1

(
c[n− 2, 2, j]

n
+ (s0 − is[j])

c[n− 1, 2, j]
n

)
(s− (s0 − is[j]))n

and the result follows. �
Using this result we can compute A(s, j) according to

A(s, j) =
j−1∑
k=0

(a(s0 − is[k + 1], k)) + a(s, j)

We can now do a similar analysis on

B(s, j) =
∫ s0

s
u2(t)dt =

j−1∑
k=0

∫ s0−is[k]

s0−is[k+1]
u2(t)dt +

∫ s0−is[j]

s
u2(t)dt

Proposition 9. The quantity

b(s, j) =
∫ s0−is[j]

s
u2(t)dt

can be written in the form
∞∑

n=1

b[n, j] (s− (s0 − is[j]))n

where

b[n, j] = −
(

c[n− 1, 2, j]
n

)

Proof
Use the power series expansion of u2(t) about s0 − is[j] to write∫ s0

s
u2(t)dt =

∫ s0

s

∞∑
n=0

c[n, 2, j](t− (s0 − is[j]))ndt

After computing the integral and some index shifts and simplifying we obtain∫ s0

s
u2(t)dt = −

∞∑
n=0

c[n− 1, 2, j]
n

(s− (s0 − is[j]))n

which is the sought result. �
Using this result we can compute B(s, j) according to

B(s, j) =
j−1∑
k=0

(b(s0 − is[k + 1], k)) + b(s, j)

The quantity appearing in ?? is

−
∫ s0

s
(t− s)u2(t)dt



The above results can be used to compute the power series of this quantity about s0 − is[j]. Firstly
we need to write s as

s = (s− (s0 − is[j])) + (s0 − is[j])

Then we have

−
∫ s0

s
(t− s)u2(t)dt = −A(s, j) + ((s− (s0 − is[j])) + (s0 − is[j]))B(s, j)

At this stage in the calculation the power series expansion about s0 − is[j] of the exponent in ?? is
known. The next step is to deduce from that the power series about s0−is[j] of the exponential. This
is done automatically in the Mathematica code. The final step, as required by ??, is to differentiate
the power series. This we do automatically, after first storing the coefficients in the power series
exponential.
The Mathematica code which implements this computation is given in Appendix ??. A plot of of
the distribution psoft

2 which is produced by the code is given in Figure ??.

Figure 3.1: The psoft
2 distribution

The code can be used to compute statistical properties of the distribution. For this define the mo-
ments

µ(n) =
∫ ∞

−∞
tnpsoft(t)dt

Statistical quantities of interest are the mean µ and the variance σ2 defined in terms of the moments
by

µ = µ(1), σ2 = µ(2)− (µ(1))2 .

Also of interest are the higher order statistical quantities

γ1 =
µ(3)− 3µ(2)µ(1) + 2(µ(1))3

σ3

γ2 =
µ(4)− 4µ(3)µ(1) + 6µ(2)(µ(1))2 − 3(µ(1))4

σ4
− 3



referred to as the skewness and (excess) kurtosis respectively. These quantities have been calculated
using Mathematica (the code is shown in Appendix ??) and are shown in table ??.

mean variance skewness kurtosis
psoft
2 -1.77108680 0.81319479 0.22408420 0.09344809

Table 3.1: Statistical properties of psoft
2

Looking back at the p.d.f. for the eigenvalues for GUE matrices in Figure ?? and comparing this
to the distribution psoft

2 in Figure ??, we can see a closeness. Plotting the two on the same axes
demonstrates that the two are indeed asymptotically equal, see Figure ??.

Figure 3.2: The psoft
2 distribution and the eigenvalue p.d.f. or GUE matrcies



Chapter 4

A Model for Queueing Processes

A queueing process is defined as a time evolution of jobs through a number of queues. A random
matrix whose entries are all non-negative integers can be used to specify a queueing process. Label
the rows of the matrix from the bottom up and label the columns of the matrix from left to right.

3
0 0 1

2 3 2 1
1 2 1 0

1 2 3

Table 4.1: Matrix A

Each entry xi,j of the matrix represents the amount of time it takes queue i to process job j, once it
reaches the server at the front of the queue. Observing the queueing process defined by matrix A, it
takes queue 2, 3 units of time to process job 1. We can observe the evolution of a queueing process
using a step by step diagram showing each job (J1, J2, J3) moving through each queue (Q1, Q2,
Q3). The evolution of the queueing process defined by matrix A is shown in table ??.

Observe that all jobs start in queue 1 and each job cannot be processed until it reaches the front
of the queue when all jobs in front of it have been processed and have moved onto the next queue.
Note also that job 1 disappears from the diagram at time t = 5 because job 1 takes time 0 to be
processed by queue 3.
We can see that it takes 9 units of time for all jobs to be processed by the queues.

27



Q1 Q2 Q3 Q1 Q2 Q3
t = 0 J1 t = 1 J1

J2 J2
J3 J3

Q1 Q2 Q3 Q1 Q2 Q3
t = 2 J2 J1 t = 3 J1

J3 J2
J3

Q1 Q2 Q3 Q1 Q2 Q3
t = 4 J1 t = 5 J2

J2 J3
J3

Q1 Q2 Q3 Q1 Q2 Q3
t = 6 J2 t = 7 J3

J3

Q1 Q2 Q3 Q1 Q2 Q3
t = 8 J3 t = 9

Figure 4.1: The Queueing Process defined by matrix A

4.1 Computing Queueing Times

Let Ti,j denote the time it takes job i to leave queue j. In most cases our objective is to determine
TN,N which is the total time for all jobs to be completed. For matrix A T3,3 = 9. We would like to
be able to generate formulas for calculating this and general values of Ti,j . If we consider again our
diagram for the queueing process defined by matrix A, we can observe that to calculate how long it
takes for job 3 to leave queue 3 we must consider two scenarios:
Either queue 3 is empty when job 3 arrives at queue 3 and so can be processed straight away or
job 2 is in queue 3 and so job 3 must wait until job 2 is processed before it can be processed itself.
If we consider the first scenario we need to determine the time it takes for job 3 to leave queue
2 this time is defined by T3,2. If we now consider the second scenario we need to determine how
long it takes for job 2 to leave queue 3, which is defined by T2,3. If the time it takes for job 3 to
leave queue 2 is greater than the time it takes for job 2 to leave queue 3 then scenario one occurs,
otherwise scenario two occurs. Therefore the time it takes for job 3 to leave queue 3 will be the
maximum of T2,3 and T3,2 plus the time it takes for queue 3 to process job 3, which is denoted by
x3,3. If we consider this idea more generally we can determine our first equation for computing Ti,j .

Theorem 4.1.1.
Ti,j = max(Ti,j−1, Ti−1,j) + xi,j (4.1.1)



where Ti,j−1 is the time it takes for job i to leave queue j-1 and Ti−1,j is the time it takes for job i-1
to leave queue j.

This recurrence relation uniquely determines Ti,j given the boundary conditions: Ti,0 = T0,j = 0.
This recurrence allows the us to compute all values of Ti,j which will form a matrix [Ti,j ]. This
can be done by computing Ti,j row by row. We can also determine values for Ti,j by studying the
matrix that defines the queuing process. If we consider matrix A and continue along the same ideas
as the previous theorem. To obtain a value for T3,3, we know we must add the entry x3,3 to the
maximum of T3,2 and T2,3. In terms of matrix A, to get to the entry x3,3 we must pass through one
of the entries x3,2 or x2,3. Similarly to calculate a value for T2,2 we must calculate the values T1,2

and T2,1. If we continue this idea more generally we will obtain another formula for Ti,j .

Theorem 4.1.2. Let (1, 1)u/rh(i, j) refer to a path through the integer entries of the matrix. The
path must start at entry x1,1 and finish at entry xi,j . The path must consist of steps of either one step
up or one step right horizontal.
Then

Ti,j = max
∑
p∈P

xij (4.1.2)

where P is the set of all one step up and one step right horizontal paths that begin at the entry x1,1

and end at the entry xi,j .

An example of (1, 1)u/rh(3, 3) path for matrix A is
0 0 → 1

↑
3 2 1

↑
2 → 1 0



The maximum (1, 1)u/rh(3, 3) path for matrix A is
0 0 1

↑
3 → 2 → 1
↑
2 1 0


For the queueing process defined by matrix A, the time it takes for all jobs to be processed by the
three queues is calculated by adding the entries xij in the maximum (1, 1)u/rh(i, j) path for matrix
A

T3,3 = 2 + 3 + 2 + 1 + 1
= 9



b3 t
↘

b2 1 5
↘

b1 0 1 4
↘

0 2 0 3
↗

a3 3 1 2
↗

a2 2 1
↗

a1

x −2 −1 0 1 2

Figure 4.2:

This is of course the same as the value we determined previously using theorem ??.

4.2 Robinson-Schensted-Knuth Correspondence

There is a correspondence between integer matrices and pairs of Young tableaux called the Robinson-
Schensted-Knuth Correspondence. A Young tableau is a semi-standard tableau which is strictly
increasing along a row and weakly increasing down a column. Given an N × N matrix of non-
negative integers corresponding to a queueing process we can obtain a sequence of growth models,
represented by weighted lattice paths, from which we can obtain a Young tableau. A Young tableau
can be used to obtain a value for TN,N .

Firstly we rotate Matrix A 45◦ anti-clockwise. Label the new rows of the rotated matrix by t =
1, ..., 2N −1 and label the new columns by x = −(N −1)..., 0, ..., (N −1), this is shown in Figure
??.

The entries xij represent the heights of the weighted nucleation event at corresponding times. A
nucleation event is of width one, height xij and weight (aibj)xij and it is centered above its corre-
sponding x value. As t 7→ t + 1, each nucleation event grows one unit in both horizontal directions
and the new nucleation events for t + 1 are placed above all previous nucleation events. If there is
overlap between nucleation events the overlap is moved down to the line below and then continues
to grow with time. So at time one there is a nucleation event of width one, height two and centered
over x = 0. At time two the previous nucleation event from time one is now three units wide, it is
still two units high but there is now a new nucleation event of height one unit centered above x = 1
and another nucleation event of height three centered above x = −1. This growth process continues



until t = 2N − 1 and the event the occurs at t = 2N − 1 is called the final nucleation event. For
matrix A the sequence of growth models is shown in Figure ??.

y = 0

t = 1

a2
1b2

1

0−1 1

t = 4

y = 0
y = −1

b5
1

b2
2

b1
3

a5
2

a3
1

b1
2 a1

2
−4−3−2−1 0 1 2 3 4

-----------------------------

t = 2

y = 0
−2−1 0 1 2

b5
1

a3
2

b1
2

a3
1

t = 3

y = −1
y = 0

−3 −2 −1 0 1 2 3

b5
1

b2
2

b1
2

a4
2

a1
2

a3
1

--------------------------

t = 5

−5−4−3−2−1 0 1 2 3 4 5

b5
1

b2
2

b2
3

a1
3

a5
2

a3
1

b1
2 a1

2
-------------------------------- y = 0

y = −1

Figure 4.3: Sequence of growth models for matrix A

Using the growth models in Figure ?? we can determine recurrences for the heights of the paths and
so relate the height of the first profile to the final queuing time TN,N . The path at y = 0 is called the
level-1 path and more generally the path at y = −(N − 1) is called the nth path.

From the sequence of growth models, represented by a series of non-intersecting lattice paths, we
can obtain a pair of Young tableaux. Each row of the tableau corresponds to a different non-
intersecting lattice path that appears in the final growth model at t = 2N − 1. Row 1 of the
tableau corresponds to the lattice path at y = 0 and generally the Nth row of the tableau is rep-
resented by the path at y = 1 − N . So in this case there are two rows of each Young tableaux
which corresponds to the two lattice paths in the growth model one at y = 0 and one at y = −1.



1 1 1 1 1 2 2 3 3

2

Tableau L

1 1 1 2 2 2 2 2 3

2

Tableau R

Figure 4.4: The corresponding Young tableaux for matrix A

Two semi-standard tableaux are needed to completely describe a sequence of growth models, one
describes all weighted lattice paths left of x = 0 and the other describes all lattice paths right of
x = 0. For matrix A the pair of Young tableaux are shown in Figure ??.

The length of each row corresponds to the maximum displacement of the corresponding profile.
In the filling of the tableaux, the number of times each number is repeated gives the heights of the
various vertical segments in the corresponding profiles, reading from the left for tableau L, and from
the right for tableau R.

4.3 A Recurrence for h1

It has already been noted that TN,N satisfies the recurrence ??. Here it will be established that

h1(N,N) = TN,N (4.3.1)

by showing that h1(n1, n2) satisfies the same recurrence.

Proposition 10. h1(n1, n2) satisfies the following recurrence

h1(n1, n2) = max(h1(n1, n2 − 1), h1(n1 − 1, n2)) + xn1n2 (4.3.2)

Proof
Denote by hl(n1, n2), the maximum displacement of the level-1 path in the growth model corre-
sponding to a matrix A = [xij ], where A has been truncated so that it only includes the first n1

rows and n2 columns. Now hl(n1, n2) is formed from the displacement due to the final nucleation
event, plus the displacement due to the xn1n2 growth profile at x = 0 which can be calculated as the
maximum of the height at x = 1, denoted by d(−1) and the height at x = −1, denoted d(1). Hence

h1(n1, n2) = max(d(−1), d(1)) + xn1n2

Consider the displacement of the level-1 path at x = −1. If we deleted the (n − 1)th row of
the matrix A, we would obtain a growth model that would finish at t = 2n − 2 and the maximum
displacement of the level-1 path at this time would be the displacement d(−1) because no nucleation



event occurs above x = 0, or x = 1 due to the deletion of the column. Therefore d(−1) equals
h1(n1, n2 − 1). The same argument can be used to show that d(1) = h1(n1 − 1, n2) We therefore
obtain the desired recurrence. �

Using the growth models in figure ?? namely the growth model for t = 4 and Matrix A

h1(N,N) = max(h1(N − 1, N), h1(N − 1, N)) + xNN

= max(7 + 8) + 1
= 9

This is the same as the value we determined previously using theorem ??.

4.4 Schur Polynomials

In a Young tableaux, T let the number of times k appears in the filling be denoted mk. If the
weights of a single vertical segment in the corresponding lattice path segments are x1, . . . , xN for
k = 1, 2, . . . , N respectively, then the weight m(T ) of this particular filling is

m(T ) = xm1
1 , xm2

2 , ..., xmN
n =

N∏
i=1

(xi)mi

For example, the Young tableau

1 1 1 1 1 2 2 3 3

2 3

has weight
m(T ) = x5

1x
3
2x

3
3

The Schur polynomial sλ(x1, . . . , xN ) is defined as the sum over all weights associated with a
Young tableau of shape λ and fillings from 1 to N

sλ(x1, . . . , xN ) =
∑

fillings

xT =
∑

fillings

xm1
1 . . . xmN

N (4.4.1)

This definition is of direct relevance to specifying the total weight of lattice paths in the growth
model. Further progress also relies on an alternative expression for the Schur polynomial.



Proposition 11. Schur polynomials can be expressed as a ratio of determinants

sλ(x1, . . . , xN ) =
det[xN−k+λk

j ]j,k=1....,N

det[xN−k
j ]j,k=1,...,N

(4.4.2)

Proof
For notational convenience, the case N = 3 will be considered. Equation ?? then reads

sλ(x1, x2, x3) =

x2+λ1
1 x1+λ2

1 xλ3
1

x2+λ1
2 x1+λ2

2 xλ3
2

x2+λ1
3 x1+λ2

3 xλ3
3

x2
1 x1 1

x2
2 x2 1

x2
3 x3 1

(4.4.3)

We can show this by introducing a recurrence for the Schur polynomials. If we consider a Young
tableau with shape λ = (λ1, λ2, λ3), then we can also consider smaller Young tableaux which can
be thought of as contained inside the larger Young tableau. The smaller Young tableaux have shape
µ = µ1, µ2 and must have λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3. The smaller Young tableaux are obtained by
deleting all the 3′s in the larger Young tableau. This gives that

sλ(x1, x2, x3) =
∑

µ1,µ2:
λ1≥µ1≥λ2≥µ2≥λ3

sµ(x1, x2)x
|λ|−|µ|
3 (4.4.4)

and this together with the initial condition sλ(x1, x2, x3) = 1 for λ = ∅ uniquely specifies sλ.
Therefore the strategy we will use to show propostion ??, is to show that both sides of ?? satisfy the
recurrence ??.
To show this, we start by setting x3 = 1 and subtracting the third row in each determinant from the
other two rows in the same determinant to obtain

sλ(x1, x2, 1) =

x2+λ1
1 − 1 x1+λ2

1 − 1 xλ3
1 − 1

x2+λ1
2 − 1 x1+λ2

2 − 1 xλ3−1
2

1 1 1
x2

1 − 1 x1 − 1 0
x2

2 − 1 x2 − 1 0
1 1 1



Now dividing the first row through by x1 − 1 and the second by x2 − 1 gives

sλ(x1, x2, 1) =

∑1+λ1
n=0 xn

1

∑λ2
n=0 xn

1

∑λ3−1
n=0 xn

1∑1+λ1
n=0 xn

2

∑λ2
n=0 xn

2

∑λ3−1
n=0 xn

2

1 1 1
x1 + 1 1 0
x2 + 1 1 0

1 1 1

Subtracting the second column of each determinant from the first column and subtracting the third
column of each determinant from the second we obtain

sλ(x1, x2, 1) =

∑1+λ1
n=1+λ2

xn
1

∑λ2
n=λ3

xn
1

∑λ3−1
n=0 xn

1∑1+λ1
n=1+λ2

xn
2

∑λ2
n=λ3

xn
2

∑λ3−1
n=0 xn

2

0 0 1
x1 1 0
x2 1 0
0 0 1

Expanding by the final row and simplifying shows

sλ(x1, x2, 1) =

∑λ1
µ1=λ2

x1+µ1
1

∑λ2
µ2=λ3

xµ2
1∑λ1

µ1=λ2
x1+µ1

2

∑λ2
µ2=λ3

xµ2
2

x1 1
x2 1

or equivalently

sλ(x1, x2, 1) =
λ1∑

µ1=λ2

λ2∑
µ2=λ3

x1+µ1
1 xµ2

1

x1+µ1
2 xµ2

2

x1 1
x2 1

Hence we have shown that

sλ(x1, x2, 1) =
λ1∑

µ1=λ2

λ2∑
µ2=λ3

sµ(x1, x2) (4.4.5)

We note from equation ?? that

sλ(cx1, cx2, cxn) = c|λ|sλ(x1, x2, x3) (4.4.6)



Hence we can replace x1 by x1
x3

and x2 by x2
x3

in equation ?? to deduce

sλ(x1, x2, x3) =
λ1∑

µ1=λ2

λ2∑
µ2=λ3

sµ(x1, x2)x
|λ|−|µ|
3

which is the sought recurrence. The formula ?? also gives us the initial condition sλ(x1, x2, x3) = 1
for λ1 = 0, λ2 = 0, λ3 = 0. �

A property which can be seen from equation ?? is the symmetry of Schur polynomials. Schur
polynomials satisfy the following

sλ(x1, . . . , xn) = sλ(xσ(1), . . . , xσ(n))

for any permutation σ. This is saying that the weights in equation ?? can be permuted without
changing the corresponding Schur polynomial sλ.

Suppose the variables xj in equation ?? are specialized to xj = qj−1. This gives

sλ(1, q, . . . , qN−1) =
det[q(j−1)(N−k+λk)]j,k=1,...,N

det[q(j−1)(N−k)]j,k=1,...,N
(4.4.7)

The determinants in this expression can be evaluated by using the following identity, known as the
Vandermonde determinant formula.

Proposition 12.
det[xj−1

k ]j,k=1,...,N =
∏

1≤<k≤N

(xk − xj) (4.4.8)

Proof
Again for notational convenience, consider the case N = 3. Then equation ?? reads

1 1 1
x1 x2 x3

x2
1 x2

2 x2
3

= (x3 − x2)(x3 − x1)(x2 − x1)

Now we observe that on the left hand side, if xk = xk′ for k 6= k′, then two columns are equal and
so the determinant vanishes. It follows that the right hand side is a factor. Further, replacing xk by
αxk (k = 1, 2, 3) shows both sides are homogeneous of degree 3 and so are equal up to a constant.
That the constant is unity follows by comparing coefficients of x2

3x2x
0
1 on both sides. �

Applying equation ?? to equation ?? with xk = q(N−k+λk) in the numerator and xk = q(N−k) in



the denominator shows

sλ(1, q, . . . , qN−1) =
∏

1≤j<k≤N

qN−k+λj − qN−j+λj

qN−k − qN−j

= q
PN

j=1(j−1)λj
∏

1≤j<k≤N

1− qλj−λk+k−j

1− qk−j

Taking the limit q → 1 it follows that

sλ(x1, . . . , xN )|x1=...=xN=1 =
∏

1≤j<k≤N

λj − λk + k − j

k − j
(4.4.9)

4.5 A formula for Pr(TN,N ≤ l)

In formulating the correspondence between weighted integer matrices and weighted lattice paths,
each weight xij was taken to be proportional to (aibj)xij . A probabilistic model giving rise to this
weighting is obtained by choosing each entry xij of the matrix (or equivalently each service time in
the queueing model) with the geometrical distribution

Pr(xi,j = k) = (aibj)k(1− aibj), |aibj | < 1 (4.5.1)

With this probability distribution on the entries of the matrix, we want to know what is the proba-
bility that the maximum displacements of the corresponding lattice paths are given by the partition
λ = (λ1, λ2, . . . , λN )? This is equal to

N∏
i,j=1

(1− aibj)× (weight of the left lattice paths)× (weight of the right lattice paths)

But
weight of the left lattice paths = sλ(b1, b2, . . . , bN )

and
weight of the right lattice paths = sλ(a1, a2, . . . , aN )

We know TN,N corresponds to λ1, so summing over all λ with λ1 ≤ l gives Pr(TN,N ≤ l).
Explicitly

Pr(TN,N ≤ l) =
N∏

i,j=1

(1− aibj)
∑

λ:λ1≤l

sλ(a1, . . . , aN )sλ(b1, . . . bN ) (4.5.2)

Suppose now that ai = bj = q
1
2 for (i, j = 1, . . . , N) so equation ?? reads

Pr(xij = k) = (1− q)qk (4.5.3)



and ?? now reads

Pr(TN,N ≤ l) = (1− q)N2
∑

λ:λ1≤l

q|λ| (sλ(x1, . . . , xN )|x1=...=xN=1)
2 (4.5.4)

where use has been made of ??. Making use of equation ?? this reads

Pr(TN,N ≤ l) =
(1− q)N2∏

1≤j<k≤N (k − j)

∑
λ:λ1≤l

q|λ|

 ∏
1≤j<k≤N

(λj − λk + k − j)

2

(4.5.5)

To make further progress, we consider the limit q → 1 in equation ??. This can be done by setting
q = e−

1
L and taking the limit L →∞. Because the probability varies slowly on a length scale L, it

suggests introducing the scaled variables

y =
k

L
Xij =

xij

L

into equation ??. Notice that as k tends to k+1, we have y → y+ 1
L , which we write as y → y+dy.

We can then regard Xij as a continuous variable and we interpret Xij = y to mean Xij ∈ [y, y+dy]
since we want to account for all values Xij ∈ [ k

L , (k+1)
L ]. Consequently the limit L →∞ of ?? is

Pr(Xij ∈ [y, y + dy]) = e−ydy (4.5.6)

The entries of the matrix are now postive real numbers chosen from this distribution, which is an
example of the gamma distribution Γ[1, 1].
The corresponding limit of equation ?? is obtained by replacing l by sL, TN,N by TN,NL and setting
xj = λj

L . Taking L →∞ then gives

Pr(TN,N ≤ s) =
1∏N

j=1 Γ[j]

∫ s

0
dx1 . . .

∫ s

0
dxN

N∏
j=1

e−xj
∏

1≤j<k≤N

(xk − xj)2 (4.5.7)

where use of has been made of the Rieman integral formula for a definite integral [?]

lim
N→∞

1
N

N∑
j=1

f

(
j

N

)
=
∫ 1

0
f(t)dt (4.5.8)

Comparing the expression in ?? with the equation ?? shows that the integrand is precisely the eigen-
value probability density function for the LUE. The integral over [0, y]N of this gives the probability
that all the eigenvalues are in the interval [0, y], or equivalently that none of the eigenvalues are in
the interval (y,∞). Hence

Pr(TN,N ≤ y) = Pr (the interval (y,∞) contains no eigenvalues in the LUE) (4.5.9)

Differentiating with respect to y, the right hand side then gives us the distribution of the largest
eigenvalue in the LUE. But we know that in terms of the scaled variable specified by ??, for N →
∞, this distribution is equal to the distribution, psoft

2 (s). Thus we have the limit theorem, [?]

lim
N→∞

Pr

(
TN,N − 4N

2(2N)
1
3

≤ X

)
=
∫ X

−∞
psoft
2 (s)ds (4.5.10)



This result can be illustrated by empirically computing the distribution of (TN,N−4N)

2(2N)
1
3

with TN,N

being computed from the recurrence in theorem ??. This result was also shown by constructing a
histogram for TN,N and comparing this with the curve of the psoft

2 distribution. The recurrence in
theorem ?? was used to compute a large number (we used M=5000) of values for TN,N (we used
N = 50) which were presented in a histogram for TN,N . The histogram is shown in Figure ?? and
the corresponding code is shown in Appendix ??.

Figure 4.5: The distribution of TN,N

Comparison of the histogram for TN,N with the curve for the psoft
2 distribution displays strong

evidence for the result in equation ??.





Chapter 5

Concluding Remarks and Ideas for
Further Research

This thesis has investigated the inter-relationship between the probability density function for the
distribution of the largest eigenvalue in certain random matrix ensembles, and the distribution of the
exit time for a certain queueing process.

The random matrix ensembles considered were the Gaussian unitary ensemble of random Her-
mitian matrices and the Laguerre unitary ensemble of random complex positive definite matrices.
These matrices are specified in terms of the probability density function for the elements, which
to obtain a tractable model (ie. one that agrees with analytic computations) are taken to be Gaus-
sians. Changing variables from the elements to the eigenvalues and eigenvectors, gives the eigen-
value probability density function. In this study the interest has been in the largest eigenvalue. To
compute this from the eigenvalue probability density function requires integrating over each of the
eigenvalues up to a definite value, say s, then differentiating with respect to s. If the distributions
are appropriately centred and scaled as demonstrated in chapter ??, the large N limiting forms are
both equal to the psoft

2 distribution discussed in chapter ??. Thus two different matrix ensembles
have the same limiting behaviour for the distribution of the largest eigenvalue. This is an example
of the phenomenon of universality in random matrix theory, whereby limiting statistical quantities
depend on the symmetry of the matrix, or whether the elements are real or complex, but not on the
details of the distribution of these features. For example, it is expected that psoft

2 will again be the
limiting distribution of the scaled largest eigenvalue in a complex Hermitian matrix where the off
diagonal elements are chosen with equal probability from the discrete set of four elements±1±i [?].

In the Queueing process a key quantity is the matrix of the service times. The Robinson-Schensted-
Knuth correspondence discussed in chapter ??, gives a bijection between any matrix with non-
negative integers and a pair of semi-standard tableau. When the entries of the matrix of service
times are taken to be independent random variables chosen from the exponential distribution, an
analytic formula can be obtained for the probability distribution of the exit time of all N jobs from
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all N queues. This formula is precisely that obtained in chapter ?? for the probability distribution
of the largest eigenvalue in the Laguerre unitary ensemble. As the limiting form of this distribution
is given by psoft

2 , the limiting form of the probability density function for the exit time from the
queueing system is also given by psoft

2 . Here the tractability of the analysis relied on the entries
of the matrix of service times begin chosen from the exponential distribution. Just as the scaled
eigenvalue distribution of a random matrix is expected to be insensitive to the details of the distribu-
tion of the elements, it should be the case that the limiting service time distribution is always psoft

2 ,
independent of the particular distribution of the service times. To make this a precise mathematical
theorem is an outstanding question in the field.
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[4] R. Conte, The Painlevé property one century later, Springer-Verlag New York, 1999.

[5] P. Deift, Orthogonal polynomials and random matrices:a Rieman-Hilbert approach, Courant
Institute of Mathematical Sciences, New York 1999.

[6] I. Dumitriu and A. Edelman Matrix models for beta ensembles J. Math. Phys., vol 43, pg
5830-5847, 2002.

[7] M.V. Fedoryuk, Asymptotic analysis of linear ordinary differential equations, Springer-Verlag
Berlin Heidelberg, Printed in the United States of America, 1993.

[8] P. J. Forrester, Log-gases and random matrices, www.ms.unimelb.edu.au/ matjpf/matjpf.html.

[9] P. J. Forrester and E. M. Rains, Interpretations of some parameter dependent generalizations
of classical matrix ensembles, Probab. Theory Relat. Fields, vol 131, 2005.

[10] J.B. French, P.A. Mello and A.Pandey, Statistical properties of many-particle spectra. II. Two-
point correlations and fluctuations, Annals. of Phys., vol 113, pg 277-292, 1978.

[11] D. E. Knuth, Permutations, matrices and generalized Young Tableaux, Pacific J. Math, vol 34,
pg 709-727, 1970.

[12] P. Lancaster, Theory of matrices, Academic Press, New York, 1969.

[13] M. L. Mehta, Random matrices, Elsevier, Amsterdam, the Netherlands, 2004.

[14] M. L. Mehta, Random matrices and the statistical theory of energy levels, Academic Press,
1967.

[15] J. M. Ortega, Matrix theory a second course, Plenum Press, New York, 1987.

43



[16] D. Petz and F. Hiai, The semicircle law, free random variables and entropy, The American
Mathematical Society, 2000.

[17] M. Prähofer and H, Sphon, Exact scaling functions for one-dimensional stationary KPZ
growth, asXiv:cond-mat/021519 vol 1, 2002.

[18] Stewart, J, Calculus concepts and contexts, Wadsworth Group. Brooks/Cole, U.S.A., 2001.

[19] C.A. Tracy and H. Widom, Introduction to random matrices, In G.F. Helmick, Geometric and
quantum aspects of integrable systems, vol 424 of Lecture notes in physics:pages 407-424.
Springer New York 1993.

[20] E. Wigner, On the distribution of roots of certain symmetric matrices Annals of Mathematics,
vol.67, pg. 325-327, 1958.

[21] E. Wigner Characteristic vectors of bordered matrices with infinite dimensions, Annals of
Mathematics, vol 62, pg. 548-564, 1955.

[22] J. Wishart, The generalized product moment distribution in samples from a normal multivari-
ate population, Biomatrika, vol. 20 A, pg 32-52, 1928.



Appendix A

Code for Calculating the Eigenvalue
P.d.f. for Matrices from the GUE

Some notations used:
T=N=size of the matrix
p[k, x] = pk(λ) where λ = x

<< Statistics‘ContinuousDistributions‘
Initial Conditions
M = 5000;
T = 50;
ev = {};
Recurrence
For [m = 1, m < M + 1, m++,

Clear[p];
p[0, x_] = 1;
p[1, x_] = x - Random[ NormalDistribution[0, 1]];
For[k = 2, k < T + 1, k++,

p[k_, x_] := p[k, x] = Expand[(x - Random[NormalDistribution[0,
1]])*p[k - 1,

x] - Random[GammaDistribution[k - 1, 1]]*p[k - 2, x]]];
tt = NSolve[p[T, x] == 0, x];
cc = (x /. tt)/N[Sqrt[2]];
cc = (Abs[cc] - Sqrt[2*T])*(Sqrt[2]*Tˆ(1/6));
dd = (Abs[-cc] - Sqrt[2*T])*(Sqrt[2]*Tˆ(1/6));
AppendTo[ev, {cc[[T]], dd[[1]]}];
lis = Flatten[ev, 1];
]

Drawing the Histogram
nev[int_] := Round[N[int*lis]]/int
frlis2[int_] := (qq = nev[int];

Table[{{N[(i - 1/2)/int], N[(
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int*Count[qq,
i/int])/(2*M)]}, {N[(i + 1/2)/int], N[(

int*Count[qq, i/int])/(2*M)]}}, {i, -4*int, int}])
barplot[int_] := (lis2 = Flatten[frlis2[int], 1]; Graphics[{{Line[lis2]}}])
Show[barplot[5], Axes -> True]



Appendix B

Code for Calculating the Eigenvalue
P.d.f. for Matrices from the LUE

<< Statistics‘ContinuousDistributions‘
M = 5000;
T = 50;
ev = {};
For[m = 1, m < M + 1, m++,

Clear[p];
p[0, x_] = 1;
p[1, x_] = x - Random[GammaDistribution[T, 1]];
For[k = 2, k < T + 1, k++,

p[k_, x_] := p[k, x] = Expand[(x -
Random[GammaDistribution[T - k + 1, 1]])*p[k - 1, x] -

x*Random[GammaDistribution[k - 1, 1]]*p[k - 2, x]]];
tt = NSolve[p[T, x] == 0, x];
cc = (x /. tt);
ec = (cc - 4*T)/(2*(2*T)ˆ(1/3));
AppendTo[ev, ec[[T]]];
lis = Flatten[ev, 1];
]

Drawing the Histogram
nev[int_] := Round[N[int*lis]]/int

frlis2[int_] := (qq = nev[int];
Table[{{N[(i - 1/2)/int], N[(

int*Count[qq,
i/int])/(M)]}, {N[(i + 1/2)/int], N[(int*

Count[qq, i/int])/(M)]}}, {i, -4*int, int}])
barplot[int_] := (lis2 = Flatten[frlis2[int], 1]; Graphics[{{Line[lis2]}}])
Show[barplot[5], Axes -> True]
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Appendix C

Code for Calculating the p
soft
2

Distribution

Some notations used:
al[n] = αn

al3[n] = α
(3)
n

bigQ[s] = Q(s)
imu[s, j] =

∫ s0−is[j]

s
tu2(t)dt

smu[s, j] =
∫ s0

s
tu2(t)dt

bmu[s, j] =
∫ s0−is[j]

s
u2(t)dt

sub[s, j] =
∫ s0

s
u2(t)dt

Initial conditions
sa = 300;
al[0] = N[1, 300];
a[-2] = 0;
a[-1] = 0;
Recursive definitions
al[n_] := al[n] = (6*n - 1)*(6*n - 5)*al[n - 1]/(72*n);
al3[n_] := al3[n] = Sum[al[n - l]*

Sum[al[l - k]*al[k], {k, 0, l}],
{l, 0, n}];

a[n_] := a[n] = al3[n] + (3/4)*n*a[n - 1] -
(1/8)*(n - 1/6)*(n - 5/6)*a[n - 2];

Tabulation
sa = 300;
s0 = 50;
um = 600;
n0 = Min[um, Floor[(4/3)*s0ˆ(3/2)]];
cc = Table[a[n], {n, 0, n0}];
cg = Get["lau1.50.dat"];
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For[i = 0, i < n0 + 1, i++, a[i] = cg[[i + 1]]];
Evaluation of Q(s0), Q’(s0)
bigQ[t0_] = (Exp[-2*t0ˆ(3/2)]/(32*N[Pi, sa]ˆ(3/2)*

t0ˆ(7/4)))*
Sum[(-1)ˆk*a[k]/(2*t0ˆ(3/2)/3)ˆk, {k, 0, n0}];

q[s_] := AiryAi[s] + bigQ[s];
c0 = q[s0];
c1 = q’[s0];
Recursive definitions
n1 = 200;
c[-1, 1, 0] = 0;
c[0, 1, 0] = c0;
c[1, 1, 0] = c1;
c[n_, 2, 0] := c[n, 2, 0] =

Sum[c[n - j, 1, 0]*c[j, 1, 0], {j, 0, n}];
c[n_, 3, 0] := c[n, 3, 0] =

Sum[c[n - j, 1, 0]*c[j, 2, 0], {j, 0, n}];
c[n_, 1, 0] := c[n, 1, 0] = (2*c[n - 2, 3, 0] + s0*c[n - 2, 1, 0] +

c[n - 3, 1, 0])/(n*(n - 1))
q[s_, 0] := Sum[c[n, 1, 0]*(s - s0)ˆn, {n, 0, n1}];
qd[s_, 0] := Sum[n*c[n, 1, 0]*(s - s0)ˆ(n - 1), {n, 1, n1}];
Table[c[n, 1, 0], {n, 0, n1}];
Table[c[n, 2, 0], {n, 0, n1}];
Estimate the radius of convergence
Table[N[1/Abs[c[n, 1, 0]]ˆ(1/n), 10], {n, 180, 200}]
Recursive generation of power series
is[n_] = n;
nn = 90;
k0 = q[s0 - is[1], 0];
k1 = qd[s0 - is[1], 0];
q[s_, j_] := Sum[c[l, 1, j]*(s - s0 + is[j])ˆl,

{l, 0, n1}];
qd[s_, j_] := Sum[l*c[l, 1, j]*(s - s0 + is[j])ˆ(l - 1),

{l, 1, n1}];
For[j = 1, j < nn + 1, j++,

c[-1, 1, j] = 0;
c[0, 1, j] = k0;
c[1, 1, j] = k1;
c[n_, 2, j] := c[n, 2, j] =

Sum[c[n - l, 1, j]*c[l, 1, j], {l, 0, n}];
c[n_, 3, j] := c[n, 3, j] =

Sum[c[n - l, 1, j]*c[l, 2, j], {l, 0, n}];
c[n_, 1, j] := c[n, 1, j] = (2*c[n - 2, 3, j] + (s0 - is[

j])*c[n - 2, 1, j] +
c[n - 3, 1, j])/(n*(n - 1));

Table[c[n, 1, j], {n, 0, n1}];
k0 = q[s0 - is[j + 1], j];
k1 = qd[s0 - is[j + 1], j];
]
partq[x_] = If[x s0, q[x], 0];

fiq[x_] = If[x s0 - is[nn], q[x, nn], 0];



For[m = 0, m < nn, m++,
partq[x_, m] = If[s0 - is[m + 1] x s0 - is[m],

q[x, m], 0]]
fq[x_] := partq[x] + fiq[x] + Sum[partq[x, m], {m, 0, nn - 1}]
Plot[fq[x], {x, -30, 5}]
Clear[d]
d[1, p_] = -(s0 - is[p])*c[0, 2, p];
d[n_, p_] := d[n, p] = -c[n - 2, 2, p]/n -

(s0 - is[p])*c[n - 1, 2, p]/n;
For[j = 1, j < nn + 1, j++,

Table[d[n, j], {n, 1, n1}]
]

imu[s_, p_] := Sum[d[n, p]*(s - (s0 - is[p]))ˆn, {n, 1, n1}];
smu[s_, p_] := Sum[imu[s0 - is[k + 1], k], {k, 0, p - 1}] + imu[s, p];
For[j = 1, j < nn + 1, j++,

Table[c[n, 2, j], {n, 1, n1}]
]

bmu[s_, p_] := -Sum[c[n - 1, 2, p]/n*(s - (s0 - is[p]))ˆn, {n, 1, n1}];
sub[s_, p_] := (s - (s0 - is[p]))*(Sum[bmu[s0 - is[k + 1],

k], {k, 0, p - 1}] + bmu[s, p]) +
(s0 - is[p])*

(Sum[bmu[s0 - is[k + 1], k], {k, 0, p - 1}] + bmu[s, p]);
Clear[p]
p[n_, m_] := p[n, m] = -

Coefficient[x*smu[x +
s0 - is[m], m], x, n + 1] + Coefficient[x*sub[x + s0 - is[m], m], x,

n + 1];
For[nt = 0, nt < nn + 1, nt++, Table[p[n, nt], {n, 0, n1}]];
sup[s_, v_] := Sum[p[n, v]*(s - (s0 - is[v]))ˆn, {n, 0, n1}];
sj[t_, m_] := (g[x] = Series[

Exp[sup[x, m]], {x, s0 - is[m], 199}]; g[x] = Normal[g[x]] /. x -> t)
eh[n_, m_] := eh[n, m] = Coefficient[x*sj[x + s0 - is[m], m], x, n + 1]
For[nt = 0, nt < nn + 1, nt++, Table[eh[n, nt], {n, 0, n1}]];
dsu[s_, v_] := Sum[n*eh[n, v]*(s - (s0 - is[v]))ˆ(n - 1), {n, 1, n1}];
pr[x_] = If[x s0, dsu[x - s0, 0], 0];
fr[x_] = If[x s0 - is[nn], dsu[x - s0 + is[nn], nn], 0];
For[m = 0, m < nn, m++,

pux[x_, m] = If[s0 - is[m + 1] x s0 - is[m],
dsu[x, m], 0]]

psoft[x_] := pr[x] + fr[x] + Sum[pux[x, m], {m, 0, nn - 1}]
Plot[psoft[x], {x, -5, 3}]
Calculating Moments
tr[jp_, alpha_] :=

Sum[(-1)ˆ(n - 1)*n*eh[n, jp]*(s0 - is[jp])ˆ(alpha + n)*
Beta[1 - (s0 - is[jp + 1])/(s0 - is[jp]), n, alpha + 1],

{n, 1, n1}]
tz[alpha_] := -

Sum[(n/(
alpha + n))*eh[n, s0](is[s0] - is[s0 + 1])ˆ(alpha + n), {n, 1, n1}]

ts[jp_, alpha_] := -
Sum[n*eh[n, jp]*(s0 - is[jp])ˆ(alpha + n)*



Beta[1 - (s0 - is[jp])/(s0 - is[jp + 1]),
n, -alpha - n], {n, 1, n1}]

mu[alpha_] := Sum[tr[jp,
alpha], {jp, 0, 49}] + tz[alpha] + Sum[ts[jp, alpha], {jp, 51, 90}];

Mean
mu[1]
Variance
var = mu[2] - (mu[1])ˆ2
Standard Deviation
sd=(var)ˆ(1/2)
Skewness and Kurtosis
skew = (mu[3] - (3*(mu[2])*(mu[1])) + (2*(mu[1])ˆ3))/((sd)ˆ3)
kur = (mu[4] - (4*(mu[3])*(mu[

1])) + (6*(mu[2])*(mu[1])ˆ2) - 3*(mu[1]ˆ4))/((sd)ˆ4) - 3
The psoft distribution and the GUE eigenvalue histogram.
Show[Out[83], Out[65]]



Appendix D

Code for Calculating the Empirical
Distribution for TN,N

<< Statistics‘ContinuousDistributions‘
n = 50;
m = 5000;
ev = {};
For[jj = 1, jj < n + 1, jj++,

T[0, jj] = 0; T[jj, 0] = 0];
For[p = 1, p < m + 1, p++,
For[j = 1, j < n + 1, j++,

For[k = 1, k < n + 1, k++,
x[j, k] = Random[GammaDistribution[1, 1]];
]];

For[i = 1, i < n + 1, i++,
For[ij = 1, ij < n + 1, ij++,

T[i, ij] = Max[T[i - 1, ij], T[i, ij - 1]] + x[i, ij]]];
qt[p] = T[n, n]; AppendTo[ev, qt[p]];
lis = Flatten[ev, 1]
]

lis1 = (ev - 4*n)/(2*(2*n)ˆ(1/3));
nev[int_] := Round[N[int*lis1]]/int
frlis2[int_] := (qq = nev[int];
Table[{{N[(i - 1/2)/int], N[(

int*Count[qq,
i/int])/(m)]}, {N[(i + 1/2)/int], N[(int*

Count[qq, i/int])/(m)]}}, {i, -4*int, int}])
barplot[int_] := (lis2 = Flatten[frlis2[int], 1]; Graphics[{{Line[lis2]}}])
Show[barplot[5], Axes -> True]
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