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Let Γ be a G-symmetric graph whose vertex set admits a nontrivial G-invariant partition
B with block size v. Let ΓB be the quotient graph of Γ relative to B and Γ [B,C] the
bipartite subgraph of Γ induced by adjacent blocks B,C of B. In this paper we study
such graphs for which ΓB is connected, (G,2)-arc transitive and is almost covered by Γ
in the sense that Γ [B,C] is a matching of v−1≥2 edges. Such graphs arose as a natural
extremal case in a previous study by the author with Li and Praeger. The case ΓB∼=Kv+1

is covered by results of Gardiner and Praeger. We consider here the general case where
ΓB �∼=Kv+1, and prove that, for some even integer n≥4, ΓB is a near n-gonal graph with
respect to a certain G-orbit on n-cycles of ΓB. Moreover, we prove that every (G,2)-arc
transitive near n-gonal graph with respect to a G-orbit on n-cycles arises as a quotient ΓB
of a graph with these properties. (A near n-gonal graph is a connected graph Σ of girth
at least 4 together with a set E of n-cycles of Σ such that each 2-arc of Σ is contained in
a unique member of E .)

1. Introduction

Let Γ be a finite graph and s≥1 an integer. An s-arc of Γ is a sequence of
s+1 vertices of Γ , not necessarily all distinct, such that any two consecutive
terms are adjacent and any three consecutive terms are distinct. If Γ admits
a group G of automorphisms such that G is transitive on the vertex set V (Γ )
of Γ and, in its induced action, transitive on the set As(Γ ) of s-arcs of Γ ,
then Γ is said to be (G,s)-arc transitive. As usual in the literature, a 1-arc
is called an arc and a (G,1)-arc transitive graph is called a G-symmetric
graph.
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The study of symmetric graphs and highly arc-transitive graphs has long
been one of the main themes in algebraic combinatorics (see e.g. [1]). In a
vast number of cases, the vertex set V (Γ ) of a G-symmetric graph Γ admits
a nontrivial G-invariant partition, that is, a partition B of V (Γ ) such that
1 < |B| < |V (Γ )| and Bg ∈ B for any B ∈ B and g ∈ G (where Bg := {αg :
α ∈ B}). If this occurs then Γ is said to be an imprimitive G-symmetric
graph. From permutation group theory [5], this is the case precisely when
the stabilizer Gα in G of a vertex α ∈ V (Γ ) is not a maximal subgroup
of G. In the opposite case, G is primitive on V (Γ ) and the O’Nan–Scott
Theorem [12], which categorizes primitive permutation groups into a number
of distinct types, has been proved to be a very useful tool. In this sense the
main difficulty in studying symmetric graphs lies in the imprimitive case.
For this case it was suggested in [6] that the following three configurations
associated with (Γ,B) may have a strong influence on the structure of Γ : (i)
The quotient graph ΓB of Γ with respect to B; (ii) the bipartite subgraph
Γ [B,C] of Γ induced by adjacent blocks B,C of B; and (iii) a certain 1-
design D(B) with point set B. (These are defined carefully in Section 2,
paragraph 2.) In some sense the graph Γ is “decomposed” into the “product”
of these configurations, and a natural problem is to characterize Γ in terms
of the triple (ΓB,Γ [B,C],D(B)). In the particular case where Γ [B,C] is a
perfect matching between B and C, Γ is said to be a cover of ΓB. The
covering graph construction given in [1, pp. 149–154] provides a means for
constructing some symmetric graphs with this covering property, and is a
standard technique in constructing symmetric graphs.

In [11], Li, Praeger and the author found a very natural and simple
method (see Section 2 for details) for constructing larger symmetric graphs
from smaller ones which bears some similarity with the covering graph con-
struction mentioned above. The constructed graphs can be characterized
([11, Theorem 1], restated here as Theorem 2.1) as imprimitive G-symmetric
graphs Γ such that the block size v := |B| of B is at least 3 and is one more
than the block size of the design D(B), and ΓB is (G,2)-arc transitive, for
a certain G-invariant partition B of V (Γ ). For such graphs, D(B) contains
no repeated blocks (Theorem 2.1), ΓB has valency v and the actions of GB

on B and on the set of blocks of B adjacent to B in ΓB are permutation-
ally isomorphic and 2-transitive ([11, Theorem 5(a)(b)]), where GB is the
setwise stabilizer of B in G. In the present paper, we explore this construc-
tion in the case where the “inter-block” configuration Γ [B,C] is a matching
of v−1 edges, that is, Γ [B,C]∼= (v−1) ·K2. In this case we say that Γ is
an almost cover of ΓB, and that ΓB is almost covered by Γ . In the special
case where ΓB ∼= Kv+1, all possibilities for Γ and G were classified in [8,
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Theorem 1.1(b)(ii)(iii)(iv)], see also [19, Theorem 3.19] for an explicit list.
Here we study the general case where ΓB �∼= Kv+1 and ΓB is connected. In
this general case we find a very close connection between such graphs Γ
and an interesting class of graphs, namely near-polygonal graphs, which are
associated with the Buekenhout geometries [2,14] of the following diagram:

�
n

�
c

�

For an integer n≥4, a near n-gonal graph [14] is a pair (Σ,E) consisting of
a connected graph Σ of girth at least 4, together with a set E of n-cycles
of Σ, such that each 2-arc of Σ is contained in a unique member of E . In
this case we also say that Σ is a near n-gonal graph with respect to E . (The
girth of a graph Σ, denoted by girth(Σ), is the length of a shortest cycle of
Σ if Σ contains cycles, and is defined to be ∞ otherwise.) Our main result
may be stated as follows.

Theorem 1.1. Suppose Γ is a finite G-symmetric graph admitting a non-
trivial G-invariant partition B of block size v≥3 such that ΓB is connected
and ΓB �∼=Kv+1. Suppose further that Γ almost covers ΓB and that the design
D(B) (B ∈ B) has no repeated blocks. Then, for some even integer n ≥ 4,
ΓB is a (G,2)-arc transitive near n-gonal graph with respect to a certain
G-orbit on n-cycles of ΓB. Moreover, any (G,2)-arc transitive near n-gonal
graph (where n≥4 is even) with respect to a G-orbit on n-cycles can appear
as such a quotient ΓB.

We will present and prove this result in terms of the graph construction
introduced in [11] (see Theorem 3.1). As a consequence of this result we ob-
tain a sufficient condition for a two-arc transitive graph to be near-polygonal,
see Corollary 4.1 for details.

A G-symmetric graph Γ is said to be G-locally primitive if, for α∈V (Γ ),
Gα is primitive in its action on the neighbourhood Γ (α) of α in Γ (that
is, the set of vertices adjacent to α in Γ ). If Γ is a G-locally primitive
graph admitting a G-invariant partiton B with block size v ≥ 3 such that
v is one more than the block size of D(B), and if ΓB is connected, then Γ
almost covers ΓB ([6, Lemma 3.1(a))]), andD(B) contains no repeated blocks
([6, Lemma 3.3(c)]) and hence ΓB is (G,2)-arc transitive (Theorem 2.1). In
this case, we get as a consequence of Theorem 1.1 an amended form of [6,
Theorem 5.4] (see Corollary 4.2 in Section 4). Discovering that the proof of
the result [6, Theorem 5.4] was incomplete, was one of the motivations for
the investigation leading to the results of this paper.

The reader is referred to [18] for a systematic study of the graph construc-
tion [11] used in this paper, and to [19,20] for a more general construction
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of imprimitive symmetric graphs starting from point- and block-transitive
1-designs. In a recent work of the author with Iranmanesh and Praeger we
used Theorem 1.1 in the study of a family of symmetric graphs with two-arc
transitive quotients, see [10, Theorem 1.4] for details.

2. Definitions and preliminaries

We refer to [5,17] for notation and terminology on permutation groups. If
G is a group acting transitively on a finite set Ω, then the fixed point sets
fixΩ(Gα) := {β ∈ Ω : βg = β for all g ∈ Gα}, for α ∈ Ω, form a G-invariant
partition {(fixΩ(Gα))g : g ∈ G} of Ω ([5, pp. 19]). We write Gαβ = (Gα)β,
Gαβγ = (Gαβ)γ , etc., for α,β,γ ∈ Ω. For a group G acting on two finite
sets Ω1,Ω2, the actions of G on Ω1 and Ω2 are said to be permutationally
equivalent if there exists a bijection λ :Ω1→Ω2 such that λ(αg)=(λ(α))g for
all α∈Ω1 and g∈G. We use Kn and Cn to denote respectively the complete
graph and the cycle on n vertices, and we use Kn,n to denote the complete
bipartite graph with n vertices in each part of its bipartition. For a finite
graph Γ , n·Γ denotes the union of n vertex-disjoint copies of Γ . An edge of
Γ joining two non-consecutive vertices in a cycle of Γ is said to be a chord
of the cycle. Instead of A1(Γ ) we will use A(Γ ) to denote the set of arcs of
Γ . We will denote an arc (σ,τ) of a graph by στ when this is convenient and
unlikely to cause confusion.

Let Γ be a finite G-symmetric graph admitting a nontrivial G-invariant
partition B. The quotient graph ΓB of Γ with respect to B is the graph
with vertex set B in which two blocks B,C ∈B are adjacent if and only if
there exists at least one edge of Γ joining a vertex of B and a vertex of C.
Clearly ΓB is G-symmetric under the induced action (possibly unfaithful)
of G on B, and we assume in the following that it has at least one edge.
Then each B∈B is an independent set of Γ [6,15]. Set Γ (B) :=

⋃
α∈B Γ (α).

For two adjacent blocks B,C of B, let Γ [B,C] denote the induced bipartite
subgraph of Γ with bipartition {Γ (C)∩B,Γ (B)∩C}. Define D(B) to be the
1-design with point set B and blocks Γ (C)∩B (with possible repetitions) for
all blocks C ∈ΓB(B), where ΓB(B) is the neighbourhood of B in ΓB. Since
Γ is G-symmetric, up to isomorphism Γ [B,C] and D(B) are independent
of the choice of specific blocks B,C. Moreover, the block size k of D(B) is
|Γ (C)∩B|.

Let Σ be a (G,2)-arc transitive graph of valency v ≥ 3 (where G is
a subgroup of the full automorphism group Aut(Σ) of Σ), and let ∆ be
a G-orbit on A3(Σ). If ∆ is self-paired, that is, (τ,σ,σ′,τ ′) ∈ ∆ implies
(τ ′,σ′,σ,τ) ∈ ∆, then the 3-arc graph Arc∆(Σ) of Σ with respect to ∆ is
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defined [11, Definition 3] to be the graph with vertex set A(Σ) in which
στ,σ′τ ′ are adjacent if and only if (τ,σ,σ′,τ ′)∈∆. The requirement that ∆
is self-paired guarantees that the adjacency of Γ :=Arc∆(Σ) is well-defined.
One can see that G preserves the adjacency of Γ and hence induces a faithful
action as a group of automorphisms of Γ . Moreover, Γ is G-symmetric and
admits a G-invariant partition B(Σ) := {B(σ) : σ ∈ V (Σ)} such that Σ ∼=
ΓB(Σ) with respect to the bijection σ �→B(σ) ([11, Theorem 10(b)]), where
B(σ) :={στ :τ ∈Σ(σ)} for σ∈V (Σ). The 3-arc graphs can be characterized
as follows.

Theorem 2.1 ([11, Theorem 1]). Let Γ be a finite G-symmetric graph,
and B a nontrivial G-invariant partition of V (Γ ) with block size v=k+1≥
3. Then D(B) contains no repeated blocks if and only if ΓB is (G,2)-arc
transitive, and in this case Γ ∼=Arc∆(ΓB) for some self-paired G-orbit ∆ of
3-arcs of ΓB. Conversely, for any self-paired G-orbit ∆ of 3-arcs of a (G,2)-
arc transitive graph Σ of valency v≥ 3, the graph Γ =Arc∆(Σ), group G,
and partition B(Σ) satisfy all the conditions above.

Thus, the class of G-symmetric graphs Γ satisfying the conditions of
Theorem 1.1 is precisely the class of 3-arc graphs Γ :=Arc∆(Σ) of connected
(G,2)-arc transitive graphs Σ such that Γ almost covers Σ (in the sense that
it almost covers ΓB(Σ)). So in the following we may use the language of 3-arc
graphs. Parts (a) and (c) of the following lemma are self-evident, and part
(b) of it was proved in [11, Theorem 10(a)].

Lemma 2.2. Let Σ be a finite connected (G,2)-arc transitive graph and
let ∆ :=(τ,σ,σ′,τ ′)G, a G-orbit on A3(Σ). Then

(a) ∆ is self-paired if and only if στ and σ′τ ′ can be interchanged by an
element of G, and in this case

(b) for ε∈Σ(σ), σε is the only vertex of B(σ) not adjacent in Arc∆(Σ)
to any vertex of B(ε), and

(c) Arc∆(Σ) almost covers Σ if and only if τ ′ is fixed by Gτσσ′ (that is,
Gτσσ′ =Gτσσ′τ ′).

Let Γ = Arc∆(Σ) be a 3-arc graph of the (G,2)-arc transitive graph
Σ. If Γ almost covers Σ, then for each τ ∈Σ(σ)\{σ′} there exists a unique
τ ′∈Σ(σ′)\{σ} such that (τ,σ,σ′,τ ′)∈∆, and hence τ �→τ ′ defines a bijection
from Σ(σ)\{σ′} to Σ(σ′)\{σ}. Note that this bijection depends on ∆. Since
there will be no danger of confusion, we will denote it just by φσσ′ .

Lemma 2.3. Let Σ be a finite connected (G,2)-arc transitive graph, let ∆
be a self-paired G-orbit on A3(Σ) and let στ be an arc of Σ. Suppose that
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the 3-arc graph Γ :=Arc∆(Σ) almost covers Σ. Then the following (a)–(d)
hold:

(a) The actions of Gσ on B(σ) and Σ(σ) are permutationally equivalent,
2-transitive and faithful.

(b) The actions of Gστ on Σ(σ)\{τ} and on Γ (στ) are permutationally
equivalent, where Γ (στ) is the set of vertices of Γ adjacent in Γ to the
vertex στ of Γ . In particular, Γ is G-locally primitive if and only if Gσ is 2-
primitive on Σ(σ); and Gστ is regular on Γ (στ) if and only if Gσ is sharply
2-transitive on Σ(σ).

(c) φ−1
στ =φτσ.

(d) (φστ (ε))g =φσgτg (εg) for ε∈Σ(σ)\{τ} and g∈G. In particular, the
actions of Gστ on Σ(σ)\{τ} and Σ(τ)\{σ} are permutationally equivalent
with respect to φστ .

Proof. (a) The actions of Gσ on B(σ) and Σ(σ) are permutationally equiv-
alent with respect to the bijection B(σ) → Σ(σ) defined by στ �→ τ for
τ ∈ Σ(σ). Since Σ is (G,2)-arc transitive, these actions are 2-transitive.
The faithfulness follows from Theorem 2.1 and [11, Lemma 1(a) and Theo-
rem 5(e)].

(b) For each ε ∈ Σ(σ) \ {τ}, let λ(ε) denote the unique vertex in B(ε)
adjacent to στ in Γ . (The existence of λ(ε) follows from Lemma 2.2(b).)
Then λ establishes a bijection from Σ(σ)\{τ} to Γ (στ), and the actions of
Gστ on Σ(σ)\{τ} and on Γ (στ) are permutationally equivalent with respect
to λ. From this the last two assertions in (b) follow immediately.

(c) This is obvious from the definition of φστ .
(d) For (ε,σ,τ,η) ∈ ∆ and g ∈ G, since ∆ is G-invariant we have

(εg,σg,τ g,ηg) ∈ ∆ and so (φστ (ε))g = ηg = φσgτg(εg) (by the definitions
of φστ and φσgτg ). In particular, (φστ (ε))g =φστ (εg) for g∈Gστ and hence
the assertion in the last sentence of (d) is true.

The next lemma will be used to prove a corollary of our main result. It
shows that, for a (G,2)-arc transitive graph Σ, if Gσ is sharply 2-transitive
on Σ(σ) (that is, Gσ holds the “weakest” 2-transitivity on Σ(σ)), then all
the 3-arc graphs of Σ are forced to be almost covers of Σ.

Lemma 2.4. Suppose that Σ is a finite (G,2)-arc transitive graph of va-
lency v≥3 such that Gσ is sharply 2-transitive on Σ(σ) for σ∈V (Σ). Then,
for every self-paired G-orbit ∆ on A3(Σ), the 3-arc graph Γ :=Arc∆(Σ) is
an almost cover of Σ, and moreover Gστ is regular on the neighbourhood
Γ (στ) of στ ∈V (Γ ) in Γ .

Proof. Let στ be an arc of Σ. Then the sharp 2-transitivity of Gσ on
Σ(σ) implies that Gστ is regular on Σ(σ)\{τ}, and hence we have |Gστ |=
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|Σ(σ)| − 1. Since Γ (στ) contains exactly s points of each block B(δ) for
δ∈Σ(σ)\{τ}, where s is the valency of the bipartite graph Γ [B(σ),B(δ)],
we then have |Γ (στ)| = s(|Σ(σ)| − 1) = s|Gστ |. On the other hand, since
Gστ is transitive on Γ (στ), by the well-known orbit-stabilizer property (see
e.g. [5, Theorem 1.4A]), |Γ (στ)| is a divisor of |Gστ |. So we have s=1, that
is, Γ [B(σ),B(τ)] = (v−1) ·K2, and hence Γ almost covers Σ. Since Gστ is
regular on Σ(σ)\{τ}, from Lemma 2.3(b) we know that Gστ is also regular
on Γ (στ).

Lemma 2.5. Let Σ be a finite connected (G,2)-arc transitive graph with
valency v ≥ 3. Then girth(Σ) = 3 if and only if Σ ∼=Kv+1, which in turn is
true if and only if G is 3-transitive on V (Σ).

Proof. If Σ∼=Kv+1, then girth(Σ)=3 and G is 3-transitive on V (Σ) since
Gσ is 2-transitive on Σ(σ)=V (Σ)\{σ} and G is transitive on V (Σ). Next
suppose that G is 3-transitive on V (Σ). Then, for each σ∈V (Σ), Gσ is 2-
transitive on V (Σ)\{σ} and hence V (Σ)\{σ} induces a complete graph Kv

(note that V (Σ)\{σ} contains adjacent vertices). This implies Σ ∼= Kv+1.
Finally, if girth(Σ) = 3, then Σ(σ) induces a complete graph Kv by the
2-transitivity of Gσ on Σ(σ). Hence Σ∼=Kv+1 by the connectedness of Σ.

A circulant is a Cayley graph Cay(Zn,S) with vertex set the additive
group Zn of integers modulo n in which x,y∈Zn are adjacent if and only if
x−y∈S, where S is a subset of Zn such that 0 �∈S and −S := {−x :x∈S}
is equal to S. For a near n-gonal graph (Σ,E), the cycles in E are called
basic cycles of (Σ,E). We use C(σ,τ,ε) to denote the unique basic cycle of
(Σ,E) containing a given 2-arc (σ,τ,ε) of Σ. We also use A3(Σ,E) to denote
the set of all 3-arcs of Σ which are contained in some basic cycle of (Σ,E).
Any subgroup G≤Aut(Σ) induces an action on n-cycles of Σ, and if E is
G-invariant, then G induces an action on E .
Lemma 2.6. Suppose (Σ,E) is a finite (G,2)-arc transitive near n-gonal
graph. Then the following statements (a)–(c) are equivalent:

(a) E is G-invariant.
(b) E is a G-orbit on n-cycles of Σ.
(c) A3(Σ,E) is a self-paired G-orbit on A3(Σ).

Moreover, if one of these occurs, then the following (d)–(e) hold:
(d) Any element of G fixing a 2-arc (σ,τ,ε) of Σ must fix each vertex in

C(σ,τ,ε).
(e) The subgraph of Σ induced by the vertex set of a basic cycle of

(Σ,E) is isomorphic to a circulant graph Cay(Zn,S), for some S with 1∈S.
Moreover, each such basic cycle is chordless (that is, Cay(Zn,S)∼=Cn) unless,
for adjacent vertices σ,τ of Σ, either
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(i) Gτ is sharply 2-transitive on Σ(τ) (and hence |Σ(τ)| is a prime power);
or

(ii) Gστ is imprimitive on Σ(τ)\{σ}.

Proof. The equivalence of (a) and (b) is obvious since each 2-arc of Σ lies
in a unique cycle of E . If (a) holds, then A3(Σ,E) is a G-orbit on A3(Σ).
Moreover, in this case A3(Σ,E) is also self-paired. In fact, for (σ,τ,ε,η) ∈
A3(Σ,E) there exists g ∈G such that (σ,τ,ε)g = (η,ε,τ) as Σ is (G,2)-arc
transitive. Thus, (C(σ,τ,ε))g =C(η,ε,τ). But C(σ,τ,ε) is the unique basic
cycle containing (σ,τ,ε), and it is also the unique basic cycle containing
(η,ε,τ). So g fixes C(σ,τ,ε) and ηg = σ, implying (η,ε,τ,σ) = (σ,τ,ε,η)g ∈
A3(Σ,E). Hence A3(Σ,E) is self-paired. Thus (a) implies (c). Conversely
suppose that (c) holds. Let C(σ0,σ1,σ2)=(σ0,σ1,σ2, . . . ,σn−1,σ0) be a basic
cycle of (Σ,E), and let g∈G. For each i=0,1, . . . ,n−1 (subscripts modulo
n here and in the remaining part of the proof), it follows from (c) that
both (σg

i−1,σ
g
i ,σ

g
i+1,σ

g
i+2) and (σg

i ,σ
g
i+1,σ

g
i+2,σ

g
i+3) lie in basic cycles, and

they must lie in the same basic cycle since these two 3-arcs have the 2-arc
(σg

i ,σ
g
i+1,σ

g
i+2) in common and since each 2-arc of Σ is contained in a unique

basic cycle of (Σ,E). Since this is true for all i, it follows that (C(σ0,σ1,σ2))g

must be a basic cycle of (Σ,E) and hence (c) implies (a).
In the remainder of this proof, we suppose E is G-invariant, so both

(b) and (c) hold. Thus the vertex sets of the basic cycles of (Σ,E) induce
mutually isomorphic subgraphs. If g∈G fixes the 2-arc (σ0,σ1,σ2), then it
fixes the basic cycle C(σ0,σ1,σ2) and, since g fixes each of σ1,σ2, it follows
that g must fix σ3. Inductively, one can see that g fixes each vertex in
C(σ0,σ1,σ2) and thus (d) is proved.

In proving (e), we set V := {σ0,σ1,σ2, . . . ,σn−1}, the vertex set of
C(σ0,σ1,σ2), and denote by Σ1 the subgraph of Σ induced by V . Since Σ is
(G,2)-arc transitive, there exists h∈G such that (σn−1,σ0,σ1)h=(σ0,σ1,σ2).
Since E is G-invariant it follows that h fixes V setwise and leaves C(σ0,σ1,σ2)
invariant. The only element of Aut(Σ1) which leaves C(σ0,σ1,σ2) invariant
and maps (σn−1,σ0,σ1) to (σ0,σ1,σ2) is the rotation ρ :σi �→σi+1, for all i.
Thus the permutation hV of V induced by h is ρ, and by [1, Lemma 16.3],
since 〈ρ〉 ∼= Zn is regular on V , Σ1 is isomorphic to a circulant Cay(Zn,S)
for some S. Since σi is adjacent to σi+1, we have 1∈S and the first part of
(e) is proved. In proving the second part of (e), we assume that C(σ0,σ1,σ2)
contains a chord. Since the group induced on C(σ0,σ1,σ2) contains ρ, it
follows that σ1 is adjacent to some vertex σi with i �= 0,2, that is to say,
{σ1,σi} is a chord; and the set X := fixΣ(σ1)\{σ0}(Gσ0σ1σ2) contains both
σ2 and σi. On the other hand, the (G,2)-arc transitivity of Σ implies that
Gσ0σ1 is transitive on Σ(σ1)\{σ0}, and the stabilizer Gσ0σ1σ2 (which fixes
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C(σ0,σ1,σ2) pointwise) fixes |X| ≥ 2 points of Σ(σ1)\{σ0}. As mentioned
at the beginning of this section, X is a block of imprimitivity for Gσ0σ1 in
Σ(σ1)\{σ0}, and hence either X =Σ(σ1)\{σ0} or X induces a nontrivial
Gσ0σ1-invariant partition of Σ(σ1)\{σ0}. In the former case the possibility
(i) in (e) occurs; whilst in the latter case the possibility (ii) in (e) occurs.
Note that if (i) occurs then by [17, pp. 23] the valency |Σ(σ1)| must be a
prime power.

3. Proof of Theorem 1.1

Now we are ready to prove Theorem 1.1. In fact, we will prove the following
theorem which, together with Theorems 2.1, yields a proof of Theorem 1.1.

Theorem 3.1. Suppose that Σ is a finite connected (G,2)-arc transitive
graph with valency v≥3 and that Σ �∼=Kv+1. Then Σ is almost covered by
a 3-arc graph Arc∆(Σ) of Σ if and only if, for some even integer n≥ 4, Σ
is a near n-gonal graph with respect to a G-orbit E of n-cycles of Σ, and in
this case we have ∆=A3(Σ,E), the set of all 3-arcs of Σ contained in the
n-cycles in E .

Proof. Suppose Σ is almost covered by a 3-arc graph Γ := Arc∆(Σ) of
Σ, where ∆ is a self-paired G-orbit on A3(Σ). Recall that, for adjacent
vertices σ,σ′ of Σ, we use φσσ′ to denote the the bijection from Σ(σ)\{σ′}
to Σ(σ′) \ {σ} such that φσσ′(τ) = τ ′ precisely when (τ,σ,σ′,τ ′) ∈ ∆. Let
(σ0,σ1,σ2) be a 2-arc of Σ. Set σ3 :=φσ1σ2(σ0), and inductively define σi+2 :=
φσiσi+1(σi−1) for i ≥ 1. Then we get a sequence σ0,σ1,σ2, . . . ,σi−1,σi,σi+1,
σi+2, . . . of vertices of Σ such that (σi−1,σi,σi+1,σi+2) ∈ ∆ for each i ≥ 1.
Our assumption Σ �∼=Kv+1 implies that girth(Σ)≥4 (Lemma 2.5) and hence
all such 3-arcs (σi−1,σi,σi+1,σi+2) are proper, that is, any four consecutive
vertices in this sequence are pairwise distinct. Since Σ has a finite number
of vertices, the sequence must eventually contain repeated vertices. Let σn

be the first vertex in the sequence that coincides with one of the preceding
vertices. We claim that σn must coincide with σ0. Suppose to the contrary
that σn = σm for some m such that 1≤ m < n. Then since Σ is (G,2)-arc
transitive, there exists g∈G such that (σm,σm+1,σm+2)g =(σ0,σ1,σ2). From
Lemma 2.3(d), we have σg

m+3=φσg
m+1σg

m+2
(σg

m)=φσ1σ2(σ0)=σ3. Inductively
we have that σg

m+i = σi for each i ≥ 0. In particular, σg
n = σg

m+(n−m) =
σn−m. But since σn = σm, we have σn−m = σg

n = σg
m = σ0, contradicting

the minimality of n. Therefore we must have σn = σ0. Thus, each 2-arc
(σ0,σ1,σ2) of Σ determines a unique (undirected) n-cycle C(σ0,σ1,σ2) :=
(σ0,σ1,σ2, . . . ,σn−1,σ0) of Σ. Note again that n≥4 since girth(Σ)≥4.
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Set τ :=φσ1σ0(σ2), then we have σ2=φσ0σ1(τ) by Lemma 2.3(c). We claim
that τ must coincide with σn−1. For the 2-arc (τ,σ0,σ1), the construction in
the previous paragraph will give the sequence τ,σ0,σ1,σ2, . . . ,σn−1,σn =σ0,
and since the first repeated vertex is the same as the starting vertex τ ,
it follows that τ = σn−1. Similarly, one can show that σn−2 = φσ0σn−1(σ1)
and hence σ1 = φσn−1σ0(σn−2). Therefore, reading the subscripts modulo n
(here and in the remainder of this section), we have σi+2 = φσiσi+1(σi−1)
and hence σi−1 =φσi+1σi(σi+2) for each i≥ 1 (Lemma 2.3(c)). This implies
that the 2-arcs (σi−1,σi,σi+1) and (σi+1,σi,σi−1) contained in C(σ0,σ1,σ2)
(for i ≥ 1) also determine the same n-cycle C(σ0,σ1,σ2). By definition of
C(σ0,σ1,σ2) and by Lemma 2.3(d), we have C(σg

0 ,σ
g
1 ,σ

g
2)= (C(σ0,σ1,σ2))g

for g ∈ G and hence E := {C(σ,τ,ε) : (σ,τ,ε) ∈ A2(Σ)} is G-invariant
and each 2-arc lies in a unique cycle of E . By the (G,2)-arc transi-
tivity of Σ, the length n of C(σ,τ,ε) is independent of the choice of
(σ,τ,ε) and G is transitive on E . Thus E is a G-orbit on n-cycles of
Σ and Σ is a near n-gonal graph with respect to E . Moreover, the ar-
gument above shows that ∆ = A3(Σ,E). In particular, in the sequence
σ0σ1,σ1σ0,σ2σ3,σ3σ2, . . . ,σ2i−2σ2i−1,σ2i−1σ2i−2,σ2iσ2i+1,σ2i+1σ2i, . . . of ver-
tices of Γ , for each i, the (2i− 1)-st vertex σ2i−2σ2i−1 and the 2i-th ver-
tex σ2i−1σ2i−2 are not adjacent, while the 2i-th vertex and the (2i + 1)-
st vertex σ2iσ2i+1 are adjacent. By the definition of n, the n-th vertex of
this sequence is σn−1σn−2, and it is adjacent to σ0σ1 (= σnσn+1) since
(σi−1,σi,σi+1,σi+2) ∈ ∆ for each i (subscripts modulo n). It follows that
n must be an even integer.

To prove the “if” part of the theorem, suppose that (Σ,E) is a (G,2)-
arc transitive near n-gonal graph with valency v≥ 3 and E is a G-orbit on
n-cycles of Σ, for some even n≥ 4. Then by Lemma 2.6, ∆ := A3(Σ,E) is
a self-paired G-orbit on A3(Σ). Let Γ :=Arc∆(Σ) and let (τ,σ,σ′,τ ′)∈∆.
Then στ ∈B(σ) is adjacent to σ′τ ′ ∈B(σ′) in Γ . If στ is adjacent in Γ to
a second vertex, say σ′ε′, of B(σ′), then (τ,σ,σ′,τ ′), (τ,σ,σ′,ε′) are distinct
3-arcs in ∆ and hence the 2-arc (τ,σ,σ′) is contained in two distinct basic
cycles of (Σ,E). This contradiction shows that Γ [B(σ),B(σ′)]∼=(v−1) ·K2

and hence Γ almost covers ΓB(Σ).

Remark 3.2. By Lemma 2.6(e), the vertex set of each basic cycle of (Σ,E)
in Theorem 3.1 induces a circulant subgraph of Σ, and these basic cycles
are chordless unless either (e)(i) or (e)(ii) in that lemma occurs. This latter
fact is interesting from a combinatorial point of view. The following example
shows that the basic cycles of (Σ,E) may contain chords. It also provides
an example of such a graph Σ with the smallest valency (namely 3) and
shows that the near n-gonal graph (Σ,E) occurring in Theorem 3.1 is not
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necessarily an n-gonal graph. (A near n-gonal graph is said to be an n-gonal
graph [14] if n is equal to the girth of the graph.) Moreover, it shows that the
graph Arc∆(Σ) may not be connected, even if Σ is connected and (G,2)-arc
transitive.

Example 3.3. Let Σ be the complete bipartite graph K3,3 with vertex set
{0,1,2,3,4,5} and bipartition ({0,2,4},{1,3,5}). We will show that there
exists a unique subgroup G≤Aut(Σ) such that Σ is a (G,2)-arc transitive
near 6-gonal graph with respect to a G-orbit E of 6-cycles of Σ. By the
definition of near polygonal graphs, one can easily check that

E1 := {(0, 1, 2, 3, 4, 5, 0), (0, 5, 2, 1, 4, 3, 0), (0, 1, 4, 5, 2, 3, 0)}

and
E2 := {(0, 1, 2, 5, 4, 3, 0), (0, 3, 2, 1, 4, 5, 0), (0, 1, 4, 3, 2, 5, 0)}

are the only possible sets E of 6-cycles of Σ such that (Σ,E) is a
near 6-gonal graph. On the other hand, we have Aut(Σ) = S3wrS2

∼=
〈(024),(02),(01)(23)(45)〉 and again it is easily checked that (024) and
(01)(23)(45) fix E1 and E2 setwise, whilst (02) interchanges E1 and E2.
Thus Aut(Σ) interchanges E1 and E2 and so a subgroup G of Aut(Σ)
with index 2 fixes E1 and E2 setwise. We have seen that G contains
H = 〈(024),(01)(23)(45)〉 ∼= A3wrS2, but does not contain (02). Thus
|G :H|=2. The element (13) is the conjugate of (02) by (01)(23)(45), and
hence (13) ∈ Aut(Σ) and (13) interchanges E1 and E2. Therefore (02)(13)
fixes E1 and E2 setwise and does not lie in H, so G = 〈H,(02)(13)〉. It is
easy to check that G is transitive on the 2-arcs of Σ, and hence (Σ,Ei) is a
(G,2)-arc transitive near 6-gonal graph for i=1 and i=2. If Σ is (K,2)-arc
transitive and K preserves the Ei, then K ≤ G and |K| is divisible by the
number of 2-arcs, that is, by 36. Hence K =G. Finally, for ∆i :=A3(Σ,Ei),
i=1,2, we have Arc∆i(Σ)∼=3 ·C6. We show this graph in Figure 1, where
the three blocks on the left-hand side are B(0),B(2) and B(4), and that on
the right-hand side are B(1),B(3) and B(5).

The following proposition shows further that the graph Σ in Example 3.3
is the only connected trivalent non-complete graph which is (G,2)-arc tran-
sitive and near n-gonal for an even integer n such that the basic cycles have
chords.

Proposition 3.4. Suppose Σ is a finite, connected, (G,2)-arc transitive,
trivalent graph and Σ �∼= K4. Suppose ∆ is a self-paired G-orbit on A3(Σ)
such that Γ :=Arc∆(Σ) almost covers Σ. Then Σ is a near n-gonal graph
with respect to some G-orbit E of n-cycles (and n is even). Moreover the
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Figure 1. Γ =3 ·C6,Σ=K3,3

cycles in E have chords if and only if Σ∼=K3,3, Γ ∼=3 ·C6, and E ∼=E1 or E2,
where G, E1 and E2 are as in Example 3.3.

Proof. By Theorem 3.1, Σ is a near n-gonal graph with respect to some
G-orbit E of n-cycles for an even integer n ≥ 4. So we need only to prove
that the cycles in E have chords if and only if Σ,Γ,G,E are as claimed. The
“if” part was in fact proved in Example 3.3. We prove the “only if” part in
the following.

Suppose {σ0,σm} is a chord of the basic cycle C(σ0,σ1,σ2) :=
(σ0,σ1,σ2, . . . ,σn−1,σ0). Then {σi,σi+m} is a chord of C(σ0,σ1,σ2) for each
i (by Lemma 2.6(e)). Since Σ is trivalent and connected, the only possibility
is m = n/2 and Σ ∼= Cay(Zn,{1,m,n− 1}). Since Σ �∼= K4, we have m ≥ 3.
Now the unique n-cycle C(σm,σ0,σ1) containing (σm,σ0,σ1) must be the
following sequence of vertices: σm,σ0,σ1,σm+1,σm+2,σ2,σ3,σm+3,σm+4, . . . .
If m is even, this sequence does not even form an n-cycle since it never
returns to the vertex σm. (Once we arrive at σm−1, the next vertex in the
sequence is σn−1 and from σn−1 the sequence returns to σ0. For example, if
m=4, then the sequence is the 7-cycle (σ0,σ1,σ5,σ6,σ2,σ3,σ7,σ0).) So m is
odd, and in this case the sequence does give an n-cycle. By the (G,2)-arc
transitivity of Σ, there exists g ∈G such that (σn−1,σ0,σ1)g = (σm,σ0,σ1).
From Lemma 2.3(d), we have (C(σn−1,σ0,σ1))g = C(σm,σ0,σ1). There-
fore, σg

0 = σ0, σg
1 = σ1,σ

g
n−1 = σm,σg

n−3 = σn−1. Since σ0,σm are adja-
cent, we know that σg

0 and σg
m are adjacent, and hence the only possi-

bility for σg
m is σg

m = σn−1 (note that σg
m �= σg

1 = σ1,σ
g
m �= σg

n−1 = σm).
But σg

n−3 = σn−1 as mentioned above, so we get σm = σn−3. Therefore,
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n = 6 and hence Σ = Cay(Z6,{1,3,5}) ∼= K3,3. From the discussion in Ex-
ample 3.3, we then have Γ =3 ·C6, E is either E1 or E2, and G is the group
〈(024),(02)(13),(01)(23)(45)〉.

4. Corollaries

We conclude the paper by giving two corollaries of our main result. The
first one, stated below, might be useful in constructing two-arc transitive
near-polygonal graphs.

Corollary 4.1. Suppose that Σ a finite connected (G,2)-arc transitive
graph of valency v≥3 such that Σ �∼=Kv+1 and Gσ is sharply 2-transitive on
Σ(σ) for σ ∈ V (Σ). If one of the G-orbits on A3(Σ) is self-paired (that is,
G contains an element reversing a 3-arc of Σ), then, for some even integer
n≥4, Σ is a near n-gonal graph with respect to a G-orbit on n-cycles of Σ.

This follows immediately from Theorem 3.1 and Lemma 2.4. Moreover,
since Gσ is sharply 2-transitive on Σ(σ), by a well known result (see [5,17])
the valency v= |Σ(σ)| of Σ must be a prime power. The reader is referred
to [16] for information about the group G.

Our second corollary examines an important special case of almost covers
which motivated the study in this paper. Recall that if Γ is a G-symmetric,
G-locally primitive graph admitting a nontrivial G-invariant partition B of
block size v = k + 1 ≥ 3 such that ΓB is connected, then D(B) contains
no repeated blocks ([6, Lemma 3.3(c)]) and ΓB is almost covered by Γ ([6,
Lemma 3.1(a)]). By Theorem 2.1, Γ =Arc∆(Σ) for some self-paired G-orbit
∆ on 3-arcs of Σ :=ΓB, and B is identical with B(Σ) (see [11, Section 5]).
Note that Lemma 2.3 parts (a) and (b), and the G-local primitivity of Γ ,
imply that GB is 2-primitive on B and Σ(B). If in addition girth(Σ) = 3
(that is, Σ ∼= Kv+1, see Lemma 2.5), then G is 3-primitive on B and the
argument in the proof of [6, Theorem 5.4] from (Line, Page) = (25, 534)
to (12, 535) is valid, and hence we get the possibilities for (Γ,G) listed in
part (a) and the second half of part (b) of [6, Theorem 5.4]. However, in the
general case where girth(Σ)≥ 4, the argument in [6, lines 33–41, pp. 534]
should be modified since the block D therein is not adjacent to C. In this
case, as shown in Theorem 1.1, Σ is a near n-gonal graph with n≥ 4 and
n even. Moreover, G

Σ(B)
B is 2-primitive. Hence if basic cycles of Σ have

chords, then by Lemma 2.6(e), GB is sharply 2-primitive on Σ(B). Hence
GB is also sharply 2-primitive on B, and so v is a prime power and, for
α∈B, G

B\{α}
α =Zv−1 with v−1 a prime. Hence either v=3, or v=2p for a
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prime p with q=2p−1 a Mersenne prime. In the former case Proposition 3.4
implies that Σ = K3,3, Γ = 3 ·C6, and G and E are as in Example 3.3. In
the latter case GB

B =(Z2)p.Zq. Theorems 1.1, 2.1 and 3.1 and the argument
above imply Corollary 4.2, an amended form of [6, Theorem 5.4].

For a prime power v, and distinct elements u,w,y,z of the projective line
GF(v)∪{∞}, the cross-ratio (see e.g. [13, pp. 59]) is defined as c(u,w;y,z) :=
(u−y)(w−z)/(u−z)(w−y). For each x∈GF(v)\{0}, the cross-ratio graph
CR(v,x) was defined in [6,9] to be the graph with vertices the ordered pairs
of distinct elements of GF(v)∪{∞} in which uw and yz are adjacent if and
only if c(u,w;y,z)=x.

Corollary 4.2. Suppose that Γ is a finite G-symmetric, G-locally primitive
graph admitting a nontrivial G-invariant partition B of block size v=k+1≥3
such that ΓB is connected. Then ΓB is a (G,2)-arc transitive graph of valency
v, the actions of GB on B and ΓB(B) are permutationally equivalent and
2-primitive, and the following (a)–(b) hold.

(a) If ΓB ∼= Kv+1, then either (i) Γ ∼= (v +1) ·Kv and G is one of the
following: Sv+1 (v≥3), Av+1 (v≥4), Mv+1 (v=10,11,22,23), M11 (v=11),
PGL(2,2p) (v=2p with 2p−1 a Mersenne prime), or (ii) Γ ∼=CR(3,−1)=3·C4

and G=PGL(2,3) (v=3), or (iii) Γ ∼=CR(2p,x) and G=PGL(2,2p) (v=2p)
for some x∈GF(2p)\{0,1} with 2p−1 a Mersenne prime.

(b) If ΓB �∼=Kv+1, then for some even integer n≥4, ΓB is a near n-gonal
graph with respect to a certain G-orbit E on n-cycles of ΓB and Γ ∼=Arc∆(ΓB)
for ∆ :=A3(ΓB,E). Moreover, each basic cycle of (ΓB,E) is chordless unless
GB

B is sharply 2-primitive and either
(i) v=3, ΓB∼=K3,3, Γ ∼=3 ·C6, and G and E are as in Example 3.3, or
(ii) GB

B =(Z2)p.Zq and v=2p with p a prime and q=2p−1 a Mersenne
prime.

The smallest v in part (b)(ii) above is v = 22 = 4. In this case we have
GB

B = (Z2)2.Z3 and a similar argument as in the proof of Proposition 3.4
shows that, if the basic cycles of (ΓB,E) have chords, then the subgraph
induced by the vertex set of each basic cycle is isomorphic to the circulant
Cay(Zn,S) for S={1,n/2,n−1}.
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