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Abstract

In the Weighted Ring Arc-Loading Problem with Integer Splitting, we are given a set of com-
munication requests each associated with a non-negative integer weight. The problem is to find a
routing scheme such that the maximum load on arcs of the ring is minimized, subject to that the
weight of each request may be split into two integral parts routed in two directions around the ring,
where the load of an arc is the sum of parts routed through the arc. A pseudo-polynomial algorithm

for this problem is implied by a result in [G. Wilfong and P. Winkler, Ring routing and wavelength
translation, Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms, San Francisco,
CA, 1998, 333-341]. By refining the rounding technique developed in the same paper, we prove that

the problem can be solved in polynomial time.
Keywords: ring; routing; load; polynomial algorithm

1 Introduction

A communication network is usually modelled by a graph, in which nodes represent processors, memory
modules or routers and edges represent bidirectional links. Given a network and a set D of communication
requests, a fundamental problem is to design a transmission route (directed path) for each request such
that high load on arcs/edges is avoided, where an arc is an edge endowed with a direction, the load of an
arc is the number of routes traversing the arc in its direction, and the load of an edge is the number of
routes traversing the edge in either direction. In general, if each request is associated with a non-negative
integer weight, then the load of an arc is defined to be the total weight of those requests that are routed

*Supported by the National Natural Science Foundation of China under grant number 10371112.
tCorrespondence author. Supported by a Discovery Project Grant (DP0344803) from the Australian Research Council.

193



194 J. Yuan & S. Zhou

through the arc in its direction, and the load of an edge is defined similarly. Practically, the weight of
a request can be interpreted as the traffic demand or the size of the data to be transmitted. In both
weighted and non-weighted cases, the Arc/Edge Loading Problem asks for a routing scheme such that the
maximum load on arcs/edges is minimized. This problem, in both weighted and non-weighted cases, has
been studied extensively in recent years, especially in the case where the network is a ring. For example, in
[9] and its updated version [10], Schrijver, Seymour and Winkler provided a fast approximation algorithm
to solve the Weighted Edge-Loading Problem for rings in the case where D is all-to-all. In [7] Myung gave
a polynomial time algorithm to solve the Weighted Edge-Loading Problem for rings in the case where
D is arbitrary and demands can be integrally split and routed in two directions around the ring. In
[11] Wilfong and Winkler proved that, for an arbitrary set D of requests, the Non-weighted Arc-Loading
Problem for rings can be solved in polynomial time. On the contrary, the Weighted Arc-Loading Problem
is NP-hard [1, Theorem 9] and a polynomial-time approximation scheme (PTAS) has been obtained in
[1, Theorem 13]. For more results on the ring loading problem, the reader is referred to [1, 2, 3, 5, 6, §].

In this paper we study the Weighted Arc-Loading Problem for rings with integer splitting, that is, the
weight of each request may be split into two integral parts routed clockwise and anticlockwise around the
ring. By refining the rounding technique developed by Wilfong and Winkler [11, Section 2], we prove that
this problem can be solved in polynomial time. We notice that this result is not implied by [11, Theorem
2.2]. Indeed, the method of [11, Section 2] applies to weighted case if we take a request (s;,¢;) (where s;
is the source and ¢; is the destination) with weight w; as w; non-weighted requests. Nevertheless, it gives
a pseudo-polynomial algorithm but not a polynomial algorithm. This is because the linear programming
relaxation in [11, Section 2] has )" | w; variables, but )", ([log w;] + 1) would contribute to the input
size of our problem, where m is the number of requests. Also, in the proof of [11, Proposition 2] it may
need Y " | w; steps to get the desired flush routing.

To prove our main result, Theorem 1 in the next section, we will take (s;,t;) as one request instead
of w; requests. By doing so the linear programming involved will have m variables, and hence is solvable
in time polynomial in m. Also, we need to examine only at most m pairs of parallel requests to obtain
a new routing with desired property, see Lemma 3. However, with this treatment we have to deal with
the complication in turning the new routing into an optimal routing, see the proof of Theorem 1. The
polynomial time algorithm given in this paper is very much needed in practice since SONET (synchronous

optical network) rings are widely used configuration nowadays in telecommunication.

2 Main result and notation

Let C,, be an n-node ring with nodes vg, vy, ..., vn—1 labelled clockwise. We will view C,, as bidirectional,

that is, each edge {vk,vkt+1} of Cp, 0 <k <n—1, is taken as two arcs

af = (vk,0k11), 0 = (Vkg1,k)

with opposite directions, and data streams can transmit in either direction. Here and in the following
subscripts are taken modulo n. A request on Cy is an ordered pair (s,t) of distinct nodes of Cy; it
corresponds to a data stream to be sent from the source s to the destination t. We assume that data
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can be transmitted clockwise or anticlockwise on the ring. We will use P*(s,t) to denote the directed
(s, t)-path clockwise around Cy,, and P~(s,t) the directed (s,t)-path anticlockwise around C,,. Often a
request (s,t) is associated with an integer weight w > 0; we denote this weighted request by (s, t; w). Let

D = {(s1,t1;w1), (82, to;w2), . .y (Smy tmj W)}

be a set of integrally weighted requests on C,,. We assume that weights may be split, that is, for some
integer z; with 0 < z; < w;, 2; amount of data is transmitted along P*(s;,t;) and the remaining w; — z;
amount is transmitted along P~(s;,t;). The vector x = (21,29, ...,Zn) determines uniquely a routing
scheme for D, and vice versa. In the following we will call x an integral routing for the given request set
D. In general, any real-valued vector x = (z1,%3,...,Zm) with 0 < z; < w; for each 7 will be called a
(generalized) routing for D. For each kK =0,1,...,n — 1, the loads on az and a; under x are defined to
be

Lxa))= > = (1)

i ut€P+ (8i,t:)

L(x,a;) = Z (w; — ;) (2)

it a €P~ (si,ti)

respectively, where aj € P7(s;,t;) means that P*(s;,t;) passes through a; and the notation aj €

P~ (s4,t;) is interpreted similarly. The maximum load on arcs of Cy,, namely,

(3)

0<k<n-1 0<k<n~1 }

L(x):max{ max L(x,af), max L(x,a;)

is called the load of x.

WEIGHTED RING ARC-LOADING PROBLEM WITH INTEGER SPLITTING (WRALP)

Instance Ring C, and set D = {(s1,t1;w1), (S2,t2;w2), .., (Sm,tm;wm)} of integrally weighted re-

quests on Cj,.
Objective Find an integral routing x for D such that L(x) is minimized.
The main result of this paper is the following theorem.

Theorem 1 The WEIGHTED RING ARC-LOADING PROBLEM WITH INTEGER SPLITTING can be solved

in polynomial time.

3 Proof of Theorem 1

Clearly, the WEIGHTED RING ARC-LOADING PROBLEM WITH INTEGER SPLITTING can be formulated
as the following integer linear programming:
min L(x)
WRALP: { 0<z;<w;, 1<i<m

x; an integer, 1 <1< m.
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To solve WRALP we will need an optimal solution of its linear programming relaxation:
min L(x)
LPR:

0<z;<wy 1<i<m.

Denote W =3, .., wi. Let a be a real number with 0 < o < W, and let LPR,, stand for the following
linear programming:
min L(x)

LPR.: EISiSm T; =0
0<z;<w;, 1<i<m.

By the polynomial time solvability of linear programming [4], both LPR and LPR, (for any rational
number a) can be solved in polynomial time. In the following we will use Lopr, Ls and L, to denote the
optimal objective values of WRALP, LPR and LPR,, respectively.

Lemma 1 As a function of a, L, is convez on the interval [0, W].

Proof Let o, € [0,W], and let x = (z1,22,...,Zm) and y = (y1,92, ..., Ym) be optimal solutions of
LPR, and LPRg respectively. For any real number A with 0 < A <1 and each k =0,1,...,n—1, we
have L(Ax+ (1 - Ny, af) = AL(x,a; ) + (1 = \)L(y,a}) by (1) and L(Ax+ (1 = N)y,a;) = AL(x,a; ) +
(1=X)L(y,a;) by (2). Thus, from (3) and by noting L(x) = L, and L(y) = Lg, we have

LOx+(1-XNy) < AL(x)+(1-NL(y)
= Ao+ (1-A)Lg.

Since Ax + (1 — A)y is a feasible solution of LPR o411, it follows that
Lya+(1-38 SALa + (1= X)Ly
and hence L, is convex as claimed. O

Note that feasible solutions of LPR are exactly routings for D. Following [11], a feasible solution

X = (21,22,...,Zm) of LPR is called a flush routing if 3, <, i is an integer.

Lemma 2 Let x* = (27,23, ..., z,) be an optimal solution of LPR, and let o* =}, ;<. 7;. Let x be
an optimal solution of LPR|4+) if L|q+] < Lio+), and an optimal solution of LPR[o-y otherwise. Then
x is a flush routing and L(x) < Lopr.

Proof Clearly, x* is an optimal solution of LPR,+. So we have
Lo« =L(x*) =L, =min{L,: 0<a < W}
Since L, is convex by Lemma 1, this implies

min{L|4+], Lq+1} = min{Lq : @ is an integer and 0 < o < W}
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But min{L,, : « is an integer and 0 < a < W} < Lopr, s0
min{L|qs|, Lia+1} < Lopr
and the result follows. O

Since each of LPR, LPR 4| and LPR 41 can be solved in polynomial time, an immediate consequence
of Lemma 2 is that a flush routing x with L(x) < Lopr can be found in polynomial time. This will be
used in the proof of Theorem 1.

As in [11], two distinct requests (s;,t;) and (s;, t;) are said to be parallel if P*(s;,t;) and P~(s;,t;),
or P*(s;,t;) and P~ (s;, t;), intersect in at most one node. (In other words, (s;, t;) and (s;, ;) are parallel
if either P*(s;,t;) is contained in P*(s;,t;) or P~ (s;, t;) is contained in P~ (s;,;).) A request (s, t;;w;)
is said to be split by a routing x = (z1,z9,...,2m) if 0 < z; < w;.

Lemma 3 Given a flush routing x = (z1,22,...,Zm), we can find in polynomial time a flush routing
Y = (Y1,92, ..., Ym) such that L(y) < L(x) and no two parallel requests are both split by y.

Proof Suppose (s;,t;) and (s;,t;) are parallel requests which are both split by x. Without loss of
generality we may suppose that the directed paths P*(s;,t;) and P~(s;,t;) intersect in at most one
node. If z; + z; < w;, then define

Yi=Ti+5, y; =0, yp=1xx for k#4,5;
and if z; + ; > w;, then define
Yi=wi, Yj =i +T;—w;, yp=ax for k#i,j.

See Figure 1 for an illustration. In both cases, y = (y1,42,-.,Ym) is a flush routing with >, ;<. vi =
Y1<i<m Ti» and one of (s;,t;) and (s,%:) is not split by y. Also, under y the arcs in P*(s;,t;) and
P~(s;,t;) have the same loads as before and other arcs have the same or reduced loads. Thus, L(y) <
L(x) and y splits less number of requests than x. If there exist no parallel requests both split by y, we
are done; otherwise repeat the process above. After at most m such processes, we then get the desired

flush routing, and the proof is complete. O

Proof of Theorem 1 Recall that the nodes of the ring C, are labelled by vp,v,...,vn—1 clockwise.
By Lemma 3 and the comments after the proof of Lemma 2, we can find in polynomial time a flush
routing y = (¥1,%2, - - -, Ym) such that L(y) < Lopr and no two parallel requests are both split by y. In
particular, for each k =0,1,...,n — 1, at most one request with source vy, is split. Hence the number of
requests split by y, which we denote by ¢, is at most n. Without loss of generality, we may suppose that
the requests split by y are
(s1,t15w1), (S2, ta;w2),. .., (Sqy tq; W)

and that the sources sy, 82, .., 8¢ of them are ordered clockwise on the ring C,,. By the above-mentioned

properties of y, any two of such requests are not parallel. Thus, the destinations t;,%s,...,t, of them
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Figure 1: Proof of Lemma 3. The coordinates of y are in parentheses (when z; + z; < w;) and brackets
(when z; + z; > wy).

must be in clockwise order as well. For 7, j with 1 <4,5 < g, denote

e =
Tl g\ L 42— 1), i

For each k = 0,1,...,n — 1, if there exists ¢ with 1 <4 < ¢ such that a,j € P*(s;,t;), then define k*
(k~, respectively) to be such a subscript ¢ such that the length of P*(s;,vk) is maximum (minimum,
respectively). See Figure 2 for an illustration. (Note that kT can be greater than, less than, or equal to
k~. For example, if ¢, is between s; and t; and vy # t, is between s; and t,, then we have k* > k~.) If
there exists no i with 1 < < g such that af € P*(s;,1;), then we simply define [k*,k~], = 0. This latter
case occurs precisely when, for some 4, s;41 is after ¢; and vy # s;41 is between t; and s;4; (subscripts
of s and ¢ modulo ¢) with respect to the cyclic order vg,v1,...,v,-1 of the nodes of C,. In both cases,
since the sources and the destinations of the requests split by y are ordered in the same direction, for

eachi=1,2,...,q, we have
xS [k+,k—]q — a;: € P+(3¢,ti)

(4)
i [k+,k_]q = aq € P~ (si,t:).
Let 21 = |11] if y1 — [y1) £1/2 and 21 = |y1] + 1 otherwise, and define recursively
Lij, f1<j< q and Yi — ‘_sz - Zlgigj—-l(zi - yi) < %
zi=14 ly)+1, #1<j<qand yi— (4] - ¥icicjoy (2= %) > § (5)

Yi» ifg+1<j<m.
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Figure 2: Proof of Theorem 1.

Then z = (21,29, ...,2y) is an integral routing for D. By induction one can prove that
1 1
-3 < Z'(Zi -4) < 3 (6)
1<i<5

for each j = 1,2,...,¢. In particular, —1/2 < Zl<¢<q(zi —v;) < 1/2. However, El<i<q<zi — ;) is an
integer because both y and z are flush routings. So we must have

Y (zi-w)=0. (7)

1<i<q

For each k=0,1,...,n—1, from (4) we have

Laof)=Ly.a)+ Y. (a-w)

i i€kt kg

L(z,ap)=Liy,a5)+ Y. (-2
it ikt k]

From this and by using (7) we obtain

Lzaf) - Ly,af) = Lzap) - Ly.ap) = Y, (s-w)

i €[kt kg

Again by (7) we have
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no matter whether k* < k= or k™ > k~. However, from (6) the right hand side of (8) is strictly less
than 1. Thus, we have

L(z,af) — L(y,a}) = L(z,a;) — L(y, a;) <1l
Since this is true for each k =0,1,...,n — 1, it follows that

L(2) < L(y) + 1< Lopr + 1.

But L(z) > Lopr and z is an integral routing, so L(z) = Lopr and z is an optimal routing for the
WEIGHTED RING ARC-LOADING PROBLEM WITH INTEGER SPLITTING. Since y can be found in poly-
nomial time, as mentioned earlier, from the proof above z can be found in polynomial time as well.
O

The proof of Theorem 1 can be easily written as a polynomial time algorithm for producing an integral
routing with minimum load. First, we solve LPR and get an optimal solution x*. Using Lemma 2 and
solving LPR |4+ | and LPR,+7, we can obtain a flush routing x with L(x) < Lopr. Applying the procedure
detailed in the proof of Lemma 3, we then turn x into a flush routing y with L(y) < Lopr such that no
parallel requests are both split by y. Finally, we define z as in (5), and this is an optimal integral routing
for WRALP.
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