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Introduction

The theory of correspondences associated with Young tableaux is a mainstream
topic in combinatorics (see, e.g., [18]). It is this development, and its implications
in relation to probabilistic models of growth processes, which will be reported
here.

In the course of this study, close ties with the theory of symmetric functions
become evident. Indeed it is possible to give combinatorial derivations, in the
context of probabilistic models, of a number of identities satisfied by Schur poly-
nomials ([11],[12]). These symmetric function identities are in turn known to be
intimately related to the representation theory of the symmetric group (see, e.g.,
[11], [16]), and it is in this topic that Young tableaux were introduced by Young
in 1900 (see, e.g., [15]).

The first combinatorial result relating to Young tableaux appears in a paper
by Robinson published in 1938 [14]. Define a partition A = (A1, A2, ..., A,) to be
a weakly decreasing sequence of non-negative integers A\;y > Ay > -+ > X\, > 0.
Define the diagram of a partition to consist of n rows such that the j** row
contains \; squares/boxes, left justified. For example, the diagram of the partition
(5,2,2,1) is:

Hence the diagram comsists of N = [A\| = 37 | A; boxes. A standard
Young tableau is a numbering of the boxes in the diagram of A by the numbers
{1,2,..., N}, such that the numbers are strictly increasing, both along rows and
down columns. The partition A is called the shape of the tableau, and NV is called
the content. For example, a standard Young tableau of shape A = (5,2,2,1) and

content 10 is:

1
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Robinson gave, in what has been said to have been expressed in vague terms
by Knuth [10], a bijective correspondence between permutations of {1,2,..., N}
written as two-line arrays, and pairs of standard tableaux with the same shape,
and of content V.

For example, in the case of permutations of {1, 2,3}, the correspondence gives:

1 2 3
(123) —  [1]2]3 12]3
Ggg) . 12 12
3 3
1 2 3 1]3 113
(213) |2 2
Ggi’) . 113 112
2] 3
1 2 3 112 113
31 2 — 3 2

Independently, and some years later, Schensted [17] found the same corre-
spondence, and focussed attention on a particular feature, namely that of the
longest increasing subsequence. This is the maximum length of the subsequences
in the second line of the two-line array which are strictly increasing. In the sec-
ond permutation above, the longest increasing subsequence is (1,2), and so the
maximum length is 2. This is the same as A\, (ie, the length of the first row) in
the corresponding tableau shape, and Schensted showed that this will be true in
general.



As a mark of the pioneering work of Robinson and Schensted, the bijection
between permutations and standard tableaux is now referred to as the Robinson-
Schensted correspondence.

In 1970 Knuth generalised the Robinson-Schensted correspondence [10]
(Knuth is well known to all producers of mathematical theses for his typesetting
program TEX!) The generalisation, now referred to as the Robinson-Schensted-
Knuth correspondence, gives a bijection between non-negative integer matrices
and semi-standard tableaux.

A consequence of the Robinson-Schensted-Knuth correspondence is that it
allows us to express the probability of all increasing subsequences having length
less than or equal to a given value as a summation over Schur polynomials. It
was realised by Gessel [6], and later extended by Rains [13], that the summations
can in turn be expressed as multidimensional integrals relating to random ma-
trix averages over the classical groups. Methods of random matrix theory allow
for an asymptotic analysis of the multidimensional integrals. As a result it has
been possible to evaluate the limiting probability density function for the longest
increasing subsequence length [1], [2].

Johansson [9] interpreted a geometrical picture of the Robinson-Schensted
correspondence due to Viennot [19] as a growth model. In the same paper the full
Robinson-Schensted-Knuth correspondence was also presented as a growth model.
Beginning with this work there have been a number of papers dealing with the
application of ideas relating to the Robinson-Schensted-Knuth correspondence to
physical models of growth and directed percolation.

In this thesis the theme is to study the details of the Robinson-Schensted-
Knuth correspondence in the matrix-ball picture of Fulton [5], to relate this to
growth models of non-intersecting paths, and to show how the correspondence can
be used to obtain probabilistic formulae for the growth model. In addition to the
case of general non-negative integer matrices, the special case of square matrices
symmetric about the diagonal or about the anti-diagonal, as well as the special
case of zero-one matrices, all have features which warrant a separate treatment.
Our aim is to develop the theory in each of the cases to the same extent as is
possible for the general case. For the most part this program is carried through,
although in the course of the study some aspects of the theory which appear
incomplete became apparent. These are reported as possible extensions of the
present study in Chapter 5.



Chapter 1

Robinson-Schensted-Knuth
correspondence - construction

The Robinson-Schensted-Knuth correspondence is a one-to-one correspondence
between matrices with non-negative integer entries and pairs of semi-standard
tableaux of the same shape. A semi-standard tableau, similar to the standard
tableau introduced earlier, is a numbering of the diagram of A which must be
strictly increasing down columns, but only weakly increasing across rows.

We can construct this correspondence in several ways, of which two geometri-
cal methods will be considered here - matrix-ball construction and the sequence
of growth models of non-intersecting weighted paths.

1.1 Matrix-ball construction

We will adopt a notation to describe the relative position of two boxes in a
diagram, or to compare positions of entries in a matrix. We say that a box B is
West of C' if the column of B is strictly to the left of the column of ', and we
say that B is west of C' if the column of B is weakly to the left of (ie left of or
equal to) the column of C.

We use the corresponding notations for other compass directions, and we
combine them, using capital and small letters to denote strict or weak inequalities.
For example, we say B is southEast of C' if the row of B is below or equal to
the row of C, and the column of B is strictly to the right of the column of C.

The following matrix-ball construction, particular to the RSK correspondence,
uses a northwest ordering. It is possible to obtain variations of the RSK cor-
respondence (ie alternative correspondences between matrices and tableaux) by
using a different ordering (as explored in Appendix 1).



Given an m x n matrix A = (a(7,j)) with non-negative integer entries, put
a(i, 7) balls in the position (i, j), arranging balls diagonally within each position
from NorthWest to SouthEast, ie from top left to bottom right.

For example, the matrix A:

1 21
2 20
1 11

leads to the following arrangement of balls:

O

O |Op| ©
00
o|o0|o0

Now we number each ball with a positive integer, such that each ball is num-

bered k if (k—1) is the largest number occurring in a ball northwest of its position.
Hence a ball with no balls northwest of it is numbered ‘1’ - in this case, the ball
in position (1,1). In this way from A we get the configuration of numbered balls

in a matrix, AW:

)

©)

®

“o

)
®®

©

©

Q)

From AW we can work out the first row of the semi-standard tableaux (P, Q)
corresponding to A. The first row of P is found from A by listing the left-most
columns where each number first occurs, and the first row of @) is found by listing
the top-most row where each number first occurs.

In this example, the first row of P is (1,1,1,1,2,2,3), meaning that the num-
bers 1-4 first appear in the first column, 5 and 6 in the second column, and 7 in
the third. Similarly, the first row of @ is (1,1,1,1,2,3,3).

To find the second row of the tableaux, we form a new matrix of balls. When-
ever there are ¢ > 1 balls with the same number, k, in the given matrix (in this
case A1), put £ — 1 balls in the new matrix. To do this, consider the ¢ balls in
AW and put a ball to the right of each of these balls, except the last, directly
under the next ball.

10



For example:

oIS

Note that the original ¢ balls labelled £ do not appear in the new matrix, they
are simply used as a guide to construct it.

When this has been done for all k, we have a new matrix of balls which we
then number using the same technique as for A, Continuing with the example,
this gives us A®):

(D@@

©)

which gives us the second rows of P and (), by the same procedure as before. So
the second row of P is (2,2,2), and the second row of @ is (2,2,2). We continue
this process until no two balls in A® have the same label. For the example in
question, this means going as far as A®):

)

which gives the third row of P as (3) and the third row of @ as (3). So for the
matrix A, the corresponding semi-standard tableaux (P, Q) are:

1|1|1(1(2(2]3
2122
3

| W [\ —_
(\®)]
(\®)]

11



1.2 Growth model of non-intersecting lattice
paths

Given an n X n non-negative integer matrix, X = [mi,j]i,jzlmn, we can generate a
sequence of growth models from which we obtain the tableaux corresponding to
X. In this instance we count the rows of the matrix from the bottom, so in order
to use the same example as for the matrix-ball construction, we will interchange
the order of the rows to give X:

1 1 1
2 20
1 2 1
We rotate X 45° anti-clockwise and label the horizontal rows of the rotated

matrix by ¢ = 1,2,...,2n—1 and the vertical columns by x = 0, 1, ..., £(n—1),
where z = 0 corresponds to the diagonal ¢ = j of X:

b, t
b, ™~ 5
b N1 0 4
1 2 1 3
7 2 2 2
aj 1 1

The entries z; ; in the matrix for successive ¢ values represent the heights of
weighted nucleation events at time t. A nucleation event is a column of unit width,
height x; ; and weight (a;b;)**7, centred about the corresponding x-coordinate,
which is placed on top of earlier nucleation events and their growth. So at t =1,
there is a nucleation event centred at x = 0, consisting of a column of width 1,
height x1; (in X above, z1; = 1).

As t — t 4 1, the profile of all nucleation events recorded ‘grows’ one unit in
the —z direction and one unit in the 4z direction. So at t = 2, the nucleation
event centred at x = 0 is 3 units wide, and on top of this profile we add two more
nucleation events, centred at x = —1 and z = 1, of unit width, height xo1, 212
and weight (agb1)™, (a1by)”*? respectively.

This process is continued until ¢ = 2n — 1, with the previous nucleation events
growing one unit in each direction and then adding on any new nucleation events
for time t. When there is some overlap due to growth of adjacent nucleation
events, the overlap is moved to the line immediately below, where it continues to
undergo the same process.

12



For the matrix X, the corresponding sequence of growth models is:

t=1
b a
|I T I| y=0
1 0 1
t=2
a,’
b} by a}
T T T T T y=0
2 -1 0 1 2
t=3
b,’ a,’
| |a1 b3| |
b} a?
b,* at
_ b, a;’
b, a2 | mmm s s - - —=- y=0
- [ R - y=0
______ [ [ ____-y=1
T T T T T T T y=-1 b | |a3 =2
3 2 -1 0 1 2 3 T T T T T T T T T T T Y=

To obtain the pair of tableaux associated with X, take the paths at t = 2n—1
and think of each path as being a pair of paths - one path for x < 0 and another
for x > 0. The path at y = 1 — n gives the n* row of the tableaux, where the
power of by (where x < 0) and a; (where z > 0) tells us the number of times the
integer k is present in the n'® row of tableaux P and () respectively.

From the above growth models, we obtain (P, Q):

1/1]1]2(2]3 I(1]1]1(2]|3]|3

W]~
S
§)

2
3

which is the same as the pair of tableaux obtained using matrix-ball construction.
This will be the case in general, as becomes clear from the following discussion.

13



1.3 Relationship between matrix-ball and
growth model constructions

1.3.1 Matrix-ball to growth model

From the matrix-ball form, it is quite straightforward to obtain the set of paths
for t = 2n — 1. We relate A® to the path at y = 1 — k. From the n x n matrix
A®) the i*" row and the j column tell us the power of a; and b; respectively
in the path at y = 1 — k. This is done by finding the maximum number in a
ball in the i** row (or j* column), and subtracting from it the maximum number
occurring in previous rows (or columns). The result is the power to which a; (or
b;) is raised in the path at y =1 — k.

For the example, we use A to find the path at y = 0, A® for the path at
y = —1 and A® for the path at y = —2.

A A@) ABG)
O |9 0
®

0% Op| ©

OB NONNG, ©) O]

From A® we find that in the path at y = 0, a; is raised to the power 4, by
to the power 4, as to the power 1, by to the power 2, as to the power 2 and b3 to
the power 1. Similarly we find from A® that the path at y = —1 has as®, by®,
as? and bs’, and A® has as' and bs'.

So from the matrix-ball constructions AM, A® and A® we get the paths:

b, s
a3
b,
a,
b a,’

b,* a,’
————————————————————————— y:()
——————— R R T

b, a3
T T T T T T T T T T T y=-2

14



1.3.2 Growth model to matrix-ball

This is less straightforward than going from the matrix-ball form to the growth
model. Given the set of non-intersecting paths:

it is possible to derive the corresponding matrix-ball form, more or less by revers-
ing the method used to obtain the paths from the matrix-ball form.

From the path at y = 1 — k we can find the matrix-ball form A® in the
following way: the sum of the heights of all paths at y < 1 — k gives the total
number of balls in A®), the height of the path at y = 1 — k gives the maximum
number permitted on any ball in A® and the height at x = 2n + % — 29 and
r = —2n— % — 27 gives the maximum number permitted in a ball at or above
the i"" row and at or to the left of the j'" column. From this we can deduce the
matrix-ball form, by beginning with the lowest path, (hence the greatest value of
k, say ()

For the example, we use the path at y = —2 to find the matrix-ball form A®).
The sum of the heights of all paths at y < —2 is 1, and the height at y = —2is 1,
so there is one ball in A®, numbered up to 1. bs' and a3’ tell us that in both the
third row and the third column the maximum number present is 1, whereas for

all other rows and columns there are no balls present. This leads to the matrix
ball form A®):

15



The matrix-ball form A® helps in deducing the next matrix, A“~1, using the
idea that for every ball present in A® there must be two balls in A“~Y with the
same number, one to the North and one to the West of the position of the ball
in A©),

So for the example we use the path at y = —1 combined with A® to find the
matrix-ball form A®: The sum of the heights of all paths at y < —1 is 4, and the
height at y = —1 is 3, so there are four balls in A®, numbered up to 3. a,® and
by® tell us that the maximum number present in the second column and also in
the second row is 3, with no balls present on the first row or first column. From
A®) we know that there will be a ball at either ASQ:),, or A%, and one at either
A:(f% or A% As we know there are no balls in the first row or the first column,

this gives us one at Aﬁ,{ and one at Ag With only two more balls to be placed
on the matrix, in order to satisfy all conditions, we end up with A®:

(D@@

©)

Now we use the path at y = 0 combined with A® to find the matrix-ball form
AW We find from the path at y = 0 that A®) will have 11 balls, numbered up
to 7, with the first row containing the numbers 1-4, the second row containing
5 and numbers < 5, and the third row containing 6 & 7 and numbers < 6; the
first column has numbers 1-4, the second column 5 & 6 and numbers < 5, and
the third column 7 and numbers < 7. From A® we know that there must be
(at least) two balls in each of Aglg and Ag%, also there must be one ball in each

of Aﬁ% and Ag%, and a ball in either AS} or AS% and either A&Z or Agg, with
common numbers so that they will produce the balls in A®).

From all this we can deduce AM:

0 |9 @
®0/%
ONNORNG

16



Chapter 2

Concepts relevant to the RSK
correspondence

Associated with semi-standard tableaux are a class of symmetric functions re-
ferred to as Schur polynomials. These polynomials, combined with the RSK
correspondence, allow for the derivation of a formula for the probability of the
maximum height in the growth model being less than a given value.

Another relevant concept is that of recurrence relations satisfied by path dis-
placements in the RSK correspondence. These displacements satisfy formulae
which can be interpreted from the perspective of both the growth models and the
matrix-balls.

2.1 Schur polynomials

For a given partition A\, with at most N rows, we can use semi-standard tableaux
to define a symmetric polynomial, in the following way:

For a numbering 7" of a Young diagram there is a monomial, 27, defined as:

T number of times i occurs in T
"= []()

For example, for the semi-standard tableau:

1|1(1({1(2]2|3

2
3

the corresponding monomial is z7 = {523

17



The Schur polynomial sy(z1, ..., zy) is the sum of all monomials coming from
semi-standard tableaux of shape A using the numbers from 1 to m:

sax(z1,...,TN) = 3 T o= Sttt N
X

tableaux of shape A

2.1.1 Symmetry of Schur polynomials

A special property of the Schur polynomials is that they can be expressed as a
ratio of determinants, ie:

. det[wj-vfk“"“]jk:l’_._’]v

sx(x1, ..., xN) = —
’ ’ det[xjv k]j,k:l,...,N

(2.1)

For notational convenience this will be established for the case N = 3. In
fact, N = 3 is representative of the general N case.

We want to show that:

sx(x1, 9, x3) = 5 (2.2)

Our strategy is to show that both sides of (2.2) satisfy the recurrence:

8,\(%17 T2, 553) = Z Su(fﬁb $2)$|3/\‘_|#|

1,42 such that
A1Zp1 > o> p2>A3

together with the initial condition sy(x1,x2,23) =1 for A = ().

For the LHS of (2.2), we refer to the definition of the Schur polynomial, from
which the recurrence follows, as the portion of the tableau containing only 1’s
and 2’s forms a tableau consisting of 2 parts, and fully contained in .

18



To show that the determinant formula satisfies the recurrence, we begin by
setting 3 = 1 and subtracting the last row from all others, in each determinant:

xi\l-f—? -1 xi\z-i-l -1 xi\d —1

A1+2 Aa+1 A3

1 1 1

-1 -1 0

5,\(1’1,13271) =

r2—1 x9—1 0

1 1 1
Now we divide the first row by x; — 1 and the second by x5 — 1, which gives:

A1+1 Az—1

A2
ooy yoat Yy
/=0 =0 /=0

Ait1 A2 Az—1
>owy Yy )
=0 =0 =0

1 1

SA(I1,$27 1) = Tt 1 1 0

1 1 1

Next subtract the second column of each determinant from the first, and then
subtract the third column from the second:

A1+1 A2 Az—1
>oa Yoa
l=X2+1 {=X3 =0
1+ A2 Az—1
>ow Yowm Y )
l=X2+1 {=X3 £=0
0 0 1
sa(w1, 22,1) = . 1 0
1
T2 1 0
0 0 1

19



Expanding by the final row, and manipulating the sums on the numerator
shows:

A1 41 A2
> ! >
H1=A2 H2=A3
A1 41 A2
> @y >
H1=A2 H2=A3
sx(z1,22,1) =
il 1
i) 1
1
x/lqu xé@
A1 A2 p1+1 B2
-3y e
T 1
H1=A2 p2=A3 1
) 1
and so:
M e
sa(xy,x0,1) = E E Su(1,22) (2.3)
H1=A2 p2=A3
We note from the determinant formula that:
_ A
sx(cxy, cxg, ... cxy) = AMNsy (w1, T2, ..., Ty)

. L1 T2 .
So if we replace x; — — and x5 — — in (2.3), we have:
3 T3

A2
S,\(QJ17372,5U3) = Z Su(ﬂilaﬂb)x?lf‘”‘

H2=A3
which is the sought recurrence. The determinant formula also gives the sought
initial condition, s0,0)(z1, Z2, 23) = 1.
Another property which follows from (2.1) is the basic fact that the Schur
polynomials are symmetric functions, ie:
SA(@1, 22, ..., Tn) = Sx\(To1), To(2), - - -, To(ny) for any permutation o € S,
which, in terms of tableaux, means that the number of tableaux, on a given shape

A, with mq 1’s, mo 2’s, ..., m, n’s is the same as the number of tableaux on A
with mg) 1’s, mg(2) 2s, ..., Mgy n's, for any permutation o € S,.

20



2.2 Recurrences for )\,

For a given matrix X, consider A\, the length of the first row in the tableau, and
more generally A,. A recurrence can be obtained by considering the case where
we block out the final row/column of X.

We denote by A\¢(n1,ns2) the maximum displacement of the level-¢ path of the
growth models from matrix X, where we have truncated the matrix X to the first
n1 rows and n, columns. In the context of the matrix-balls, this is equivalent to
the highest numbering of a ball in the matrix A®).

We first consider the maximum displacement of the level-1 path, which can be
split into the displacement due to the final nucleation event, and the displacement
due to previous events. The final nucleation step adds a height of z,, ,, to the
displacement at x = 0, and the previous events add the maximum of the height
at x = —1 and the height at x = 1 from the previous time step. So:

)\1(711,712) = Imax (h1<n17n2 — 1), hl(nl - ].,712)) + Tni,ng

However, the maximum of the height at x = —1 in the previous step is
equivalent to the displacement at x = 0 of the level-1 path for the growth model
of the matrix truncated to n; rows and (ny — 1) columns, so hy(ny,ng — 1) =
A1(ny,n — 1), and similarly for hy(ny — 1,ny). Hence:

)\1(711, TLQ) = max ()\1(711, Ng — 1), )\1(711 - 1, n2)> + Lnyno (24)

where we require A1(0,7) = A\1(2,0) = 0.

This is immediately translatable to the case of the matrix-balls, as the highest
numbering of a ball in the matrix AW is equal to the number of balls in the bottom
right square, %, ,,, plus the highest numbering of a ball in previous rows or
columns - Hy(ny,ns —1) and Hy(ny — 1, ng) respectively. But these are equivalent
to the highest numbering of a ball in the matrix A®, found by truncating the
original matrix to n; rows and (ny—1) columns, and (n; —1) rows and ny columns
respectively. So we have:

A1(n1,n2) = max ()\1(711,77,2 —1), A\ (ny — 1,n2)) + Ty o

as found before. Again we require A;(0,7) = A\;(7,0) =0

21



We now consider A\y(ny,ns), for £ > 1. Again, we will derive a recurrence from
the growth models. The maximum displacement of the level-¢ path is equal to
the sum of the displacement due to the most recent overlap and the displacement
due to previous overlaps - equivalent to the maximum displacement at = 1 or
r=—1.

So, similarly to in the A\ case, we obtain the recurrence:

Ae(ng,my) = max ()\g(nl,ng — 1), Ae(ng — 1, ng)) + 21 (2.5)

ni,n2

where x%‘ﬁg denotes the height of the overlap from the level-(¢ — 1) path. This
overlap is equivalent to the minimum displacement of the level-(¢ — 1) path at
r=—1or xz =1, less its displacement at x = 0 at the previous time step. So we
have the following relationship:

2\~ — min (hge—1)(n1,n2 — 1), h—1y(n1 — 1,m2)) — hg—1)(n1 — 1,n — 1)

ni,n2

Relating this to the growth models of truncated matrices gives:

ity = min (Agp) (n1, 12 = 1), Agon (m = 1,m2)) = A1y (n1 — 1,n2 — 1) (2.6)
Combining equations (2.5) and (2.6), we get:

Ae(ni,ng) = max ()\g(nl, ng — 1), Ade(ng — 1,n2))
+min (Ag_1)(n1,n2 — 1), A1y (n1 — 1,n2))
—/\(5_1)(711 - ]_, Ng — 1) (27)

When combined with the boundary conditions A\(0,7) = A,(¢,0) = 0, and
{AMi(n1,n2)}ij=1,. n, the above equation uniquely specifies {A¢(n1,m2) }ij=1,.
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The recurrence for A\, £ > 1, can also be seen from the matrix-ball perspective.
Ae(ny, ng) is equivalent to the highest numbering of a ball in the matrix-ball form
A® from the truncated n; x n, matrix. This can be expressed as the number
of balls in position (nj,n) plus the highest numbering of a ball in any position
except (n1,m2). The latter is the same as the maximum of the numberings in the
ny X (ng — 1) and the (n; — 1) X ny truncated matrices. So we have:

Ae(ny, ng) = max ()\g(ﬂl,ng — 1), Me(ng — 1, ng)) + 21

ni,n2

where azgffﬁg denotes the number of balls in position (ny,n2) in A® | as a result

of balls in A®~Y which is the same as (2.5).

We can derive a formula for ¢ > 1 by considering how the matrix-ball con-
struction leads to balls in position (ni,n,). Each ball in position (ny,ny) of A®
must have one ball North and one ball West of its position in A“~Y with a com-
mon number. So the number of balls in position (n,nsy) of AW ig determined by
the number of balls in the n!* row and the n* column which share a common
number, that is not present in any other row or column. If it were also present in
any of the (n; — 1) X (ny — 1) positions, then we would have the following case:

®
oo

(0229

where none of the resultant balls are in position (nq,ns).

In order to count the numbered balls common to the n{* row and the ni®
column, we take the smallest of the maximum number permitted in the n; x
(ny — 1) matrix and the maximum in the (n; — 1) X ny matrix, and subtract the
maximum in the (ny; — 1) X (ng — 1) matrix. This gives:

21 = min (A1) —1),\ —1 — A — 1y —1

n1,n2 (e—1)\11, N2 ), (e—1)(n1 7n2)) (z-1)(n1 , T2 )
which is the same as (2.6). As we have the same boundary conditions, A\(0,j) =
Ae(7,0) = 0, this results in an identical recurrence to that found from the growth
model perspective.
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2.3 Probabilistic formulae

With the right assignment of probability to each entry, we can make use of the
Schur polynomials to derive some probabilistic formulae for the general case. Let
each entry k in position (7, j) of the matrix occur with geometric probability:

(1 — asbs)(aibs)*

Hence the probability of the matrix having entries [z;;]; j=1,. ., is:

n

[T (1 —aibj)(aib;)™

ij=1

We can use this to find the probability of A\; being less than or equal to a given
value, h, ie find Pr(\; < h). We do this by effectively changing coordinates. We
consider all weighted matrices which, in correspondence with pairs of tableaux,
have the same value of A, for some A = (A1, Ag, ..., Ap).

The weight of all such pairs of tableaux is equal to:

b b
( Z a?ﬂsagﬂs . a#” S) ( Z bfﬂsbf% . bff" S)

tableaux of shape x tableaux of shape A
which, by the definition of the Schur polynomials, is equivalent to:
sx(ay,ag, ..., a,)sx(by,ba, ..., 0y)

So the probability that X corresponds to a pair of tableaux with shape A is:

H (1 - aibj)s)\<a1a ag, . .. 7an)s)\(b17 b?v s 7bn)
ij=1

And hence Pr()\ < h) = H (1 —a;b;) Z sx(ar, ag, ... a,)8x(b1,ba,. .. by)

ij=1 AA1<h
As we require Pr()\gl) < h)—1 as h — oo, this gives:

1
Zs,\(al,ag,...,an)s,\(bl,bQ,...,bn) =—— (2.8)
A H (1 — aib]’)

4,j=1

The result is the Cauchy identity, from the theory of symmetric functions [12],
hence we have arrived at a direct proof of it via the Robinson-Schensted-Knuth

correspondence.
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2.4 Alternative interpretation of \

We have so far considered A\;(n, ng) through two different interpretations: as the
maximum height of the level-¢ path resulting from applying the growth process
to the truncation X,,, ,, of the original matrix X, or as the highest numbering of
a ball in A®) (again where A®) comes from the truncated matrix X,,, ,,, )

However, we can also interpret Ay(nq, j) as the displacement of the level-¢ path
at ¥ = —2n,.. — % + 27, while As(7,n2) can be interpreted as the displacement of
the level-¢ path at z = 2n,,.. + % — 21, where n,,,, = max(nj,ny). This leads to
some general properties of .

MG, )
)

Mi=1,))

® L))

From this interpretation it follows (refer to the figure above):

Me(i,7) =0 for ¢ >n,.. (2.9)
Aeldy ) = Ao = 1,7) = Aeva (i, 5) (2.10)

We can relate this easily to the case of the matrix-balls. We interpret As(ny, j)
as the maximum numbering permitted in a ball in or to the left of the j** column,
and \(4,n2) as the maximum permitted in a ball in or above the i*" row, of A®).
Equation (2.9) then follows by the matrix-ball construction, as A} cannot exist
for ¢ > n,,.., because the matrix-ball form at A® will not have balls in the first
¢ — 1 rows or columns.

The first inequalities of both (2.10) and (2.11) follow by the system of num-
bering used for the construction, as the maximum number in the (j — 1) column
cannot be greater than that in the j**, and equivalently with rows. The sec-
ond inequalities of (2.10) and (2.11) follow by the idea that for a given ball in
AUHD there are at least two balls northwest of its position in A, and hence the
numbering of A® in row i or column j cannot be less than that for A¢HD.
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We can also note:

n

(Ae(n,4) = Ae(n,j — 1)) me (2.12)

=1

~

3

()\g(i,n) Ae(i—1,n) me (2.13)

=1
which can be shown by the rules of both the growth model and the matrix-balls.

We will first consider these in the context of the growth model. The LHS of
(2.12) is equivalent to the total number of “up-steps” occurring at x = —2n — % +
2j. The RHS of (2.12) is equal to the sum of the j* column of X. In terms of
the growth model, these n entries in the j** column will correspond to nucleation
events at times t = j,74+1,...,5+n—1,centredat r =57 —-1,7—-2,...7 —n
respectively (ie, the entry from the j* column at ¢t = j + k — 1 will be centred at
x=j—k k=1,...,n).

An event centred at z = j — k (hence with initial left up-step at © = j —k — %)
at time ¢t = j + k — 1 will grow a total of 2n —1) — (j+k—1)=2n—j — k
units to the left (not necessarily all at level-¢, as it may overlap with another
nucleation event and continue its growth at a different level). So all entries from
the j* column will contribute to the up-steps occurring at different levels at
r=—2n— % + 27, and furthermore they will be the sole contributors. Hence the
number of up-steps at x = —2n — % + 27 is equal to the sum of the entries in the
j™ column of X, and (2.12) is shown.

The LHS of (2.13), similarly, is equal to the total number of up-steps occurring
at r =2n+ % — 2i, and the RHS is the sum of the i*® row of X. The n entries in
the i row will correspond to nucleation events at times t =i,i+1,...,5+n—1,
centred at x = —1 4+ 1,—i + 2,--- — i + n respectively. As an event centred at
x = —i + k (and hence with initial right up-step at © = —i + k + %), at time
t =1+ k—1 will grow a total of 2n — ¢ — k units to the right, all up-steps at
x =2n+ % — 2i can be entirely attributed to the entries in the i'* row, and (2.13)
is shown.

Both (2.12) and (2.13) can be interpreted much more naturally from the per-
spective of the matrix-balls. The LHS of (2.12) is equivalent to adding the differ-
ences in ball numberings from the (j — 1) column to the j** for all A®). But, by
a significant feature of the matrix-ball construction, this is simply equal to the
number of balls in the j** column at A, which is equivalent to the sum of the
entries in the j* column of X, which is the RHS. Similarly the LHS of (2.13) is
equivalent to adding the differences in ball numberings from the (i — 1) row to
the " for all A®)| which gives us the number of balls in the i*" row at A, and
hence is equal to the RHS.
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Chapter 3

Effect of matrix symmetries

A consideration of some simple matrix symmetries - about the diagonal and about
the anti-diagonal - with respect to the Robinson-Schensted-Knuth correspondence
leads to some useful formulae. A study of the probabilistic formulae, similar to
in the general case, produces an analogue of the Cauchy identity. Also, in the
case of symmetry about the diagonal, we obtain a useful summation formula for
the A on the diagonal, as a consequence of the general formulae from section 2.3.

3.1 Symmetry about the diagonal

First consider the case of matrices symmetric about the diagonal (for the matrix-
ball construction, this is from the top left to the bottom right, but for the growth
model, as we number rows from the bottom, this is from the bottom left to the
top right).

3.1.1 Matrix-ball construction

For example, performing the matrix-ball construction for the matrix A:

1 3 1
3 2 2
1 2 3
Q
@@ & © ]
SO ACIe ol ©
o
O | e[, ® 9, ©

We can see the effect of this symmetry immediately - each A® is symmetric
about the diagonal also, so the row and column numbering will be equivalent.
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Hence, as is true in general, this results in two identical tableaux for P and Q:

3.1.2 Growth models

Using the same example as for the matrix-balls, with the order of rows reversed,
rotating the matrix and labelling the columns and rows gives:

a,’
b,* b’ at

b;
b, ~3

b, 2
1 2

a; 3
a3 1

a

t=1
b,
I
-1
t=2
| I
2 -1
t=3
b,
| |as
bS
b
1 | ]
3 2 1

T T y=0
1 2
a,’
b3| |
a’
a2
_2__ - y=0
[ T 1 y=-1
1 2 3
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Again, the effect of the symmetry is immediately obvious. The growth model
at time t = 5 consists of n paths, all symmetric about = 0, so we must get
two identical tableaux. Obtaining the tableaux from the growth model at ¢t = 5
confirms this;, and we see the corresponding tableaux (P, Q) are, as found with
the matrix-ball construction:

111]1{1{1(2]2|2|3|3|3 111{1{1{12]2|2{3{3|3
2|2|2|2{3|3 2|2|2{2(3|3
3 3

In summary, the application of the RSK correspondence to a matrix which
is symmetric about the diagonal gives two identical semi-standard tableaux, ie

P=0Q.

3.1.3 A summation formula for the diagonal symmetry

We can show that in the case of diagonal symmetry the following property holds:

D wi =) (-1
j=1

J=1

We have a matrix symmetric about the diagonal, ie x; ; = ;,;, which, as found
previously, leads to symmetry in the growth models, hence A(7, ) = A¢(j,1). So,
using the recurrences (2.4) and (2.7), we get:

Ai(i,1) = A(i,i—1) + x4,

Me(,0) = N(,0— 1)+ N1 (4,0 — 1) — Apq (1 — 1,i — 1)
Rearranging the latter of these results gives:

Ae(i,d) + A (i — 1i— 1) = Ae(iyi — 1) + Ay (6,4 — 1) (3.1)
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We multiply both sides of (3.1) by (—1)*"! and sum over ¢, from ¢ = 2 to i:

% %

D (=0T (Nl ) + Ao (i = 1i = 1)) =Y (1) T (Neliyi— 1) + Aoy (3,0 — 1))

=2 (=2

(1) (et i—1) = Ae(i, i — 1)) + (=1)""N(d,i — 1) — Ay (4,4 — 1)

i

T

In general, \;(7,7 — 1) = 0, so we have:
Z( DI\ (0,1) — Z/\gz—lz—l)) =M\ (i,0—1)
=2

= —Ai(2,1) + @iy

Hence:

@
|
—

i

mig= > (=17 N(1,1) = Y (1) T A(i = 1,0 = 1)

(=1 1

~
Il

Now we want to sum z;; from ¢ = 1 to n:

> w = Z(Z(—N—w(z’,i)—Z(—1)f—1xg(z—1,¢_1))
=1 =1 (=1 /=1
= y (=1) (i, 0)— y (—1)* lAg(i,i)+Z( Y \e(n, m)
i=1 (=1 i=0 (=1 =1

The first two terms cancel, so we have:

Zx“ = Z (=) \(n, n) (3.2)

(=1

which is the sought formula since Ay = Ay(n,n), ie the maximum displacement of
the level-¢ path, from growth models corresponding to the original matrix.
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3.1.4 Probabilistic formulae for diagonal symmetry

Similar to the general case, if we choose the right probability to assign to entries of
the matrix, we can use Schur polynomials to establish a formula for Pr(\; < h).
Again we do this by considering the weighting related to entries - but, as the
matrix is symmetric about the diagonal, we only need consider the weightings of
entries x; ;: 1 < j, as the value of z; ; for ¢ > j is fixed by symmetry.

Let each entry k in position (i, j) of the matrix, where i < j, occur with prob-
ability (1 — ¢;q;)(q:q;)*, and each entry k in position (i,4) occur with probability

n

H(l - Qz)q;vu H (1 — QiCIj)(qiqj)“’j

i=1 1<i<j<n

We can then give the probability of a matrix X corresponding to a single tableau
(because, as found earlier, P = @) of shape \ as:

n

H(1 — ) H (1 —qigj)sx(ars - - -5 qn)

i=1 1<i<j<n

Further, we can generalise the probability of the diagonal entries to (1—aq;)(aq;)*,
so the above probability becomes:

n

iz v H(l - ag;) H (1 — igj)sx(q1s-- -+ qn)
i=1 1<i<j<n
which, using (3.2), becomes:

n

= (DA H(l — ag;) H (1= q@gj)sa(ar, - -+ qn)

i=1 1<i<j<n
And so we have:

n

Pr(v <h) =0 —aq) I 0 -ag) Y o= N (a0 qn)

i=1 1<i<j<n A <h

Again we require Pr(A\; < h) — 1 as h — oo, which gives:

Z Oéz?:l(il)g_l)\es)\(QM B 7qn) ~
A

[[(1-ag) TI (1-qq)

i=1 1<i<j<n

1

This is a known analogue to the Cauchy identity, with the case o = 1 correspond-
ing to the Littlewood identity [8].
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3.2 Symmetry about the anti-diagonal

Now we consider the effect of symmetry about the anti-diagonal (for the matrix
ball situation, this is from bottom left to top right, and for the growth models it
is from top left to bottom right)

3.2.1 Matrix-ball construction

For example, the matrix A:

1 23
3 2 2
1 31
which gives A A®) and A®):
Q
© %[
)
®@® 05| O @
Q
© [y ® o |9 ©

We can see that the symmetry about the anti-diagonal carries through to some
extent for all AP although the line of symmetry changes. As seen previously,
each matrix of balls A will not contain balls in the first (p— 1) rows or columns.
In this case, disregarding the first (p — 1) rows and columns, we see symmetry in
the anti-diagonal of the remaining (n —p + 1) X (n — p + 1) matrix.

The above matrix-ball construction leads to the tableaux (P, Q):

I{1{1{1{1{2|2|2|2|3 1{1{1]1{1|1|2|2|3|3
2(2|2|3|3|3|3 2(2(212|2|3|3
3 3
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3.2.2 Growth models

The equivalent matrix to that used for the matrix-ball construction, rotated, is:

b, “
b, 3
Y
1 2
a; 3
as 1
al/
x> -2 -1 0
giving the growth models:
t=1
b
L yv=0
1 0 1
t=2
blm h22|7 a13
| | | | I y =0
2 -1 0 1 2
t=3 b,? [ ]
a,
| |a3 by
a’
b’
- __bizlia_zz__ L - y=0
T T T T T T T y=-1
3 2 1 0 1 2 3
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Again, as expected, this corresponds to the tableaux (P, Q):

1(1(1]1]1]2{2(2|2]3 1(1]1]1]1]1{2(2|3]3
2(2(2|3|3|3|3 2(2(212]2|3]|3
3 3

We can observe a relationship between P and ): the number of 1’s in @ is
equal to the number of 3’s in P, P and ) contain the same number of 2’s, and
the number of 3’s in @ is equal to the number of 1’s in P.

We note that in general, for tableaux resulting from a matrix symmetric about
the antidiagonal:

#Hisin P=#n+1—-j)sin@, j=1,....n (3.3)

An equivalent relationship can be seen directly from the growth models - the

total number of “up-steps” at x = —2n — % + 27 is equal to the total number of
up-steps at = 25 — %, for j = 1,...,n. This leads to the sum of the powers of
a; being equal to the sum of the powers of b,41—;, for j = 1,...,n, which, when

translated to tableaux, gives (3.3).

Similarly, in the matrix-ball model, as seen in the symmetry found earlier, for
each A the number of balls in row j is equal to the number of balls in column
(n+p—7), for j =p,...,n. When related to tableaux, this also leads to (3.3).

In fact, the tableau @) is the Schutzenberger dual of P - so the tableaux result-
ing from a matrix symmetric about the anti-diagonal can be uniquely specified
by P, as we can find tableau ) from P by applying the Schiitzenberger sliding
algorithm. For a description of the Schiitzenberger sliding algorithm, refer to
Appendix 2.
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3.2.3 Probabilistic formulae for anti-diagonal symmetry

This is similar to the case for symmetry about the diagonal, where we do not
consider the weight of the entries which are fixed by symmetry. So we need only
consider the weights, and hence the probabilities, of entries x; ;: ¢ <n +1—j.

Let each entry k in position (i, 7) of the matrix, where i < n+1—j, occur with
probability (1 — ¢;¢ni1-;)(¢ign+1—;)", and each entry k in position (i,n + 1 — 1)
occur with probability (1—¢q;)¢¥. The probability that X has entries [x; ] j_1.. n
is hence:

n

H(l —q)g; " H (1 = GiGnt1-5)(@iGns1-5) " "1

i=1 1<i<(n+1—j)<n

which can be restated as:

n

H(l - Qz)q;v“ H (1 — qiqj)(qiqj>xi,j

i=1 1<i<j<n

We can then give the probability of a matrix X corresponding to a single tableau
(as @ is the Schiitzenberger dual of P, as found earlier) of shape A as:

n

[T0-a JI (-aw)sna .. a) (3.4)

i=1 1<i<j<n

We generalise the probability of the anti-diagonal entries to:

(1 - Qi2>ﬁk:mod2 k
1+ B ’

- we do this to take advantage of the following property [3]:

#{Tin1oi Tippr—s 0dd} = #{N; 0 Ay odd} = (=1)71\ (3.5)

Jj=1

(where A% is the length of the 4" column in the diagram of \)
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So (3.4) becomes:

i g me1—emod2 L0 (1 — qf
ﬁe:l Hu H (1 _Q@QJ)S/\(q177Qn)

i=1 1+ Ba; 1<i<j<n

which, using (3.5), is equivalent to:

> (DI e (1= ¢2)

pi= I ¢-—ag)sa(a.-- . q)
i=1 1+ Ba; 1<i<j<n
And hence
m(1— g CEIEY
o< =12 T 0-aa) X 057 Mot
i=1 4 1<i<j<n XA <h

Again we require Pr(\; < h) — 1 as h — oo, which gives:

E 1)\* 1

Zﬁé (qla"'a(Jn): (1

which, when § = 1 is the same as the case of symmetry about the diagonal for
a = 1, and again is one of the generalisations of the Littlewood identities [§].
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Chapter 4

Matrices of Os and 1s

A modification of the matrix-ball construction of the Robinson-Schensted-Knuth
correspondence gives a similar correspondence between zero-one matrices and
pairs of tableaux with conjugate shapes. Our task, achieved in this chapter, is
then to relate this modified correspondence to a growth model, and consider its
probabilistic formulae.

4.1 Modified matrix-ball construction

In place of the northwest ordering used in the general case, we can instead use a
Northwest ordering - hence requiring ball numbers to be strictly increasing down
columns, but only weakly increasing across rows. Similarly we could consider a
northWest ordering, amongst others, and this would lead to a different corre-
spondence (the nW ordering is explored in Appendix 2, and an overview given
for other cases).

The following figures show, for each ordering, the region to be considered - ie
the ball in question must have a greater value than any ball in the shaded region:

northwest ordering Northwest ordering northWest ordering
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For example, taking the matrix A:

—_ O
O~
_ O O

Using the Nw ordering for matrix-ball construction, we get A®) and A®):

ONNO. O]

This gives a resultant (P, Q):

But for a Young tableau we require strictly increasing in columns and weakly
increasing in rows, whereas () above is weakly increasing in columns and strictly

increasing in rows. However if we take the conjugate of (), we get a Young tableau.
So we end up with a pair of tableaux with conjugate shape:

1|1}3
212

BN
(98]

In this way we have set up a one-to-one correspondence between zero-one
matrices and pairs of tableaux with conjugate shapes. If P is of shape A, we call

its conjugate shape \*, in keeping with our previous notation for the length of
the j column, 7.
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4.2 Growth model for matrices of 0Os and 1s

For the zero-one case, similar to the general non-negative integer case, we can de-
velop a growth model - a sequence of non-intersecting lattice paths - and associate
these with a pair of tableaux of conjugate shape.

Given an n x n zero-one matrix, X = [x; ;]; j=1,..n, we label the columns from
the left with a value of z, and the rows from the bottom with a value for ¢.
So, using the same matrix as that used in the Nw matrix ball case (with rows
interchanged to account for the different method of numbering), this gives:

I
— - S

Again, as in the general case, the entries z; ; represent the heights of nucleation
events - however in the case of the zero-one matrix it is only possible to have a
nucleation event of unit height. For z; ; = 1, a nucleation event is added to the
growth model at time step t =i from x = (j — 1) to x = j. So, in our example,
at t = 1 we have two nucleation events: one from x = 0 to = 1, and one from
r=1tox=2.

As t — t + 1, the profile of all nucleation events recorded ‘grows’ one unit in
the +z direction (but remains fixed on the left, ie no growth in the —x direction).
If there is no nucleation event to the right of a particular event, and it has not
already grown, it will grow to x = n + 1. The overlap of adjacent nucleation
events due to this growth (after which time the adjacent nucleation events will
be considered as one) is recorded on the line immediately below.

After this growth process occurs at time (¢ + 1), new nucleation events are
placed on the growth model at y = 0 corresponding to the (¢ + 1) row of X, and
the process will continue at (¢ 4+ 2) with the growth of these events, and so on.

The addition of new nucleation events at y = 0 will stop after ¢ = n (as
there are n rows in the matrix), and the growth process stops at level ¢ after
time t = n + ¢ (where level ¢ corresponds to the path at y = 1 — ¢) - this is
the minimum time required so that all nucleation events resulting from an n x n
matrix have a chance to grow at least once.

In the following growth models (from the above matrix), for greater clarity,
shaded squares are used to represent nucleation events, or carried-down overlaps,
that have not yet grown.
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We can obtain the tableaux from the paths at the final time-step. The height of
the /th path (the path at y = 1 — /) tells us the length of the ¢th row in both
tableaux. We obtain P from the left path - the number of k’s present in the (th
row of the tableau corresponds to the number of vertical lines of unit length at
r=(k-1),y=1-"¢

In the example above, at t = 5, the first path has two vertical lines of unit
length at = 0 and one at = 2, making the first row of the tableau P (1,1, 3).
The second path has two vertical lines of unit length at = 1, so the second row
is (2,2).

Similarly, we obtain () from the right path - the number of £’s present in the
(th row of the tableau corresponds to the number of vertical lines of unit length
atx=02n+1—k), t ="~

In the example, the first path has a vertical line of unit length at each of 6,
5, and 4, so the first row of @ is (1,2,3). The second path has a vertical line of
unit length at 6 and 4, so the second row is (1, 3).

So the resultant tableaux (P, Q) are:

1|13 1123
2|2 13

which is the same as those produced using the Nw matrix-ball construction. This
will be the case in general, as will become clear from the following discussion.
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4.3 Relationship between zero-one matrix-ball
and growth models

4.3.1 Matrix-ball to growth model

As with the general case, it is quite straightforward in the zero-one case to obtain
the set of paths for the final time step from the matrix-ball construction. We
relate A% to the path at y = 1 — k, using the columns of A® to determine the
left path, and the rows to determine the right path. The maximum number in a
ball in the j** column (i*" row), minus the maximum number in previous columns
(rows), gives the number of up-steps occurring at t = j — 1 (x = 2n + 1 — ).

Using the previous example to illustrate, we begin with the matrix-ball form:

ONNO. O]
®
® ©) ®

We use AW to determine the path at y = 0. First the left path: the maximum
number in the first column is 2, so we have two up-steps at x = 0. The maximum
number in the second column is 2, and the third is 3, so we have one up-step at
x = 2. Now the right path: the maximum number in each row is 1, 2, and 3
respectively, so we have a single up-step at each of v =6, x =5 and x = 4.

Similarly, from A® we find we have two up-steps at « = 1 for the left path,
and an up-step at each of x = 6 and = = 4 for the right path. So we have the
following set of paths:
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4.3.2 Growth model to matrix-ball

Again, as in the general case, this is less straightforward than going from the
matrix-ball to the growth model. Given the set of non-intersecting paths:

we can derive the corresponding matrix-ball form, by relating the path at y = 1—k
to the matrix-ball form A®).

The sum of the heights of all paths at y < 1 — k gives the total number of
balls in A®) and the height at y = 1 — k gives the maximum number permitted
on any ball in A®). The height of the left path at = j — 1 (or the right at
x = 2n + 1 — i) gives the maximum number permitted in a ball at or to the
left of the j** column (or at or above the i row). From this we can deduce the
matrix-ball form, beginning with the lowest path, at y = 1 — ¢, as we did with
the general case.

For the example above, we use the path at y = —1 to find the matrix-ball
form A®. The sum of all paths at y < —1 is 2, and the height at y = —1 is 2, so
there are two balls in A®, numbered up to 2. The height at = 1 is 2, so the
balls in the second column will be numbered up to 2. The height at x = 6 and
x =4 1is 1 and 2 respectively, so the first row will be numbered up to 1, and the
third up to 2. This leads to the matrix-ball form A®:

©
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The matrix-ball form A® helps in deducing A“Y, as for every ball present
in A® there must be two balls in A with the same number, one strictly to
the left, and the other weakly above (as the numbers will be weakly increasing
across rows and strictly increasing down columns).

So for the example we use the path at y = 0 combined with A® to find the
matrix-ball form A, The sum of the heights of all paths at y < 0 is 5, and the
height at y = 0 is 3, so there are five balls in A, numbered up to 3. The height
at x = 0is 2, and at x = 2 is 3, so the numbers 1 and 2 will be present in the
first column, but 3 will not appear until the third. Similarly, from the right path,
we can see that the numbers 1, 2 and 3 will first appear in the first, second, and
third row respectively.

Now we use the above information, combined with A®, to deduce AWM. As
there is a ball at Af; we know that there must be a ball at each of Aﬁ and Agf;,
with the same number (which must be 1, as this is only number permitted on the

first row). The ball at Az(f% tells us there must be one at Agi, and one in either
AS) or Ag%, with the same number (which must be 2, as this is the maximum
number in the first column). As the number 3 first appears in the third row and

third column, there must be a ball at A:gl; So four of the balls are fixed, and we
can use the fact that the number 2 will first appear in the second row to decide
that the fifth (the one mentionned earlier with two possible positions) must be

at AS% So we have AW):

ONNO.
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4.4 Probabilistic formulae for zero-one matrices

Again, with an appropriate choice of probabilities, and making use of the Schur
polynomials, we can derive some probabilistic formulae, in the zero-one case. The
significant difference is, since entries (and hence the value of ‘k’ used in previous
probabilistic calculations) can only take on the values 0 or 1, we must change the
normalisation accordingly.

Let each entry k in position (i, 7) of the matrix occur with probability:

(aibj)"*
(1 + (libj>

Hence the probability of the matrix X having entries [z; ;] j=1,. . Is:

ﬁ (agb;)
i (1 + aibj)
And the probability that X corresponds to a pair of tableaux with shape A is:

n

H sx(ay, ... an)8x(b1,. .., by)
(1—i—azb])

ij=1

a 1
Hence Pl"()\l S h) = H m Z s)\(al, ce ,an)s/\*(bl, PN 7bn)
ij=1 REEPOVES)

We require Pr(A; < h) — 1 as h — oo, which gives:

n

ZS)\(Gl, e ,Cln)S)\*(bl, .. -;bn) = H (1 + Clibj>
A

1,7=1

This is the conjugate Cauchy identity, which is known [12] in the theory of Schur
polynomials.
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Chapter 5

Conclusion and possible
extensions

The RSK correspondence, in the form proposed by Knuth, came into being in
1970, and many fundamental properties were derived at that time. The matrix-
ball interpretation, and the closely related growth models, were not realised until
the late 1990’s. This viewpoint has led to the discovery of additional funda-
mental properties of the RSK correspondence, and has furthermore suggested
applications which could not have been seen from the original formulation. A
comprehensive account of aspects of these developments has been the subject of
this thesis, although it is also clear that more fundamental properties remain to
be fully explored. Let us then make mention of a few which have become apparent
in the course of this study.

We have considered thoroughly the case of one of the matrix-ball orderings, the
nw case, along with its respective growth model, but, as mentioned in Appendix 1,
similar correspondences are possible with all other orderings. A natural extension
from this would be to consider possible growth models that could be fit to each
case, which could result in further study of the probabilistic formulae.

Similarly for the zero-one case, as touched on in Appendix 3, we have varia-
tions of the RSK correspondence for different orderings of the matrix, and these
correspondences could be further developed with the aid of growth models. Also,
in the zero-one case, it would most likely prove fruitful to investigate recurrences
for the lengths of the resultant tableaux of conjugate shape.

Further investigation of the property (3.5), which could be understood in
terms of the matrix-balls and the growth models, seems to indicate a possible
theory associated with the column lengths, A%, similar to the way in which (3.2)
gives one associated with row lengths, A,.
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Another direction that could be pursued comes from the idea that we can
relate Ay to the Last passage time, ¢ )n, of an n x n matrix. If we consider
‘travelling’ from the bottom left corner to the top right corner of a matrix (where
rows are counted from the bottom), where we liken each entry to a time, the last
passage time is the maximum time this process can take for a given matrix, with
the restriction that we can only step up or right. Explicitly:

Lg}in = max Z T (5.1)

(1,1) U/R to (n,n)

Considering a truncated matrix X, the last passage time satisfies the recur-

rence:

1,127

7

Xy = TAX (/\1(n1,n2 — 1), M (ny — 1,n2)) + Ty s

with ng,nz — ngm0 =0,

so we can conclude from the recurrence found for A;(ni,ng) that Lgil =
)\1(711,712).

Hence our study of the probabilities related to A; also apply to Lg). We could

continue this study to consider more generally Lg];), which we expect to be able

to relate to the level-¢ heights ), for each £ =1,..., k. We denote by (U/R)* the
set of k disjoint paths, restricted to consist of only up- or right-steps, from some
Xy to some x; ;, where 1 <1’ <i<ny, 1 <j <j<ny. We generalise (5.1) to
get:

L(k = max Z Tij

(u/R)k

Results of Greene [7] suggest that:

an s g Ae(n1,n)

To derive this result in the context of recurrence relations is another problem for
future study.
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Appendices

Appendix 1: Variations on the RSK correspon-
dence

We can obtain different correspondences, related to the RSK correspondence,
by using different matrix-ball orderings. For example, we can use a southwest
ordering, numbering balls from southwest to northeast. Similar to the nw case,
we place (£—1) balls in A®* for every £ balls in A®) with the same number, such
that the new ball is to the right of each of these (except the last), and directly
above the next ball.

For example, using a southwest ordering on the matrix A:

1 2 1
2 20
1 11
gives AD A®) and A®):
o 2] © ® ®
o2 o® olle
Olo|o

The system for numbering the tableaux is similar to the nw case. The ¢** row
of P is still determined by listing the left-most (ie, “west-most”) columns where
each number first occurs, so P will be a semi-standard tableau. However, the ¢*"
row of ) is determined by listing the lowest (ie, “south-most”) rows where each
number first occurs. When we are measuring from the bottom (as in this case)
or from the right (in an “east” case), we insert a dual number in the diagram,
which we denote by k*.
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So, from AM, A® and A® we can read off the tableaux corresponding to A:

Li1[1]1]2]2]2(3] [3737372"7211°1°
2 2o
1*

2
3

We note that () is not in this case, and will not in general be, a semi-standard
tableau, as the lowest row in which a value s first appears will be greater than
or equal to the lowest row in which a value (s + 1) first appears. To obtain a
semi-standard tableau from ) we can substitute (n + 1 — k) for each k* to get
the tableau S:

L[]~
¥

We say that @) is the dual of S, which we write as () = S*. Another significant
point that can be seen is that S would be the tableau related to the rows that we
would get from using an ordering in the opposite direction, ie northeast. This is
in fact the case in general.

Fulton, in [5], gives a summary of the relationship the tableaux from different
orderings have with each other.

For weak orderings, we have:

nw ordering — (P,Q) sw ordering — (R, S")
se ordering — (P*, Q%) ne ordering — (R*,S)

and for strong orderings, we have:

NW ordering — (R,S) SW ordering — (P, Q%)
SE ordering — (R*,S*) NE ordering — (P*,Q)

So we can note that the weak orderings and the strong orderings are related by
interchanging P and R, and interchanging () and S.
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Appendix 2: Schutzenberger sliding algorithm

Note: The Schitzenberger sliding algorithm is often used to form a product
tableau of two tableauz, but we wish to use it to find the Schiitzenberger dual of
a tableau, and as such the description that follows is particular to this case.

For a given tableau P, of shape A, with n rows, we can form its Schiitzenberger
dual, which will also be of shape A, as follows:

Begin with the tableau P and an “empty” (ie not numbered) tableau of the
same shape A, which we will call (). The sliding algorithm proceeds as follows:

(1) Remove the number, of value x, from the top left corner of the tableau.
The resultant box can now be considered as a “hole”.

(2) Of the box to the right and the box below this hole, choose the one with
lesser value. If they are of equal value, choose the box below. “Slide” this value
into the hole, thus leaving a hole in the position vacated by this value.

(3) With respect to the new hole created each time, repeat (2) until there is
no value to the right or below the hole.

(4) Assign the value (n — ) to the box in @) corresponding to the position of
the hole in P, then delete the hole from P (ie remove this box from the tableau).

(5) Repeat steps (1) — (4) until no boxes remain in P, and hence all boxes in
@ are labelled. The resultant @) is the Schiitzenberger dual of (the original) P.

This is best shown through example, so we will take the tableau P found
earlier in the example of the matrix symmetric about the anti-diagonal, and an
empty tableau of the same shape:

and proceed with the algorithm, as shown in the following pages.
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2(212|2|3|3 212{3]|3
313(3|3 2|33
3
!
2(212|3|3|3 212{3]|3
313(3 2(213|3
3
!
212(3(3|3|3 212(3(3
313 21212133
3
!
2|3(3(3|3|3 212(3(3
3 2(212|2|3|3
3
!
313(3(3|3|3 212(3(3
2(21212|2|3|3
3

So the resultant @ is:

which, as expected, is the same as the tableau () found earlier for the matrix
symmetric about the anti-diagonal.
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Appendix 3: Matrix-ball variations - zero-one
case

We can obtain different correspondences, related to the RSK correspondence,
by using different matrix-ball orderings. For example, we can use a southwest
ordering, numbering balls from southwest to northeast. We apply the northWest
ordering for matrix-ball construction to the matrix:

010
011
1 01
which gives us AW, A® and A®):
0
OO O]
O] ® OO O]
And so the resultant (P, Q) are:
1|3 12
3 3

2 2
2 3

But, similar to the Northwest case, P is weakly increasing in columns and
strictly increasing in rows, so to get a tableau from this we take the conjugate,
and hence we end up with a pair of tableaux with conjugate shape:

w

)
|w[\.)»—n

w
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As in the general case, Fulton [5] has summarised the possibilities with differ-
ent orderings. We use {P, @} to denote a pair of conjugate tableaux.

For strong column and weak row orderings, we have:

nW ordering — {P,Q} sW ordering
sE ordering — {P*, Q*} nE ordering

For weak column and strong row orderings, we have:

Nw ordering — {fi, 5: } Sw ordering
Se ordering — {R*,S*} Ne ordering

These are the exact same relationships as found for the general case, with the
substitution of the pairs of conjugate tableau {P,Q} and {R, S} for (P,Q) and

(R.9).

We can also note that, similar to the general case, the strong column, weak row
orderings and the weak column, strong row orderings are related by interchanging

P and R, and interchanging ) and S.
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