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Abstract. With any G-symmetric graph I' admitting a nontrivial G-invariant partition 4, we may
associate a natural ‘“‘cross-sectional” geometry, namely the 1-design Z(B) = (B,T'4(B),I) in which
olC for o € B and C € T'»(B) if and only if « is adjacent to at least one vertex in C, where B € % and
I'4(B) is the neighbourhood of B in the quotient graph I of I with respect to 4. In a vast number of
cases, the dual 1-design of Z(B) contains no repeated blocks, that is, distinct vertices of B are incident
in Z(B) with distinct subsets of blocks of I'4(B). The purpose of this paper is to give a general
construction of such graphs, and then prove that it produces all of them. In particular, we show that such
graphs can be reconstructed from I'5 and the induced action of G on #4. The construction reveals a close
connection between such graphs and certain G-point-transitive and G-block-transitive 1-designs. By
using this construction we give a characterization of G-symmetric graphs such that there is at most one
edge between any two blocks of 4. This leads to, in a subsequent paper, a construction of G-symmetric
graphs (T, %) such that |B| > 3 and each C € T'4(B) is incident in Z(B) with |B| — 1 vertices of B.
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1. Introduction

Let I' be a finite graph and G a finite group. If G acts on the vertex set V(I') of I"
such that G preserves the adjacency of I, then I is said to admit G as a group of
automorphisms. If such a group G is transitive on V(I') and, in its induced action, is
transitive on the set Arc(I') of arcs of I', then I is said to be a G-symmetric graph,
where an arc is an ordered pair of adjacent vertices. The study of symmetric graphs
has long been one of the main themes in the area of algebraic combinatorics. The
reader may consult [2] for the history and basic results in this area.

In most cases, a G-symmetric graph I' admits a nontrivial G-invariant parti-
tion, that is, a partition % of V(I') such that 1 < |B| < |V(I")| and B¢ € % for B€ #
and g € G, where B® := {a® : a€ B}. In such a case I' is called an imprimitive G-
symmetric graph. From permutation group theory [3, Corollary 1.5A], this hap-
pens precisely when the stabilizer G, in G of a vertex a.€ V(I") is not a maximal
subgroup of G. A standard approach to studying such a graph I is to analyse the
quotient graph 'y of I" with respect to 4, which is defined to be the graph with
vertex set 4 in which B, C € # are adjacent if and only if there exist « € B and
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(B € C such that {«, 8} is an edge of T'. In the following we will always assume that
' contains at least one edge, so each block of Z is an independent set of I' (see
e.g. [2, Proposition 22.1] and [9]). This quotient graph I';; conveys a lot of infor-
mation about the graph I' and inherits some properties of I'. For example, I'4 is G-
symmetric under the induced action (possibly unfaithful) of G on %. Nevertheless,
some important information is neglected by I'y since it does not tell us how
adjacent blocks of % are joined by edges of I'. Thus, instead of analysing 'y
alone, it seems more helpful to analyse the triple (I'y,T'[B,C], 2(B)), and this
approach was suggested in [4] and further developed in [5, 6], where T'[B, C] and
Z(B) are defined as follows. Let I'(«) denote the neighbourhood of o in T, that is,
the set of vertices of I' adjacent to «.. For B € 4, define I'(B) := |, . s I'(«), and
denote by T'4(B) the neighbourhood of B in T'y. For adjacent blocks B, C of 4,
define T'[B,C] to be the induced bipartite subgraph of I' with bipartition
{T(C)NB,I'(B) N C}. Define Z(B) := (B,T'4(B),1) to be the incidence structure
in which aIC for a € B and C € T'4(B) if and only if a €T'(C). Set

v:=|B|, k:=|I'(C)NB|, r:=Tua)

where I'4(a) := {C€T'4(B) : aIC}. Since I is G-symmetric, it is easily checked
that Z(B) is a 1-(v, k, r) design and, up to isomorphism, is independent of the choice
of B. Also, up to isomorphism, I'[B, C] is independent of the choice of adjacent blocks
B, C of #. This approach is a geometric one in the sense that it involves the *“cross-
sectional” geometry Z(B). Its usefulness lies on a thorough understanding of the
three configurations above, as well as an attempt of reconstructing I' from the triple
(I's,I'[B, C], 2(B)). The approach has been used effectively in the study of some
classes of imprimitive symmetric graphs, see [4-6, 8, 10—12].

We find that it is significant to distinguish whether the dual 1-design 2™ (B) of the
“cross-sectional” geometry &(B) contains no repeated blocks. Here we may iden-
tify the “blocks” of Z™(B) with the subsets I';(c) of the ““point set” T'y(B), for
a € B, and we call two such “blocks” T'4(3), T'4(~) (for distinct 3, v € B) repeated
if T'4(8) = I'4(y). Both cases appear very often, and thus the class of imprimitive
symmetric graphs can be divided into two large subclasses accordingly. Examples in
the first subclass include G-symmetric graphs I' with k = v, that s, I" is a multicover
of T' 4 (see [7]). In this case T'4(8) = T'4(~) holds for all 3, v € B, and hence any two
“blocks” of 2™ (B) are repeated. This happens in particular when T'[B, C] 22 v - K, is
a perfect matching between B and C; in this case I' is a cover of I 4, and such graphs
I" have been studied extensively in the literature (see e.g. [2]).

The second subclass consists of all imprimitive G-symmetric graphs I' such
that 2™ (B) contains no repeated blocks. The purpose of this paper is to give a
general construction of such graphs, and then prove that, up to isomorphism, it
produces all of them. In particular, we will show that such graphs I' can be
reconstructed from I'y and the induced action of G on #4. The construction pro-
vides an approach to studying such graphs by using certain G-point-transitive and
G-block-transitive 1-designs. In fact, the construction requires a 1-design & which
admits G as a point- and block-transitive group of automorphisms. It also requires
a “feasible” G-orbit 2 on the flags of &, and a self-paired G-orbit ¥ on € x
which is “compatible”” with 2 in the sense that 0 # 7 and o, 7€ LN N for some
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(and hence all) ((o,L),(7,N))€W¥ (see Definition 2.1). Given these the con-
structed graph T'(2, ), ¥), called the G-flag graph of & with respect to (2, ¥),
is defined to have vertex set ) and arc set W. The vertices of such a graph admit a
natural G-invariant partition, namely () defined in (1), Section 2. The main
result in this paper is the following theorem, which shows that I" is a G-symmetric
graph with @*(B) containing no repeated blocks if and only if it is isomorphic to
such a G-flag graph.

Theorem 1.1. Suppose that T is a G-symmetric graph admitting a nontrivial
G-invariant partition 9 such that %™ (B) contains no repeated blocks. Let r be the
block size of 9™ (B), that is, r = [T 5()|. Then T' = T'(2,Q, V) for a certain G-
point-transitive and G-block-transitive 1-design & with block size r + 1, a certain
feasible G-orbit 2 on the flags of 7, and a certain self-paired G-orbit ¥ on Q>
compatible with €.

Conversely, for any G-point-transitive and G-block-transitive 1-design & with
block size r + 1, any feasible G-orbit ) on the flags of 9, and any self-paired G-
orbit U on Q) compatible with Q, the graph T' =T(2,Q, V), group G, partition
B = B(Q) and integer r satisfy all the conditions above.

The construction will be given in detail in Section 2, and Theorem 1.1 will be
proved in Section 3. In Section 4, we will exploit this general construction to study
symmetric graphs I' such that there is at most one edge of I' between any two
blocks of #4. Such graphs arose naturally in the study of certain families of sym-
metric graphs [6, 8, 12]. This seemingly trivial case is notoriously difficult to
manage, even in the case where in addition I' 4 is a complete graph (see [4, Section
4]). The behaviour of such graphs seems to be quite wild, and to the best knowl-
edge of the author there is no useful description of such graphs up to now. As an
application of our construction, we will provide such a description. In fact, in this
case ™ (B) contains no repeated blocks, and hence I' is isomorphic to a certain G-
flag graph. We will further characterize such a graph as a G-flag graph T'(2, ), ¥)
with € satisfying some additional condition (see Theorem 4.3). This led to a
construction [12] of G-symmetric graphs (I', #) with k = v — 1 > 2 and, subse-
quently, classifications of certain subfamilies of such graphs, for G a projective or
affine group over a finite field. Guided by our flag graph construction, in a re-
cent work Iranmanesh, Praeger and the author gave an interesting construction
[8, Construction 5.2] of some G-symmetric graphs (I', %) with 'y, a connected tri-
valent (G, 3)-arc regular graph. In that construction & is a triple system and the
flags in €) can be identified with certain 4-paths of I"4. It is hoped that some other
interesting families of symmetric graphs could be constructed or characterized by
using the flag graph construction introduced in this paper and the knowledge on
point- and block-transitive designs.

2. The Flag Graph Construction

For notation and terminology on designs, graphs and permutation groups, the
reader is referred to [1-3], respectively. For a group G acting on two finite sets {2,
), respectively, if there exists a bijection p from §2; to Q, such that (p(«))® = p(af)
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for any o € €2y and g € G, then the actions of G on €2 and €2, are said to be permu-
tationally equivalent with respect to p. An incidence structure is a triple
9 = (v",6,1), where ¥, & are disjoint finite sets and I is a binary relation between
¥ and &, that is, I C ¥~ x &. The members of ¥, & and I are called the points,
blocks and flags of 9, respectively. If (o, X) is a flag, then we simply write alX and
say that o, X are incident with each other. If two blocks are incident with the same set
of points, then they are said to be repeated blocks. If all the blocks are incident with
the same number (say k) of points, and all the points are incident with the same
number (say r) of blocks, then & is said to be a 1-(v, k, r) design, where v := |7"|. A
1-(v,k, r) design & is said to be a t-(v, k, \) design, for some integers ¢t > 2 and
A = 1, if any ¢ distinct points are incident with A blocks simultaneously. The dual of
a 1-(v,k, r) design @ = (¥, 6,1) is the 1-(b, r, k) design 2™ := (&, 7", 1*) with
XT*« if and only if aIX, where b is the number of blocks of Z. If G is a group acting
on 7" and &, respectively, such that aIX if and only if afIX®, for a € ", X € & and
g €G, then we say that & admits G as a group of automorphisms. In this case G
induces a natural action on the flags of &. If G is transitive on the points (blocks,
flags, respectively) of &, then & is said to be G-point-transitive (G-block-transitive,
G-flag-transitive, respectively). In the following we assume without mentioning
explicitly that the 1-designs used for our construction have no repeated blocks. As
usual in the literature, we may identify each block L of such a 1-design with the set of
points incident with L.

We start our construction with the following general setting. Let & be a 1-
design, and 2 a set of flags of . Let ¥ be a subset of the set Q) of ordered pairs
of distinct flags in Q. If ¥ is self-paired, that is, ((o,L),(7,N)) € ¥ implies
((r,N),(0,L)) €U, then we define the flag graph of & with respect to (02, ),
denoted by I'(Z, 2, ¥), to be the graph with vertex set €2 in which two “vertices”
(o,L), (1,N) € are adjacent if and only if ((o,L), (1, N)) € U. The self-parity of
W guarantees that this graph is well-defined as an undirected graph. For a given
point o of &, we denote by (o) the set of flags in {2 with point entry o. Let &
admit a group G of automorphisms. If € is a G-orbit on the flags of 2, then (o) is
a G,-orbit on the flags of & with point entry o, where G, is the stabilizer of o in G.
In this case, I'(2,Q), ¥) is G-vertex-transitive and its vertex set 2 admits

B(Q) :={Q(0) : 0 a point of Z} (1)

as a natural G-invariant partition. If furthermore W is a G-orbit on Q) (under the
induced action), then I'(Z,T", ¥) is G-symmetric. For a flag (o,L) of &, we use
G,.1. to denote the subgroup of G fixing (o, L), that is, the subgroup of G fixing o
and L setwise. Motivated by our study of G-symmetric graphs with & (B) con-
taining no repeated blocks (see the next section), we require that 2 and U satisty
the following conditions.

Definition 2.1. Let & be a G-point-transitive and G-block-transitive 1-design
(with block size at least 2). Let o be a point of . A G-orbit €2 on the flags of & is
said to be feasible if

(a) |Q2(e)] = 2; and
(b) G, is transitive on L\{c}, for some (and hence all) (o, L) € Q2.
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For such a feasible €, a G-orbit ¥ on Q® is said to be compatible with Q if
(¢) o#7 and o, T€ LN N for some (and hence all) ((o,L), (7,N)) € P.

If Q is feasible and W is self-paired and compatible with €2, then for brevity we call
['(2,0,V) the G-flag graph of 2 with respect to (2, ¥).

Note that, since G is transitive on the points of &, the validity of (a), (b) above
does not depend on the choice of the point o. In the following we will consider
only G-flag graphs I'(Z, 2, U). For such a pair (2, ¥) and ((o,L),(7,N)) € ¥, it
may happen that L = N (see Example 4.5 in Section 4), and in this case each block
of Z induces a subgraph consisting of some connected components of I'(Z, Q2, ¥).

3. Proof of Theorem 1.1

To prove Theorem 1.1 we need some preliminary results. From the following
discussion we can see that the flag graph construction given in the previous section
comes in a natural way.

Let I be a G-symmetric graph admitting a nontrivial G-invariant partition 4.
Then the incidence structure Z(B) = (B,T'4(B),1) is a 1-(v,k,r) design, where
v=1B|, k=|T(C)NB| (for CET»4(B)) and r = |T'y4(«)| are as defined in the
introduction. The setwise stabilizer Gy of B in G induces natural actions on B
and I"4(B). Moreover, Z(B) admits Gp as a point-, block- and flag-transitive group
of automorphisms [4]. Thus the dual 1-design 2™ (B) := (T'4(B), B,T*) of Z(B)
also admits Gp as a point-, block- and flag-transitive group of automorphisms. The
“points” of *(B) are those blocks of # which are adjacent to B. We may
identify the “blocks” of %™ (B) with the subsets I';(c) of I'4(B), for a€B,
and thus identify the “block” set of 2™ (B) with

E(B) := {T'4(«) : « €B}.
We observe that Z*(B) can be “expanded” to the following 1-design which

admits G as a point- and block-transitive group of automorphisms. For each
aecV(T), let B(«) denote the block of % containing «, and set

Z(a) = {B(a)} UT'»(a).
Note that, for distinct vertices «, 5 of T', it may happen that (o) = £ (). We
use L to denote the set of all ¥ («), for o€ V(I"), with repeated ones identified.
One can see that ¥ («) = () if and only if ¥ (af) = Z(5#) for any g€G.
Therefore, the action of G on % induces an action of G on L defined by
(Z (@) := L(a®), for € V(') and g € G. We define
2, %) :=(%4,L)

to be the incidence structure in which B is incident with #(«) if and only if
Be % (a).

Lemma 3.1. Suppose that T is a G-symmetric graph admitting a nontrivial G-
invariant partition 2. Then

(@) 2(T', B) is a 1-design with block size r + 1; and

(b) 2T, B) admits G as a point- and block-transitive group of automorphisms.
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Proof. 1t is clear that G is transitive on 4 and on L, and that G preserves the
incidence relation of Z(I',%). So G induces a group of automorphisms of
9(T', %), and each B€ % is incident with the same number of elements of L.
Thus 2(I', %) is a G-point-transitive and G-block-transitive 1-design. Clearly,
2(T', #) has block size r + 1. O

In a lot of cases, the 1-design ag* (B) contains no repeated blocks, that is,
T'y(a) #T4(06) for distinct vertices, «, 3 € B. The main result (Theorem 1.1) of
this paper states that the flag graph construction can produce all G-symmetric
graphs with this property. The truth of this result lies on the fact that in this case
the flags (B(a), £ (a)) of (I, %), for a € V(I'), are pairwise distinct, or equiva-
lently, for each B € % the members of

L(B) :={%(a) : a€B}
are pairwise distinct. Therefore, in this case V(I") can be identified with the subset
O, 2) :={(B(a), Z(a)) : a€V()}

of flags of #(I', #) via a— (B(a), Z(a)). Denote by Ggr, () and Gg ¢(,) the
setwise stabilizers of I'y(a) and #(«) in Gp, respectively. Note that, under the
action of G on L, the subgroup G of G leaves L(B) invariant, and hence Gp
induces an action on L(B).

Lemma 3.2. Suppose that T is a G-symmetric graph admitting a nontrivial G-
invariant partition 4. Then Q)(T', B) is a G-orbit on the flags of 2(T', ). The flags
(B(a), Z(a)) for a € V(T') are pairwise distinct if and only if %™ (B) contains no
repeated blocks for B € %, and in this case the following hold.

(a) The mapping p : a— (B(a), £ (), for a € V(I'), defines a bijection from
V(T') to Q(T, B); and the actions of G on V(T') and on Q(T', B) are permutation-
ally equivalent with respect to p.

(b) The action of Gy on B is permutationally equivalent to the actions of Gy on
E(B), L(B) with respect to the bijections defined by a— T y4(a), ar— L («), for
a € B, respectively. Hence we have Ggr (o) = Gp #(a) = Ga-

(¢) Gp, (o) is transitive on I z(c), for a€B.

Proof. Since G is transitive on V(I'), it is easy to see that Q(T", %) is a G-orbit
on the flags of Z(T', #). Clearly, the flags (B(«), Z(«)), (B(8), Z(3)) in Q(T", )
corresponding to two distinct vertices «, [ are identical if and only if «, § are in
the same block of % and I'4(«) = I'4(3). In other words, the flags (B(«), £ («))
for a € V(T) are pairwise distinct if and only if %™*(B) contains no repeated
blocks. In this case it is easy to see that the mapping p : a+— (B(«), Z(a)) (for
aeV(I)) is bijective, and that the actions of G on V(I') and on Q(I', %) are
permutationally equivalent with respect to p. The truth of (b) follows from a
routine argument. For two blocks C, D € I'4(«), there exist 3 € C and -y € D which
are adjacent to «. So, by the G-symmetry of I', there exists g€ G such that
(o, 8)® = (a,y). This implies g€ G, and C% = D. Hence G, is transitive on
[5(«a), that is, G g(a) is transitive on I'z(c) and (c) is proved. O
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Now we can proceed to the proof of the main result.

Proof of Theorem 1.1. Suppose that I', G, % and r are as in the first part of
Theorem 1.1. Then by Lemma 3.1, & := 2(I', %) is a G-point-transitive and G-
block-transitive 1-design with block size r 4 1. From Lemma 3.2, Q := Q(T", %) is
a G-orbit on the flags of &, and the mapping p : v+— (B(7), Z()), for ye V(T'),
is a bijection from V(I') to Q. In particular, we have |2(B)| = |B| > 2. For
(B, %) €Q(B), say ¥ = ¥(a) for some a€B, we have L\{B} =T4(a). So
it follows from Lemma 3.2(c) that Gp ¢ is transitive on %\ {B}. Therefore, {2 is a
feasible G-orbit on the flags of .

Clearly, for each arc (a,8) of T, we have B(a)#B(3) and B(w),
B(B) € Z(a) N Z(B). Therefore, setting

V= {((B(a), Z(a)), (B(B), Z(B))) : (e, B) € Arc(T)},

we have ¥ C Q) and W is self-paired and compatible with . By Lemma 3.2(a),
the actions of G on V(I') and €) are permutationally equivalent with respect to
the bijection p defined above. Since I' is G-symmetric, this implies that
U = ((B(), Z(a)), (B(B), Z(3)))°, for a fixed arc (a, 3) of . Hence W is a self-
paired G-orbit on Q%) compatible with 2. One can easily check that the bijection p
defines an isomorphism from I" to the G-flag graph I'(Z, 2, ¥), and hence the first
part of Theorem 1.1 is proved.

Suppose conversely that &, G, €2, ¥ and r are as in the second part of Theorem
I.1.Let T :=T(2,9Q,¥), and let Z := %(2) be as defined in (1). Then it follows
from the definition that I" is a G-symmetric graph with vertex set {2, and that 4 is a
nontrivial G-invariant partition of € with block size |Q2(c)| > 2, where o is a point
of Z. To complete the proof, we need to show that the block size of Z*(2(0)) is
equal to r and that 2™ (2(0)) contains no repeated blocks.

Let Q(o0), (1) be adjacent blocks of #. Then there exist (o,L) € (o) and
(1,N) €Q(7) such that (o, L), (7,N) are adjacent in I, that is, ((o, L), (,N)) € .
So we have 0 # 7 and o, 7€ LN N by the compatibility of U with 2. Since {2 is
feasible, it follows from (b) in Definition 2.1 that, for any 6 € L\{c}, there exists
g€ G, such that 78 = 4. Setting M := N¥, then we have (6, M) = (1,N)* € Q.
Since g fixed o, it fixes (o) setwise, and moreover o € N implies o € M. Also,
o# 7 implies that 0 = 08 #78 = §. Thus we have ((o,L),(6,M)) = ((o,L),
(r,N))® €W, that is, (o, L) and (6, M) are adjacent in I'. Hence Q(8)€
I's((o,L)). Conversely, suppose that €2(8) €T'4((c,L)) for some point § of Z.
Then there exists (6, M) € Q(6) such that (o, L) and (6, M) are adjacent in . So
((o,L), (6,M))€ W and hence there exists he G such that ((o,L),(r,N))" =
((o,L), (6,M)). Thus we have h€ G, 1, 7" = § and N" = M. Since h fixes o and
fixes L setwise, and since 7 € L\{c}, we have § = 7" € L\{c}. Therefore, we have
proved that T ((0, L)) = {Q(8) : §€ L\{o}}, and hence Z™* (Q(c)) has block size
|L\{c}| = r. Moreover, since & contains no repeated blocks, we have L# L' for
distinct (o, L), (o,L") € Q(c). This together with the argument above implies that
T'4((0,L)) #T 4((0,L")), and hence 2*(Q(c)) contains no repeated blocks.  []

The special case where in addition Iy is a complete graph is particularly
interesting. In this case, we have I'y = K, 1, where b := |T'4(B)| is the valency
of I'5. Since I'y is G-symmetric, this occurs if and only if G is doubly transitive on
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4. So in this case 2(T', %) = (%4,L) is a G-doubly transitive and G-block-tran-
sitive 2-(b + 1,7 + 1, A) design, for some integer A > 1, and is an extension of
7™ (B). (As usual in the literature, when we say a design & is G-doubly transitive,
we mean G is doubly transitive on the points of &). Conversely, if & is a G-doubly
transitive and G-block-transitive 2-(b + 1,7+ 1, \) design, then for any G-flag
graph I' =T'(2,Q, V) of &, we have I'y) = K,;1. So Theorem 1.1 has the
following consequence.

Corollary 3.3. Let b = 2 and r = 1 be integers, and let G be a group. Then the
following two assertions (a) and (b) are equivalent.

(a) T is a G-symmetric graph admitting a nontrivial G-invariant partition %
such that 9™ (B) has block size r and contains no repeated blocks, and such that
'y =2 Kpy.

b)) T =I(2,Q,V), for a G-doubly transitive and G-block-transitive
2-(b+ 1, r+ 1, ) design 9, a feasible G-orbit ) on the flags of 9, and a self-
paired G-orbit U on Q) compatible with €.

A lot of work on doubly transitive 2-designs has been done in the literature (see
e.g. [1]). This would be very helpful in studying some particular families of G-
symmetric graphs I" such that I'; is a complete graph and %™ (B) contains no
repeated blocks. Partial results towards such a study existed in the literature, as
exemplified in the following example.

Example 3.4. Suppose I is a G-symmetric graph such that k < v and G is doubly
transitive on B. Then 2™ (B) contains no repeated blocks. (Suppose otherwise, then
since G is doubly transitive on the blocks of 2™ (B), we would have I'4(a) =
['4(0) forall o, 3 € B. This implies k = v and thus contradicts with our assumption.)
Such graphs I' with the additional properties that I'4 = Kj,, | and v > b were clas-
sified in [5, Theorems 1.1 and 1.2]. Some of them were defined in terms of certain
2-designs. This is not a mere coincidence: From Corollary 3.3 all such graphs are
G-flag graphs of some G-doubly transitive and G-block-transitive 2-designs.

4. Symmetric Graphs with k =1

In this section we study G-symmetric graphs I' admitting a nontrivial G-invari-
ant partition 4 such that k = 1, that is, I'[B, C] = K, for adjacent blocks B, C of 4.
In this case 2™ (B) contains no repeated blocks (see Lemma 4.1(a) below). Hence,
from Theorem 1.1, T is isomorphic to a G-flag graph of & := Z(T', #). We will
further characterize such a graph T" as a G-flag graph T'(2, 2, ¥) with €2 satisfying
some additional condition. Note that in this case %™(B) has “blocks”
I'y(a) ={Ce% :T(C)NB(a) ={a}}, for a€B. For a regular graph X, we
use val(X) to denote the valency of X..

Lemma 4.1. Suppose that T is a G-symmetric graph admitting a nontrivial G-
invariant partition 9 such that T'|B, C| = K, for adjacent blocks B, C of %. Then
the following hold.

(a) @*(B) contains no repeated blocks. Moreover, the set E(B) = {I'4(«) :
a € B} of “blocks” of ™ (B) is a Gg-invariant partition of T 5(B).

(b) The block size r of 2™ (B) is equal to val(I'), and further val(T z) = vr.
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(¢) If G is faithful on V(I'), then the induced action of G on A is faithful.

@) If L(a) = L(B) for some pair of distinct vertices o, 3 of T, then r + 1
divides v| 8|, T = (v|B|/(r + 1)) - K11, and L (v) = ZL(6) for all vertices v, § in
the same component of T'.

Proof. (a) Since there is only one edge of I' between two adjacent blocks of 4,
we have I'4(a) NT'4(8) = 0 for distinct vertices «, § in the same block B of 4.
Thus, E(B) is a partition of I"4(B), and in particular 2™ (B) contains no repeated
blocks. Suppose (T'z(c))® NT4(B) # 0 for some «, € B and g € Gg, say C8 = D
for some C €T'4(«) and D € T'4(/3). Since « is the unique vertex in B adjacent to a
vertex in C and since [ is the unique vertex in B adjacent to a vertex in D, C% = D
implies o = 3 and hence (I'y(«))® = T'4(8). Therefore, E(B) is a Gg-invariant
partition of T'4(B).

(b) This follows immediately from (a) and our assumption on I'[B, C].

(c) Suppose that g € G fixes setwise each block of 4. Then, for each B € # and
a € B, g fixes in particular each of the blocks in I'y(«). So it follows from (a) that
g fixes each vertex in B. Since this holds for each B € 4, g fixes each vertex of I'.
So, if G is faithful on V(I"), then g =1 and hence G is faithful on %.

(d) Suppose that ¥ («)) = £ () for two distinct vertices v € B and 3 € C. Then
B+#C, CeTy(a), BET 4(), and in particular B, C are adjacent blocks. More-
over, since there is only one edge between B and C, the vertices «, 3 must be
adjacent in I". So the transitivity of G, on I'(«) implies that, for each yeT'(«),
there exists g € G, such that 3% = . Since ¥ () = £ () we then have ¥ (a) =
(Z(a))® = (Z(B))® = Z(v). In particular, this implies that each block in .Z ()
other than B(+y) contains a (unique) neighbour of ~, and so any two blocks in
#(«) are adjacent. For distinct vertices vy, 6 €T'(«), say 6€D, let & be the
neighbour of + in the block D. Then by the G-symmetry of I there exists h€ G
such that (v, 6)" = (7, &). This implies (£ ()" = £(v) and (£L(6))" = £(8)).
Since ¥ (a) = £(6) as shown above, we have ¥ (') = L (v) = £ («). Thus ¢ is
adjacent to a vertex in B. However, our assumption on I'[B, D] implies that ¢ is the
unique vertex in D adjacent to a vertex in B. So we must have &' = 6. Thus we have
shown that any two vertices in I'(«v) are adjacent. Hence {a} UT'(«) induces the
complete graph K1, which must be a connected component of I" since val(T") = r
by (b). Therefore, I" is a union of vertex disjoint copies of K, ;, that is, I" =
n- K. for an integer n. Since |V(I')| =n(r+ 1) = v|4|, we have n = v|%4|/
(r+1) and r + 1 is a divisor of v|%|. Obviously, in this case £ (y) = £(6) holds
for all vertices v, ¢ in the same component of I'. O

Part (d) of Lemma 4.1 implies that, if I" satisfies kK = 1 and is not a union of
complete graphs, then the sets () (for a € V(I')) of blocks of % are pairwise
distinct and thus Z(I", 8) = (%4,{¥%(a) : a€ V(T')}). On the other hand, we will
see in Example 4.5 that the opposite case can occur, that is, it may happen that
Z(a) = L(B) for some pair of distinct vertices «, § of T'. In view of part (a) of
Lemma 4.1, we give the following definition.

Definition 4.2. Let & and G be as in Definition 2.1. A G-orbit €2 on the flags of
9 is said to be a 1-feasible G-orbit if it is feasible and LN N = {o} holds for
distinct (o, L), (o,N) € (o), where o is a point of Z.
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Now we prove that, up to isomorphism, the class of G-symmetric graphs
with k =1 is precisely the class of G-flag graphs T'(Z,Q, ¥) such that € is
1-feasible.

Theorem 4.3. Suppose that T is a G-symmetric graph admitting a nontrivial
G-invariant partition 4 such that T'|B, C| = K, for adjacent blocks B, C of %, and
let r be the valency of T'. Then T = T'(2,Q, V) for a certain G-point-transitive and
G-block-transitive 1-design & with block size r + 1, a certain 1-feasible G-orbit )
on the flags of 9, and a certain self-paired G-orbit ¥ on Q2 compatible with .
Moreover, either 7 is a 1-(|%|,r + 1,v) design and I = (v|#|/(r + 1)) - K11, or
D is a 1-(|%B|,r+ 1,v(r + 1)) design.

Conversely, for any G-point-transitive and G-block-transitive 1-design & with
block size r + 1, any 1-feasible G-orbit ) on the flags of &, and any self-paired G-
orbit ¥ on Q) compatible with 0, the graph T = T'(2,Q, U), group G, partition
B = B(Q) and integer r satisfy all the conditions above.

We will show further that, in both parts of this theorem, G is faithful on the
vertices of I' if and only if it is faithful on the points on Z.

Proof. For the first part, we have shown in Lemma 4.1(a), (b) that & * (B) contains
no repeated blocks and that the block size of Z* (B) is equal to the valency r of I'. So
by Lemma 3.1, & := 9(T", %) is a G-point-transitive and G-block-transitive 1-
design with block size r + 1. We have shown in the proof of Theorem 1.1 that
0 :=Q(T, %) is a feasible G-orbit on the flags of Z, that ¥ := {((B(«a), Z(«)),
(B(8), Z(B))) : (a, B) € Arc(T") } is a self-paired G-orbit on Q2 compatible with €2,
and that " = I'(Z, Q, ¥). From Lemma 4.1(a), we have & N A" = {B} for distinct
(B, &), (B, /") €Q(B). Hence () is 1-feasible. If there exist distinct vertices «,
B€V(T) such that Z(a) = £(0), then by Lemma 4.1(d), T = (v|%8|/(r + 1))
K, and 9 has v|%|/(r + 1) blocks. So Z is a 1-(|4|,r + 1,v) design. In the re-
maining case, & has |4| points, v|%| blocks and hence is a 1-(|4|,r + 1,v(r + 1))
design. This proves the first part of the theorem. In addition, by Lemma 4.1(c), if G is
faithful on V(I'), then it is also faithful on the point set # of &.

Suppose conversely that &, G, €}, ¥ and r are as in the second part of the
theorem. Then from Theorem 1.1, T :=T'(2, ), ¥) is a G-symmetric graph admit-
ting % := (L) as a nontrivial G-invariant partition such that 2* (Q(c)) has block
size r and contains no repeated blocks. Let Q(c), ©(7) be adjacent blocks of 4.
Then there exist (o, L) € (o) and (7,N) € Q(7) such that ((o,L), (7,N)) € U. So
we have 0 # 7 and o, 7€ LN N by the compatibility of ¥ with §2. Since 2 is 1-
feasible this implies that, for any (o,L')€Q(o)\{(c,L)} and (r,N') € Q(7)\
{(r,N)}, we have 0 ¢ N' and 7 ¢ L'. Thus none of ((o,L),(r,N")),((c,L),
(1,N)) and ((o,L"), (7,N")) belongs to W. In other words, the edge of I" joining
(0, L) and (7, N) is the only edge between (o) and (7). Hence we have
I'[Q(0), Q(71)] = K>, and consequently the valency of I" is equal to the block size
rof 77 (Q(0)). If an element of G fixes each flag in ©, then it must fix each point
of 9. So if G is faithful on the points of &, then it must be faithful on €2, the vertex
set of I'. This completes the proof of Theorem 4.3, and that of the statement
immediately following it. O
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We pause here to point out that graphs satisfying the condition of Theorem 4.3
arise naturally from our study [6, 10, 12] of imprimitive G-symmetric graphs
(T, %) with k =v— 1> 2. In fact, for such a graph T and any two adjacent
blocks B, C of 4, there is a unique vertex a in B which is not adjacent to any
vertex in C, and similarly there is a unique vertex 3 in C not adjacent to any vertex
in B. By [6, Proposition 3], the graph I” with vertex set V(I") and edges of the
form {«, 3} is G-symmetric and admits the same G-invariant partition 4 such
that TV[B,C] =2 K. So, by Theorem 4.3, I is isomorphic to a G-flag graph
['(2,Q,¥). Moreover, as shown in [12, Lemma 2.2(d)], the 1-feasible G-orbit
Q) satisfies the extra condition that, for any (o,L)€Q and T€L\{o}, G,, is
transitive on Q(o)\{(c,L)}. This additional feature enables us to construct
the graph I' by using a similar flag graph construction, see [12] for details.
(Note that the meanings of feasibility and compatibility in [12] are different
from that used in this paper. In [12] a 1-feasible € satisfying the extra condition
above is said to be feasible, and the compatibility condition is meant for con-
structing T).

Now let us return to our study of G-symmetric graphs (', %) with k = 1.
Analogous to Corollary 3.3, we have the following consequence of Theorem 4.3.
Note that, by Lemma 4.1(b), we have val(T'y) = vr for the graph I" in Theorem 4.3.
So I'y is a complete graph if and only if I' = K., , and in this case G is doubly
transitive on % and hence (I, %) is a 2-(vr + 1,r + 1, \) design for some integer
A > 1. Moreover, since E(B) is a Gp-invariant partition of I'(B) = #\{B}
(Lemma 4.1(a)) with block size r, in the general case where r > 2, G is impri-
mitive on #\{B} and in particular G is not triply transitive on 4.

Corollary 4.4. Let v = 2 and r = 1 be integers, and let G be a group. Then the
following two assertions (a) and (b) are equivalent.

(a) I' is a G-symmetric graph of valency r which admits a nontrivial G-
invariant partition % of block size v such that T'|B, C] = K, for any two blocks
B, Cof # (so Ty =K,i1).

(b) T 2T(2,Q,V), for a G-doubly transitive and G-block-transitive 2-
(vr + 1,r+ 1, \) design &, a 1-feasible G-orbit Q) on the flags of %, and a self-
paired G-orbit ¥ on Q) compatible with Q.

Moreover, for any point o of &, the set of points of & other than o
admits a G,-invariant partition of block size r. Hence & is not G-triply transitive
when r = 2. Furthermore, either X=r+1, or A=1 and T = (v(vr+1)/
(r+ 1)) 'Kr+1-

The value of A above was determined by using known relations (see e.g.
[1, 2.10, Chapter I]) among the parameters of a 2-design. In the case where
A=1, the design & is a linear space, and the graph I' is constructed from
2 by using the method given in part (b) of the following example. In
general, a linear space [1] is an incidence structure of points and blocks
(called lines) in which any two distinct points are incident with exactly one
line, any point is incident with at least two lines, and any line with at least
two points. We use L,, to denote the unique line through two given points
o, T in a linear space.
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Example 4.5. (a) If & is a G-flag-transitive linear space, then the flag set {2 of
9 is the only G-orbit on the flags of &. Clearly, € satisfies (a) in Definition 2.1 and
the condition in Definition 4.2. So () is feasible if and only if it satisfies (b) in
Definition 2.1, and in this case € is 1-feasible. For such an ), a G-orbit on Q® is
self-paired and compatible with €2 if and only if it has the form

U ={((0,Lyr),(1,Lys)) : (o,7) EP},

for some self-paired G-orbit P on ordered pairs of distinct points of &. For such a
U, setI':=1(2,9Q,V) and L := L,, for a fixed (o, 7) € P. From (b) in Definition
2.1, for any 6€L\{o} there exists g€ G, such that 78 =4. So (0,0) =
(o,7)¥€Pand ((o,L),(8,L)) = ((o,L), (1,L))* € W. It follows that (o, L) is adja-
cent in T to any (§,L) € Q2 with § € L\{o}. Therefore, each connected component
of T is a complete graph induced by a line L,., for (o,7) € P. Such a graph T’
satisfies the condition in Lemma 4.1(d).

(b) In particular, if & is a G-doubly transitive linear space with vr + 1 points
and with block size r + 1, then & is G-flag-transitive and its flag set {2 is 1-
feasible. In this case the only self-paired G-orbit on 0@ compatible with € is

U :={((o,L),(1,L)) : Lis a line of &, o, T are distinct points on L}.

Hence 2 has a unique G-flag graph I'(2, 2, ¥), of which each connected com-
ponent is a complete graph induced by a line of &.

A 1-design & with block size 2 can be viewed as a regular graph X, and vice
versa, if we identify the blocks of & with the edges of >.. The automorphism groups
of the design & and the graph X are the same. Moreover, under this identification
each flag (o,L) of &, say L = {0, 7}, is the arc (o, 7) of X. Hence & is G-flag-
transitive if and only if ¥ is G-symmetric. We conclude this paper by giving the
following somewhat trivial example, which is mainly for illustrative purpose.

Example 4.6. A G-flag-transitive 1-design & with block size r + 1 := 2 such
that each point is incident with d > 2 blocks can be identified with a G-symmetric
graph ¥ of valency d. Since & is G-flag-transitive, the only G-orbit on the flags of
9 is the set ) of all flags of &, that is, the arc set Arc(X) of X. It is clear that €2 is
1-feasible, and that the only self-paired G-orbit on Q% compatible with Q is
U :={((0,7),(r,0)) : (0,7) €Arc(X)}. So we get a unique G-flag graph
I1:=T(2,9Q,¥), which has vertex set Arc(X) and edges joining (o,7) and
(7,0), for all (o, 7) € Arc(X). Clearly, we have I1 2 n - K and Il o) = X, where
n is the number of edges of 3. From Theorem 4.3, these graphs II can represent
all G-symmetric graphs T' of valency r=1 such that V(I") admits a nontrivial
G-invariant partition 4 with T'[B, C] = K,, for adjacent blocks B, C of %. More-
over, any G-symmetric graph > with valency d > 2 can appear as the quotient I'y
of such a graph I

A linear space is trivial if each line contains exactly two points. The graph I' in
Corollary 4.4(a) with additional property r=1 is precisely the G-flag graph (give
in Example 4.5(b)) of a trivial G-doubly transitive linear space & with v+ 1
points. Corollary 4.4 and Examples 4.5(b), 4.6 together imply the characterization
of such graphs given in [4, Theorem 4.2].
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