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Abstract

The spin-spin correlation function (g ooy n) of the two dimensional Ising model
will be studied in the scaling limit T — Tc and N — oo such that N(T — T¢)
is fixed. In this limit, the diagonal correlation is (cpponN) = Gy (s)/NV4 +
éli /N34 + O(N~9/%) in the scaling variable s. For small and large s we find the
asymptotic expressions for G;(s) and G; (s) using a Toeplitz determinant and a
form factor expansion. We also characterise G3(s) and G (s) as the solution of a
Painlevé V equation and second order linear differential equation respectively
and by analysing their solutions we can express Ga‘L (s) and Gf(s) as a series
about the critical temperature Tc.



Chapter 1

Introduction

1.1 Historical context

The Ising model in two dimensions is perhaps one of the most important inte-
grable system studied in mathematical physics. Its history traces back to the
physicist Ernst Ising [6] who first computed the free energy in one dimension in
his PhD thesis in 1924 under the supervision of Wilhelm Lenz. Major develop-
ments in the two dimensional case were first done by Onsager [15] in 1944 where
he first gave exact computations for the zero field free energy. Many important
works then followed. Yang [19] gave a exact answer for the magnetisation in
the absence of an external magnetic field in 1952. Montroll, Potts and Ward[14]
then showed in 1963 that the two point spin-spin correlation function can be
expressed by a single Toeplitz determinant which will become a major concern
in this work. Moreover in 1980 Jimbo and Miwa [8] discovered that if this same
spin-spin correlation function is specialised to the diagonal then the diagonal
correlation can be characterised as a solution to a second order nonlinear Painlevé
VI differential equation. The work of [8] extends the discovery of Wu et al. [18]]
that in the scaling limit the two point spin-spin correlation function is given in
terms of a Painlevé III transcendent. The new work of this thesis is to use [8]
to characterise, in terms of a differential equation, the leading correction to the

scaling limit.

1.2 Defining the Ising model in two dimensions

To specify the Ising model in two dimensions, we start with a square lattice of
size (2N + 1) x (2N + 1) where we use the usual Cartesian coordinates (i, ) €
{0,1,--- ,N} x{0,1,--- ,N} to label each node. The origin (0,0) is defined as
the centre of the square lattice. On each node of the square lattice, there is an

1



(Li+1) (i+1.+1)

) Ki (+1])

Figure 1: The square lattice and its couplings

associated spin 0;; € {—1,1} where +1 and —1 denotes an up and down spin
respectively. The spins interact with their nearest neighbours in the horizontal
abd vertical directions according to the interaction energy

N N-1

:35 Ky Z Z Ui,j0i+1,j + K> Z Z Ui,i0%j+1 (1-2-1)

i=—N j=—N i=—N j=—N

where

1
PRt
is the inverse temperature and kp is Boltzmann’s constant. K; and Kj; are the
dimensionless coupling constants in the horizontal and vertical directions respec-
tively (see Figure[1). We remark that applies in zero magnetic filed. With a
magnetic field, there is an extra term h Zyjzf n 0i,j on the right hand side.

An important feature of a statistical mechanical model like the Ising model
is the free energy f which is computed from the partition function

Zy =) exp(—pBE) (1.2.2)
{Ui,j}
by taking the thermodynamic limit
exp(—pBf) = hm Z}\I/N (1.2.3)

Onsager [15] showed that

1 27 27
—Bf =log2+ = / a0y [ as,
x log(cosh 2K; cosh 2K, — sinh 2Kj cos ) — sinh 2K cos 6,) (1.2.4)



Here there exists a critical value such that the argument in the logarithm in [1.2.4]
vanishes. This is the critical temperature T = T which satisfies the transcendental
equation

sinh 2Kj sinh 2K, = 1. (1.2.5)
It is natural to define a new temperature parameter
k = sinh 2K; sinh 2K, (1.2.6)

where k > 1 and 0 < k < 1 denotes temperatures below and above criticality
respectively. In contrast to the one dimensional Ising model, the two dimensional
Ising model exhibits a phase transition at a nonzero critical temperature T = T¢.

The probability density function for a particular configuration {Ui,j}f\;:_N is
defined as the product of the Boltzmann weights in the horizontal and vertical

axes
N 1 N-1 N N N-1
]P({Ui,j}i,j:—N) ~ 7 exp | Ky Z Z 0i,i0i+1,j T Kz Z Z 0i,j0%1,j+1
2N+1 i=—N j=—N i=—Nj=—N
(1.2.7)
where Zpp 4 is the partition function.
Using this we can define the spontaneous magnetisation as
M = {o0p) = Y 000 ({03} = n) (1.2.8)
{oi}e(=1,1)2N+H
and the spin-spin correlation function as
<‘70,0‘7m,n> = Z O—O,OU—m,n]P({U'i,j}%:_N). (1.2.9)

{(Ti/j}E(—l,l)ZNJrl

As first announced by Onsager and later proved by Yang [19], the precise result
for the spontaneous magnetisation is

1—Kk)V8, for T < T,
M = ( ) ¢ (1.2.10)
0, for T > Tc.

This is the evaluation of in the limit N — oo. In this calculation the bound-
ary spins can be specified to be all pointing up, to break the symmetry of the
model

In the case of the spin-spin correlation, the challenge is to compute the limit



N — oo of Although this is now a function of the position of the spin (m, n)
and the couplings, fortunately there are mathematical techniques that can be
used without resorting to probabilistic simulations. Three main ways that will
be discussed for the diagonal correlation will its determinantal expression, form
factor expansion and solution to a Painlevé differential equation.

1.3 The diagonal correlation (00N N)

As first observed by Onsager in a draft paper [3] in the diagonal case, Montroll,
Potts and Ward [14] showed that the spin-spin correlation (op oo n) has a de-
terminantal expression. In particular, the diagonal correlation (op ooy n) can be
written as a N x N Toeplitz determinant

(0000w, n) = detfa;_jl1<ij<n (1.3.1)

where the elements are given by

L[ oy in6
a, = E/_na(e )e'’do (1.3.2)
with the weight
1
1—k 1712
a(g) = [ﬁ] (1.3.3)

and k is given by In as is conventional, the position of the spin of the
lattice has been denoted by (N, N), not to be confused with the use of N in
as relating to the size of the lattice. In particular in the size of the lattice has
been taken to infinity.

It is well known that the Toeplitz elements have F; hypergeometric function
representations [16], stemming from its integral form

I'(c)

2F1 ((Z, b, C,'Z) = m

1
/ xb 11— x) 701 — xz) dx
0

defined for Rec > Reb > 0. In the low temperature regime, 1 < k < oo,

CT(n—1/2)T(3/2)

_ —-n _ . 12
a, = AT (n+ 1) k7" F(1/2,n—=1/2;n+ 1,k %), (1.3.4)
T(n+1/2)T(1/2) _, 5
o _ : ~ > 3.
a_y, (1) k" oF(=1/2,n+1/2;n+ 1,k *), forn>0 (1.3.5)



and in the high temperature regime, 0 < k < 1,

T'(n—1/2)I(1/2)

_ n—1 o o e 12
ay = T (1) K" oF (=1/2,n—1/2;n;k%), (1.3.6)
I'(n+1/2)T(3/2) nal 2
- 1/2m +2; >0. (1.3.
a_, AT (n+2) K" R (1/2,n+1/2,n+2;k%), forn>0. (1.3.7)

Using the contiguous relations of the hypergeometric function,

oFi(a,b;c;z) = E;:zrtl ! ; ( ) (z—1)"TyF(a—jb;c—mz) (1.3.8)
where
r
(@)m = % (1.3.9)

the elements satisfy the difference equation
(2n +3)app1 — 2[(n + Dk~ + nkla, + (2n — 1)a,_1 = 0 (1.3.10)

with initial conditions, for 0 < k < 1

2

ay = &[(k2 — 1)K (k) + E(k)] (1.3.11)
2
a_q = —;E(k) (1.3.12)
and for 1 < k < o0
2
ag = —E(k) (1.3.13)
_ 240 2
a1 = 2[( ~ DK(K) ~ KE(K) (13.14)
where
m/2 do T 0
K(k) = /0 - 2sin?0)1/2 = 52F1(1/2,1/2, 1;k%) (1.3.15)
/2
E(k) = /0 (1 K sin?)1/2d0 = 75F(~1/2,1/2, 1) (1.3.16)

are the complete elliptic integrals of the first and second kind. This provides
another way to generate the Toeplitz elements. Immediately from this for small
N, there are exact expressions for the diagonal correlation in terms of special



functions. The first few are
2E(k), 1<k<o
(0001,1) = 4 7 )
Z[(k* —=1)K(k) + E(k)], 0<k<1
( 4

5 B = 1)°K(K)? = 2(K* — 1)’K(K)E(K)

—K*(kK* =5)E(k)?], 1<k<oo
[B(k* —1)°K(k)* + 8(k* — 1)K(k)E (k)
\ — (K =5)E(k)¥, 0<k<1

A significant fact is that can be used to reclaim Relevant for this
purpose is the logarithm of the weight a({) and in particular its Fourier series

(00,0022) =4 4

3k2 72

expansion

(o]

loga(Z) = ) ¥, [Cl=1 (1.3.17)

p=—00

Assuming that

o0

Y. |pep| <0

p=—co

We can envoke Szego’s theorem [g] to obtain a large N expansion for (0 oon N)-

(00,00N,N) ~ exp (nco + Y pepe—p+ - ) as n — oo (1.3.18)
p=1
For low temperature k > 1,

Cop = 0
1.
giving the famous result
(00,00N,N) ~ (1 — K24 = M? (1.3.19)

as implicit in the result of Yang [19].

1.4 Form factor expansions of the diagonal correla-

tions

The determinant can be expressed as in an exponential form [10]. For
T <Tc,

on) = 1= esp £ 7 ) (24
p=1



N
pop) _ (=DM ?{ | 5
N ( pr €4>0 z]| 1—¢ ] 1 — Z]Z]+1
p
x [TP(z2)P(25;)Q(225-1)Q(251 1) (1:4-2)
=1

with Zop+1 = Z1 and

1
P(z) = = (1—k1z)/2 1.4.
@)= g = -k (14
For T > T¢,
o (2p+1 o A2
(oonn) = (1— )4y X )eXp<Z I(Vﬂ) (1.4.4)
p=1 p=1
where
_ 2p 2p zN
p2p) _ (1P, j
m dz
N (27)%Pp eaog |2j|=1—¢ ]]1—{ 1—zjzj4
P
X HP(ZZj)P(sz )Q(ZZ] 1)Q(sz 1) (1.4.5)
j=1
and
2p+1 2
X(ZP‘H) ﬁ f dz.zN+1 1 P 1
N (27‘[1 2P+1 e—>0 |2j|=1-¢ 5E 1 21Z2p41 iy 1—-2zizj
p+1 A 14 R .
x [T P(z2j-1)P(z51 ) [ [ Q22))Q(25;")
=1 j=1
(1.4.6)
with
N 1 _
P(z) = = =(1—kz)'/? (1.4.7)

The exponential form [1.4.1/and |1.4.4| can be expanded to obtain the form factor

expressions for the correlation functions. We first introduce the new variable

(1.4.8)

;= k=2 forT < TC
k> for T > Tc

For T < T¢,

(co0onN) = (1 —1t)% <1 + Z > (1.4.9)
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and for T > T¢

g

o (2p+1)
<0’0 OUNN 1 —t) Z er (1.4.10)

where the diagonal form factors fN;i n(t) are given by

1

N1 2
2p) _ tP(N+P/ /dx . p (1 txZJ)(xzf D
PN = Gz PTG D= 1)

j=
p_p
X HH(l — txop_1%2j)

j=1k=1
x T (x2jo1 — xak-1)*(x2j — xx)?
1<j<k<p
(1.4.11)
and
(pt1)  NPFL/2)4p(pH1) 01 1
NN = 27T / X1 dxzp 11
' p'(p+ 1)!mp
2p+1 p+1 1 1
< T [T (1 = txgj 1) "2 (x5t —1) 72
k=1 =1 X2j-1
x [ Taos(1 txo;)2 (xy; —1)2 [T = txaj_1xp)
j=1 j=1k=1
X H (x2j71 - x2k—1)2 (xz]' — ka)Z (1.4.12)
1<j<k<p+1 1<j<k<N

1.5 Differential equation for (0yoon N)

On the finite square lattice, the spin-spin correlation (0pgon n) can be char-
acterised using the Painlevé VI differential equation [8]. For this purpose we
introduce the ¢ function

O'N(t) =

{t(t — 1)% log (00,00n,N) — zllt' T<Tc (1.5.1)

t(t — 1)% lOg <UO,OUN,N> — 411’ T >Tc

The symbol oy (t) on the left hand side of is not to be confused with o y on
the left hand side of which denotes the spin at position (N, N) of the lattice.

Jimbo and Miwa showed that on(t) satisfies the sigma form of the Painlevé



VI given by

d20'N 2 2 dO’N 2
dO’N dO’N 1 dO’N
4 T {(t 1) ¢ N1 {t T U’Nl (1.5.2)
consistent with the expansion as t — 0 (T < T¢),
1 (1/2)n(3/2
<UO,OUN,N> (t) = (1 — t)4 + ( )N( )NtNJrl(l + O(t)) (153)

A(N+1)12

where (a)y = 1 is the Pochhammer’s symbol defined in This follows by

approximating the right hand side of|1.4.9{as (1 — t)1/4(1 + sz ) then expanding

f](\,2 )N as specified by [1.4.11{for small . Some details of the general theory relating

to the Painlevé equations in sigma form can be found in [4].

Substituting [1.5.3|into [1.5.1| we get the boundary condition for on/(t) is

_ (m+1)(1/2)NGB/2)y Y
STANFO (1-piA

on(t) +O(t") (1.5.4)

as t — 0.

1.6 Large N solutions for (opoonn) at T = T¢
Much can be said about the diagonal correlation at the critical temperature T = T¢.
Evaluating the Toeplitz element at k =1 gives

1
0 _
a, = (11 1/2) (1.6.1)

Then simplifies into an N x N Cauchy determinant. Using the determinantal
formula for the Cauchy matrix [4]

N(Nfl)/2Hl§j<k§N('xk - x]) (yk - y])
Hﬁcﬁ (xj — Yk)

it follows from that at k =, has the exact evaluation [13]

5 NN—l 1 p—N
(00,00N,N) = <%> I <1 - @> (1.6.3)

p=1

det [ =(-1) (1.6.2)

Xj — yk]j,k_l,u-,N



Some exact values of the diagonal correlation at criticality can now be read off

2
(e0,001,1) o1 = —
16
<UO,002,2>T:TC - W
2048

(00,0033) 1=1c = 1353

With further analysis we can write an asymptotic expansion for large N as [13]

A 1 _
<0‘0/00’N’N> ~ W (1 — W + O(N 4)) (164)
with
A =2"12exp(37'(-1)) (1.6.5)

where {’(z) is the derivative of zeta function.
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Chapter 2

Expansions of the diagonal
correlation in the scaling limit

2.1 Introducing the scaling limit about criticality

The large N behaviour of the diagonal correlation function is mostly understood
from the form factor expansions [1.4.9| and [1.4.10, Away from criticality, for
T <Tc,

(0,00nN) ~ (1= Y41+ F2N)

:(1_t)1/4 1+L+...
2tN?(1 — t)?

(compared with[1.5.3) and for T > T,

N/2
(1 nla1) _ 1 t
(000N, N) ~ (L —1)" fy Ny = (ZN)1/2 (1 — )1/ T

However it is our interest to see find a similar expansion for the diagonal correla-
tion near the critical temperature. In order to do this, we first seek an appropriate
scaling limit for (0poon n). What is meant by this is that we will taking the limits

T—Tc and N — o0 (2.1.1)

simultaneously such that N(T — T¢) is a fixed quantity. We expect the correlation
function to decay exponentially in N so if we define the correlation length ¢+ on

N = exp (— ﬁN)

the diagonal such that

C+

11



thenas T — T¢

et =Pl -y

Introducing the scaled coordinate

n=N / (2(: j:)
and the length from the origin to the scaled coordinate (1, 1)
s=12n

Our scaling variable will be defined as

s = w (2.1.2)

where t is appropriately defined from[1.4.8|

The scaling limit captures features of the Ising model that distinguish its critical
point as relating to a field theory; see e.g. [7]

2.2 Expansions for the diagonal correlation for large

S

With the new variable s defined in we hope to compute expressions for
(00,00n N) about the critical temperature. It is however no easy task since the
expressions (0poon n) are well formulated for small ¢ (temperatures away from
criticality). So a good starting point is find asymptotic expressions for the diagonal
correlation for large s. This can be achieved by scaling the form factor expansions.
If we let, for T < T,

G_(s)=1+) fl(\]z?\; (2.2.1)
p=1
and for T > T¢
Gi(s) =), fl(\]zj’\;rl) (2.2.2)
p=0
then for T 2 T¢,
(o0,00NN) = (1 — 114G (s) (2.2.3)

12



In the limit s — oo for the large N expansion if we seek an expansion

1
G+ (s) = G5 (s) + NGli(s) +0O(N7?) (2.2.4)
we have
1
Gy (5) ~ —Ka(s) (2.2.5)
_ 1
Gy (s) ~1+ — [s%(Kq(s)? — Ko(s)?) — sKo(s)Ky(s) + £Ko(s)?] (2.2.6)
and
S
Gy (s) ~ E[KO(S) — 25K;(s)] (2.2.7)
:
e25 oo o0 x2(1+ x3)
G- ~ / d / d —25x1 ,—25xp | Z2\~ T A2) 1 -2
1 (S) 71.2 0 X1 0 Xpe e .X'l(l n xl) ( + X1 + xZ)
x 282 425 —s(x) — x2) + 282 (22 +43)  (228)
. sx n sX2  , X1X2 +x1+ X2
1+x1 1+4+x 14+x1+x

where K;,(s) are the modified Bessel functions of the second kind of order n.

Proof. Case 1. For T > T¢ using the change of variables x; = 1 — (1 —#)X; =
1-— 2sX]~/N, we note that

1—tx]-:1—t(1—X]-(1—t)):23(1+Xj)(1— 25% > (2.2.92)

N N(1+ X]-)
1 2s 452
-1 2
1 1= - X 4 X .2.9b
X, —1-0x, "N + 12 X (2.2.9b)
1-— txjxk =1- t(l - (1 - f)X])(l - (1 - t)Xk)
25 452
2s
x]' — X = N(Xk - X]) (2.2.9d)
Np
2 252
tNp — (1 — 5) ~ e 2P (1 — %) (2.2.9¢)
N 232
25X 25°X:
x]N = (1 — T]> ~ e 25X; (1 S, I ) (2.2.9f)

13



The last two expressions comes from Euler’s limit with the correction term for

N 2
(1 + %) (1 - Zx—N +O(N~ )) : (2.2.10)

Substituting [2.2.9a}, [2.2.9b} [2.2.9¢} [2.2.9d} [2.2.9€} |2.2.9f into the form factor expan-

sion we get

large N

e—2s(p+1) 2p+1
(2p+1) —25X;
NN ~ p p n 1 2P / Xm / dXZp-l—l ].—]1: e 54
p p+1
x T TIA + X)) Xoj] 2 TTIA + Xpj—1) Xojq] 1/
1 1
p+1 p
X H H(l + ijfl + XZk)fz
=1 k=1
x  J]  (Xpjo1—Xa1)? T (Xoj — Xox)?
1<j<k<p+1 1<j<k<p
1 725 (p+1) X X 2p+1 e
- ]
Np!(p+1)! n2P+1/ 1 / 2“11—{6
p p+1
< [ TI + Xop) Xoj ]2 TTI(1 + Xoj—1) Xoj1] /2
=1 =1

p+l p
x TTTTQ+ Xoj1 + Xox) 2
=Tk

x [T (Xojor—Xaue1)® [T (Xoj— Xox)?

1<j<k<p+1 1<j<k<p
2p+1
x S (X, - - , Xop41) (2.2.11)

where

2p+1
SV (X1, -+, Xopi1) = — 253 (p +1/2) = 2sp(p + 1) — 26 Z X}

Pl SXZ'—l SXz'
+ 3 (Xt o )+ ) (X~ )
]; F-177 + X2];1 ]; 2 + XZ]'

PR Xoj + Xop—1 + XojXok—1

4
* S]Z;kz Xoj + Xop-1+1

14



Here the first term in|2.2.11 FSF say has the bound

n 725 (p+1
‘FO"’ISP p+1'n2r’+1/ % / AX2p 11

]':1 j=

x 1 (ijf1—sz—1) H (Xpj — Xox)?

1<j<k<p+1 1<j<k<p

(2.2.12)
These are integrals which can be evaluated by the formula [5]
o0 ] n
n!Wy(ax+1,7) :/ dxl---/ dag [ [xfe™ ] ‘x]-—xk‘zv
0 0 i=1 1<j<k<n

where

Win(a,7) = nllf% W+JV{7(§j+1)7)

A similar bound for the second term Ff’r » in[2.2.11| can be found. These show
F(;,rp—&-l(s) = O(Fdi:p(s))
R (5) = o(Ff (5)

as s — co. So we can just consider

fun ~ o + (22.13)

to find the large s behaviour of (0poon N ). It is now left to evaluate these integrals.
Using the change of variables

x=(Wy—-1)/2 (2.2.14)
and the integral formula of the modified Bessel function of the second kind
/22 t 1/2
Ky(z / dte™ = ( v 2.2.1
= ] -1) (2215

where Re(v) > —3 it follows

GJ(S) = _/ 1/26_25x
S / s
1/2
= —KO( ) (2.2.16)

15



And using and
xtt

Kl( ):_KO / dt 1/2

we get the formulas

) —2sx s
Jy o = 7Kl +Kifs))

) ZSxe
/0 T = £ (25Ko(s) + (1 - 29)Ka(s))
00 —25xx1/2
/0 e = € (1 29)Ko(s) = 25K (9))

which means

7 x(1+ x)]1/2

e [ dx
GfL( ) ~ F1+o - ——/0 [(—e_zs" (52+252x2+sx—

— %(Ko(s) —25Kq(s))

SX
1+ x

(2.2.17)

)

(2.2.18)

Case 2. for T < Tc, using the same change of variables x; = 1 — (1 —t)X; =

1 —2sX;/N and substituting [2.2.9a} [2.2.9b} [2.2.9¢ [2.2.9d} [2.2.9€| [2.2.9f into the

form factor expansion [1.4.11, we get

e—25p

2 .
fl(\l?\? ~ 7.[2p/ aXy-- / dXap He &

(T4 X0j)Xoj 10

p
x ]I
]11 (1+ Xpj-1) X271
ST 2 2 2
XTTTTO+ X5+ X)) ™2 [T (Xoj1 — Xow1)*(Xzj — Xox)
i=1k=1 1<j<k<p
—2sp
e )
p' O / Xy - - / dxzp]’[e X;
" 13[[ (1+X0j)Xaj 110
i1 (T4 X551) X5
1t 2 2 2
XTTTIO+ X+ X)) ™ [T (Xgjo1 — Xoeo1)*(Xoj — Xox)
i=Tk=1 1<j<k<p
x S@P)(Xy, - , Xap) (2.2.19)

16



where

2p
S(ZP)(XL. .. ’sz) = 252 _ 25;92 — 2¢% Z Xj
j=1

+

]

P ( Sij SX2]'_1
- 1+ ij 1+ XZj—l

Xoj + Xog—1 + X2jXok—1

p
+ 4s
]-lkzzll Xoj + Xop-1+1

+ SX2]' - SXZj—l)

Similar to[2.2.12} the first and the second term F;’ » and F|_ » of |2.2.19| can be written

as
Fo p+1 (s) = o(Pij(s)) (2.2.20)
Ff’pﬂ(s) = o(Pljp(s)) (2.2.21)
as s — oo. Consider only
~ 1
fl(vzg\] ~ Fo1+ ﬁFl,l (2.2.22)

To evaluate the double integral F,,, we can use the technique

1 [o¢]
2 :/0 ue "™du (2.2.23)

on the coupled factors in the integrals in

—2s %) 1%}
_ e _ _ 1+ x)x
E = / dx, / dxpe 257102532 (I +x2)x2
’ 0 0

(1 + xl)xl

1/2
7 ] (1+X1+x2)72

e—ZS

— 2/ dte‘tt/ doxye 12D [(1 4 xp)xq] 712
2 Jo 0

o (2.2.24)
X / dxpe 225D [(1 + xp)x,] /2
0

Again we use the change of variables x; = (y; —1)/2 for j = 1,2 and the integral
representation of the modified Bessel function

_ 1 >
Fop = ?/0 mKO(S +t/2)Kq (s + t/2)dt (2.2.25)
1 /®u-s
22 y Ko(u) Ky (u)du (2.2.26)

Using the integral formulas

[ Kol (v)x = — Ko
/ KO(X)XKl(x)dx = x[Ki(x)? = Ko(x)?] — Ko(x)Kq (x)



allows us to conclude that

Gy (5) ~ 1+ Fyy = 14+ 3 [s2(Ki(5)2 — Ko(s)?) — sKof5)Ki (5) + bKo(5)’]

(2.2.27)
and
Gy (s) ~ Fry
s 3
e © © _ _ x2(1+ x2) 2
= dx / dxse %1252 | 723 T 72) 14+x1+x
e A G| AFat)
2 2 2 . . 2 2 2 2 . le sz
X [25° + 25 —s(x1 — xp) + 257 (x7 + x3) 1+x1+1+x2
—4s XX + %1+ X (2.2.28)
14+ x14+x7
]

2.3 [Expansions for the diagonal correlation for small

S

From the works from Wu et al. [18], we can find a systematic way of expressing
the diagonal correlation (0po0on,N) in the scaling limit. Manipulating the Toeplitz
determinantal form for the diagonal correlation we have

(000N, n) = det(Ao) det(1+AA;") (2.3.1)
where
Ap = [a?_k]j,kzl,--~,N (2.3.2)
and
A= [Ll]'_k — a?—k]j,kZl,-“,N (2-3'3)

The elements in [2.3.2]and [2.3.3| are defined by and We should recall
that the explicit expression and its asymptotic expansion of det Ay is given in[1.6.3]
and If T ~ T¢ such that A is small then the second factor in has the
expansion

det(l + AA61> = exp (’; (_;)p Tr [(AAol)P]) (2.3.4)
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To analyse [2.3.4| we first consider the leading term (when p = 1). Recalling that Ay
is a Cauchy matrix, we can make use of the fact that its inverse can be computed
explicitly [17] to give

f(k)g(l)

(Ag Mkt = 2k—1+1/2) (2.3.5)
where
 T(N—k+3I(k+3)
) = SNk DTk 1) (2:3.6)
CT(N=-143)T(+1})
s) = TN =TT UTu+ 1) (2:3.7)
fork,1 =0,1,--- ,N — 1. Then consequently
N-1
1\ _ flk)g()
Tr(AAO ) - UZ:;O e YA (2.3.8)

where A, are the elements of [2.3.3] To summarise the results of the analysis of this
double sum from [18], if we let r = k(1 —¢t)/2, 7 =1(1—t)/2and x = (1 —1t)/2
then in the limit N - coand T — Tci, the sum can be approximated by the
integral

T / dr/ dr 2 r/K/ s /K)Ai(r—r') +E (2.3.9)
r—r+; Ly
where E is the error term. Here
1
Ay ~ E(l — )AL (r) (2.3.10)

in the limit n — +coand T — Tci, with

A+ (r) = BV F Ko(lr]) — (2311)
0(r) = {+1 r=0 (2.3.12)
-1 ifr<0

comes from the limit n — co and T — TE—L of the Toeplitz elements
and after the transformation r = n(1 — t)/2. Using Stirling’s formula for
small «

1 , 1/2
Flr/)3(0/0) ~ [((%_;]
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then to leading order in the limit T — T and N — oo, can be expressed as

13 s (s—1") YA (r—1")
1 (s —r L(r—r
TI(AAO ) nZP/o drP/O ar [r’(s—r)] r—v!

where P denotes the Cauchy principal value. From the change of variables r = su

and 1" = su’, we get

1/2
_ s 1 Lou(l—u) As[s(u—u')]
Tr(AAO 1) ~ ?P/o duP/O du [u’(l—u ] : (2.3.13)

) u—u

If we assume the diagonal correlation admits the form

Gy (s) | Gy (s)
N1/4 N5/4

<UO,OUN,N> = + O(N_9/4) (2.3.14)

for T =2 T, then from |2.3.4/and |2.3.13]

A

Gy (s) ~ Aexp (Tr <AA0_1>>. (2.3.15)

If we use the small r expansion following from

Ay (r) ~ log( ) +7E (2.3.16)
A_(r) ~ —log(i) —YE (2.3.17)
where yg & 0.5772 is the Euler-Mascheroni constant, then from
O] 1 st )]
| u s(u—u
Tr(845") P/ duP/ du[ 1_u)] — [log T
1 1— 1/21 !
jEsogsp/ duP/ g u(l—u') og|u —u'|
uw'(1—u) u—u
log?2) 1 N1 1
L 5(7e —log P/ duP/ gy | HA =)
72 u'(1—u) u—u
=+ Es(log(s/S) +7E) (2.3.18)

Combining [2.3.18/and [2.3.15| gives

Gir(s) ~ A(1% 5 (1og(s/8) +7e) (23.19)
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Chapter 3

The Painlevé VI in the scaling limit

The first two terms of the Painlevé VI characteristion of oy also permit
differential equation characterisations in the scaling limit.

The following result holds true. Introduce the scaling s = N(1 —t)/2 and
suppose that the solution to can be written in the form o = 6y(s) + 561 (s).
Then the leading order function dy(s) satisfy the Painlevé V equation

(509 ())? = 4(s09(s) — 60(s))* — 4(00(s))*(s0p(s) — &o(s)) + (¢0(s))*  (3.0.1)

and 07 (s) satisfy the second order linear differential equation

A(s)07(s) + B(s)81(s) + C(s)01(s) = D(s) (3.0.2)

where
Als) = 5206’(8) (3.0.3)
B(s) = ( 0(5))% = 25(s09(s) — du(s)) +209(s) (s9p(s) — Go(s) —1/4)  (3.0.4)
C(s) = 2(stg(s) — d0(s)) — (0(s))? (3.0.5)
D(s) = 5°(09 ())* +200(s) (sop(s) — &0(s)) (s09(s) — Go(s) —1/4).  (3.0.6)
Proof. We begin with the Painlevé VI[1.5.2]and substitute the proposed form oy =
00(s) + 01(s) and the scaled variable s = N(1 — t)/2 to replace t. Expanding
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the first, second and third terms respectively gives
[t(t = D)on(D)]? = [s09 (s)]*N? + [25°05/(5)07 (s) — 25°0 (s)*]N + O(1)
N?[(t =)o (t) — on(8)]* =[65(s) — &u(s)]*N*?
+2[09(s) — 0u(s)][01(s) — 01(s)IN + O(1)
on(B)[(t = Doy (t) —on(t) — 1/4][ton(t) —on(8)] =
00(5)*[s05 (s) — 00 (s) — 1/4]N? + (207 ()1 (5) [s05 (s) — 00 — 1/4]
+00(s)[s01(s) — 61(s)] — 6(s)[s8p(s) — 00(s)][s65(s) — o (s) — 1/4])N
+0(1)
Comparing the coefficients of O(N?) and O(N) produces [3.0.1/and [3.0.2| respec-

tively. [J

The first equation equation is a known result and the second is original
to the present work. These differential equations and their characterisations of the
spin-spin correlation will the basis of the study for the rest of this thesis. To relate
this back to the Ising model’s diagonal correlation, we also need to scale
We assume the form of the diagonal correlation in [2.2.3|and |2.2.4] and again use
the scaled variable s then for T < T,

4G, dG; dGr(s) dGy(s) A
(s) = s 35(5) N 1 -2¢? ds( )Go (s) +5sGgy (s) ds( ) s C"ls(s) Gy (s)
N Gy(s) N Gy ()2
+O(N72)

and for T > T,

+ ; 0
o) = S 1 (2965 5) 467 (99 UG ) s
MY TGl TN Gy ()2 2
+O(N72?)
So we have
SdGSE(s)
N ds
bo(s) — for T>T .0.
o(s) Goi(s) orT =2 1I¢ (3.0.7)
22596y (5) 4Gy - );G‘}‘S(S)_Sdcgs@) S for T < Tc
. G, (s
01(s) = dG <> L 4G a6t E o8
252 Gy (5)+sGy () —d— —5—9s—G1
(s) SG"J((SS))Z & d 90 s for T T

Expressions for GOi and GljE have been given for s — 0 and s — oo from the
form factor expansions and the Toeplitz determinant discussed above. So
and will be used to provide the boundary conditions to the differential
equations [3.0.1}and [3.0.2

22



3.1 The Painlevé V as a Painlevé III

The scaled function G (s) was shown to satisfy another nonlinear differential
equation [2] [18]. If one expresses the scaled function as [11]

Gat (s) = %17(5/2)1/2[1 +1(s/2] exp /SZ 4119’72[(1 _ ,72)2 _ (ﬂ/)Z]de (3.1.1)

then from 17(0) satisfies the Painlevé III differential equation

d’p _1edy\2 1dy 53
= yla) et (3.1.2)
with the boundary condition
2
7(6) ~ 1 - 2Ko(26) (313

as 0 — oo.

By studying the Painlevé III [12], a local expansion of #(s/2) can be found.
However instead of musing in the technicalities of the Painlevé III, we will instead
solve for G(“)—L(s) by directly computing a series solution for the Painlevé V by
assuming an ansatz, as first done in [1], but without the details of the work-
ing. Numerical data for 7(s) presented in [18] can be used to check consistency
between the methods.

3.2 Series solution of Painlevé V about s ~ 0

If we recall back from the expansion about s ~ 0 for the leading behaviour
of can be written as sum of products of s and logs. Combining the assumed
forms of the diagonal correlation (0poon N) [2.2.3| and [2.3.14] under the scaled

variable s shows that

Goi(s) = (25)171 CA;Oi(s) (3.2.1)
Substituting into the to relate this back to the Painlevé V shows that

for T =z T,

R 1 1 1
0o(s) ~ ~1 + (E + EL(S))S (3.2.2)
as s — 0. In order to generate a series solution for suppose we seek the

solution for 0y (s) with the form that is consistent with

0o(s) = i Y cmnL(s)™s" (3.2.3)

n=0m=0
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with
S
2 (3-2.4)

L(s) = log (8> + YE.

Firstly we note that

cmn(nL(s) +m)L(s)™ 1s" 1

S
N

I
[
M:

3
Il
o
3
Il
o

Cmn|(n(n — 1)L(s)2 +m(2n —1)L(s) + m(m — 1)]L(S)m725n72

=
N

I
gk
ME

3
I
o
3
I
o

Substituting the ansatz and its derivatives into the Painlevé differential

equation we hope to extract a recurrence relation for the coefficients ¢ ;.
By employing the Cauchy multiplication rule for power series,

(:Zj)ans”) X (:;)bns”) = n‘:j‘bcns”

with
n
Cp = Z apbn—p
p=0

we will calculate each term in For the first term, let

any(s) = i:ocm,n[(n(n —1)L(s)> 4+ m(2n — 1)L(s) + m(m — 1)]L(s)™ 2 (3.2.5)

then
SR = 3 3 Ar(e)s” (5.26)
where
An(s) = mi_o o (5)tn i (5) (327)

For the second term, let

Bils) = 1 cunlin — VL) + mL(s)" G289
then
93(5) ~ (o) = 3 B 629
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where

i) = 1 Pu(s)Bu-n(e) (210
For the final terms, let
1) = L cnalnL(s) + mlL(s)" G211)
then
P = 5 1 Cilos” (212)
AOREE) - 00 = 5 1 (X BulCorn®) 621
where
Cu(s) = ;0 YmYn—m (3.2.14)

Putting [3.2.6| [3.2.9} [3.2.12} [3.2.13|into [3.0.1] gives

1 e} e} 4 o0 n 1 e}
5 ;)An(s)s” —4 ;)Bn(s)s” -5 ZO ( Z_:Oﬁm(s)cn_m(s)>s” +5 ;)Cn(s)s”
(3.2.15)
Equating the powers of s gives the recurrence
Au(s) —4B,_2(s) +4 Z B (S)Cnm(s) —Cu(s) =0 (3.2.16)

m=0

The expression of the left hand side of is polynomial with respect to the
variable L(s). Equating powers of L(s) finally gives a system of equations that
allows us to determine ¢y, ;.

Now that we have a recurrence that solves we need some boundary condi-
tions to initiate values for c;, ,. This means that the choice of initial values for the

recurrence are

I

€00 =

1
11 = :|:§ for T 2 TC
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Some of the few equations for c;, , are

cil ——-=0
- 2C1,1 + 4C%,1C1,1 + 4C0/2C1,1 + 8C0/1€%’1 + 4C?/1 + 6C1/1C1/2 + 4C1/1C2,2 =0
8C0,10i1 + 8Ci1 + 4C1I1C1,2 + 12C1,1C2,2 =0
élci1 + 1162 =0
—2cp + 4c%/1c0,2 + 4c(2),2 + 24cp1c00¢1,1 +12¢03¢1,1 — 4c%,1 + 2Oc0,2c%,1 —2c1
+ 4c%,101,2 + 12¢ppc12 + 16c0101,1€12 + 12ci1c1,2 + 9c%,2 +10c1 1013
+ 8C0/2C2/2 + 12C1,2CZ,2 + 405,2 + 4C1,1C2,3 =0
4eg,1c0001,1 + 120007 1 — €12 + 265 1012 + 4coac1p + 16cg 161,101 + 18¢7 1c10
+ 60%,2 + 6C1/1C1/3 —2cp0 + 4C%/1C2,2 + 12C0/1C2,2 + 16C0/1 €1,1C2,2
+ 12C%’1C2,2 + 22¢1 ¢ + 126%/2 +10c¢1,1¢2,3 + 6¢1,1¢33 = 0
2c0,2ci1 +4cgic11012 + 14ci101,2 + 20%’2 — 20+ 2c%,1c2,2 +4cp2022
+20cp 1¢1,1¢22 + 26ci1c2,2 + 18c1 2020 + 22c%,2 +6c1,1C2,3
+ 15C1,1C3I3 =0
C%,lcl,z + 2C0,1C111C2,2 + 8C%11C2,2 + 2C1,2C2,2 + 665,2 + 301,1C3,3 =0

2 2
€11622+ €5 =0
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Up to the order of s, the solution to in the high temperature regime is

62 (s) = —jﬁ(% +3L(S))s + (% L) - jIL(s)z)s2 + (éL(s)Z + éL(s)3>s3

(= o35 + 19L8) — gL — 1oL — 2o L(s)*)s*

(= g5 + 1053 L(5) — gmg L5 + 5 L(s)’
+ 312L(s)4 + 3l2L(s)5)s5

+(8L2—m (5) + g1gLs) — g L(s)* — L) — 2 L(s)°)s"

+(~ g7521) + 2355 ~ ot ~ gL' + sggto)
; %L( )+ 15 Lls) )

(- 838285608 + 104285576L () + 2627144L(S)2 B ﬁ“ )’
$ L) s L) — 1) — s Lls) — 5 L(s)°)s®
( N 53653912 * 67120783864L(S) N %L(S)z + 838685608L(S)3
T 078" - 131(5)72 ()" - ﬁusf 5155~
+ 5%L( )8+ 51—2L(s)9>s9

+<1O73§4111824 N 536%13;3912L(S) N %L(Sy * %L(S)S
N 83&135208 ()" - 2627144 (5 + 26;%14(5)6 + 5192 L)
- S%L(s)f‘ _ 1013L(s)9 _ wlﬁL(s)lO)slo

+0(s1L(s)M) (3.2.17)
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and in the low temperature

o (s) = —31— (1 n 1L(s))s + (1 e - 1L(s)2)52 _ (1L(s)2 + 1L(s)3)s3

2 2 8 4 4 8 8
(= 515 + 1agh8) — ggL(5P — L) — 2o L(s)*)s"
(- z05z * 7053 L(5) — 5L + 55 L)

+312L() +3i2L(s)5)55
+ (5155 — 209 L) + 515160 — g5 L(5)"

L) = L L(5)°)s"

1 2 1 3 1 4
( 51920 T 163835 ~ 2096 L) — 705 L 8)

+ ﬁL(s)5 + 1;—8L(S)6 + %L(s)7)s7

(- 838285608 + 104285576L(S) + 262%”5)2 - 325%”5)3
() 4 201—48L( P — g5 L(5)° — el (s) - 2;_6L(s)8)58

_( N 536212;3912 + 67120783864L(S) N %L(S)z * %L(SF
T o) - 131372 ()~ ﬁL(sf + groa 1)
L)+ 1o L(5)°)S

+(1O73§4111824 N 536&13;3912L(S) N %L(S)z * %L(S)g
N 83&1;208 ()" - 2627144L(S)5 + 25%“5)6 + g1oa L)
_ Sl%L(S)S _ wlﬁusﬁ _ ﬁL(s)m)slo

+0(sML(s)') (3.2.18)

These expansions were generated by solving the recurrences using computer
algebra.

3.3 The leading term G (s)

We can compute the small s expansion of the diagonal correlation by using the
preceding results. Integrating [3.0.7] shows that

+ 51 £
Gy (s) = exp (70 x)dx
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Substituting [3.2.17 and [3.2.18, we then find that

Gy (s) = S%nt 1+ 1L(s)(j:s) 1oy lL( )(%£s)3

2 16 32
1 4
2048+ﬁ )_ﬁL()>

m + m“ 5)) (s)°

VR

+ o+

_|_

1
T LI JORV ARG
98304+4096 (5) — 2006 L(5) )S

(
(-
(-
( 7
(-
(-

_|_

7
65536 196608L(s)>(is)
469 35 17 N\ g
L(s) — L
201326592 2194304 -(8) ~ 2097155 (5) )S

209 209 L(s) + 5
536870912 4026531 16777216

1 9
~ 8388608 -(%) )(is)
937 41 19 0
— L(s)— —— |
+ ( 16106127360 T 201326592 °°) ~ 100663296 - )S

L(s)?

+

+ O(L(S)B’sll)) (3.3.1)
In the limit s — 0, applying the known result shows
A=271%4

where A is the constant in This result is consistent to the series solution
presented by Au-Yang and Perk [1].

3.4 Series solution of the second order differential

equation about s ~ 0

The expressions|3.2.17/and [3.2.18|give the means to compute the coefficients|3.0.3}[3.0.4} 3.0.5]
and in Up to their sub-leading terms,

A(s) ~ :l: 2 for T 2 Tc

B(s) ~ (g + %L(s) + %L(s)z)s
C(s) ~ —% _L(s) - %L(S)Z



If we however reuse the definitions3.2.53.2.8} [3.2.10,[3.2.11]and [3.2.14| then[3.0.3} [3.0.4} [3.0.5
and can be rewritten as

Als) = 25200(5) = 5 ) an(s)s” (3.4.1)
n=0
B(s) = s(69(s))* — 2s(sdp(s) — 0o (s)) +200(s) (sdp(s) — Oo(s) — 1/4)
= % i Cn(s)s" —2s i Brn(s)s"
= S - (3:4-2)
+515 (L Bnlmmon(s))s" = 5 3 mls)s”
C(s) = 2(sdp(s) — 0o (s)) — (0p(s))?
=2 B~ 5 ) Cals)s” (3-43)
n=0 n=0
D(s) = s°(07 (5))* +200(s) (s05(s) — 0o (s)) (05 () — Oo(s) — 1/4)
1 o0 2 [o°] n
=~ L ()" + 5 L (X Bul)ra-m(s))s"
= S (3-4-4)
~5 L (X Bn@1-n()s"
We seek the solution to with the form
= 2 2 kpmnL(s)"s" (3.4.5)
n=0m=0
Differentiating gives
= Y kuu(nL(s) + m)L(s)™ 15"
n=0m=0
Z E kmn[n(n —1)L(s)? +m(2n — 1)L(s) + m(m — 1)]L(s)" 25" 2
n=0m=0
If we introduce the new variables
5) = Z KmnL(s)™ (3.4.6)
= 3 FuanL() + mL(s) " (.47)
i (n—1)L(s)*> +m(2n —1)L(s) + m(m — 1)]L(s)" > (3.4.8)
The first term in [3.0.2]is
A(s)oq (s) = Lz Y ( Y () Vn—m( )s" (3-4-9)

n=0 "~m=0
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the second term is

B0 (5) =5 1 (15 G w(®)s" =2 1 (L (o ()
# 3 2 (X u@m ()"~ 5 L (1 mnlehpnn(s))
(3-4.10)
where
Du(s) = 3 Bu(s)1nm(s) (411

and the third term is

C0n(6) =23 (3 puaon)s" = 5 T (1 Culshtaonts))s

(3-4.12)
Substituting [3.4.9} [3.4.10} [3.4.12| and [3.0.6| into [3.0.2| gives
1 [e<] n
5 Z()( Otxm(s)vn_m(s)>s”
1 [¢] n &) n
+2 5 (X Culnn(s))s" =2 1 (X pu(e)pinn(s))s”
2 (o] n " 1 (e°] n "
+2 1 (X Dulhinn(®))s" = 55 12 ( 1 vm(s)pn-m(s))s
[e°] n 1 ] n
+2 ) ( y ﬁm(s))\n_m(s)>s” -5 Y ( y Cm(s)/\n_m(s)>s”
n=0 "~m=0 n=0 "~m=0
1 (9] " [o°] n " 1 (e °] n "
= grg n(s)s +_n_0<mZOBm(S)'Yn—m 5)>5 - gnz_o(mgoﬁ (8)Yn—m( ))5
Equating powers of s gives the recurrence
1 2 n—2
5 Zof"m(s)vn m(s) + Z Cin(s)pn—m(s) —2 Z_:Oﬁm(s)ﬂan(S)
1 n
+2 Z D (8)ptn—m(s) — 5 Z Y (8) tn—m(s)
m= 0 m=0
+2 Z_: B (8)An_m_2(s) — ZOCm(s)An_m(s)
- n—1 - 1 "= 1
:A —|—22Bm f)’nml __Zﬁm 'Ynml()
m=0
(3-4.13)
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is polynomial of order n in L(s). Equating powers of L(s) gives a system
of linear equations that can determine k, ,. Some of the first few equations for
ki, are

1 1
§k0,0 — (co1 + c11)%ko0 + §C1,1k1,1 =0

—2c11(co,1 +c1,1)koo =0
— C%/lkO,O =0
—co,1¢11 — 3c1 4 — 8co1¢0,2k0,0 + 4c1,1k0,0 — 8o 2c1,1ko,0 — 4eo,11,2k0,0
— 4cy101,0k0,0 + 4eoic1,1k0 + 4ct 1Ko + 201,102 — ki
+2¢§ 1k11 + 2c0.2k11 4+ 8co,1c1,1k1,1 + 663 1k11 + Bc12k11 + 200.0k1 1
+3c1,1k12 +2¢1,1k0p = 0
—cf 1 — 8co201,1k0,0 — 8o 1¢1,2k00 — 12¢1,1¢12k0,0 — 8co,102,2k0,0 — 8c1,162,2k0,0
+4cf 1ko1 + 8corcr,iki,1 + 12¢7 ki1 + 2c10k11 + 6¢20k1,1 + 2¢1,1k12
+6c11k22 =0

—4ey 1c10k0,0 — 4co102,2k0,0 — 8c1,12,0k0,0 + 3cT 1k11 + C20k11 + c1,1k22 = 0

Now we need to know the boundary conditions to the differential equation
to initiate the recurrence. First we must look revisit the Gf (s) which was defined
in From the known large N expansion of the diagonal correlation at

T = T¢ given in we can see that
Gi(s) >0 ass—0

This is consistent with the recurrence relations given above for k;,,, which re-
quired koo = 0.

The next leading term of éli (s) can be systematically calculated in much the
same fashion described in For our current purposes we will however use a
numerical extrapolation of the data of GAfE (s) computed from the Toeplitz deter-

minant

The data from in Figure éfc(s) behaves like a straight line for small s with
gradient ~ 0.19176. This suggests

A

A
Gli (s) ~ :l:zs ~ £0.19176s (3-4-14)

Then the small s approximation for Gi*(s) defined in [2.2.3]and [2.2.4)is

A A
GE(5) = (25) /4G (s) ~ £ 75 (G415)
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Figure 1: Small s extrapolation for Gi"(s)

Substituting [3.4.15/into [3.0.8 shows that

. 1
01(5) ~ 45 (3.4.16)
So we will take
k(),() =0
1
ko 1

as the initial conditions for the recurrence Solving then gives

o+ (s) :}Ls n %sz (- % _ ZL(S) _ }LL(S)Z)SB + (}LL(S) + gL(S)Z + %lL(S)?’)SLL

11 5 05 7 s 3 s
+(512 2gh(8) = gz L(s)" — 7 Ls)" — ¢ L(s) )S

1 7, 21 9 41 s\
+( 2560 5l 18 5l () +gLls) )s
55

3 5 3 L, 7 . )
2 2 2 ()2 — (s — 221
+<8192 2096 -(8) T 515 L(8)" = 55 L(s)” — g5 L(s)

- EL(s)5 - iL(s)6>s7

64 64
3 1 9 , 11 . 23,
+< 8192~ 819205 T 5192 18" — 5025 L(8)" + 5045 L0)
69 5 13 . 3, a4
+ 1024L(s) + 128L(s) + 64L(s) )s
25 231 71 11
+(

_— 2 P —
5388608 T 1048576 “®) ~ 2621225 ~ 3078

61 4 5 6 7 8\ .9
+ 6382 8) ~ 2045 t(8) 55 L(8)” — 55g L) — 356 L(s) >S
353 3

1 81 1545 , ) A
+(524288 1194304 -) ~ 8388608+ T0as576 %) ~ 131072~
17

39 47 25 1
. L 5 L 6 L 7 i 8 iy 91\ .10
To38a L) T gop L) + 10ag L) + 55 L(8)" 4 g L(s) >S

+O(L(s)"s™) (3.4-17)

L(s)® +

L(s)

17 7
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o (5) =35 — 5+ (- % - ZL(S) - }LL(S)2)S3 (- }LL(S) - gL(s)z — LEP)s"

72

+ (515~ 135L09) — L) — 1Ll — 2 L(5)*)s”

+ (555 L(5) — 5 L(5)? — e L()® = 5 L(s)* — SL(s)°)s°

(505 — G L) 55 L5 — g5 L(s)® — S L(s)’
- GL6P - L))

+<813@+81%L( )~ 81992L( s +%L( )= zéisL( )*
1O L)~ L () S L(sY)s®

+<838285608 + 104212;76L(S) N %Zﬁus)z N 3217168L( P+ %L( )’
- 2(1)ZSL( )= 5%“ )= 21556L( )= %L“)g)sg

+( N 5241288 + 419%1130414 () + 831;;6508 O 1022?76L(S)3

3 39 s 47 25
31072 )+ 16382 ")~ g1op L) — 1oz L8 )/
Y 1 o\ 10
51210 5)° - k) )S
+O(L(s)10%s) (3-4.18)

_|_

3.5 The correction term G (s)

Now it is left to compute the sub-leading term of the diagonal correlation Gf[ (s).
Rearranging gives a order linear differential equation for Gli(s) for low and
high temperature regimes. For T < T¢,

dG; dG_
ds d
and for T > T¢,

(5) = ()G () 422990 G (5)  (3.5.)

sGy (s) s

dGJr dGJr
ds ds

dG+
0.Gf (s) = (&f(s) + %)GJr( 5)% 4 252 15 —VGJ(s) (352

sGy (s)
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Introduce the integrating factor

where the last two steps comes from the formulas [3.0.71and [3.3.1} The differential

equations [3.5.1/and [3.5.2| becomes for T < T,

d 1 o 1. - 1 dGy
$<WG1 (S)) =30 (s) +25G0(s)d—so

Gr (s) = Gg (s) /O S %a;(x) 1 207 (x)dx (3.53)

and for T > T,

d, 1 ., .\ 1 1, 1 dGf
- (GO+(S)C;1 (5)) =5+ <07 (5) TR
1 1
=5+ E&f(s) + 2507 (s)
+ - 1 1.4 At
G, (s) = G, (S)(ES —{—/O 20 (x) + 2x0, (x)dx) (3-5.4)

The last step of [3.5.3|and [3.5.4| applied the known limit from [2.3.19[and [3.4.15|

+
lim Gl (s)

=0
s—0 GOi (s)
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The series solutions to [3.5.3|and [3.5.4}, deduced from [3.2.17]and [3.2.18} are
_ A 1 1 3 7 1 1 s
G (s) = M(‘Z” <—§—§L(s)>s + o0+ (—3—2—EL(S))S

15 s

(8192 * 1024 L(s) - 1024L( s) )
95 6

16384 ~ Teasa ))S

8
786432 262144L(S)> °

N
+(-
+(- 393216 1613584L() %L(S)Z)g
+ (7501
N
N

7819 813 527
L(s) — ——L(s)?)s’
( 805306368 16777216 (5) 8388608 (S)>
( 18601 8275 (s) 151 ()2
6442450944 1610612736 67108864
35 $10 3,11
+ sy L))+ O(L(s)s™) (3.55)

and

£+ (57 510)7+ g7+ (5 + 1)

% + 109ﬁL(s) — 1(1)%L(s)2)s5

- 16;84 + 12324”5))56

N 39?216 + 1613784 (s) = % (S)2>s7

N 78249132 + 782604332L (s )>58

N 2682493159456 + 16787873216 () = 8322208L (S)2> ’
19855 8693 161

_ el 0
6442450944 T 1610612736 ) T g7108862 %)

37
— mL(s)3>s10 + O(L(s)3sll)> : (3.5.6)

@)
=3
=

|
(¥))
<\ >
=
N

+ + + + + +
/N 7 N 77 N 77 N 7N N
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Chapter 4

Comparison between series
solutions for the diagonal correlation

to numerical data

All that is left is to show numerical consistency of the asymptotic expansions and
series solutions for the diagonal correlation (o oonN)-

4.1 Numerical extrapolation of the diagonal correla-
tion

The diagonal correlation (0poon ) can be readily computed for a fixed s as
a Toeplitz determinant with its elements the hypergeometric functions

defined in [1.3.4} |1.3.5} [1.3.6|and [1.3.7, by using numerical software. For purposes

of numerically calculate its leading and correction term, similar to we
assume the diagonal correlation has the form

a(s b(s c(s
N(l/)4 + N(5/)4 + N(9/)4 (4'1'1)

(00,00NN) =

To extrapolate the (0poon n), we sample fixed values of s from some interval
(a,b) and choose three values large of N and its corresponding k values. This
creates a set of linear equations for the variables 4, b and ¢ from for a fixed
s which can be solved using computer algebra. This gives us a set of values for
(00,00n,N) Over a discrete domain (a,b) in the s variable. In this work, the points
for s are sampled from the (0,1) and (1,10) for small and large s behaviour and
N is chosen up to 50. a(s), b(s) and ¢(s) can be extrapolated continuous functions
over these regions. These extrapolations are not the exact values of the leading
terms of the leading terms of the diagonal correlation for large N. Nonetheless
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they are excellent approximations that will be used to show consistency of the
series solutions derived above.

4.2 Numerical comparisons for large s

Figure 1 and |2/ shows the asymptotic behaviour of G5 (s) and G;"(s) derived from
the form factor expansions compared with its corresponding numerical data from
extrapolation. We see an excellent fit for both G5 (s) and G (s) above and below
afaysm(s) is reasonable for fit to the data for s > 0.4.

(s) gives a good qualitative bahaviour for almost all s and is
a reasonable fit for s > 0.05. G aysm(s) has a good fit for s > 0.5 but it should be
noted that numerical computation of the double integral behaves badly as

s — 0.

criticality for large s. In fact, G

Jr
1,aysm

Surprisingly G

0.10 o ,/,(
\ .f/.
00 ‘\ 0
N
‘-‘-‘:’_v-._.ﬂ [ 1 10 4 6 8 10
@T>Tc b) T < T¢
: . ; 1/4~% :
Figure 1: Small s expansion for (25)"/*Gg g, (s) (Red) v Numerical data (Blue
dots)
\ 3 L B ] P ey 6 8 10
oosl I"‘.‘ f/” —0.001} j/f
! / ~0.00 /
010} £ /
/ —0.003 | ‘f
}/
0.15 “"‘. ’{.’ —0.004 /
L i
020} .~ —0.005) .
@T>Tc b) T < T¢

Figure 2: Small s expansion for (25)1/4GE  (s) (Red) v Numerical data (Blue

1,aysm
dots)
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4.3 Numerical comparisons for small s

To compare the data presented in with the sigma functions 6 (s) and 61(s),
we need to write the Painlevé VI solution as a function of the extrapolated data

a(s), b(s) and c(s). Substituting into and expanding the function in
large N after the change of variables from f to s gives

fo(s) = Siz/((ss)) - 411
and
o1(5) = %—F —25%a(s)a’(s) + s;za(gs))zb’(s) —sa'(s)b(s) for T < T,
o (s) = —226)e'(s) +Zﬂ((85))2b’(5) —sa($)b(s) s T,

These expressions used in Figure [3]and [4 are presented as the 'numerical data’.

CN LA -

“ e

=005 -
-0.10

/
s -0asr

. /

L . L o L L L L . L
02 04 08 fs.—_ 10 / 02 04 08 08 10

(@) T > Tc b) T < Tc

Figure 3: Small s expansion for dy(s) (Red) v Numerical data (Blue dots)

/ 0.035 e ~
08 / ~
/ 030 f Ve N
/ / / 4 \\
o6l 0025 / \
/'l ,”l
/ 0020 /
04 // ootsf/
e pertt /
T ot0f /
02 -
______ 000s f/
-—""M-.
.t L L L L L L I L
02 04 06 08 10 02 04 06 08
(@ T>Tc b) T < T¢

Figure 4: Small s expansion for ¢1(s) (Red) v Numerical data (Blue dots)

The series solutions for 0y (s) and & (s) used in Figure3|and are computed
up to O(s'%). For approximately up to s = 0.4, this offers a good approximation
for 0y(s). Of course computing more terms for the series will increase the range
of s where the approximation becomes reasonable.
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Figure 5: Small s expansion for (25)!/4G;(s) (Red) v Numerical data (Blue dots)

In contrast to Figure [3| and @ shows that the series for G(jf(s) converges
much more rapidly for larger values of s despite being O(s') in the plots. We
can see graphically that as s — 0 then Goi(s) ~ A = 0.6545 in Figure |5/ for both
below and above T¢. This is consistent with the known result at the critical

temperature

-0008f . o
\ N

~0010 \ I o .
A " =002 .,

Y -t .
-0.012 \ o7 ™,
AY .

-0.014

—0.016

—0.018

-0.04

006

-008

N
—0.020 -010f

-012

(@ T > Tc b) T <Tc

Figure 6: Small s expansion for (25)!/ 4Gli(s) (Red) v Numerical data (Blue dots)

In Figure |6 we see a slower convergence to the solution than [5| Nonetheless
it is good approximation for s < 0.4.

4.4 Conclusion

It follows from the characterisation of (0pgon n) as a Painlevé VI differential

equation by Jimbo and Miwa [8] that GSE (s) as specified by [2.2.3|and [2.2.4| can be

expressed in terms of the Painlevé V equation The solution of this equa-
tion must a small s expansion of the form which is a consequence of the
analysis of the Toeplitz determinant in the neighbourhood of T = T undertaken
in section Alternatively, the differential equation characterisation of Ga‘L (s)
could be made explicit by specifying the large s behaviour deduced in section
These characteristics involving the Painlevé V transcendent have previously been
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given in [1].

Our main finding is the previously unknown characterisation of Gli(s). This
‘correction” term to the leading behaviour Goi(s) can be characterised by a second
order linear differential equation with functional coefficients that depends on the
solution to the Painlevé V equation. By considering a similar small s expansion
of the form it is possible to generate a series expansion that characterises
Gi (s) for small s. In the same way, G{(s) has a large s expansion deduced from
the form factor expansions.

Putting the expansions for small and large s for GSE (s) and Gli(s) together com-

pletes a picture of the behaviour of the diagonal correlation in the variable s. The
consistency of the numerical data presented in Chapter 4 supports this claim.
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Mathematica Code

Solving the system of equations for c,, , and &, ,

(*Recurrencerelationsfor\sigma_0*)

a[n_]:=Sum|c[m, n](n(n — 1)L"2+m(2n — 1)L + m(m — 1)) L\ (m — 2),
{m,0,n}]

Bln_]:=Sum|[c[m,n]((n — 1)L + m)L"(m — 1), {m,0,n}]
v[n_]:=Sum|c[m, n](nL + m)LN(m — 1), {m,0,n}]
A1[n_]:=Sum|[a[m]a[n — m],{m,0,n}]

Bln_J:=Sum[B[m]B[n — m], {m,0,n}]

Ca[n_J:=Sum{[m]y[n — m], {m, 0,1}

c[0,0] = —1/4;

reci[n_]:=A1[n] — 4B[n — 2] + 4Sum|B[m] * C1[n — m|,{m,0,n}] — C1[n]
(*SolvesforT > T_Cuptoordero(s"{n + 1})*)

recisolveh[n_]:=

Solve|

Flatten|Table|Table[SeriesCoefficient[rec1[k], {L,0,m}] == 0,
{m,0,k}],{k,2,n}]]/.c[0,1] — 1/2,

Flatten[Table|Table[c[i, j], {i,0,n}], {j, 1, n}]]]

(*SolvesforT < T_Cuptoordero(s™{n + 1})¥)

recisolvel[n_]:=

Solve|

Flatten|Table|Table[SeriesCoefficient[rec1[k], {L,0,m}] == 0,
{m,0,k}], {k,2,n}]]/.c[0,1] = —1/2,

Flatten|[Table[Table[c[i, j], {i,0,n}], {j, 1,n}]]]

recicoeffh = recisolveh[10][[2]];

recicoeffl = recisolvel[10][[1]];

(*Recurrencerelationsfor\sigma_1*)

Aln_]:=Suml[k[m, n]L"m, {m,0,n}]

u[n_]:=Sumlk[m, n](nL + m)L"(m — 1),{m,0,n}]

v[n_]:=Sum[k[m, n](n(n — 1) L2+ m(2n — 1)L + m(m — 1))L"(m — 2),
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{m,0,n}|

Di[n_]:=Sum(B[m]y[n — m],{m,0,n}]

recz[n_]:=3Sum[a[m|v[n — m], {m,0,n}]+

Sum|[C1[m|u[n — m], {m,0,n}] — 2Sum|[B[m|u[n — m — 2|,{m,0,n — 2}]+
2Sum|[D1[m]u[n — m], {m,0,n}] — 1Sum[y[m]u[n — m], {m,0,n}]+
2Sum|B[m]A[n — m —2],{m,0,n — 2}] — Sum|[C1[m]A[n — m],{m,0,n}]—
Ai[n — 1] — 2Sum|[B[m]y[n —m —1],{m,0,n — 1}]+
Sum(Bfrmly[n — m — 1], {m,0,n — 1}]

rec2solveh|[n_]:=

Solve|[

Flatten|

Table|

Table[SeriesCoefficient[rec2[p] / .rec1icoefth/ .k[0,1] — 1/4,

{L, 0, m}] ==0, {m: 0, P}]; {Pl 2, n}]]:

Flatten[Table[Table[k[i, j], {i,0,n}], {j,0,n}]]]

rec2solvel[n_]:=

Solve|

Flatten|

Table|

Table[SeriesCoefficient[rec2[p] / .rec1icoeffl/ .k[0,1] — 1/4,
{L,0,m}] == 0,{m,0, p}],{p,2,n}]l,

Flatten[Table[Table[k[i, j], {i,0,n}], {j,0,n}]]]

rec2coeffh = rec2solveh[10];

rec2coeffl = recasolvel[10);

Calculating the series expansion for G5 (s) and G; (s)

(*FromAu — YangandPerk, opsatisfiesthePVequation®*)
A = Exp[3Zeta’[—1]]2"\(—1/6);
Bl L )=1+ Lr + &2+ L3+ (L2 + oL + g ) e+
(a6l — ae) 5+ (L2 + gL — sui) 76+

7 1 17 35 469
(196608L - 65536) 7+ (20971521'/\2 + aoo0sl — 201326592) rh8+
(8388608LA3 + el 2 + sl — _5368(7)(9)912) "9+

(100663296LA2 + momsssml — 16_11W?1727_360) 10
Fhir_|: —,A(l /4)h[7‘, Log|r] — Log[8] + EulerGamma]
Fl[r_]:= =G/ /4 h[—r,Log[r] — Log[8] + EulerGamma]
ohlr_]: —th' [r] /Fh]r]
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ol[r_]:=rFl'[r] /Fl[r]

(* Series for Go and G1 *)

{1h[r_]:=

—1/4 + Sum[Sum|c[m, n]L[r]"mr"n, {m,0,n}],{n,1,10}]/.
c[0,1] — 1/2/.reccoeffh[[2]]

{1l[r_]:=

—1/4 + Sum[Sum|c[m, n]L[r]"m(—r)"n, {m,0,n}], {n,1,10}]/.
c[0,1] — 1/2/.reccoefth[[2]]

q[r_]:=Log|r/8] + EulerGamma

ath[s_]:=1/2s"2{1h"[s]

bih[s_]:= — 2s(sg1h’[s] — {1h[s]) + 2Z1h'[s](s¢1h’[s] — {1h[s] — 1/4)+
(g [s))"2

cih[s_]:=2(s¢1h’[s] — Z1h[s]) — (g1h’[s])"2

dih[s_]:=

s"3(Z1h”[s])"2 + 2Z1h'[s] (sg1h'[s] — Z1h][s])

(s¢1h’[s] — 1h[s] — 1/4)

a1ls_]:=1/2s"2Z11"[s]

bil[s_]:= — 2s(sg1l'[s] — Z1l[s]) + 2¢11'[s](sq1l'[s] — C1l[s] — 1/4)+
s(¢1l'[s])"2

cil[s_]:=2(sg1l'[s] — Z11[s]) — (g1l'[s])"\2

dilfs_]:=

s"3(g11”[s])2 + 2g11'[s] (sg1l'[s] — Z11[s])

(sg1l'[s] — 11[s] — 1/4)

{2[s_]:=Sum[Sum/[k[m, n]L[s]"ms"(n + 1), {m,0,n}], {n,0,15}]
ohi1fr_]:=

Sum[Sum[k[m, n]L[r]"mr"n, {m,0,n}], {n,0,10}]/.rec2coefth/.
k[0,1] —» 1/4

clow1[r_|:=

Sum[Sum|[k[m, n]L[r]"mr"n, {m,0,n}], {n,0,10}]/.rec2coefth/.
k[0,1] — 1/4

(* Integrating for Go and G1 *)

inthigh =

Integrate [%ahil [r] +2¢1h[r]/.L[r] — Log]r], {r,0,s},
Assumptions — {s > 0}]/.Log[s] — L

G1hlr_]:=Fh]s] (%s + inthigh) /.L — (Log]s/8] + EulerGamma)
intlow =

Integrate [%Ulowl [r] + 2¢11[r]/.L[r] — Log]r], {r,0,s},
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Assumptions — {s > 0}]/.Log[s] = L
Gal[r_]:=Fl[s] (intlow/.L — (Log[s/8] + EulerGamma)

Plots for 0y(s), 01(s), Gy (s) and G;(s)

ClearAll[linspace]

linspace[s_,f_, 1]:=(f +5)/2
linspace[s_,f_,n_|:=Range|s, f, (f —s)/(n —1)]
(* Extrapolation of correlation function *)

whigh[k_, n_Integer/;n < 0]:=
—Gamma(l/2]Gammal—n—1/2] k"(—n . 1)
PiGamma[—n)|

HypergeometricaF1[—1/2,—n —1/2,—n,k2]//N

whigh[k_,n_Integer/;n > 0]:=
Gamma|3/2]|Gamma|n+1/2

1Ga111ma[n+2[r ]k/\ (n + 1)
Hypergeometric2F1[1/2,n+1/2,n+2,k"2]//N

toeplitzh[k_, n_]:=ToeplitzZMatrix[Array[whigh[k, # — 1|&, {n}],
Join[{whigh([k, 0]}, Array[whigh|k, —#]&, {n — 1}]]]

wlow[k_, n_Integer/;n < 0]:=
—Gamma(3/2]Gamma[—n—1/2] n
PiGamma|—n+1]
Hypergeometric2F1[1/2,—n —1/2,—n+ 1,k —2]//N

wlow[k_, n_Integer/;n > 0]:=
Gamma(1l/2]Gammaln+1/2] N —n

PiGammal(n+1
Hypergeometric2F1[—1/2,n+1/2,n+1,k" —2]//N

toeplitzl[k_, n_]:=ToeplitzMatrix[Array [wlow[k, # — 1]&, {n}],
Join[{wlow|k, 0]}, Array[wlow [k, —#]&, {n — 1}]]]
Gihasym[r_]:={;BesselK[0, 7]

Gilasym|r_]:=

1+

iy (1"2(BesselK[1, ]2 — BesselK([0, 7]"2) —

rBesselK [0, r]BesselK[1, 7] + 1BesselK[0, 7] /‘2)

Zhasym|[r_]:=rG1hasym’[r] /G1hasym]r|
flasym|[r_]:=rG1lasym’[r] /G1lasym][r]

Gz2hasym|r_|:=55; (BesselK([0, 7] — 2rBesselK[1,7])
o2hasym|[r_]:=

(—2r"2G1hasym’[r]G1hasym[r] — rG1hasym’[r]G2hasym][r]+
rG1hasym|[r]G2hasym’[r]) / (G1hasym[r]"2) — r/2

mesh = 50;

sfixed = linspace[0.01,0.99, mesh|;

3

—
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sizeN = 50;

chigh = Map|oh, sfixed];

PVh = ListPlot[MapThread [{#1, #2} &, {sfixed, ohigh}]];

olow = Map|o], sfixed|;

PV1 = ListPlot[MapThread [{#1, #2} &, {sfixed, clow}]];

dnsh =

Grid|

Table[MapThread[{#1, #2} &,

{sﬁxed, Det{toeplitzh[#, n]]&/@ ((1 - %) A1 /2)) }] ,
{n,2,sizeN}]];

abchigh =

Table[

NSolve[

Flatten|

Table [{ ;73 + sy + ey == dnshl[1L,n - 1]k, 21},
{n,sizeN — 2,sizeN}]], {a,b, c}], {k, 1, mesh}];

ahighlist = Table[({a, b, c}/.abchigh[[k,1]])[[1]], {k, 1, mesh}];
intahigh = Interpolation[MapThread [{#1, #2} &, {sfixed, ahighlist}|];
intah([r_]:=rintahigh’[r] /intahigh[r] — 1/4

plotah1 =

ListPlot[MapThread [{#1, #2} &, {sfixed, Map|intahigh, sfixed] }]];
plotah2 = Plot[(2r)"(1/4)G1hasym]r], {r,0.01,0.99}, PlotStyle — Red];
plotah3 = Plot[(2r)"(1/4)Fh]r], {r,0,1}, PlotStyle — Red|;

Show [plotah1, plotah2](* Large s *)

Show [plotahi, plotah3] (* small s *)

bhighlist = Table[({a, b, c}/.abchigh[[k,1]])[[2]], {k, 1, mesh}];
intbhigh = Interpolation[MapThread [{#1, #2} &, {sfixed, bhighlist}|];
intbh[r_]:=

(—2r"\2intahigh’[r]intahigh[r] — rintahigh'[r]intbhigh[r]+
rintahigh|[r]intbhigh’[r]) / (intahigh[r]2)

plotbh1 =

ListPlot[MapThread[{#1, #2} &, {sfixed, Map|intbhigh, sfixed] }|];
plotbh2 = Plot[(2r)"(1/4)Gzhasym]r], {r,0.01,0.99}, PlotStyle — Red];
Show [plotbhi, plotbh2]

analyGbh =
Plot [{ (25)(1/4)Fh[s] (%s + inthigh) /.L — (Log[s/8] + EulerGamma)} ,
{s,0,1},PlotStyle — Red];
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Show [analyGbh, plotbh1]

sigmaplotbh1 =

ListPlot[MapThread [{#1, #2} &, {sfixed, Map[intbh, sfixed] }|];
sigmaplotbh2 = Plot[o2hasym][r], {r,0.01,0.99}, PlotStyle — Red];
Show [sigmaplotbhi, sigmaplotbhz2]

Show |[Plot[{{1h[r]/.L[r] — q[r]}, {r,0.01,1},PlotStyle — Red], PVh]

dnsl =

Grid]

Table[MapThread[{#1,#2} &,

{sﬁxed,Det[toeplitzl[#, n]]|&/@ ((1 - %) ’\(—1/2)) }] ,
{n,2,sizeN}|];

abclow =

Table|

NSolve|

Flatten|

Table [{ x5 + iy + iy == dnsl[1,n — ][k, 2]]},
{n,48,50}]], {a,b,c}], {k,1, mesh}|;

alowlist = Table[({a, b, c}/.abclow([k, 1]])[[1]], {k, 1, mesh}];
intalow = Interpolation[MapThread[{#1,#2} &, {sfixed, alowlist}]];
intal[r_]:=rintalow’[r] /intalow[r] — 1/4

plotal1 =

ListPlot[MapThread[{#1, #2} &, {sfixed, Map|intalow, sfixed] }|];
plotal2 = Plot[(2r)"(1/4)Gailasym]r], {r,0.01,0.99}, PlotStyle — Red];
plotal3z = Plot[(2r)"(1/4)Fl[r], {r,0.01,0.99}, PlotStyle — Red]
Show [plotali, plotal2](* Large s *)

Show [plotal1, plotal3](* small s *)

sigmaplotal1 =

ListPlot[MapThread [{#1, #2} &, {sfixed, Map|intal, sfixed] }|];
sigmaplotal2 = Plot[¢lasym][r], {r,0,0.99}, PlotStyle — Red)];
Show [sigmaplotal1, sigmaplotal2]

Show|[Plot[{¢1l[r]/.L[r] — q[r]}, {r,0.01,1}, PlotStyle — Red], PV]]

sfixedLarge = linspace[0.01,9.99, meshL|;
doubleasym|n_]:= E"P[_ZSﬁxedLarglfi[,[\';]]]Sﬁxedmge[["” *

NiIntegrate[Exp[—2sfixedLarge[[n]]x]Exp[—2sfixedLarge[[n]]y]
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(8288 71/2) * (1+ x +y)N(-2)
(—2 — 2sfixedLarge[[n]] — x — 2sfixedLarge[[n]]x"2 + {5+

y — 2sfixedLarge|[n]]y"2 — TJrLy + 4(%1%&)) ,

{x,0, Infinity}, {y, 0, Infinity }]

asymlow = MapThread |{#1,#2}&,

{sfixedLarge, Table[doubleasym|n], {n, 1, Length[sfixedLarge] }] }|

gasymlow = Interpolation[asymlow];

blowlist = Table[({a, b, c}/.abclow([[k, 1]])[[2]], {k, 1, mesh}];
intblow = Interpolation[MapThread [{#1, #2}&, {sfixed, blowlist}]];
intbl[r_]:=

(—2r"2intalow’[r]intalow[r] — rintblow[r]intalow’ [r]+

rintalow [r|intblow’[r]) / (intalow([r]"2) + /2

plotbl1 =

ListPlot[MapThread [{#1, #2} &, {sfixed, Map [intblow, sfixed] }]];
plotbl2 = Plot[(2r)"(1/4)gasymlow][r], {r,0.01,0.99},

PlotStyle — Red];

Show [plotbli, plotbl2]

analyGbl =

Plot[{(2s)"(1/4)F1[s](intlow/.L — (Log|s/8] + EulerGamma))},
{s,0,1},PlotStyle — Red];

Show [analyGbl, intalow]

(* Asymptoptic data *)

sizeNL = 50;

meshL = 50;

sfixedL = linspace[0.01,9.99, meshL];
dnshL =

Grid]

Table[MapThread[{#1,#2} &,
{sﬁxedL, Det[toeplitzh[#, n]]|&/@ ((1 - %) A(1/2)) }] ,
{n, 2sizeNL, 3sizeNL}||;

abchighL =

Table|

NSolve|

Flatten|

Table|
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{ — S N ] +

(3+sizeNL—n)A(1/4) ' (3+sizeNL—n)"(5/4)

GremeNTyEyay == dnshL{[1, sizeNL — n +1]][k, 2]]} ,
{n,0,2}]],{a,b,c}],{k, 1, meshL}|;

ahighlistL. = Table[({a, b, c}/.abchighL[[k, 1]])[[1]], {k, 1, meshL}|;
intahighL = Interpolation[MapThread[{#1, #2} &, {sfixedL, ahighlistL}];
intahL[r_]:=rintahighL’[r] /intahighL[r] — 1/4

plotahL1 =

ListPlotMapThread[{#1, #2} &, {sfixedL, Map|intahighL, sfixedL] }];
plotahL2 = Plot[(2r)"(1/4)G1hasym]r], {r, 0,10}, PlotStyle — Red];
Show [plotahLs1, plotahL2]

bhighlistL. = Table[({a, b, c}/.abchighL [k, 1]])[[2]], {k, 1, meshL};
intbhighL. = Interpolation[MapThread [{#1, #2} &, {sfixedL, bhighlistL}]);
intbhL[r_]:=

(—2r"2intahighL/[r]intahighL[r] — rintahighL'[r]intbhighL[r]+
rintahighL[r]intbhighL’[r]) / (intahighL[r]"2)

plotbhL1 =

ListPlot[MapThread|[{#1, #2} &, {sfixedL, Map[intbhighL, sfixedL] }]];
plotbhL2 = Plot[(2r)"(1/4)Gzhasym]r], {r,0, 10}, PlotStyle — Red|;
Show [plotbhL1, plotbhL2]

dnslL =

Grid]

Table[MapThread [{#1,#2} &,

{sﬁxedL, Det[toeplitzl[#, n]|&/@ ((l - Z’*Sﬁ"fe‘ﬂ*) /‘(—1/2)) }] ,
{n,2 x sizeNL, 3 * sizeNL}|];

abclowL =

Table|

NSolve|

Flatten|

Table|

i a + i b +

(3+sizeNL—n)A(1/4) ' (3xsizeNL—n)"(5/4)
TrsmeNTyEyay == dnsIL{[1, sizeNL — n + 1]] [k, 2] } ,
{n,0,2}]],{a,b,c}], {k,1, meshL}|;
alowlistL = Table[({a, b, c}/.abclowL[[k, 1]])[[1]], {k, 1, meshL}]|
intalowL = Interpolation[MapThread [{#1, #2}&, {sfixedL, alowlistL}||;
intalL[r_]:=rintalowL'[r] /intalowL[r] — 1/4
plotalL1 =
ListPlot[MapThread|[{#1, #2} &, {sfixedL, Map[intalowL, sfixedL]}]];
plotalL2 = Plot[(2r)"(1/4)G1lasym][r], {r,0, 10}, PlotStyle — Red];
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Show plotalL1, plotalL2]

blowlistL = Table[({a, b, c}/.abclowL[[k, 1]])[[2]], {k, 1, meshL};
intblowL = Interpolation[MapThread[{#1, #2} &, {sfixedL, blowlistL}]];
intblL[r_]:=

(—2r"2intalowL'[r]intalowL[r] — rintalowL’[r]intblowL|[r]+
rintalowL[r]intblowL'[r]) / (intalowL[r]"2) + /2

plotblL1 =

ListPlot[MapThread [{#1, #2} &, {sfixedL, Map[intblowL, sfixedL] }||;
plotblL2 = Plot[(2r)"(1/4)gasymlow]r], {r,0.01,9.99},

PlotStyle — Red];

Show [plotblL1, plotblL2]
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