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Abstract: Let � be a finite G-symmetric graph whose vertex set admits a
nontrivial G-invariant partition B. It was observed that the quotient graph
�B of � relative to B can be (G,2)-arc transitive even if � itself is not
necessarily (G,2)-arc transitive. In a previous article of Iranmanesh et al.,
this observation motivated a study of G-symmetric graphs (�,B) such that
�B is (G,2)-arc transitive and, for blocks B,C ∈ B adjacent in �B, there are
exactly |B| − 2 (≥1) vertices in B which have neighbors in C. In the present
article we investigate the general case where �B is (G,2)-arc transitive and
is not multicovered by � (i.e., at least one vertex in B has no neighbor in C
for adjacent B,C ∈ B) by analyzing the dual D∗(B) of the 1-design
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D(B) := (B, �B(B), I), where �B(B) is the neighborhood of B in �B
and αIC (α ∈ B, C ∈ �B(B)) in D(B) if and only if α has at least one neighbor
in C. In this case, a crucial feature is that D∗(B) admits G as a group of
automorphisms acting 2-transitively on points and transitively on
blocks and flags. It is proved that the case when no point ofD(B) is incident
with two blocks can be reduced to multicovers, and the case when no point
of D(B) is incident with two blocks can be partially reduced to the 3-arc
graph construction, where D(B) is the complement of D(B). In the general
situation, both D∗(B) and its complement D

∗
(B) are (G,2)-point-transitive

and G-block-transitive 2-designs, and exploring relationships between
them and � is an attractive research direction. In the article we investigate
the degenerate case where D∗(B) or D

∗
(B) is a trivial Steiner system with

block size 2, that is, a complete graph. In each of these cases, we give a
construction which produces symmetric graphs with the corresponding
properties, and we prove further that every such graph� can be constructed
from �B by using the construction. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 167–193,

2007
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1. INTRODUCTION

This article is a continuation of [24,20], where two classes of symmetric graphs with
2-arc transitive quotients were investigated. Although most quotient graphs of 2-arc
transitive graphs are not themselves 2-arc transitive (see e.g., [29]), the main results
of [24] suggest that under certain circumstances a quotient of a symmetric graph
can be 2-arc transitive even when the original graph is not 2-arc transitive. This
observation motivated the following general questions [20, Question 1.1]: when
does a quotient of a symmetric graph admit a natural 2-arc transitive group action?
If there is such a quotient, what information does this give us about the original
graph? This article is an attempt to partially answer the second question under the
assumption that the original is not a multicover of the quotient. Thus, the objects
of investigation in the article are symmetric graphs with 2-arc transitive quotients;
and the main results of the article, which will be summarized in Section B, are
concerned with the structure and construction of such graphs.

There has been a lot of interest in 2-arc transitive graphs since the classification
of finite simple groups. See for example [7,8,14,15,21–23,28]; [1,25,27] for 2-arc
transitive Cayley graphs; and [17,20,24,33,35] for 2-arc transitive quotients of
symmetric graphs. The present article is a contribution toward symmetric graphs
with 2-arc transitive quotients, and it forms part of our study of imprimitive
symmetric graphs.

The reader is referred to [4,19] for basic results about symmetric graphs, and to
[29,30] for more recent development in the area.
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A. Notation and Terminology

Let us first introduce the notation and terminology that will be used throughout the
article.

Let � = (V (�), E(�)) be a finite graph and s ≥ 1 an integer. An s-arc of � is
a sequence (α0, α1, . . . , αs) of s+ 1 vertices of � such that αi, αi+1 are adjacent
for i = 0, . . . , s− 1 and αi−1 �= αi+1 for i = 1, . . . , s− 1. The set of s-arcs of �
is denoted by Arcs(�). Let G be a finite group acting on V (�). The graph � is
said to admit G as a group of automorphisms if G preserves the adjacency of �,
that is, for any α, β ∈ V (�) and g ∈ G, α and β are adjacent in � if and only if
αg and βg are adjacent in �. In the case where G is transitive on V (�) and, under
the induced action, transitive on Arcs(�), � is said to be (G,s)-arc transitive. From
this definition, it is clear that a (G, s)-arc transitive graph must be (G, s− 1)-arc
transitive, where (G, 0)-arc transitivity is interpreted as G-vertex transitivity. A 1-
arc is usually called an arc, and a (G, 1)-arc transitive graph is called a G-symmetric
graph. In this article we will use Arc(�) in place of Arc1(�). Evidently, a G-vertex
transitive graph � is G-symmetric ((G, 2)-arc transitive, respectively) if and only
if Gα is transitive (2-transitive, respectively) on the neighborhood �(α) of α in �,
where Gα is the stabilizer of α in G.

Roughly speaking, in most cases a G-symmetric graph � admits a nontrivial
G-invariant partition, that is, a partition B of V (�) such that 1 < |B| < |V (�)|
and Bg ∈ B for B ∈ B and g ∈ G, where Bg := {αg : α ∈ B}. In such a case, �
is called an imprimitive G-symmetric graph. From permutation group theory [12,
Corollary 1.5A], this happens precisely when Gα is not a maximal subgroup of G.
In this case, the quotient graph �B of � with respect to B is defined to be the graph
with vertex set B in which B,C ∈ B are adjacent if and only if there exist α ∈ B,
β ∈ C such that α, β are adjacent in �. In this article we will always assume that
�B contains at least one edge, so that each block of B is an independent set of �
(see e.g., [4, Proposition 22.1]). It is not difficult to see that �B is G-symmetric
under the induced action (possibly unfaithful) of G on B. Although �B stores a lot
of information about the original graph �, a genuine picture of � would need the
bipartite subgraph induced on two adjacent blocks and a 1-design with point set B.
ForB ∈ B, define�(B) := ∪α∈B�(α), and the neighborhood of B in�B is denoted by
�B(B) . For adjacent blocksB,C ofB, let�[B,C] be the induced bipartite subgraph
of�with bipartition {�(C) ∩ B,�(B) ∩ C}. DefineD(B) := (B,�B(B), I) to be the
incidence structure in which αIC for α ∈ B andC ∈ �B(B) if and only if α ∈ �(C);
such a pair (α,C) is called a flag of D(B). The triple (�B, �[B,C],D(B)) mirrors
the structure of �, and this approach to imprimitive symmetric graphs was used in
[16] and further developed in [17,24,20,32,33,35,36]. Let

v := |B|, k := |�(C) ∩ B|, b := |�B(B)|, r := |�B(α)|
where �B(α) := {C ∈ �B(B) : αIC}. In the case where k = v, � is called a
multicover [29] of �B. Since � is G-symmetric, it can be easily checked that
D(B) is a 1-(v, k, r) design with b blocks, and is independent of the choice
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of B up to isomorphism. Thus, we have vr = bk. It may happen that distinct
blocks C,D ∈ �B(B) of D(B) have the same trace �(C) ∩ B = �(D) ∩ B; call
such C,D repeated blocks of D(B). The number of blocks of D(B) with the same
trace is a constant, m, called the multiplicity of D(B). Also, up to isomorphism,
�[B,C] is independent of the choice of adjacent blocks B,C of B. As we will
see later, sometimes it is convenient to analyze the complementary structure
D(B) := (B,�B(B), I) of D(B), for which αIC if and only if α �∈ �(C), that is,
(α,C) is a flag ofD(B) if and only if it is an antiflag ofD(B) and vice versa. In the
following, we will takeD(B) andD(B), respectively as having blocks�(C) ∩ B and
B \ �(C) (where C ∈ �B(B)), each repeated m times, and interpret their incidence
relations as set-theoretic inclusion.

The notation and terminology for graphs, groups, and designs used in the article
are standard; see, for example, [4], [12], and [3], respectively. For a group G acting
on a set� and forX ⊆ �,GX andG(X) are the setwise and pointwise stabilizers of
X in G, respectively. For α ∈ �, αG := {αg : g ∈ G} is the G-orbit on� containing
α, and Gα := {g ∈ G : αg = α} is the stabilizer of α in G. The action of G on
� is said to be faithful if G(�) = 1, and regular if it is transitive and Gα = 1 for
α ∈ �. Suppose that a group G acts on two sets�1 and�2. If there exists a bijection
ψ : �1 → �2 such thatψ(αg) = (ψ(α))g for all α ∈ �1 and g ∈ G, then the actions
of G on �1 and on �2 are said to be permutationally equivalent.

A graph � is called regular if all vertices of it have the same valency, denoted
by val(�). The union of n vertex-disjoint copies of � is denoted by n · �. For two
graphs� and�, the lexicographic product of� by�,�[�], is the graph with vertex
set V (�) × V (�) such that (α, β), (γ, δ) are adjacent if and only if either α, γ are
adjacent in �, or α = γ and β, δ are adjacent in �.

B. A Summary of the Main Results

Let� be a G-symmetric graph withV (�) admitting a nontrivial G-invariant partition
B. In this summary, we assume that �B is (G, 2)-arc transitive, and that � is not a
multicover of�B. Then bothD(B) andD(B) admitGB as a group of automorphisms
acting transitively on points and 2-transitively on blocks. Thus, any two blocks of
D(B) (D(B), respectively) intersect in a constant number of points; this constant is
denoted by λ (λ, respectively).

It may happen that λ = 0, that is, the blocks of D(B) form a partition of B.
In this case, we prove that � admits a second G-invariant partition Q such that
� is a multicover of �Q (Theorem 3.5). It may also happen that λ = 0, that is,
the blocks of D(B) form a partition of B. We prove that this second possibility
can be partially reduced to the 3-arc graph construction, which was introduced in
[24] and developed in [32]. (See the beginning of Part B in Section 3 for the 3-arc
graph construction.) More precisely, in this case � admits a second G-invariant
partition P such that �P is isomorphic to a 3-arc graph of �B or otherwise �, �P,
and �B are all known (Theorem 3.7). Combining the 3-arc graph construction and
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the well-known covering graph construction [4], we then give (Construction 3.8) a
method of constructing symmetric graphs for which λ = 0 occurs.

In the general case where λ ≥ 1 and λ ≥ 1, we consider the dual designs ofD(B)
and D(B), denoted by D∗(B) and D

∗
(B), respectively. From the discussion above,

GB is 2-transitive on the points of such dual structures. Thus,D∗(B) andD
∗
(B) are

both 2-designs which admit GB as a group of automorphisms acting 2-transitively
on points and transitively on blocks. (Of course, D(B), D∗(B), and D

∗
(B) are all

induced from D(B). However, sometimes it seems convenient to think of these
derived designs instead of D(B).) These 2-designs may contain key information
about the structure of � and �B, yet to be dug out, and many natural and interesting
problems arise from them. For example, we may ask when a 2-point-transitive, flag-
transitive (antiflag-transitive), and block-transitive 2-design can occur as D∗(B)
(D

∗
(B)), and how much structural information of � and/or �B we can get if we

know D∗(B) or D
∗
(B). No one may expect simple answers to these questions due

to the complexity of both imprimitive symmetric graphs and 2-designs. Definitely,
it is not realistic to try all possible cases in one time. So in this article we will focus
on the following “trivial” cases: (i)D∗(B) is the trivial design with λ = 1 and block
size r = 2; (ii) D

∗
(B) is the trivial design with λ = 1 and block size b− r = 2.

Interesting combinatorics appears even in such degenerate cases. In fact, we find a
useful construction which can produce imprimitive symmetric graphs in case (i),
and moreover we prove that every imprimitive symmetric graph in this case can
be constructed from its quotient by using this method. See Construction 4.2 and
Theorem 4.3. This is another kind of “3-arc graph construction” since it involves
a self-paired orbit of the 3-arcs of a regular graph. However, unlike the 3-arc
graph construction in [24,32], this time the vertices of the constructed graph are
paths of length two of the given graph. The main results for case (i) imply the
following somewhat strange consequence (Corollary 4.8): every connected (G, 3)-
arc transitive graph of valency at least 3 is a quotient graph of at least one connected
G-symmetric but not (G, 2)-arc transitive graph. Thus, a connected graph can be
just G-symmetric but not (G, 2)-arc transitive, but a quotient of it can be (G, 7)-arc
transitive. (There are infinitely many such graphs since there are infinitely many
7-arc transitive graphs [11].) For case (ii), we find another interesting construction
and prove that every imprimitive symmetric graph in this case can be constructed
from its quotient by using this construction. See Construction 4.11, Theorems 4.12
and 4.14.

As preliminaries, we will derive general information about D(B) and D(B) in
the next section. The most striking result in this section says that either λ = 0 or
D(B) is connected as a hypergraph. See Theorem 2.2 for details.

2. INDUCED DESIGNS

In this section, we do not assume 2-arc transitivity of the quotient graph. The
following simple facts were observed in [16, Section 3] under the assumption that
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Gα is primitive on�(α), and stated explicitly in [32, Lemma 2.1] for any imprimitive
symmetric graph.

Lemma 2.1. Let � be a finite G-symmetric graph whose vertex set admits a
nontrivial G-invariant partition B, and let B be a block of B. Then GB induces a
group of automorphisms of D(B) which is transitive on the points, the blocks, and
the flags of D(B).

The following theorem is obtained by viewingD(B) as a uniform hypergraph [2]
with vertex set B and hyperedgesB \ �(C),C ∈ �B(B). It says that in generalD(B)
is connected as a hypergraph. This was shown in [20, Theorem 2.1] in the special
case when k = v− 2 ≥ 1, for which D(B) is the graph �B as defined in [20]. (A
hypergraph is connected [2] if, for any two vertices α, β there exists a sequence
E0, E1, . . . , En of hyperedges such that α ∈ E0, β ∈ En and Ei−1 ∩ Ei �= ∅ for
i = 1, . . . , n.) A refinement P of a partition B is said to be a proper refinement if
P �= B. Let

d := val(�[B,C])

for adjacent blocks B,C of B.

Theorem 2.2. Let � be a finite G-symmetric graph admitting a nontrivial G-
invariant partition B such that � is not a multicover of �B. Then D(B) is a 1-
(v, v− k, b− r) design, and it admits GB as a group of automorphisms acting
transitively on the points, the blocks and the antiflags. Moreover, one of the following
(a) and (b) occurs.

(a) D(B) is connected as a hypergraph.
(b) The blocks of D(B) form a GB-invariant partition of B, and the blocks of
D(B) for B running over B form a G-invariant partition of V (�), namely

P :=
⋃
B∈B

{B \ �(C) : C ∈ �B(B)}, (1)

which is a proper refinement of B. In this case, v− k divides v and k,
b = m(t + 1), r = mt, where t = k/(v− k), either k = v/2 or k ≥ 2v/3,
G(P) = G(B), and the parameters with respect to (�,P) satisfy vP = v− k

and rPdP = rd. Moreover, P admits a G-invariant partition B̂ induced by
B such that (�P)B̂ ∼= �B, and the parameters with respect to (�P, B̂) satisfy
kB̂ = vB̂ − 1 = t ≥ 1, bB̂ = b, rB̂ = r, and mB̂ = m.

Proof. From Lemma 2.1, it follows immediately that GB induces a group
of automorphisms of D(B) which is transitive on the points, the blocks, and the
antiflags ofD(B). In particular,D(B) must be a 1-design with v points and b blocks
of size v− k. Hence, each point is incident with b(v− k)/v = b− r blocks inD(B).
In other words, D(B) is a 1-(v, v− k, b− r) design.
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Since GB is transitive on the points and blocks of D(B), the connected
componentsB(1), . . . , B(ω) ofD(B) (as a hypergraph) form aGB-invariant partition
Q of B. It is straightforward to show that GB is transitive on such components.
Note that the vertices in the same block of D(B) must be in the same connected
component of D(B). Thus, each B(i) is the union of some blocks of D(B). In the
following, we will show that either D(B) is connected (i.e., ω = 1) and (a) holds,
or each part of Q is a block of D(B) (i.e., ω = b/m).

Let us first assume that each block B(i) of Q contains more than v− k vertices,
that is, each B(i) is the union of at least two non-repetitive blocks of D(B). In this
case, we must have ω = 1. Suppose to the contrary that ω ≥ 2, and let γ ∈ B(2).
Let X = B \ �(C) be a block of D(B) contained in B(1), where C ∈ �B(B). Then
X �= B(1) and hence we may take a vertex α ∈ B(1) \X. Thus, α, γ ∈ �(C) ∩ B and
consequently there exist β, δ ∈ �(B) ∩ C such that (α, β), (γ, δ) ∈ Arc(�). Since
� is G-symmetric, there exists g ∈ G such that (α, β)g = (γ, δ). Since B is a G-
invariant partition of V (�), this implies that g fixes each of B,C setwise. Thus,
Xg = Bg \ �(Cg) = B \ �(C) = X. However, Q is a GB-invariant partition of B
and X ⊂ B(1). Hence, g fixes B(1) setwise. This together with α ∈ B(1) implies
γ = αg ∈ B(1), which contradicts the assumption that γ ∈ B(2). This contradiction
shows that ω = 1, that is, D(B) is connected and hence (a) holds.

In the remaining case, each B(i) consists of only one block of D(B). In this case,
the blocks (ignoring the multiplicity) of D(B) form a GB-invariant partition of B,
and this partition is exactlyQ. Based on this fact, it is straightforward to show that
the blocks of D(B) for B running over B form a G-invariant partition P of V (�)
with block size vP = v− k. Clearly, P = ∪B∈B{B \ �(C) : C ∈ �B(B)}, and P is
a refinement of B. Moreover, since 1 ≤ v− k < v, P is a proper refinement of B.
Thus, v− k is a divisor of v and hence a divisor of k. Also, setting t = k/(v− k), we
have b = mv/(v− k) = m(t + 1) and r = bk/v = (mv/(v− k))(k/v) = mk/(v−
k) = mt. Since P �= B, we have v/(v− k) ≥ 2, that is, k ≥ v/2. Moreover, if t = 1
then k = v/2; if t > 1 then k/(v− k) ≥ 2, which implies k ≥ 2v/3. Evidently, we
have rPdP = rd = val(�). Since B is G-invariant and P is a refinement of B, we
haveG(P) ⊆ G(B). On the other hand, if g ∈ G(B), then g fixes setwise each block of
B and hence fixes setwise each block ofP, that is, g ∈ G(P). Therefore,G(P) = G(B).

Let B̂ := {B \ �(C) ∈ P : C ∈ �B(B)} (ignoring the multiplicity of each B \
�(C)). Then, B̂ is the set of blocks of P contained in B. Let

B̂ := {B̂ : B ∈ B}. (2)

It is straightforward to show that B̂ is a G-invariant partition of P, and that
(�P)B̂ ∼= �B via the bijection B ↔ B̂ between B and B̂. Let vB̂, kB̂, bB̂, rB̂,mB̂ be
the parameters with respect to (�P, B̂). For blocks B,C of B adjacent in �B, each
“vertex” B \ �(D) of B̂ other than B \ �(C) (where D ∈ �B(B) \ {C}) is adjacent
to at least one “vertex” of Ĉ other than C \ �(B). Thus, we have kB̂ = vB̂ − 1 =
(v/vP) − 1 = t ≥ 1. Also, the isomorphism above between (�P)B̂ and �B implies
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that bB̂ = b. Since vB̂rB̂ = bB̂kB̂, it follows that (v/(v− k))rB̂ = b(k/(v− k)) and
hence rB̂ = r. Also, it is clear that mB̂ = m. �
Remark 2.3.

(a) In contrast toD(B) (Lemma 2.1), the groupGB is not necessarily transitive
on the flags of D(B).

(b) In possibility (b) of Theorem 2.2, the case k = v/2 occurs if and only if
t = 1, and in this case we have b = 2m, r = m, and kB̂ = vB̂ − 1 = 1. In
the other case where k ≥ 2v/3 (i.e., t ≥ 2), we have kB̂ = vB̂ − 1 = t ≥ 2.
In both cases, the graph �P together with its vertex-partition B̂ satisfies the
assumptions in [24]. This connection will be explored in the next section
under the condition that �B is (G, 2)-arc transitive. In particular, we will
give a construction of graphs with 2-arc transitive quotients satisfying the
conditions of Theorem 2.2(b).

(c) In possibility (b) of Theorem 2.2, since the blocks of D(B) form a GB-
invariant partition of B with block size v− k < v, GB is not 2-transitive
on B unless k = v− 1.

(d) Let (�,G,B) be as in Theorem 2.2 such that G is faithful on V (�). In the
case where in addition v− k is a prime, either (b) in Theorem 2.2 occurs,
or G is faithful on B. In fact, sinceG(B) is a normal subgroup of G, the setO
of G(B)-orbits on the vertices of � is a G-invariant partition of V (�), which
is a refinement of B. Since G(B) fixes each block of B setwise, each block of
D(B) must be invariant under the action ofG(B) and hence is a union of some
blocks ofO. Under the condition that G is unfaithful on B,O is a nontrivial
partition of V (�). Thus, if in addition v− k is a prime, then each block of
D(B) is a block of O; in other words, case (b) in Theorem 2.2 occurs.

Similarly, if k is a prime, then either the blocks ofD(B) for B running over
B form a G-invariant partition of V (�), or G is faithful on B. Also, if v and
k are coprime, then O is forced to be the trivial partition {{α} : α ∈ V (�)},
and consequently G must be faithful on B.

(e) ForD(B), the counterpart of Theorem 2.2 is not true, that is, under the same
conditions D(B) is not necessarily connected as a hypergraph if its blocks
do not form a partition of B.

For each block X of D(B), define

〈X〉 := {C ∈ �B(B) : �(C) ∩ B = X}.
Thus, 〈X〉 is an m-element subset of �B(B). Denote

L(B) := {〈X〉 : X a block of D(B)}.
The following lemma is straightforward, and it is a generalization of [20,
Lemma 3.1]. To establish the last assertion in the lemma, we require that � is not a
multicover of �B. A G-symmetric graph is called G-locally primitive or G-locally
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imprimitive according to whether the stabilizer in G of a vertex is primitive or
imprimitive on its neighborhood.

Lemma 2.4. Let � be a finite G-symmetric graph admitting a nontrivial G-
invariant partition B such that � is not a multicover of �B. Then L(B) is a GB-
invariant partition of �B(B) with block size m. The induced action of GB on L(B),
the action ofGB on the blocks ofD(B) (ignoring the multiplicity of each block) and
the action ofGB on the blocks ofD(B) (ignoring the multiplicity of each block) are
permutationally equivalent with respect to the bijectionsX �→ 〈X〉, B \X �→ 〈X〉,
for blocks X of D(B). Moreover, if m = 1 then the actions of GB on �B(B), on the
blocks ofD(B) and on the blocks ofD(B) are permutationally equivalent; ifm ≥ 2
then �B is G-locally imprimitive and hence �B is not (G, 2)-arc transitive.

3. TWO-ARC TRANSITIVE QUOTIENTS

From now on, we will deal with G-symmetric graphs (�,B) with (G, 2)-arc
transitive quotients �B. The following consequence of Lemma 2.4 will be the
starting point for our investigation.

Lemma 3.1. Let � be a finite G-symmetric graph admitting a nontrivial G-
invariant partition B such that � is not a multicover of �B. Suppose that �B is
(G, 2)-arc transitive. ThenD(B) contains no repeated blocks, and moreover,GB is
2-transitive on the blocks of D(B) and 2-transitive on the blocks of D(B).

Thus, when �B is (G, 2)-arc transitive, any two distinct blocks of D(B) (D(B),
respectively) intersect in the same number of points. That is,

λ := |X ∩ Y |, λ := |X ∩ Y |
are independent of the choice of distinct blocks X, Y of D(B), where X = B \
X, Y = B \ Y are blocks of D(B). Evidently, we have

λ = v− 2k + λ. (3)

The following theorem follows from Lemmas 2.1 and 3.1 immediately, and it
justifies our usage of the dual designs D∗(B), D

∗
(B) of D(B), D(B).

Theorem 3.2. Let � be a finite G-symmetric graph admitting a nontrivial G-
invariant partition B such that � is not a multicover of �B. Suppose that �B is
(G, 2)-arc transitive. If λ ≥ 1, then D∗(B) is a 2-(b, r, λ) design with parameters
(v∗, b∗, r∗, k∗, λ∗) = (b, v, k, r, λ), and it admits GB as a group of automorphisms
acting 2-transitively on its points and transitively on its blocks and flags. If
λ ≥ 1, thenD

∗
(B) is a 2-(b, b− r, λ) design with parameters (v∗, b

∗
, r∗, k

∗
, λ

∗
) =

(b, v, v− k, b− r, λ), and it admits GB as a group of automorphisms acting 2-
transitively on its points and transitively on its blocks and antiflags.

Journal of Graph Theory DOI 10.1002/jgt



176 JOURNAL OF GRAPH THEORY

Corollary 3.3. Let � be a finite G-symmetric graph admitting a nontrivial G-
invariant partition B such that � is not a multicover of �B. Suppose that �B is
(G, 2)-arc transitive. Then

λ(b− 1) = k(r − 1). (4)

Proof. In the case where λ ≥ 1,D∗(B) is a 2-design by Theorem 3.2 and hence
(4) follows from λ∗(v∗ − 1) = r∗(k∗ − 1). Similarly, if λ ≥ 1, then D

∗
(B) is a 2-

design and from λ
∗
(v∗ − 1) = r∗(k

∗ − 1) we have λ(b− 1) = (v− k)(b− r − 1),
which gives (4) after simplification.

In the remaining case, we have λ = λ = 0 and k = v/2 by (3); hence, r = 1 and
(4) is valid as well. �

The discussion above suggests that we may distinguish the following (not
exclusive) three cases in studying symmetric graphs with 2-arc transitive quotients:

Case 1. λ = 0;

Case 2. λ = 0;

Case 3. λ ≥ 1, λ ≥ 1.

The remainder of this section is devoted to the first two cases.

A. Case 1: λ = 0

This case can be partially characterized by the following simple construction, which
appeared in [20, Example 2.4] when � is trivalent.

Construction 3.4. Let � be a G-symmetric graph. Define �arc(�) to be the
graph with vertex set Arc(�) and edge set {{(σ, τ), (τ, σ)} : (σ, τ) ∈ Arc(�)}. Then,
�arc(�) is a G-symmetric graph admitting B(�) := {B(σ) : σ ∈ V (�)} as a G-
invariant partition such that kB(�) = 1, �arc(�) ∼= 
 ·K2 and (�arc(�))B(�)

∼= �,
where 
 = |E(�)| and B(σ) = {(σ, τ) : τ ∈ �(σ)} for σ ∈ V (�).

Note that, when �B is (G, 2)-arc transitive, the case λ = 0 occurs if and only if
D(B) contains two disjoint blocks.

Theorem 3.5. Let � be a finite G-symmetric graph admitting a nontrivial G-
invariant partition B such that � is not a multicover of �B. Suppose that �B is
(G, 2)-arc transitive and λ = 0 (that is, D(B) contains two disjoint blocks). Then
� admits a second G-invariant partition, namely

Q :=
⋃
B∈B

{�(C) ∩ B : C ∈ �B(B)}, (5)

which is a refinement of B, such that � is a multicover of �Q, �Q ∼= �arc(�B) ∼=

 ·K2 where 
 = |E(�B)|, and the parameters with respect to (�,Q) satisfy vQ =
Journal of Graph Theory DOI 10.1002/jgt
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kQ = k = v/b and bQ = rQ = r = 1. Moreover, Q admits a G-invariant partition
B̂ induced byB such that (�Q)B̂ ∼= �B,D(B̂) contains no repeated blocks (where B̂ is
a block of B̂), and the parameters with respect to (�Q, B̂) are given by vB̂ = bB̂ = b

and rB̂ = kB̂ = 1.

Proof. Since �B is (G, 2)-arc transitive, D(B) contains no repeated blocks by
Lemma 2.4. The assumption λ = 0 implies that any two blocks ofD(B) are disjoint.
Hence, the blocks of D(B) form a GB-invariant partition of B. From this, it is
straightforward to show that the blocks of D(B), for B running over B, form a
G-invariant partition of V (�), which is Q given in (5). Clearly, Q is a refinement
of B, vQ = kQ = k = v/b and bQ = rQ = r = 1 (noting that vr = bk and vQrQ =
bQkQ). Thus, �Q is a matching and � is a multicover of �Q. Moreover, one can
check that �Q ∼= �arc(�B) with respect to the bijection which maps the vertex
“�(C) ∩ B” of �Q to the vertex “(B,C)” of �arc(�B). Note that �arc(�B) ∼= 
 ·K2,
where 
 = |E(�B)|.

Let B̂ := {�(C) ∩ B : C ∈ �B(B)} and B̂ := {B̂ : B ∈ B}. It is straightforward
to show that B̂ is a G-invariant partition of Q and the parameters with respect to
(�Q, B̂) are given by vB̂ = bB̂ = b and rB̂ = kB̂ = 1. Furthermore, (�Q)B̂ ∼= �B and
D(B̂) contains no repeated blocks. �
Corollary 3.6. Let � be a finite connected G-symmetric graph admitting a
nontrivial G-invariant partition B such that � is not a multicover of �B. Suppose
that �B is (G, 2)-arc transitive. Then either λ ≥ 1, or � is bipartite and �B ∼= K2.

Proof. Using Theorem 3.5, if λ = 0, then �Q ∼= 
 ·K2 (where 
 = |E(�B)|)
and � is a multicover of �Q. Since � is connected, so is �Q and hence 
 = 1. That
is, �B ∼= K2 and therefore � is bipartite. �

B. Case 2: λ = 0

In this subsection, we will prove that Case 2 can be partially reduced to the 3-arc
graph construction. Let � be a regular graph, and let � be a self-paired subset
of Arc3(�), that is, (τ, σ, σ ′, τ ′) ∈ � implies (τ ′, σ ′, σ, τ) ∈ �. The 3-arc graph
�(�,�) of � with respect to � [24,32] is the graph with vertex set Arc(�) in
which (σ, τ), (σ ′, τ ′) are adjacent if and only if (τ, σ, σ ′, τ ′) ∈ �. In the case where
� is G-symmetric and G is transitive on�under the induced action of G onArc3(�),
� := �(�,�) is a G-symmetric graph [24, Section 6] which admits

B(�) := {B(σ) : σ ∈ V (�)}
as a G-invariant partition such that� ∼= �B(�) under the natural bijectionσ �→ B(σ),
where B(σ) := {(σ, τ) : τ ∈ �(σ)}.

In Theorem 2.2, we discussed Case 2 without assuming the (G, 2)-arc transitivity
of �B. By Lemma 3.1, under the assumption that �B is (G, 2)-arc transitive, Case 2
occurs if and only if the blocks of D(B) form a partition of B, which in turn is
true if and only if D(B) contains two disjoint blocks. In this case, the following
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theorem says that either both �B and �P can be determined, or �P is isomorphic to
a 3-arc graph of �B with respect to a self-paired G-orbit on Arc3(�B), where P is
as defined in (1). Note that Cases 1 and 2 have overlapped, and this happens only
when k = v/2.

Theorem 3.7. Let � be a finite G-symmetric graph admitting a nontrivial G-
invariant partition B such that � is not a multicover of �B. Suppose that �B is
(G, 2)-arc transitive and λ = 0 (i.e., D(B) contains two disjoint blocks). Then

(a) (2k − v)(b− 1) = k(r − 1);
(b) v− k divides v and k, r = k/(v− k), b = r + 1 = v/(v− k), and either

k = v/2 or k ≥ 2v/3.

Moreover, � admits a second G-invariant partition of block size v− k, namely P
defined in (1), which is a proper refinement ofB, andP admits a natural G-invariant
partition B̂ as defined in (2), such that (�P)B̂ ∼= �B, kB̂ = vB̂ − 1 = r ≥ 1, bB̂ = b,
rB̂ = r andD(B̂) contains no repeated blocks (where B̂ is a block of B̂). In the case
where k = v/2, we have �B ∼= 
 · Cn, �P ∼= (
n) ·K2, and � ∼= (
n) · �[B,C] for
some integers 
 ≥ 1, n ≥ 3. In the general case where k ≥ 2v/3, there exists a self-
paired G-orbit � on Arc3(�B) such that �P ∼= �(�B,�); moreover, �B ∼= Kb+1 if
and only if � contains a 3-cycle, and in this case �P ∼= (b+ 1) ·Kb, � is the set
of all 3-cycles of �B, and G is 3-transitive on B.

Proof. Since �B is (G, 2)-arc transitive, by Lemma 3.1 the assumption that
D(B) contains two disjoint blocks is equivalent to saying that λ = 0, or equivalently
the blocks ofD(B) form aGB-invariant partition of B. In this case, Theorem 2.2(b)
applies. Thus,V (�) admits a second G-invariant partitionP (defined in (1)) which is
a proper refinement of B, and P admits a natural G-invariant partition B̂ (defined in
(2)) such that (�P)B̂ ∼= �B, kB̂ = vB̂ − 1 = k/(v− k) ≥ 1, bB̂ = b, rB̂ = r andD(B̂)
contains no repeated blocks. Also, sincem = 1 by Lemma 3.1, from Theorem 2.2(b)
it follows that v− k is a divisor of v and k, r = k/(v− k), b = r + 1 = v/(v− k),
and either k = v/2 or k ≥ 2v/3. Moreover, since λ = 0, we have λ = 2k − v by
(3) and hence (2k − v)(b− 1) = k(r − 1) by (4).

In the case where k = v/2, we have kB̂ = 1,D(B) has precisely two blocks which
form a partition of B (hence λ = 0), andP is also the partition of V (�) consisting of
the blocks ofD(B) for B running overB. In this case, it is clear that b = 2 and hence
�B ∼= 
 · Cn, �P ∼= (
n) ·K2, � ∼= (
n) · �[B,C] for some integers 
 ≥ 1, n ≥ 3,
where B,C are adjacent blocks of B. In the general case where k ≥ 2v/3, we have
kB̂ = vB̂ − 1 ≥ 2. Since �B is (G, 2)-arc transitive it follows from [24, Theorem 1]
that�P ∼= �(�B,�) for a self-paired G-orbit� on Arc3(�B). The statements for the
case �B ∼= Kb+1 follow from [24, Theorems 8(b) and 10(c)] immediately. �

In the case where k ≥ 2v/3 and �B ∼= Kb+1, from the classification of finite
3-transitive groups (see e.g., [6, pp.8]) it follows that G/G(B) is one of the
following: Sb+1 (b ≥ 3), Ab+1 (b ≥ 4), Mb+1 (b = 10, 11, 21, 22, 23), M11
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(b = 11), a 3-transitive subgroup of P�L(2, b) (b ≥ 3 a prime power), AGL(d, 2)
(b = 2d − 1 ≥ 3), or Z

4
2.A7 (b = 15). Each of these possibilities can happen, as

we will see in Example 3.9.
Parts (a) and (b) of Theorem 3.7 together imply the following inequalities:

b ≤ v, r ≤ k, v+ r ≥ b+ k, (2k − v)(v− 1) ≤ k(k − 1). (6)

Since vr = bk, the second inequality is equivalent to each of the following:

v2 + r2 ≥ b2 + k2, (v− 1)(r − 1) ≤ (b− 1)(k − 1). (7)

Applying the 3-arc graph construction [24] and the covering graph
construction [4, Chapter 19] successively, we obtain the following construction of
imprimitive symmetric graphs (�,G,B) satisfying the conditions of Theorem 3.7.

Construction 3.8. Let� be an (H, 2)-arc transitive graph of valency va
(�) ≥ 3
such that a self-paired H-orbit � on Arc3(�) exists. Let � := �(�,�) be
the 3-arc graph of � with respect to �. Then � is an H-symmetric graph
which admits B(�) as an H-invariant partition such that �B(�)

∼= � and
kB(�) = vB(�) − 1 = va
(�) − 1 ≥ 2 ([24, Theorem 1]), whereas before the
blocks of B(�) are B(σ) := {στ : τ ∈ �(σ)}, σ ∈ V (�). (Here, we write an arc as
στ instead of (σ, τ).) Let us take a covering graph � := �̃(K,φ) of�, where K is a
group and φ is a K-chain on � such that H acts as a group of automorphisms of K
and that φ is compatible with the actions of H on K and on Arc(�). LetG := K.H

(semi-direct product of K by H). Then from [4, Proposition 19.4], it follows that � is
a G-symmetric graph which admits P(�) := {P(στ) : στ ∈ Arc(�)} as a natural
G-invariant partition such that �P(�)

∼= �, where P(στ) := {(g, στ) : g ∈ K} for
στ ∈ Arc(�). (Note that the group G in [4, Proposition 19.4] is not necessarily
the full automorphism group of the underlying graph. It can be any subgroup of
the full automorphism group which is transitive on the t-arcs of the underlying
graph.) Define B = {A(σ) : σ ∈ V (�)}, where A(σ) := ∪τ∈�(σ)P(στ). Then B is a
G-invariant partition of V (�) = K × V (�) = K × Arc(�). For this partition B,
one can check that the blocks ofD(A(σ)) are preciselyP(στ) for τ ∈ �(σ), and that
(�P(�))B(�)

∼= �B. Hence, (�,G,B) satisfies the conditions of Theorem 3.7 with
P(�) and B(�) playing the roles of P and B̂ (defined in (1) and (2)), respectively.

The graph � in Construction 3.8 is constructed through two “lifts:” we first “lift”
� to the 3-arc graph � and then “lift” � to the covering graph �. Note that not all
imprimitive G-symmetric graphs (�,G,B) satisfying the conditions of Theorem 3.7
can be obtained this way. For a discussion on the existence of� needed in lifting�
to�(�,�), see [24, Remark 4] and also [37] when� is trivalent. From [4, Chapter
19], a pair (K,φ) required in the construction above always exists.

Example 3.9. Let Kb+1 be the complete graph with vertex set [b+ 1] :=
{1, 2, . . . , b+ 1}, where b ≥ 3. Let H be a 3-transitive permutation group on
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[b+ 1]. From the classification [6, p.8] of 3-transitive groups, H is one of the
following: (i) Sb+1 (b ≥ 3); (ii) Ab+1 (b ≥ 4); (iii) Mb+1 (b = 10, 11, 21, 22, 23)
or M11 (b = 11); (iv) AGL(d, 2) (b = 2d − 1 ≥ 3); (v) Z

4
2.A7 (b = 15); (vi) H is

a 3-transitive subgroup of P�L(2, b) (b ≥ 3 a prime power) as given explicitly in
[18, Theorem 2.1]. For each possibility, all self-paired H-orbits � on Arc3(Kb+1)
have been determined in [35]. Let � := �(Kb+1,�), so that � is an H-symmetric
graph with vertices ij (where i, j ∈ [b+ 1], i �= j) in which two vertices ij and
i′j′ are adjacent if and only if (j, i, i′, j′) ∈ �. Let V (b+ 1, 2) be the (b+ 1)-
dimensional linear space over GF(2), so that its additive group is Z

b+1
2 . Let εi be

the unit vector of V (b+ 1, 2) with the ith coordinate 1 and all other coordinates
0. Then H acts on {ε1, . . . , εb+1} by (εi)h := εih for h ∈ H and 1 ≤ i ≤ b+ 1,
and this action can be extended to Z

b+1
2 in the obvious way so that H acts on

Z
b+1
2 as a group of automorphisms. Let K be the subgroup of Z

b+1
2 generated by

{εi + εi′ : 1 ≤ i < i′ ≤ b+ 1}. It is easily shown that K is H-invariant andK ∼= Z
b
2.

Define

φ1 : Arc(�) → K, (ij, i′j′) �→ εi + εi′ ;

φ2 : Arc(�) → K, (ij, i′j′) �→ εi + εi′ + εj + εj′ .

Then both φ1 and φ2 are K-chains on�. Moreover, one can check that φ1 and φ2 are
compatible with the actions of H on K and on Arc(�). Thus, for each self-paired
H-orbit� onArc3(Kb+1), from Construction 3.8 we obtain two imprimitive (Zb2.H)-
symmetric graphs, namely �̃(Zb2, φ1) and �̃(Zb2, φ2), which satisfy the conditions
of Theorem 3.7.

For the self-paired H-orbit�0 on Arc3(Kb+1) consisting of all 3-cycles (j, i, i′, j)
of Kb+1, we can construct a third graph using Construction 3.8. In fact, the 3-arc
graph of Kb+1 with respect to this orbit is �0

∼= (b+ 1) ·Kb. One can check that

φ0 : Arc(�0) → Z
b+1
2 , (ij, i′j) �→ εj

defines a Z
b+1
2 -chain on �0 which is compatible with the actions of H on Z

b+1
2 and

on Arc(�0). Hence, �̃0(Zb+1
2 , φ0) is a (Zb+1

2 .H)-symmetric graph satisfying the
conditions of Theorem 3.7.

For each of (i)–(vi) above, all 3-arc graphs of the (H, 2)-arc transitive graphKb+1

have been determined in [35]. In the case where H is 4-transitive, we have either
H = Sb+1 (b ≥ 3), or H = Ab+1 (b ≥ 5), or H = Mb+1 (b = 10, 11, 22, 23); in
this case, there are exactly two 3-arc graphs of Kb+1, namely �0 above and the 3-
arc graph with respect to Arc3(Kb+1) \�0 (which is self-paired by the 4-transitivity
of H). The latter graph is isomorphic to (K(b+ 1, 2))[K2] (see [35, Example 3.15]),
the lexicographic product of the Kneser graphK(b+ 1, 2) by the empty graphK2.
(For integers m, n with 2 ≤ 2m < n, the Kneser graph K(n,m) is the graph with
vertices the m-subsets of a given n-set such that two vertices are adjacent if and
only if they have no common element.)
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4. TWO CONSTRUCTIONS

This section is devoted to the general case, Case 3, for which λ ≥ 1, λ ≥ 1. By
Theorem 3.2 in this case D∗(B) and D

∗
(B) are 2-designs, and they admit GB as a

group of automorphisms acting 2-transitively on the points and transitively on the
blocks. The well-known Fisher’s inequality applied to D∗(B) gives:

b ≤ v, r ≤ k. (8)

Also, applying [26, Theorem 2] to D(B) we get:

λ(v− 1) ≤ k(k − 1), (9)

which is, by (4), equivalent to

v+ r ≥ b+ k. (10)

The inequalities (8–10) are the same as the ones in (6), noting by (3) that λ = 2k − v

when λ = 0.
Many interesting and natural problems arise in Case 3. For example, we may ask

the following general questions about the relationship between (�, �B) and D∗(B)
(or D

∗
(B) equivalently).

Question 4.1. When can a 2-point-transitive, flag-transitive, and block-transitive
2-design occur asD∗(B)? When can a symmetric 2-point-transitive 2-design occur
asD∗(B)? And what can we say about the structure of � and �B ifD∗(B) is known?

Perhaps a complete solution to these problems for general symmetric graphs with
2-arc transitive quotients is not accessible. In the following, we will focus on the
case where D∗(B) or D

∗
(B) is the trivial Steiner system with block size 2, that is,

a complete graph. In other words, either λ = 1 and r = 2, or λ = 1 and b− r = 2.
In each case, we will give a construction which can be used to construct � from �B.

For an integer s ≥ 1, an s-path in a graph is an s-arc identified with its reverse
s-arc. A 2-path with mid-vertex σ and end-vertices τ, τ ′ will be denoted by τστ ′,
with the understanding that τ ′στ represents the same 2-path. Thus, when we write
τστ ′ = ηεη′ we mean σ = ε and {τ, τ ′} = {η, η′}. For each vertex σ of�, let B2(σ)
denote the set of 2-paths of � with mid-vertex σ, that is,

B2(σ) := {τστ ′ : τ, τ ′ ∈ �(σ), τ �= τ ′}.
Obviously,

B2(�) := {B2(σ) : σ ∈ V (�)}
is a partition of the 2-paths of �.
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A. Construction 1: λ = 1 and r = 2

Let us first give the following construction in a general setting.

Construction 4.2. Let � be a regular graph with val(�) ≥ 2. Let � be a self-
paired subset of Arc3(�). Define �2(�,�) to be the graph with the set of 2-paths
of � as vertex set such that two distinct “vertices” τστ ′ and ηεη′ are adjacent if
and only if they have a common edge (i.e., σ ∈ {η, η′} and ε ∈ {τ, τ ′}) and moreover
the two 3-arcs (which are reverses of each other) formed by “gluing” the common
edge are in �. See Figure 1 for an illustration.

For instance, if σ = η′, ε = τ ′, then the 3-arcs thus formed are (τ, σ, ε, η) and
(η, ε, σ, τ), which should be in � if τστ ′ and ηεη′ are adjacent in �2(�,�). The
self-parity of � ensures that �2(�,�) is well defined as an undirected graph.

The main results of this subsection can be summarized in the next theorem,
which follows from Theorems 4.4 and 4.10 immediately.

Theorem 4.3. Let � be a (G, 2)-arc transitive graph with valency ≥ 3 and �
a self-paired G-orbit on Arc3(�). Then � := �2(�,�) is a G-symmetric graph
admittingB := B2(�) as a G-invariant partition such that�B is (G, 2)-arc transitive
and not multicovered by �, and that (λ, r) = (1, 2). Moreover, G is faithful on V (�)
if and only if it is faithful on V (�).

Conversely, any imprimitive G-symmetric graph (�,B) such that �B is (G, 2)-
arc transitive and not multicovered by �, and that (λ, r) = (1, 2), is isomorphic to
�2(�B,�) for a self-paired G-orbit on Arc3(�B). Moreover, G is faithful on V (�)
if and only if it is faithful on B.

In both parts of this theorem, we have v = b(b− 1)/2 and k = b− 1.
A regular graph � with val(�) ≥ 2 is said [10] to be (G, 2)-path transitive if

it admits G as a group of automorphisms such that G is transitive on the set of
2-paths. Note that such a graph � is necessarily G-vertex transitive because each
vertex is a mid-vertex of at least one 2-path of� and the elements of G permute the
mid-vertices while permuting the 2-paths. Note also that a (G, 2)-path transitive
graph must be G-symmetric by [10, Theorem 1].

FIGURE 1. (a) 2-paths τστ′ and ηεη′; (b) τστ′ and ηεη′ are adjacent in �2(�,�).
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Theorem 4.4. Let � be a regular graph of valency b ≥ 2, and let G be a
group acting on V (�) as a group of automorphisms of �. Let � be a self-
paired G-invariant subset of Arc3(�). Then � := �2(�,�) admits G as a group
of automorphisms, and B := B2(�) is a G-invariant partition of the vertex set of �
with block size v = b(b− 1)/2. Moreover, G is faithful on V (�) if and only if it is
faithful on V (�). Furthermore, the following (a) and (b) hold.

(a) � is G-vertex transitive if and only if � is (G, 2)-path transitive; and in this
case � ∼= �B with respect to the bijection σ �→ B2(σ), σ ∈ V (�).

(b) � is G-symmetric if and only if � is (G, 2)-path transitive and � is a self-
paired G-orbit on Arc3(�); in this case � must be (G, 2)-arc transitive,
the parameters with respect to (�,B) satisfy k = b− 1, r = 2, λ = 1 and
λ = ((b− 1)(b− 4)/2) + 1, and moreover �[B2(σ), B2(ε)] ∼= Kb−1,b−1 for
adjacent blocks B2(σ), B2(ε) of B if and only if � is (G, 3)-arc transitive.

Proof. Since � is G-invariant, the induced action of G on the 2-paths of �
preserves the adjacency of �, and hence � admits G as a group of automorphisms.
It is readily seen that B is a G-invariant partition of the 2-paths of � with block
size v = b(b− 1)/2. An element of G fixes every 2-path of � if and only if it fixes
every vertex of �. Thus, G is faithful on V (�) if and only if it is faithful on V (�).

(a) Clearly, � is G-vertex transitive if and only if� is (G, 2)-path transitive. Let
B2(σ) and B2(ε) be blocks of B which are adjacent in �B. Then there exist
τστ ′ ∈ B2(σ), ηεη′ ∈ B2(ε) such that τστ ′, ηεη′ are adjacent in �. That is,
τστ ′ and ηεη′ share an edge, and hence σ and ε are adjacent in�. Conversely,
suppose � is (G, 2)-path transitive, and let σ, ε be adjacent vertices of
�. Let (τ0, σ0, ε0, η0) be a 3-arc in �. Since � is (G, 2)-path transitive,
it is G-symmetric and hence there exists g ∈ G such that (σ0, ε0)g = (σ, ε).
Denote τ = τ

g

0 and η = η
g

0. Then (τ, σ, ε, η) = (τ0, σ0, ε0, η0)g ∈ � as � is
G-invariant. Thus, τσε and σεη are adjacent in�. Hence,B2(σ) andB2(ε) are
adjacent in�B. Therefore, σ �→ B2(σ) for σ ∈ V (�) defines an isomorphism
from � to �B, provided that � is (G, 2)-path transitive. This completes the
proof of (a).

(b) From construction 4.2 it is clear that � is G-symmetric if and only if � is
(G, 2)-path transitive and� is a self-paired G-orbit on Arc3(�). Let us now
prove that � is (G, 2)-arc transitive if � is G-symmetric. Suppose � is G-
symmetric, so that � is (G, 2)-path transitive and � is a self-paired G-orbit
on Arc3(�). Then� is G-vertex transitive. From construction 4.2, it follows
that, for each “vertex” τσε of �, any vertex of � adjacent to τσε must have
mid-vertex τ or ε, and furthermore both cases can occur since � is (G, 2)-
path transitive. Thus, there are exactly two blocks, namely B2(τ) and B2(ε),
which contain neighbors of τσε and hence r := |�B(“τσε”)| = 2. Since�B ∼=
� as shown above, we have val(�B) = b; hence vr = bk, which implies
k = b− 1 by noting v = b(b− 1)/2. Also, since �B ∼= �, �B is G-vertex
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transitive and (G, 2)-path transitive, and henceGB2(σ) is 2-homogeneous on
�B(B2(σ)). In particular, GB2(σ) acts primitively on �B(B2(σ)). Thus, from
Lemma 2.4 the multiplicity m of D(B2(σ)) is equal to 1 or b.

If m = b, then we must have b = m = 2 since m is a divisor of r = 2. In this
case, we have v = k = 1, λ = 1, λ = 0, and � ∼= � ∼= 
 · Cn for some integers

 ≥ 1 and n ≥ 3. Thus, since � is G-symmetric, � is G-symmetric and hence
(G, 2)-arc transitive as it consists of cycles.

Ifm = 1, then we have b > 2 for otherwise we would have v = 1 andm = r = 2,
a contradiction. Thus, k = b− 1 ≥ 2, and this implies that the b blocks ofD(B2(σ))
do not form a partition of B2(σ) as |B2(σ)| = b(b− 1)/2. Thus, there exist
B2(τ), B2(ε) ∈ B such that �(B2(τ)) ∩ �(B2(ε)) ∩ B2(σ) �= ∅. It follows that there
exist ξ and η such that (ξ, τ, σ, ε, η) is a 4-arc of � with (ξ, τ, σ, ε), (τ, σ, ε, η) ∈
�. Since � is a self-paired G-orbit on Arc3(�), there exists g ∈ G such that
(ξ, τ, σ, ε)g = (η, ε, σ, τ). Thus, (τ, σ, ε)g = (ε, σ, τ). This together with the (G, 2)-
path transitivity of� implies that� is (G, 2)-arc transitive. Thus,�B (∼= �) is (G, 2)-
arc transitive and hence Corollary 3.3 applies. Since v = b(b− 1)/2, k = b− 1 and
r = 2, from (4) and (3) we get λ = 1 and λ = ((b− 1)(b− 4)/2) + 1.

Let B2(σ) and B2(ε) be adjacent blocks of B. Suppose that � is (G, 3)-arc
transitive. Then � = Arc3(�) since � is a G-orbit on Arc3(�). Thus, for any
τ ∈ �(σ) \ {ε} and η ∈ �(ε) \ {σ}, we have (τ, σ, ε, η) ∈ � and hence “τσε” ∈
B2(σ) and “σεη” ∈ B2(ε) are adjacent. Therefore, �[B2(σ), B2(ε)] ∼= Kb−1,b−1.
Suppose conversely that �[B2(σ), B2(ε)] ∼= Kb−1,b−1. Then for any τ ∈ �(σ) \ {ε}
and η ∈ �(ε) \ {σ}, “τσε” and “σεη” are adjacent in �, and hence (τ, σ, ε, η) ∈ �.
Since� is G-symmetric and� is a G-orbit on Arc3(�), this implies� = Arc3(�)
and hence � is (G, 3)-arc transitive. �

Remark 4.5.

(a) In Theorem 4.4(b), we have λ = 0 when b = 2 or 3, and λ ≥ 1 when b ≥ 4.
As shown above, in the case where b = 2, the partition B2(�) is trivial
and � ∼= � is a union of disjoint cycles. In the case where b = 3, �2(�,�)
is isomorphic to the 3-arc graph �(�,�′), where �′ := {(τ ′, σ, ε, η′) : τ ′ ∈
�(σ) \ {τ, ε}, η′ ∈ �(ε) \ {η, σ} for some (τ, σ, ε, η) ∈ �}, via the bijection
τσε �→ (σ, τ ′), for 2-paths τσε of �. See Example 4.7 for such graphs
�2(�,�) when b = 3.

(b) For a (G, 2)-arc transitive graph� and a self-paired G-orbit� on Arc3(�),
�2(�,�) and �(�,�) are both G-symmetric, and moreover, they have the
same number of edges. �2(�,�) can be thought as obtained from �(�,�)
by “expanding” each arc (σ, τ) to b− 1 2-paths τστ ′, τ ′ ∈ �(σ) \ {τ}. The
set of such 2-paths is denoted by B2(σ; τ). Then ∪τ∈�(σ)B2(σ; τ) = B2(σ),
and τσε ∈ B2(σ; τ) ∩ B2(σ; ε). Obviously, {(σ, τ), (ε, η)} �→ {τσε, σεη} for
(τ, σ, ε, η) ∈ � is a bijection between the edges of �(�,�) and the edges
of �2(�,�), and {τσε, σεη} is the only edge of �2(�,�) between B2(σ; τ)
and B2(ε; η).
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(c) In the case where� is (G, 3)-arc transitive, the valency of�2(�,�) is 2(b−
1) by Theorem 4.4(b); and also �2(�,�) is connected if � is connected. If
� is (G, 2)-arc but not (G, 3)-arc transitive, then the valency of �2(�,�) is
equal to 2|ηGταε |, where (τ, σ, ε, η) ∈ �.

(d) Construction 4.2 was inspired by a general construction, the flag graph
construction, introduced in [34,35] by the second author. After discovering
construction 4.2, we found that a related construction exists in a completely
different setting [5], where the path graph Ps+1(�) is defined to be the graph
with “strict s-paths” of � as vertices such that two vertices are adjacent if
and only if they overlap on an (s− 1)-path. Here by a strict s-path we mean
an s-path with no repeated vertex. (Such a path is usually called an s-path
in graph theory.) In the special case where � is the set of all 3-arcs of �
which are not 3-cycles, our graph �2(�,�) is precisely P3(�).

Example 4.6. A (G, 2)-arc transitive graph with girth 3 must be a complete
graph Kb+1. In this case the set � of 3-cycles of Kb+1 is a self-paired G-orbit
on Arc3(Kb+1). For this �, we have �2(Kb+1,�) ∼= ((b− 1)b(b+ 1)/6) ·K3 and
the bipartite subgraph between any two blocks of B2(Kb+1) is a matching of b− 1
edges. In fact, each 3-cycle (τ, σ, ε, τ) of Kb+1 induces a 3-cycle of �2(Kb+1,�)
with vertices τσε, σετ, and ετσ.

Example 4.7. It is well known [9,13] that a connected trivalent G-symmetric
graph � is of one of seven types, G1,G

1
2,G

2
2, G3, G1

4,G
2
4 or G5, with subscript s

denoting (G, s)-arc regularity and superscript indicating whether or not G contains
an involution flipping an edge. It is known [37] that � has a self-paired G-orbit on
Arc3(�) if and only if it is not of type G2

2. A graph � of type G1 must be (G, 2)-
path transitive [10, Section 3], and it has [37] exactly two self-paired G-orbits
�1,�2 on Arc3(�). From Theorem 4.4(b), the corresponding graphs �2(�,�1)
and �2(�,�2) are both G-symmetric with valency 2. For� �= K4 of typeG1

2, there
are also exactly two G-orbits �′

1,�
′
2 on Arc3(�) [37], and by Theorem 4.4(b) the

corresponding graphs �2(�,�′
1), �2(�,�′

2) are both G-symmetric with valency 2.
In the case where� is of typeG3,G1

4,G
2
4, orG5,� := Arc3(�) is the unique self-

paired G-orbit on 3-arcs of �, and �2(�,�) is a connected 4-valent G-symmetric
but not (G, 2)-arc transitive graph.

In the case when � is (G, 3)-arc transitive of valency b ≥ 3, by Theorem 4.4(b)
we have �[B2(σ), B2(ε)] ∼= Kb−1,b−1 (where � = �2(�,�)), which is not a
matching, and hence � cannot be (G, 2)-arc transitive. Note that in this case �
has valency 2(b− 1) and it must be connected if� is connected. Thus, we have the
following corollary, of which the second assertion follows from the fact that there
are infinitely many 7-arc transitive graphs (see e.g., [11]). It is well known [31] that
for s ≥ 8 there exists no s-arc transitive graph of valency ≥ 3.

Corollary 4.8. Every connected (G, 3)-arc transitive graph� of valency b ≥ 3 is
a quotient graph of at least one connected G-symmetric but not (G, 2)-arc transitive

Journal of Graph Theory DOI 10.1002/jgt



186 JOURNAL OF GRAPH THEORY

graph � of valency 2(b− 1). In particular, there are infinitely many connected
G-symmetric but not (G, 2)-arc transitive graphs which have at least one (G, 7)-arc
transitive quotient.

The same statements follow also from [24, Theorem 2] and the 3-arc graph
construction, with � having valency b2 − 1 instead of 2(b− 1). These results
suggest that the level of s-arc transitivity of the quotient graph can be much higher
than that of the original graph, although on the other hand the quotient may not
even inherit 2-arc transitivity from the original. It would be interesting to understand
when an imprimitive symmetric graph admits a highly arc-transitive quotient. The
reader is referred to [20] for related questions and discussion.

From [10, Theorem 2], if a (G, 2)-path transitive graph � is not (G, 2)-arc
transitive, thenGσ has odd order and is 2-homogenous but not 2-transitive on�(σ),
and b ≡ 3 (mod 4) is a prime power, where b = val(�). For this case, Theorem
4.4 implies the following result, which will be used in the proof of Theorem 4.12.

Corollary 4.9. Let � be a (G, 2)-path but not (G, 2)-arc transitive graph. Then
no element of G can reverse a 3-arc of�; in other words, there exists no self-paired
G-orbit on Arc3(�).

The following theorem shows that any imprimitive G-symmetric graph (�,B)
with λ = 1, r = 2 and (G, 2)-arc transitive quotient �B can be constructed from �B
by using Construction 4.2.

Theorem 4.10. Let � be a finite G-symmetric graph admitting a nontrivial G-
invariant partition B such that � is not a multicover of �B. Suppose that �B is
(G, 2)-arc transitive with valency b ≥ 2. Suppose further that λ = 1 and r = 2.
Then � ∼= �2(�B,�) for a self-paired G-orbit � on Arc3(�B). Moreover, b ≥ 3,
v = b(b− 1)/2, k = b− 1, and G is faithful onV (�) if and only if it is faithful onB.

Proof. Since �B is (G, 2)-arc transitive, we havem = 1. Also, since λ = 1 and
r = 2, by (4) we have k = b− 1 and hence v = b(b− 1)/2. Note that b ≥ 3 for
otherwise we would have k = v = 1 and thusB is a trivial partition, a contradiction.

Since r = 2, for each α ∈ V (�) there exist precisely two blocks C(α),D(α) of
B which contain neighbors of α, that is, �B(α) = {C(α),D(α)}. Let B(α) denote
the block of B containing α. Then C(α)B(α)D(α) is a 2-path of �B. The (G, 2)-arc
transitivity of �B implies that any 2-path CBD of �B is of the form C(α)B(α)D(α),
and moreover, there is a unique vertex α such that CBD = C(α)B(α)D(α) since
λ = 1. Therefore,

φ : α �→ C(α)B(α)D(α), α ∈ V (�)

defines a bijection from V (�) to the set of 2-paths of �B.
Let

� := {(C,B(α), B(β),D) : (α, β) ∈ Arc(�),

C ∈ �B(α) \ {B(β)},D ∈ �B(β) \ {B(α)}}.
Journal of Graph Theory DOI 10.1002/jgt
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Then obviously � is a self-paired subset of Arc3(�B). Since r = 2, the mapping
(α, β) �→ (C,B(α), B(β),D) is a one-to-one correspondence between the arcs of
� and the 3-arcs in �. Since � is G-symmetric, it follows that � is a self-paired
G-orbit on Arc3(�B), and hence �2(�B,�) is G-symmetric by Theorem 4.4(b).
Note that, for (α, β) ∈ Arc(�), we have φ(α) = CB(α)B(β), φ(β) = B(α)B(β)D,
and φ(α), φ(β) are adjacent in �2(�B,�). Conversely, if C(α)B(α)D(α) and
C(β)B(β)D(β) are adjacent in �2(�B,�), then B(α) ∈ {C(β),D(β)} and B(β) ∈
{C(α),D(α)}. Without loss of generality, we may assume that B(α) = C(β) and
B(β) = D(α). Then (C(α), B(α), B(β),D(β)) ∈ � by the definition of �2(�B,�).
Thus, there exist (α′, β′) ∈ Arc(�),C ∈ �B(α′) \ {B(β′)}, andD ∈ �B(β′) \ {B(α′)}
such that (C(α), B(α), B(β),D(β)) = (C,B(α′), B(β′),D). This implies α, α′ ∈
�(C(α)) ∩ �(B(β)) ∩ B(α). However, λ = 1, so we must have α = α′. Similarly,
β = β′. Thus, α and β are adjacent in �. Therefore, φ is an isomorphism between
� and �2(�B,�). Finally, since an element of G fixes every block of B if and only
if it fixes every 2-path of �B, from the bijection φ it follows that G is faithful on
V (�) if and only if it is faithful on B. �

Using Theorem 4.3, the second author has classified all imprimitive G-symmetric
graphs (�,B) such that λ = 1, r = 2, and �B is complete and (G, 2)-arc transitive.
Of particular interest are two families of such graphs that can be defined in terms of
the cross ratio of certain 4-tuples of elements of a finite projective line. To keep the
present article in a reasonable length, this classification will appear in a subsequent
article [38].

B. Construction 2: λ = 1 and b − r = 2

Two 2-paths τστ ′, ηεη′ of � are called joined if σ, ε are adjacent in � and σ, ε �∈
{τ, τ ′, η, η′}. As illustrated in Figure 2, such a pair of joined 2-paths together with
the edge between σ and ε form an H-shape subgraph if {τ, τ ′} ∩ {η, η′} = ∅, an A-
shape subgraph if |{τ, τ ′} ∩ {η, η′}| = 1, and a θ-shape subgraph if {τ, τ ′} = {η, η′},

FIGURE 2. A pair (τστ′, ηεη′) of joined 2-paths: (a) type H; (b) type A; (c) type θ.
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and we say that (τστ ′, ηεη′) is of type H, A, θ accordingly. The last two types occur
only when the girth of � is 3. The set of ordered pairs of joined 2-paths of � is
denoted by J(�). Note that any group of automorphisms of� induces an action on
J(�).

Construction 4.11. Let� be a regular graph with valency val(�) ≥ 3. Let� be
a self-paired subset of J(�). Define �2(�,�) to be the graph with vertex set the
set of 2-paths of � such that two distinct “vertices” τστ ′ and ηεη′ are adjacent if
and only if (τστ ′, ηεη′) ∈ �.

We say that � is of type H, A, or θ if all pairs of joined 2-paths in � are of type
H, A, or θ, respectively. Of course, if � is a self-paired G-orbit on J(�), then all
members of � have the same type, which is the type of �.

The main results in this subsection are the following theorem and Theorem 4.14.

Theorem 4.12. Let � be a regular graph of valency b ≥ 3, and let G be a
group acting on V (�) as a group of automorphisms of �. Let � be a self-
paired G-invariant subset of J(�). Then � := �2(�,�) admits G as a group of
automorphisms, and B := B2(�) is a G-invariant partition of the vertex set of �
with block size v = b(b− 1)/2. Moreover, G is faithful on V (�) if and only if it is
faithful on V (�). Furthermore, the following (a) and (b) hold.

(a) � is G-vertex transitive if and only if� is (G, 2)-path transitive; and in this
case � ∼= �B with respect to the bijection σ �→ B2(σ), σ ∈ V (�).

(b) � is G-symmetric if and only if � is (G, 2)-path transitive and � is a self-
paired G-orbit on J(�); in this case�must be (G, 2)-arc transitive if� is of
type H or A. Moreover, ifGσ is 3-transitive on�(σ), then the parameters with
respect to (�,B) satisfy k = (b− 1)(b− 2)/2, r = b− 2, λ = (b− 2)(b−
3)/2 and λ = 1.

Proof. Similar to Theorem 4.4, the statements before (a) can be verified easily,
and hence their proofs are omitted.

(a) From construction 4.11, it is clear that � is G-vertex transitive if and only
if � is (G, 2)-path transitive. Let B2(σ) and B2(ε) be blocks of B which
are adjacent in �B. Then there exist τστ ′ ∈ B2(σ), ηεη′ ∈ B2(ε) such that
(τστ ′, ηεη′) ∈ �. In particular, this implies that σ and ε are adjacent in �.
Now suppose � is (G, 2)-path transitive, and let σ, ε be adjacent vertices of
�. Let (τ0σ0τ

′
0, η0ε0η

′
0) be a member of�. Since� is (G, 2)-path transitive,

it must be G-symmetric [10, Theorem 1]. Hence, there exists g ∈ G such
that (σ0, ε0)g = (σ, ε). Let τ = τ

g

0 , τ ′ = (τ ′
0)g, η = η

g

0, and η′ = (η′
0)g. Then

(τστ ′, ηεη′) = (τ0σ0τ
′
0, η0ε0η

′
0)g ∈ � since� is G-invariant. Thus, τστ ′ and

ηεη′ are adjacent in�. Hence,B2(σ) andB2(ε) are adjacent in�B. Therefore,
if � is (G, 2)-path transitive, then σ �→ B2(σ) for σ ∈ V (�) defines an
isomorphism from � to �B.
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(b) Clearly, � is G-symmetric if and only if � is (G, 2)-path transitive and
� is a self-paired G-orbit on J(�). Now let us prove that in this case
� must be (G, 2)-arc transitive provided that � is of type H or A. Let
(τστ ′, ηεη′) ∈ � be an arc of �. Since � is self-paired, there exists g ∈ G
such that (τστ ′, ηεη′)g = (ηεη′, τστ ′), that is, g interchangesσ and ε, and also
interchanges {τ, τ ′} and {η, η′}. Thus, g2 fixes σ and ε, and fixes each of {τ, τ ′}
and {η, η′} setwise. In the case where� is of type H, the six vertices involved
in (τστ ′, ηεη′) are pairwise distinct and hence without loss of generality we
may assume τg = η and (τ ′)g = η′. Then either (i) ηg = τ and (η′)g = τ ′, or
(ii) ηg = τ ′ and (η′)g = τ. In the former case, g reverses the 3-arc (τ, σ, ε, η)
of�, and hence�must be (G, 2)-arc transitive by Corollary 4.9. In the latter
case (ii), we have τg

2 = ηg = τ ′ and (τ ′)g
2 = (η′)g = τ, and henceg2 reverses

the 2-arc (τ, σ, τ ′) of �. Since � is G-vertex transitive and (G, 2)-path
transitive, it follows that�must be (G, 2)-arc transitive. In the case where�
is of type A, without loss of generality we may assume τ ′ = η′, so that τ, τ ′, η
are distinct. In this case g exchanges {τ, τ ′} and {η, τ ′}. From {η, τ ′}g =
{τ, τ ′}, it follows that (τ ′)g = τ or τ ′, and this together with {τ, τ ′}g = {η, τ ′}
implies τg = η and (τ ′)g = τ ′ (= η′). Since g exchanges σ and ε, it reverses
the 2-arc (σ, τ ′, ε). Thus, for � of type A, � must be (G, 2)-arc transitive
as well.

Now suppose Gσ is 3-transitive on �(σ). Then for any ε0 ∈ �(σ) \ {τ, τ ′}
there exists g ∈ Gσττ ′ such that εg = ε0. Let η0 := ηg and η′

0 := (η′)g. Then
(τστ ′, η0ε0η

′
0) = (τστ ′, ηεη′)g ∈ �, and hence τστ ′ is adjacent to η0ε0η

′
0 ∈ B2(ε0)

in �. Since this is true for any ε0 ∈ �(σ) \ {τ, τ ′} and since τστ ′ is not adjacent to
any vertex in B2(τ) or B2(τ ′), we conclude that τστ ′ has neighbors in exactly b− 2
neighboring blocks of B2(σ), that is, r = b− 2. Recall that v = b(b− 1)/2 and
vr = bk. Hence k = (b− 1)(b− 2)/2, and λ = (b− 2)(b− 3)/2 by (4). Finally,
we have λ = 1 by (3). �
Example 4.13. Consider the complete graph Kb+1 on b+ 1 ≥ 6 vertices. The
set � of H-type pairs of joined 2-paths of Kb+1 is a self-paired Sb+1-orbit on
J(Kb+1). By Theorem 4.12(b), �2(Kb+1,�) is an Sb+1-symmetric graph with
valency (b− 2)(b− 3)(b− 4)/2. This graph has vertex set {(i, {j, j′}) : i, j, j′ ∈
[b+ 1] pairwise distinct } in which (i, {j, j′}) and (k, {
, 
′}) are adjacent if and
only {j, i, j′} ∩ {
, k, 
′} = ∅. Note that (i, {j, j′}) �→ {j, i, j′} defines a 3-to-1
mapping from the vertex set of �2(Kb+1,�) to the set of 3-subsets of [b+ 1].
Thus, �2(Kb+1,�) is isomorphic to (K(b+ 1, 3))[K3], the lexicographic product
of the Kneser graph K(b+ 1, 3) with the empty graph K3 on three vertices. (See
Example 3.9 for the definition of a Kneser graph.) Two more Sb+1-symmetric graphs
can be constructed fromKb+1 by considering the sets of pairs of type A and type θ,
respectively.

The only 2-arc transitive graphs with girth 3 are complete graphs. Thus,
in the following theorem the self-paired G-orbit � is of type A or θ
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only when �B ∼= Kb+1. Note that the proof below applies to all types
unanimously.

Theorem 4.14. Let � be a finite G-symmetric graph admitting a nontrivial
G-invariant partition B such that � is not a multicover of �B. Suppose that
�B is (G, 2)-arc transitive with valency b ≥ 3. Suppose further that λ = 1 and
r = b− 2. Then � ∼= �2(�,�) for a self-paired G-orbit � on J(�B), and the
parameters with respect to (�,B) satisfy v = b(b− 1)/2, k = (b− 1)(b− 2)/2,
and λ = (b− 2)(b− 3)/2. Moreover, G is faithful onV (�) if and only if it is faithful
on B.

Proof. Since r = b− 2 ≥ 1, for each α ∈ V (�) there are exactly two blocks
in �B(B(α)) but not in �B(α), where B(α) is the block of B containing α. Let
us denote these two blocks by C(α) and D(α). Then C(α)B(α)D(α) is a 2-path
of �B. Since �B is (G, 2)-arc transitive, any 2-path CBD of �B is of the form
C(α)B(α)D(α). Moreover, since λ = 1, there is a unique vertex α ∈ V (�) such that
CBD = C(α)B(α)D(α). Thus,

φ : α �→ C(α)B(α)D(α), α ∈ V (�)

defines a bijection from V (�) to the set of 2-paths of �B. From (3) and λ = 1,
we have λ = 2k − v+ 1. Plugging this into (4), and r = b− 2 into vr = bk,
we get:

{
(b− 1)v − (b+ 1)k = b− 1

(b− 2)v − bk = 0.

Solving, we obtain v = b(b− 1)/2 and k = (b− 1)(b− 2)/2, and hence λ =
(b− 2)(b− 3)/2. From the bijection φ and the value of v it follows that, for
each block B ∈ B, the restriction of φ to B (i.e., φ|B : α �→ C(α)BD(α), α ∈ B)
is a bijection from B to the set of 2-paths of �B with mid-vertex B. Since an
element of G fixes every block of B if and only if it fixes every 2-path of �B,
the bijection φ implies that G is faithful on V (�) if and only if it is faithful
on B.

Define

� := {(C(α)B(α)D(α), C(β)B(β)D(β)) : (α, β) ∈ Arc(�)}.
Since � is G-symmetric, � is a self-paired G-orbit on J(�B). Hence, �2(�B,�)
is G-symmetric by Theorem 4.12(b). Clearly, for adjacent vertices α, β of �, φ(α)
and φ(β) are adjacent in �2(�B,�). Conversely, if φ(α) and φ(β) are adjacent in
�2(�B,�) for α, β ∈ V (�), then (C(α)B(α)D(α), C(β)B(β)D(β)) ∈ �. Since α is
the unique vertex in B(α) with φ(α) = C(α)B(α)D(α) and β is the unique vertex in
B(β) with φ(β) = C(β)B(β)D(β), from the definition of � it follows that α and β
must be adjacent in �. Therefore, φ is an isomorphism between � and �2(�B,�).
This completes the proof. �
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Remark 4.15.

(a) The condition that Gσ is 3-transitive on �(σ) is sufficient but not necessary
to guarantee the specific values of k, r, λ, λ in (b) of Theorem 4.12. In fact,
the last paragraph of its proof shows that k, r, λ, λ achieve the same values if
� is G-vertex transitive and the stabilizer in G of a 2-path τστ ′ is transitive
on �(σ) \ {τ, τ ′}.

(b) For an arbitrary pair (�,�) with � a (G, 2)-arc transitive graph of
valency ≥ 3 and � a self-paired G-orbit on J(�), we do not know whether
(�2(�,�),B2(�)) always satisfies λ = 1 and r = b− 2. It seems that
the family of such graphs (�2(�,�),B2(�)) is larger than the family of
symmetric graphs (�,B) in Theorem 4.14. Further investigation is needed
regarding construction 4.11.
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