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Given integers n ≥ 7 and a, b, c with 1 ≤ a, b, c ≤ n − 1
such that a, n − a, b, n − b, c, n − c are pairwise dis-
tinct, the (undirected) triple-loop network TLn(a, b, c) is
the degree-six graph with vertices 0, 1, 2, . . . , n − 1 such
that each vertex x is adjacent to x ± a, x ± b, and
x ± c, where the operation is modulo n. It is known that
the maximum order of a connected triple-loop network
of the form TLn(a, b, n − (a + b)) with given diameter
d ≥ 2 is nd = 3d 2 + 3d + 1, which is achieved by
TLnd = TLnd (1, 3d +1, 3d 2−1). In this article, we study the
routing and gossiping problems for such optimal triple-
loop networks under the store-and-forward, all-port, and
full-duplex model, and prove that they admit “perfect”
gossiping and routing schemes which exhibit many inter-
esting features. Using a group-theoretic approach we
develop for TLnd a method for systematically producing
such optimal gossiping and routing schemes. Moreover,
we determine the minimum gossip time, the edge- and
arc-forwarding indices, and the minimal edge- and arc-
forwarding indices of TLnd , and prove that our routing
schemes are optimal with respect to these four indices
simultaneously. As a key step towards these results,
we prove that TLnd is a Frobenius graph on a Frobe-
nius group with Frobenius kernel Znd , and that TLnd is
arc-transitive with respect to this Frobenius group. In
addition, we show that TLnd admits complete rotations.
© 2009 Wiley Periodicals, Inc. NETWORKS, Vol. 55(4), 341–349
2010

Keywords: circulant graph; triple-loop network; Frobenius
graph; complete rotation; gossiping; routing; edge-forwarding
index; Wiener index

1. INTRODUCTION

Let n ≥ 7 be an integer. For integers a, b, c with 1 ≤
a, b, c ≤ n − 1 such that a, n − a, b, n − b, c, n − c are pair-
wise distinct, the undirected triple-loop network TLn(a, b, c)
is defined [13] to be the circulant graph with vertices
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0, 1, 2, . . . , n − 1 such that each vertex x is adjacent to x ± a,
x ± b and x ± c, where the operation is modulo n. Thus,
TLn(a, b, c) has degree six and each arc (x, y) of it receives
a unique label y − x ∈ {±a, ±b, ±c}, where by an arc we
mean an oriented edge or an ordered pair of adjacent ver-
tices. Undirected triple-loop networks have been recognized
as strong candidates for interconnection networks due to their
low degree, simple structure, and symmetry with respect to
vertices. Most research so far has been concerned with diam-
eter, connectivity, and maximum order; see [13, Section 4]
for an account of known results. In particular, restricted to
the case c = n−(a+b) (written c = −(a+b) in the sequel),
it has been known [18, Section 3] for more than two decades
that, for any integer d ≥ 2, the maximum number of vertices
of an undirected triple-loop network TLn(a, b, −(a + b)) of
diameter d is

nd := 3d2 + 3d + 1

and the corresponding optimal network is

TLnd := TLnd (3d + 1, 1, −(3d + 2)).

In contrast, as far as we know, the efficiency of triple-loop
networks with respect to communication and information dis-
semination is unknown even for such optimal networks. In
this article, we will study these problems for TLnd , and prove
that it admits “perfect” gossiping and routing schemes with
interesting features. By a result of Morillo (see [1, Section
2] and Remark 2), up to isomorphism TLnd is the only undi-
rected triple-loop network of order nd and diameter d. Thus,
without loss of generality we can focus on TLnd as far as
optimal undirected triple-loop networks are concerned.

A routing of a network � = (V(�), E(�)) is a set P
of oriented paths in � such that, for every ordered pair of
vertices (x, y), there is exactly one path in P from x to y. The
load of an edge under P is the number of paths in P going
through the edge in either direction, and the load of an arc is
defined similarly but taking into account the orientation. Let
π(�, P) (�π(�, P), respectively) denote the maximum load
on an edge (arc, respectively) of � under P . The edge- and
arc-forwarding indices of � are defined [9,11] to be π(�) =
minP π(�, P) and �π(�) = minP �π(�, P), respectively, with
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FIG. 1. Part of the plane tessellation associated with TLnd , where a = 3d + 1, b = 1 and c = −(3d + 2).

the minimum taken over all possible routings of �. A routing
P is called a shortest path routing if all paths in P are shortest
paths, and the minimal edge- and arc-forwarding indices [9],
πm(�), �πm(�), are defined by restricting attention to shortest
path routings in the definitions of π and �π , respectively.

Gossiping is an information dissemination process in
which every vertex has a distinct message to be sent to all
other vertices. The gossiping problem has been studied exten-
sively under various communication models [6,8,12]. In this
article, we discuss the store-and-forward, all-port, and full-
duplex model [2,7]. That is, a vertex must receive a message
wholly before retransmitting it to other vertices; a vertex can
exchange messages (which may be different) with all of its
neighbors during each time step; messages can traverse an
edge in both directions simultaneously; and no two messages
can transmit over the same arc at the same time. Further, we
assume that it takes one time step to transmit any message
over an arc; that is, the time required to transmit a message is
independent of its length. A communication scheme which
fulfils the gossiping task under these assumptions will be
called a gossiping protocol. The minimum gossip time [2]
of a network �, denoted by t(�), is the minimum number of
time steps required by a gossiping protocol for �. A gossiping
protocol is called optimal if it uses t(�) time steps.

This article solves the gossiping and routing problems
above for TLnd completely for any integer d ≥ 2, and gives a
method for systematically producing optimal gossiping pro-
tocols as well as optimal routings for TLnd . More explicitly,
we prove that the minimum gossip time of TLnd is given
by t(TLnd ) = d(d + 1)/2, and at the same time we prove
by explicit construction that TLnd admits optimal gossiping
protocols (not unique) with the following properties: (i) the
message originating from any vertex is transmitted along
shortest paths to other vertices; (ii) at any time each arc of
TLnd is used exactly once for data transmission; (iii) for any
vertex w, at any time exactly six arcs with different labels are
used to transmit the message originating from w, and except

for the first step the set of these six arcs is a matching of
TLnd ; (iv) the gossiping protocols are symmetric in the sense
that, for any vertex w, at any time the six arcs carrying the
message with source w are obtained from those carrying the
message with source 0 by translation. Moreover, we deter-
mine the four forwarding indices of TLnd , that is, π(TLnd ) =
2�π(TLnd ) = 2�πm(TLnd ) = πm(TLnd ) = d(d + 1)(2d + 1)/3,
and provide an algorithm for constructing optimal shortest
path routings of TLnd . Such routings are not unique, and each
of them loads both edges and arcs uniformly and is optimal
for the four indices simultaneously. The complete version of
these results with more technical details will be presented in
Theorems 4 and 5, respectively.

Plane tessellations [18] are a useful tool for solving
problems relating to undirected triple-loop networks. (See
Figure 1 for an illustration.) In contrast, to achieve the results
above, we will resort to an algebraic approach [19]. A key step
is to prove that the automorphism group of TLnd , Aut(TLnd ),
contains a subgroup which is a Frobenius group [4], and that
TLnd is a Frobenius graph [5] with respect to this subgroup.
Moreover, we will prove that TLnd admits complete rotations
[2,7,10]. See Theorem 1 in the next section for details. These
results are of interest for their own sake and we believe that
they will be useful in solving other problems for TLnd . In
the present article, we will use them together with a general
framework introduced in [19] to obtain the results mentioned
in the previous paragraph. In fact, once we have proved that
TLnd is a Frobenius graph, we can then obtain good gossiping
and routing schemes using this framework. To make the arti-
cle self-contained, we will give detailed proofs of our results
on gossiping and routing without relying on the abstract the-
ories of [19]. However, we should point out that the ideas
leading to such results are adapted from [19].

The reader is referred to [4] for notation and terminology
on group actions. For a set V and a group G with identity 1, an
action of G on V is a mapping V ×G → V , (v, g) �→ vg, such
that v1 = v and (vg)h = vgh for any v ∈ V and g, h ∈ G. The
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G-orbit containing v is vG := {vg : g ∈ G} and the stabilizer
of v in G is Gv := {g ∈ G : vg = v}. The group G is said to
be semiregular on V if Gv = 1 for all v ∈ V , transitive on V
if vG = V for some (and hence all) v ∈ V , and regular on V
if it is both transitive and semiregular on V . For two groups
K , H with H acting on K and respecting the structure of K ,
we use K � H to denote the semidirected product of K by H.

For a group G and a subset S of G \ {1} such that S =
S−1 := {s−1 : s ∈ S}, the Cayley graph Cay(G, S) is defined
[3] to have vertex set G and edge set {{x, y} : x, y ∈ G, xy−1 ∈
S}. A bijection ω : G → G is called a complete rotation
[2,10] of Cay(G, S) if there exists an ordering of S = S−1 =
{s0, s1, . . . , sδ−1} such that ω(1) = 1, ω(xsi) = ω(x)si+1

for all x ∈ G and i = 0, 1, . . . , δ − 1, where subscripts are
modulo δ. It is known [10, Proposition 2.2] that a bijection
ω : G → G is a complete rotation of Cay(G, S) if and only if
ω is a group automorphism of G and ω fixes S setwise (that
is, s ∈ S implies ω(s) ∈ S) and induces a cyclic permutation
on S. A rotation [7] of Cay(G, S) is an inner automorphism
of G which fixes S setwise and induces a cyclic permutation
on S. In other words, a rotation of Cay(G, S) is a complete
rotation induced by an inner automorphism of G.

The arc set and the automorphism group of a graph �

will be denoted by Arc(�) and Aut(�), respectively. For a
subgroup G of Aut(�), � is said to be G-vertex transitive if
G is transitive on the vertex set of �, and G-arc transitive if
it is G-vertex transitive and G is transitive on Arc(�).

2. TLnd IS A FROBENIUS GRAPH

A Frobenius group is a transitive permutation group L on
a set V which is not regular on V , but has the property that the
only element of L which fixes two points of V is the identity
of L. It is well known [4] that a finite Frobenius group L has
a nilpotent normal subgroup G, called the Frobenius kernel,
which is regular on V . Hence, L is the semidirect product
G � H, where H is the stabilizer of a point of V ; each such
group H is called a Frobenius complement for G in L. Given
a Frobenius group L = G � H, an L-Frobenius graph [5,16]
is a connected graph with vertex set V and edge set {{x, y} :
(x, y) ∈ O} for some L-orbit O on {(x, y) : x, y ∈ V , x �= y}.
It is known [5, Theorem 1.4] that any L-Frobenius graph is a
Cayley graph Cay(G, S) on its Frobenius kernel G, where (i)
S = aH if |H| is even or |a| = 2, or (ii) S = aH ∪ (a−1)H if
|H| is odd and |a| �= 2, for some a ∈ G satisfying 〈aH〉 = G,
where |a| is the order of a and xH := {h−1xh : h ∈ H} is
the H-orbit containing x ∈ G under the action of H on G (by
conjugation). Cay(G, S) is called an L-Frobenius graph of the
first or second type [19] according to whether S is given in
(i) or (ii).

Let Znd = {[x] : x ∈ Z} be the additive group of inte-
gers modulo nd , where [x] is the residue class containing x.
Then TLnd can be defined as the Cayley graph Cay(Znd , S(d)),
where

S(d) = {[3d + 1],−[3d + 1], [1],−[1], [3d + 2],−[3d + 2]}.
(1)

(Since nd = 3d2 + 3d + 1, we have [3d2 + 3d] =
−[1], [3d2] = −[3d + 1] and [3d2 − 1] = −[3d + 2].)
That is, TLnd has vertex set Znd in which [x], [y] ∈ Znd are
adjacent if and only if [x − y] ∈ S(d). With this notation
the label of an arc ([x], [y]) ∈ Arc(TLnd ) is [y − x] ∈ S(d).
It is well known that each [m] ∈ Znd induces a translation
m̂ : [x] �→ [x + m], [x] ∈ Znd ; in other words, Znd induces
a regular action on itself defined by ([x], [m]) �→ [x + m].
Such translations form a subgroup of Aut(TLnd ) which is iso-
morphic to Znd . Henceforth, we will identify this subgroup
with Znd by identifying m̂ with [m] so that Znd ≤ Aut(TLnd )

. It is well known [15] that the automorphism group of Znd is
given by

Aut(Znd )
∼= Z

∗
nd

:= {[m] : 0 < m < nd , gcd(m, nd) = 1},
(2)

where Z
∗
nd

is the multiplicative group of units of ring Znd

and gcd means the greatest common divisor. As the auto-
morphism group of Znd , Z

∗
nd

acts on Znd by the usual
multiplication: [x][m] = [xm], [m] ∈ Z

∗
nd

, [x] ∈ Znd . For
any [m] ∈ Znd , we have [m] ∈ Z

∗
nd

⇔ gcd(m, nd) = 1 ⇔
there exist integers k, l such that km+lnd = 1; in this case the
inverse element of [m] in Z

∗
nd

is [k]. The semidirect product
Znd � Z

∗
nd

acts on Znd in such a way that Znd acts by addition
and Z

∗
nd

acts by multiplication. In other words, the action of
Znd � Z

∗
nd

on Znd is defined by

[x]([z],[m]) := [(x + z)m] (3)

for [x] ∈ Znd and ([z], [m]) ∈ Znd � Z
∗
nd

, where [z] ∈ Znd

and [m] ∈ Z
∗
nd

. In the following discussion, we will identify
Znd � Aut(Znd ) with Znd � Z

∗
nd

.
The following results of an algebraic flavour are crucial

to our design of optimal gossiping and routing schemes for
TLnd , to be given in the next section.

Theorem 1. Let d ≥ 2 be an integer. Then the following
hold:

(a) TLnd admits [3d2], [3d + 2] ∈ Aut(Znd ) as complete
rotations;

(b) the subgroup H(d) := 〈[3d2]〉 = {[1], [3d2], [3d2 −
1], [3d2 +3d], [3d +1], [3d +2]} of Aut(Znd ) generated
by [3d2] fixes S(d) setwise;

(c) Znd � H(d) ≤ Aut(TLnd ) is a Frobenius group with
Frobenius kernel Znd , and TLnd is a Znd � H(d)-
Frobenius graph of the first type;

(d) TLnd is Znd � H(d)-arc transitive, and all Znd � H(d)-
Frobenius graphs are isomorphic to TLnd .

Proof. Since (3d + 2)(3d2) − (3d − 1)nd = 1, we
have [3d2] ∈ Aut(Znd ) and the inverse element of [3d2]
in Aut(Znd ) is [3d + 2]. In Aut(Znd ) we have [3d2]2 =
(−[3d + 1])2 = [9d2 + 6d + 1] = [3d2 − 1] = −[3d + 2],
[3d2]3 = (−[3d + 2])(−[3d + 1]) = [9d2 + 9d + 2] =
[3d2 +3d] = −[1], [3d2]4 = (−[1])(−[3d +1]) = [3d +1],
[3d2]5 = [3d+1](−[3d+1]) = −[9d2+6d+1] = [3d+2],
[3d2]6 = [3d + 2](−[3d + 1]) = −[9d2 + 9d + 2] = [1].
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Thus, the subgroup 〈[3d2]〉 of Aut(Znd ) generated by [3d2] is
H(d) = {[1], [3d2], [3d2 −1], [3d2 +3d], [3d +1], [3d +2]}.
Because Aut(Znd ) acts on Znd by multiplication, from the
computation above it follows that H(d) fixes S(d) setwise
and is transitive on S(d). Since |S(d)| = |H(d)|, from the
orbit-stabilizer lemma [4] it follows that H(d) is regular on
S(d). Since H(d) fixes S(d) setwise, by [3, Proposition 16.2]
each element of H(d) preserves the adjacency of TLnd . Thus,
H(d) can be taken as a subgroup of Aut(TLnd ) and hence
Znd � H(d) ≤ Aut(TLnd ).

The computation above also tells us that [3d2] permutes
the elements of S(d) in a cyclic manner. Therefore, [3d2] is a
complete rotation of TLnd . Similarly, [3d + 2] is a complete
rotation of TLnd .

Since (3d + 1)(3d2 − 1) + (−3d + 2)nd = 1, we have
gcd(3d2 − 1, nd) = 1. Similarly, d(3d2 − 2) − (d − 1)nd =
−(d + 1)(3d) + nd = −(3d + 2)(3d + 1) + 3nd = 1 and
hence gcd(3d2 − 2, nd) = gcd(3d, nd) = gcd(3d + 1, nd) =
1. Also, gcd(3d2 + 3d − 1, nd) = 1 as 3d2 + 3d − 1 and
nd are consecutive odd integers. Thus, we have proved that
[m − 1] ∈ Aut(Znd ) for any [m] ∈ H(d) \ {[1]}. Hence,
for any [x] ∈ Znd \ {[0]}, we have [m − 1][x] �= [0], that
is, [m][x] �= [x]. In other words, H(d) is semiregular on
Znd \ {[0]}.

As a subgroup of Znd � Aut(Znd ), Znd � H(d) acts on
Znd as defined by (3). Obviously, this is a transitive action
because Znd is transitive on Znd in its regular action (addition).
Because the order of Znd �H(d) is greater than nd , Znd �H(d)

is not regular on Znd . Suppose that ([z], [m]) ∈ Znd � H(d)

fixes [a], [b] ∈ Znd , where [a] �= [b]. Then [(a + z)m] = [a]
and [(b+z)m] = [b], and hence [(a−b)m] = [a−b], that is,
[m] fixes [a−b] �= [0]. Because H(d) is semiregular on Znd \
{[0]}, it follows that [m] = [1] and hence [a + z] = [a]. Thus
[z] = [0] and only the identity element ([0], [1]) of Znd �

H(d) can fix two distinct elements of Znd . In other words,
Znd � H(d) is a Frobenius group with Frobenius kernel Znd .

The computation at the beginning of this proof shows that
S(d) is the H(d)-orbit containing [3d2]. Also, S(d) generates
Znd because [1] ∈ S(d) and the operation of Znd is addition.
Because |H(d)| = 6 is even, from [5, Theorem 1.4] it fol-
lows that TLnd = Cay(Znd , S(d)) is a Znd � H(d)-Frobenius
graph, and evidently it is of the first type. Moreover, because
the kernel of Znd � H(d) is Znd , by [5, Corollary 3.6] all
Znd � H(d)-Frobenius graphs are isomorphic to TLnd .

Let ([x], [y]) and ([u], [v]) be arcs of TLnd . Then [x −
y], [u − v] ∈ S(d). Because H(d) is transitive on S(d), there
exists [m] ∈ H(d) such that [x − y][m] = [u − v]. Let [z] :=
[vk] − [y], where [k] is the inverse element of [m] in Z

∗
nd

,
so that [(y + z)m] = [vkm] = [v]. Then ([x], [y])([z],[m]) =
([(x+z)m], [(y+z)m]) = ([(y+z)m+(u−v)], [(y+z)m]) =
([u], [v]). Therefore, TLnd is Znd � H(d)-arc transitive. ■

Remark 1.
(a) H(d) and S(d) are identical as sets and H(d) is gen-

erated by a complete rotation. This phenomenon occurs
for another family [17] of circulant graphs with degree
four.

(b) Because [3d2] and [3d +2] are inverse elements of each
other in Aut(Znd ), the fact that both of them are com-
plete rotations of TLnd is not a coincidence. In general,
for any Cayley graph Cay(G, S), if ω ∈ Aut(G) is a com-
plete rotation of Cay(G, S), then ω−1 is also a complete
rotation of Cay(G, S) by [10, Proposition 2.3(v)]. Note
that [3d2] and [3d + 2] are not rotations in the sense of
[7] because they are not inner automorphisms of Znd .

(c) Because TLnd is a Cayley graph on Znd , it is vertex-
transitive [18]. Here we proved the stronger result that
TLnd is actually Znd � H(d)-arc transitive. In fact, this
is a corollary of a general result [19, Lemma 2.1].

(d) In general, the holomorph Znd � Aut(Znd ) may not be
a Frobenius group. For example, for d = 7 we have
n7 = 132. Hence, [14] ∈ Aut(Zn7) and [14][13] = [13].
Thus [14] fixes both [0] and [13], and therefore Znd �

Aut(Znd ) is not a Frobenius group.

Remark 2. For any undirected triple-loop network
TLnd (a, b, c) with order nd and diameter d, by [18, Section
III], we have a = d2α+(2d+1)β+dγ , b = d(d+1)α−dβ+
(d + 1)γ , and c = (d + 1)2α − (d + 1)β − (2d + 1)γ for
some integers α, β, and γ , where numbers are interpreted
as residue classes. From these, it follows that (a, b, c) =
(a, −(3d + 2)a, (3d + 1)a) = ((3d + 1)b, b, −(3d + 2)b) =
(−(3d + 2)c, (3d + 1)c, c). Thus, if at least one of a, b, and
c is coprime to nd, then TLnd (a, b, c) ∼= TLnd and the corre-
sponding [a], [b], or [c] induces an isomorphism from TLnd

to TLnd (a, b, c). Note that a (b, c, respectively) is coprime to
nd if and only if it induces a “loop” (Hamiltonian cycle) of
TLnd (a, b, c). Therefore, up to isomorphism TLnd is the unique
undirected triple-loop network with order nd, diameter d and
at least one “loop.” This result was first proved in Morillo’s
Ph.D. thesis according to [1, Section 2]. Because 1, 3d + 1,
and 3d + 2 are all coprime to nd, TLnd consists [18] of three
“loops.”

3. GOSSIPING AND ROUTING

In this section, we will give optimal gossiping protocols
and routings for TLnd and determine t(TLnd ) and the four
forwarding indices of TLnd by using Theorem 1 and the
approach developed in [19]. To use this approach we need
detailed information about the orbits of H(d) on Znd \ {[0]},
and this will be given in Lemma 2. Here as before H(d) =
{[1], [3d2], [3d2 −1], [3d2 +3d], [3d +1], [3d +2]} denotes
the subgroup of Aut(Znd ) generated by [3d2]. The H(d)-orbit
on Znd \ {[0]} containing a given element [x] ∈ Znd \ {[0]} is
H(d)[x] := {[mx] : [m] ∈ H(d)}. Define

Oi,j := H(d)[(3d + 2)j + (i − j)],
1 ≤ i ≤ d, 0 ≤ j ≤ i − 1. (4)

Given [x] ∈ Znd , for 0 ≤ i ≤ d, let

TLnd ([x], i)

= {[z] ∈ Znd : [z] is at distance i from [x] in TLnd }.
Thus, TLnd ([0], 1) = S(d) = O1,0.
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Lemma 2. Let d ≥ 2 be an integer. Then the following
hold:

(a) For 1 ≤ i ≤ d, TLnd ([0], i) is the union of exactly i
H(d)-orbits Oi,j on Znd \ {[0]}, that is,

TLnd ([0], i) =
i−1⋃

j=0

Oi,j; (5)

(b) for 1 ≤ i ≤ d − 1, 0 ≤ j ≤ i − 1 and 0 ≤ j′ ≤ i,
in TLnd either there is no edge between Oi,j and Oi+1,j′ ,
or there are exactly six edges between them which form
a matching; in the latter case the six arcs from Oi,j to
Oi+1,j′ have different labels.

Proof. Because H(d) ≤ Aut(TLnd ) and H(d) fixes [0],
TLnd ([0], i) is invariant under the action of H(d). Hence,
TLnd ([0], i) is a union of H(d)-orbits on Znd \{[0]}. Because
H(d) has order six and is semiregular on Znd \{[0]} by The-
orem 1, each H(d)-orbit on Znd \{[0]} has length six by the
well known orbit-stabilizer lemma [4].

(a) Consider the H(d)-orbits Oi,j defined in (4) for 1 ≤ i ≤ d
and 0 ≤ j ≤ i − 1. For (i, j) �= (i′, j′), we claim that
Oi,j �= Oi′ ,j′ , or equivalently Oi,j ∩ Oi′ ,j′ = ∅. Suppose
otherwise. Then there exists [m] ∈ H(d) such that

[(3d + 2)j′ + (i′ − j′)] = [(3d + 2)j + (i − j)][m].
(6)

However, for each possibility of [m] one can verify that
this is impossible. For example, if [m] = [3d + 1], then
since [3d + 1][3d + 2] = −[1], (6) becomes [(3d +
1)(i − j − j′) − (i′ + j)] = [0]. Because (3d + 1)(i −
j − j′) − (i′ + j) is between −3d2 and 3d2 + d − 1 for
all possible (i, j) and (i′, j′), the only possibility is that
(3d + 1)(i − j − j′) − (i′ + j) = 0. This implies that
3d +1 is a divisor of i′ + j, which is a contradiction since
1 ≤ i′ + j ≤ 2d − 1. Similarly, one can show that the
other five elements of H(d) do not satisfy (6), and hence
Oi,j �= Oi′ ,j′ for (i, j) �= (i′, j′). Therefore, the H(d)-orbits
Oi,j on Znd \{[0]} are pairwise distinct. Because there are∑d

i=1 i = d(d+1)/2 such orbits each with length 6, they
cover 6(d(d + 1)/2) = 3d2 + 3d elements of Znd \{[0]}
collectively. Because Znd \ {[0]} has exactly 3d2 + 3d
elements, Oi,j (1 ≤ i ≤ d, 0 ≤ j ≤ i − 1) enumerate all
H(d)-orbits on Znd \{[0]}.

The expression [(3d + 2)j + (i − j)] =
j︷ ︸︸ ︷

[3d + 2] + · · · + [3d + 2]+
i−j︷ ︸︸ ︷

[1] + · · · + [1] attains the
minimum length among all expressions of [(3d + 2)j +
(i − j)] as a sum of elements of S(d). Thus, [(3d + 2)j +
(i− j)] ∈ TLnd ([0], i). Because Oi,j is an H(d)-orbit con-
taining [(3d +2)j + (i − j)] and H(d) ≤ Aut(TLnd ) fixes
[0], it follows that Oi,j ⊆ TLnd ([0], i). This together with
the result in the previous paragraph implies (5) for each
i, and consequently TLnd ([0], i) is the union of exactly i
H(d)-orbits on Znd \{[0]}.

(b) Because H(d) ≤ Aut(TLnd ) and Oi,j and Oi+1,j′ are
H(d)-orbits, if there is an edge between them, then in
TLnd each vertex in Oi,j is adjacent to at least one vertex in

Oi+1,j′ . Suppose [x] ∈ Oi,j is adjacent to [y], [z] ∈ Oi+1,j′ .
Because Oi,j and Oi+1,j′ are H(d)-orbits and TLnd is
Znd � H(d)-arc transitive by Theorem 1(d), there exists
[m] ∈ H(d) such that ([x], [y])[m] = ([xm], [ym]) =
([x], [z]). Because H(d) is semiregular on Znd \ {[0]},
the only element of H(d) which fixes [x] is [m] = [1].
Thus, [z] = [ym] = [y] and the edges between Oi,j and
Oi+1,j′ must form a matching of six edges. Moreover,
the six arcs from Oi,j to Oi+1,j′ have labels [(y − x)m]
where [m] ∈ H(d), which are pairwise distinct by the
semiregularity of H(d) on Znd \{[0]}. ■

For a spanning subgraph �w of TLnd with root [w], denote

�w(i)

= {[z] ∈ Znd : [z] is at distance i from [w] in �w}, i ≥ 0.

A spanning tree �w of TLnd with root [w] is called a shortest
path spanning tree if the unique path in�w from [w] to any ver-
tex [x] is a shortest path in TLnd , that is, �w(i) = TLnd ([w], i),
0 ≤ i ≤ d.

The following algorithm, which is based on Lemma 2,
constructs essentially what we need for optimal gossiping
protocols and optimal routings for TLnd .

Algorigthm 1 [Spanning Tree]. This algorithm constructs
a shortest path spanning tree T0 of TLnd with root [0].

i. Starting with T0(0) = {[0]}, add S(d) and the six edges
joining [0] and the elements of S(d) to T0, so that
T0(1) = S(d).

ii. Inductively, suppose that we have constructed T0 up to
level T0(i) for some i, 1 ≤ i ≤ d − 1. For each H(d)-
orbit Oi+1,j ⊆ TLnd ([0], i + 1), 0 ≤ j ≤ i, choose
exactly one H(d)-orbit Oi,j′ ⊆ TLnd ([0], i) such that
there are edges of TLnd between Oi,j′ and Oi+1,j. (The
existence of Oi,j′ is ensured by the obvious fact that in
TLnd each vertex of TLnd ([0], i+1) is adjacent to at least
one vertex of TLnd ([0], i).) By Lemma 2(b), the edges
between Oi,j′ and Oi+1,j form a 6-matching, and we add
Oi+1,j together with these six edges to T0.

iii. Stop if i + 1 = d; otherwise set i := i + 1 and repeat
(ii).

■

Let

A1,0 = {([0], [m]) : [m] ∈ S(d)}. (7)

For 1 ≤ i ≤ d − 1, 0 ≤ j ≤ i, let

Ai+1,j = the set of six arcs from Oi,j′ to Oi+1,j, (8)

where Oi,j′ to Oi+1,j are as in (ii) of Algorithm 1.

Lemma 3. The subgraph T0 constructed in Algorithm 1 is
a shortest path spanning tree of TLnd with root [0], and for
0 ≤ i ≤ d − 1 the set of arcs of T0 from T0(i) to T0(i + 1) is
∪0≤j≤iAi+1,j . Moreover, T0 is the edge-disjoint union of six
mutually isomorphic subtrees T0,m, [m] ∈ H(d), which have
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FIG. 2. Illustration of the H(d)-orbits Oi,j and the branch T0,1 of the “canonical” spanning tree obtained by using
Algorithm 1. The cell with label i is in Oi,0, the next shaded cell is in Oi,1, etc., and the last shaded cell is in Oi,i−1.
These shaded cells comprise one-sixth of the vertices of TLnd ([0], i), and the other ones are obtained from them
by rotations. The other five branches T0,3d+2, T0,3d+1, T0,3d2+3d , T0,3d2−1, and T0,3d2 of this “canonical” spanning
tree are obtained from this branch by rotation anticlockwise by 60◦, 120◦, 180◦, 240◦ and 300◦, respectively.

[0] as the unique common vertex. Furthermore, T0,m can be
obtained from T0,1 by “multiplication,” that is, the vertices of
T0,m are [xm] with [x] running over all vertices of T0,1, and
the edges of T0,m are {[xm], [ym]} with {[x], [y]} running over
all edges of T0,1.

Proof. The statements in the first sentence follow from
Algorithm 1 immediately. This algorithm can be modified
to construct T0,1: initially add the edge {[0], [1]} to T0,1; in
each iteration (ii), by Lemma 2(b) there exists a unique vertex
[y] ∈ Oi+1,j such that [y] is adjacent to a vertex [x] ∈ Oi,j′

which is in T0,1 already, and we add [y] together with the edge
{[x], [y]} to T0,1. Because H(d) is semiregular on Znd \{[0]},
similar to the proof of Lemma 2(b) one can check that the
edges of T0 between Oi,j′ and Oi+1,j are {[xm], [ym]}, where
[m] ∈ H(d). From this, the remaining statements in Lemma
3 follow without difficulty. ■

Remark 3.
(a) From Lemmas 2 and 3, we have

T0(i) =
i−1⋃

j=0

Oi,j , 1 ≤ i ≤ d.

(b) In step (ii) of Algorithm 1, we do not require that in T0

each Oi,j∗ has neighbors in T0(i+1). In the case when this
condition is satisfied, all but one Oi,j∗ have neighbours in
exactly one Oi+1,j , and this exceptional Oi,j∗ must have
neighbors in exactly two orbits Oi+1,j .

(c) By the definition of TLnd , for 1 ≤ i ≤ d−1 and 1 ≤ j ≤ i,
([i], [i+1]) and ([(3d+2)(j−1)+(i−j+1)], (3d+2)j+

(i+1− j)]) are arcs of TLnd . Thus, as an example, in step
(ii) of Algorithm 1 we may choose 0′ = 0 and j′ = j − 1
for 1 ≤ j ≤ i. That is, Oi+1,0 is joined to Oi,0 and Oi+1,j

is joined to Oi,j−1, so that Ai+1,0 = H(d)([i], [i+1]) and
Ai+1,j = H(d)([(3d +2)(j−1)+(i− j+1)], (3d +2)j+
(i + 1 − j)]) for 1 ≤ i ≤ d − 1 and 1 ≤ j ≤ i, where we
define H(d)([x], [y]) := {([xm], [ym]) : [m] ∈ H(d)} for
any arc ([x], [y]) of TLnd . See Figure 2 for an illustration
of the “canonical” spanning tree obtained this way.

(d) The spanning tree T0 obtained by Algorithm 1 is not
unique. For example, instead of A2,0 = H(d)([1], [2])
and A2,1 = H(d)([1], [3d + 3]) as in (c) above,
we may choose A2,0 = H(d)([1], [2]) and A2,1 =
H(d)([1], [3d2 + 1]) at distance two level.

Given [w] ∈ Znd , X ⊆ Znd and A ⊆ Arc(TLnd ), denote

X + [w] := {[x + w] : [x] ∈ X}
A + [w] := {([x + w], [y + w]) : ([x], [y]) ∈ A}.

Let T0 be an arbitrary but fixed spanning tree of TLnd

constructed by using Algorithm 1. Define

T := {Tw : [w] ∈ Znd } (9)

where Tw is the subgraph of TLnd with root [w] which is
obtained from T0 by translation [w], that is, Arc(Tw) =
Arc(T0) + [w] and Tw(i) = T0(i) + [w], 0 ≤ i ≤ d. In
the remainder of this section, we will prove that T gives rise
to an optimal gossiping protocol as well as an optimal routing
for TLnd .
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Algorithm 2 [Gossiping]. The algorithm proceeds in d
phases. In the ith phase, 1 ≤ i ≤ d, the message originat-
ing from [w] is transmitted over Tw from T0(i − 1) + [w] to
T0(i)+[w] for all [w] ∈ Znd . The ith phase consists of i steps.

i. In the single step of the first phase, the message at [w]
is transmitted from [w] to T0(1) + [w] (= S(d) + [w])
along the six arcs of A1,0 + [w], and this is done for all
[w] ∈ Znd simultaneously.

ii. For i = 1, 2, . . . , d − 1 do the following: for j =
0, 1, . . . , i, in the (j + 1)th step of the (i + 1)th phase,
for all [w] ∈ Znd send simultaneously the message with
source [w] from Oi,j′ + [w] to Oi+1,j +[w] along the six
arcs of Ai+1,j + [w], where Oi,j′ and Oi+1,j are as in (ii)
of Algorithm 1.

■

In (ii) above, we treat i = 1, 2, . . . , d − 1 in this order so
that the message originating from [w] reaches level T0(i +
1)+[w] before level T0(i′+1)+[w] whenever i < i′. Clearly,
Algorithm 2 terminates in

∑d
i=1 i = d(d + 1)/2 time steps.

At time t, 1 ≤ t ≤ d(d +1)/2, the set of arcs used to transmit
the message originating from [w] is given by

�t([w]) = Ai+1,j + [w] (10)

where i is the largest integer such that t > i(i + 1)/2, and
j = t − i(i + 1)/2 − 1.

Theorem 4. Let d ≥ 2 be an integer. Then

t(TLnd ) = d(d + 1)

2
.

Moreover, for any shortest path spanning tree T0 of TLnd

constructed by Algorithm 1, Algorithm 2 gives an optimal
gossiping protocol for TLnd such that:

(a) the message originating from any vertex is transmitted
along shortest paths to other vertices;

(b) for each vertex [w] of TLnd , at any time t ≥ 1 precisely six
arcs with different labels are used to transmit the message
originating from [w], and for t ≥ 2 the set �t([w]) of
these six arcs form a matching of TLnd ;

(c) at any time t ≥ 1 each arc of TLnd is used exactly once
for message transmission, that is, {�t([w]) : [w] ∈ Znd }
is a partition of Arc(TLnd ).

Proof. To show that Algorithm 2 gives a gossiping pro-
tocol it suffices to prove that {�t([w]) : [w] ∈ Znd } is a
partition of Arc(TLnd ) for any t ≥ 1, where �t([w]) =
Ai+1,j + [w] as in (10). For t = 1, this is clearly true by
(7) and step (i) of Algorithm 2. Let us then assume t ≥ 2
and fix an arc ([x], [y]) of Ai+1,j, where [x] ∈ Oi,j′ and
[y] ∈ Oi+1,j by the definition of Ai+1,j in (8). Because
TLnd is Znd � H(d)-arc transitive by Theorem 1(d), for any
([u], [v]) ∈ Arc(TLnd ) there exists ([z], [m]) ∈ Znd � H(d),
where [z] ∈ Znd and [m] ∈ H(d), such that ([u], [v]) =
([x], [y])([z],[m]) = ([xm + zm], [ym + zm]). From the defini-
tions of Oi,j′ , Oi+1,j, and Ai+1,j, we know that ([xm], [ym]) ∈

Ai+1,j and hence ([u], [v]) ∈ �t([zm]). In other words, each
arc of TLnd is contained in at least one �t([w]), and hence
|∪[w]∈Znd

�t([w])| = |Arc(TLnd )|. However, because TLnd

has degree six and |�t([w])| = |Ai+1,j| = 6 for all [w] ∈ Znd ,
we have |∪[w]∈Znd

�t([w])| ≤ ∪[w]∈Znd
|�t([w])| = 6nd =

|Arc(TLnd )|. This forces {�t([w]) : [w] ∈ Znd } to be a par-
tition of Arc(TLnd ). Therefore, at any time no two messages
compete for the same arc, and so Algorithm 2 is a gossip-
ing protocol for TLnd . Moreover, at any time each arc is used
exactly once for data transmission. This protocol requires
d(d + 1)/2 time steps. Hence, t(TLnd ) ≤ d(d + 1)/2. How-
ever, nd − 1 messages are to be sent to [0], but at most
six messages can reach [0] at any time. Thus, t(TLnd ) ≥
(nd − 1)/6 = d(d + 1)/2. Therefore, t(TLnd ) = d(d + 1)/2
and Algorithm 2 is an optimal gossiping protocol.

Because T0 is a shortest path spanning tree of TLnd by
Lemma 3, so is Tw and thus by Algorithm 2 the message
originating from any vertex [w] is transmitted along shortest
paths to other vertices. Clearly, the labels of the six arcs of
A1,0 are pairwise distinct, and by Lemma 2(b), for i ≥ 1 the
labels of the arcs of Ai+1,j are pairwise distinct as well. In
view of (10), this implies that the six arcs in �t([w]) carrying
the message with source [w] have different labels for any
t ≥ 1. From this and Lemma 2(b), the statements in (b)
follow immediately. ■

Remark 4.
(a) Because the spanning tree T0 produced by Algorithm 1

is not unique, we may obtain many optimal gossiping
protocols for TLnd by using Algorithms 1–2.

(b) In view of (10), the optimal gossiping protocols given in
Algorithm 2 are symmetric; that is, at any time the six
arcs carrying the message with source [w] are obtained
from those carrying the message with source [0] by
translation. In other words, such an optimal gossiping
protocol is obtained by using a broadcasting protocol at
vertex [0].

(c) The proof of Theorem 4 shows that the minimum gossip
time of TLnd attains the trivial lower bound t(TLnd ) ≥
(nd − 1)/6, which itself is a specification of a general
lower bound [2, Proposition 7]: t(�) ≥ �(n − 1)/δ�
for any connected graph � with order n and minimum
degree δ.

Now let us move on to routings in TLnd . A routing P of a
graph � is said to be edge-uniform (arc-uniform) if it loads
all edges (arcs) uniformly. Call P a G-arc transitive routing
[14], where G ≤ Aut(�), if G is transitive on Arc(�) and
leaves P invariant (that is, for any g ∈ G the image of any
path in P remains in P). It is known [11, Theorem 3.2] that

πm(�) ≥ π(�) ≥
∑

(u,v)∈V×V d(u, v)

|E(�)| (11)

and the equalities hold if and only if� admits an edge-uniform
shortest path routing. Similarly,

�πm(�) ≥ �π(�) ≥
∑

(u,v)∈V×V d(u, v)

2|E(�)| (12)
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FIG. 3. Illustration of Algorithm 2 by using the “canonical” spanning tree shown in Figure 2. Arrows indicate
the direction of data transmission. The figure shows the routing tree T0 only. The vertices in levels 1–3 are
O1,0 = {1, −1, 3d + 1, −(3d + 1), 3d + 2, −(3d + 2)}, O2,0 = {2, −2, 6d + 2, −(6d + 2), 6d + 4, −(6d + 4)},
O2,1 = {3d + 3, −(3d + 3), 3d, −3d, 6d + 3, −(6d + 3)}, O3,0 = {3, −3, 9d + 3, −(9d + 3), 9d + 6, −(9d + 6)},
O3,1 = {3d +4, −(3d +4), 6d +1, −(6d +1), 9d +5, −(9d +5)}, and O3,2 = {6d +5, −(6d +5), 3d −1, −(3d −
1), 9d + 4, −(9d + 4)}, respectively.

with equalities precisely when � admits an arc-uniform
shortest path routing. The following theorem shows that the
forwarding indices of TLnd attain these lower bounds and,
moreover, we can construct optimal routings explicitly.

Theorem 5. Let d ≥ 2 be an integer. Then

π(TLnd ) = 2�π(TLnd ) = 2�πm(TLnd ) = πm(TLnd )

= d(d + 1)(2d + 1)

3
. (13)

Moreover, for any shortest path spanning tree T0 of TLnd

constructed by Algorithm 1, let P be the routing of TLnd such
that for any [w], [x] ∈ Znd the path from [w] to [x] is chosen
to be the unique path in Tw from [w] to [x]. Then P is

(a) a shortest path routing;
(b) Znd � H(d)-arc transitive;
(c) both edge-uniform and arc-uniform; and
(d) optimal for π , �π , �πm, and πm simultaneously.

Proof. Because by Lemma 3, Tw is a shortest path span-
ning tree of TLnd for all [w] ∈ Znd , P is a shortest path routing.
From the construction of T0 in Algorithm 1, one can check
that T0 is invariant under H(d), that is, the image of T0 under
any [m] ∈ H(d) is T0 itself. From this and (9), it follows
that Znd � H(d) leaves T and hence P invariant. Because
Znd � H(d) is transitive on Arc(TLnd ) (Theorem 1(d)), it

follows that P is a Znd � H(d)-arc transitive routing. This in
turn implies that P is arc-uniform and hence edge-uniform
as well. Thus, all equalities in (11)–(12) hold for � = TLnd

and P is optimal with respect to all four indices. Because
by Lemmas 2–3, there are exactly 6i vertices at distance i
from [0] in T0, 1 ≤ i ≤ d, and because each Tw is a trans-
lation of T0, under P the load of each edge of TLnd is equal
to (nd

∑d
i=1 6i2)/3nd = d(d + 1)(2d + 1)/3, and hence (13)

follows. ■

Remark 5.
(a) Again, because the spanning tree T0 is not unique, we

can obtain many optimal routings for TLnd . See Figure 3
for the routing based on the “canonical” T0 given in
Remark 3(c).

(b) Because each Tw is a translation of T0, all such optimal
routings are symmetric in the sense that, for any vertices
[w] and [x], the route from [w] to [x] is obtained through
translation of the route from [0] to [x − w] by [w].

4. CONCLUDING REMARKS

As mentioned earlier, TLnd attains the maximum order
among all undirected triple-loop networks TLn(a, b, −(a+b))

of a given diameter d ≥ 2. In this article, we proved that
TLnd admits “perfect” gossiping and routing schemes which
achieve the minimum possible edge-forwarding index and
gossip time, respectively, and exhibit other very attractive
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features. Moreover, we found a systematic way of construct-
ing such schemes explicitly by constructing a routing tree for
TLnd which worked for both gossiping and routing problems.
By choosing different routing trees, we can obtain differ-
ent “perfect” gossiping and routing schemes. (However, we
do not know whether all “perfect” gossiping and routing
schemes can be obtained by using this method.) All these
results were obtained by a group-theoretic method, which is
an innovative approach to studying triple-loop networks. The
results suggest that TLnd is a very strong candidate for inter-
connection networks, because not only is it optimal in the
degree-diameter sense but also it is optimal for both gossip-
ing and routing problems. This article considered only the
gossiping problem under the store-and-forward, all-port, and
full-duplex model. It would be interesting to study the gos-
siping problem for TLnd under other communication models.
For this purpose, it is speculated that the algebraic properties
of TLnd produced in Section 2 could be useful.

The Wiener index of a graph is the sum of the distances
between all unordered pairs of vertices. With motivation from
chemistry, this index has attracted considerable interest in
chemical graph theory over sixty years. As a by-product, we
obtain from Theorem 5 that the Wiener index of TLnd is equal
to d(d + 1)(2d + 1)(3d2 + 3d + 1)/2 for any d ≥ 2.
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