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ABSTRACT

In |10| the authors proved upper bounds for the arc-congestion and wave-
length number of any permutation demand on a bidirected ring. In this note,
we give generalizations of their results in two directions. The first one is that
instead of considering only permutation demands we consider any balanced
demand, and the second one is that instezul of the ring network we consider
any Hamilton decomposable network.

Thus, we obtain upper bounds (which are best possible in general) for the
arc-congestion and wavelength number of any balanced demand on a Hamilton
decomposable network. As a special case, we obtain upper bounds on arc- and
edge-forwarding indices of Hamilton decomposable networks that are in many
caises better than the known ones.

Keywords: routing; arc-congestion; wavelength aissignment; balanced de-
mand; Hamilton decomposable graph

1 Introduction

Routing communication demands is one of the fundamental problems in the area
of networking. One of the most recognized recent applications of the problem is
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in the area of opticcd networking [1]. An all-opticaJ network is usually modelled as
an undirected graph G = {V{G),E{G)) where nodes represent processors, memory
modules or routers, and edges represent bidirectional communication links. An arc
of G is an ordered pair of adjacent nodes. Informally, we can think of an arc as
being an edge endowed with a direction. An ordered pair («, v) of distinct nodes
of G (adjacent or not) will be Ccilled a request, any set of requests will form a
demand. It will be advantageous to consider a demand D as a loop-less directed
graph with node set V(G) and arc set D by identifying each request {u,v) with
the arc from u to v. Let P{u, v) denote a directed path in G from u to r. A set
R := {P{u,v): {u,v) € D} is called a routing foi {G,D).

Let "#(G, D, R) denote the maximum load on arcs, that is, the maximum number
of times an arc of G appears in directed paths of R. Then

lt{G,D) :=mmlt{G,D,R)

is the arc-congestion of (G, D). Instead of arcs one may consider edges by defining
the load of an edge to be the number of directed paths in R traversing the edge in
either direction. The edge-congestion n{G, D) is then introduced analogously. In
the special case where D is the all-to-all demand, D = {{u,v): u,v €. V{G), u^ v},
the edge-congestion 7r(G, D) is the edge-forwarding index of G, which has received
considerable attention [6,7,8].

In the case of an optical network G there is another key parameter to measure
the efficiency of routing R. It is the smallest number # ( G , D,i?) of wavelengths
needed to assign to the directed paths of R so that no two paths that share an
arc receive the same wavelength. The wavelength routing problem [1,2] is to design
a routing R for {G,D) and an assignment of wavelengths so that i^{G,D,R) is
minimized. We define the wavelength number of (G, D) as

ld{G,D) :=min#(G,£) , i?) .

Besides the all-to-all demainds another important class of demands cire the per-
mutation demands / in which the numbers of requests sent from and directed to
ejich node are the same Jind equzil to either 0 or 1. In [12] it is proved that for a
permutation demand / on ring Gn, the arc-congestion lt{Cn,I) is bounded above
by [0/4], and in [10] it is shown that [̂ n/3] wavelengths are always sufficient to
route / . Moreover, both bounds are sharp. More results on permutation demeinds
c£in be found in [9,11].

A demand D is called balanced if, for each node u, the number of requests with
source u is equjil to the number of requests with destination u. In other words, D is
balanced if the out-degree p'^ (u) and in-degree p~ (u) of each node u in the directed
graph representing D are the same. Hence / is a special case of a balanced demand.
Furthermore, the fc-relations (demamds in which each node u appears k times as a
source and fc times as a destination of some requests) are special balanced demands.

A network G is called Hamilton decomposable if it is regular of degree, say, A
and if its edge set c£in be partitioned into Hamilton cycles when A is even, or into
Heimilton cycles and one perfect matching when A is odd.
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In tbis note we present a simple generalization of upper bounds on 'Tt{Cn, I) and
/ ) from [10,12] to upper bounds on arc-congestion and wavelength number

of any balanced demand on Hamilton decomposable network. As a special case we
obtain upper bounds for the arc- and edge-forwarding indices of Hamilton decom-
posable graphs which represent a significant improvements of certain conjectured
bounds in this particular case. Note that a number of important demands, includ-
ing permutation and all-to-all demands, are balanced, and a number of networks
currently being in use, including rings, hypercubes, butterflies, etc., are Hamilton
decomposable [5].

2 Arc-congestion for balanced demands

For general terminology on graphs and directed graphs we refer to [4]. A trail in
a directed graph X> is an alternating sequence uo,ei,ui,e2,U2,.. . ,Ufc-i,efci"it of
nodes Ui and arcs ej such that the axes are distinct and ê  is the arc from Wi_i to
Ui for each i; the trail is a circuit of length A; -(-1 if the nodes uo and u* coincide.
A circuit traversing all arcs of D is called an Euler circuit The directed graph D
is said to be Eulerian if each of its connected components has an Euler circuit. It
is well-known tbat D is Eulerian if and only if each node has in-degree equal to its
out-degree. It follows that a demand D is balanced if and only if it is Eulerian as
a directed graph.

We begin by proving an upper bound on arc-congestion for any balanced demand
on rings (cycles). Our proof is an extension of the technique used in the proof of
[10].
Theorem 1 For any balanced demand D on a cycle Gn we have

(1)

Moreover, the bound is best possible for worst-case demands.

Proof. Since D is balainced, it can be decomposed into circuits Ai,...,Ap, each
of which is an Eulericin circuit of a connected component of D. We will use the
sjime notation Aj for arc sets of these circuits. For each arc {u,v) of D, let d{u,v)
denote the clockwise distance in Gn from u to v, that is, the length of the path of Gn
from u to u in the clockwise direction. Let d{Aj) := J^,^ v)eA- ^{'"•^^)/\-^j\ ^^^ ^^^^
j = 1 , . . . ,p. Without loss of generality we may suppose that d{Ai) > ...> d{Ap).
Since Aj is a circuit, one can see that n is a divisor of ^ , v)eA- d{u,v). Therefore,
n is a divisor of E(«,«)6D <^("''') since T,(u,v)€Ddiu,v) = J^^^^i E(«,»)e/ij <^(«.'')-
Let r be the integer for which Y1(U,V)€D ^("> ̂ ) — "'"• We define a lineEir order of
the arcs of D by choosing the initial arc ej in each Aj and stipulating that

(i) {u,v) -< {x,y) for any {u,v) G 4̂; and {x,y) 6 Aj with i < j , and

(ii) (u,u) -< iu',v') for two arcs {u,v),{u',v') within the S£ime Aj if and only if
(u,u) precedes {u',v') in the natural linear order of Aj given by choosing ej
as the first arc.
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Let X denote the set of the first r arcs of D in the order -<. Set

{n - d{u,v)) and d2 :- ^ d{u,v).

Then
di-d2=n\X\- ^ d{u,v)=nr-nr = O. (2)

Let At be tbe first circuit in the sequence Ai,.. .,Ap which contains an arc not in
X. Suppose that X contains s arcs of At, so that r = 53*1^ |.4j| -f s. We now
specify the linear order on D by choosing the initial arc et G At in such a way that

(3)

(This is always possible, since for any cyclic sequence B of, say, m real numbers
with average b and for any s < m there is a subsequence of B of length s whose
average is at least 6.) From this and our assumption on how the d{Aj) bave been
ordered we have

{n - d{u,v)) = nr -

t - 1

{u,v)€XnAt

t-1

'^\Aj\d{At)-sd{At) = {n~d{At))r. (4)
3=1

By the s£ime token we derive an inequality for d2:

(u,t;)6Z)\X

= l\At\d{At)- Y W
J j=t+i

< i\At\d{At)-sd{At))-^
j=t+i

(5)

Combining (2) with (4) and (5) we obtain |D|di = {\D\ - r)di + rd2 < {\D\ -
r)(n - d{At))r + {\D\ - r)d{At)r = n{\D\ - r)r < (n|D|2)/4; therefore di = dz <
n\D\/4.
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Now we consider tbe routing in which requests corresponding to the arcs in X
and in Z}\X are routed anti-clockwise cind clockwise, respectively, on Gn. Then the
total length ofthe anti-clockwise (clockwise) routes is di (d2). Moreover, congestions
of the Eircs of Cn in one direction (clockwise or anti-clockwise) differ by at most one,
the possible difference being caused by the arcs of At. Summing up, we bave

as required. To see that equality may occur in this bound one can take the same
example as in [10]. D

In tbe special case when D is a permutation demEind we have \D\ = n. For such
D, (1) becomes l^iGn, D) < \n/4t\, which is one of the main results of [10].

If G is Hamilton decomposable, then its nodes have the same degree, say, A.
Note that A = 2 occurs if and only if G is a cycle, and this case has been treated
by Theorem 1. We now prove an upper bound in the general case A > 2.
Theorem 2 Let G be a Hamilton decomposable graph with degree A > 2. Let D be
a balanced demand on G, and set t := [•|£>|/[A/2J]. Then

(6)
I 4

Proof. We decomposed D into Euler circuits Ai,A2,...,Ap. Let -< denote the
linear order of the arcs of D used in the proof of Theorem 1. Set 8 = [A/2J, so that
i = flDI/rJ] 2ind hence Sl > \D\. With respect to the order -<, we partition the arcs
of D into 6 parts Di,D2,...,Ds in the following way: £>i contains the first I arcs,
D2 contains the next I arcs, and so on, and finally Ds contains eill the remaining
arcs of D. Thus \Dj\ = £ for j = 1,2,... ,<J - 1 and \Ds\ = |I>| - (S - 1)1 < L
We regard each Dj as a demand on G. By definition, we may suppose that Dj =
A'r U Ar+\ U. . . U Aa-i U AJ for some integers r, s with 1 < r < s < p, where AJ. (A,,
respectively) is either the entire A^ (A,, respectively) or a segment (and hence an
open trail) of Ar (A,, respectively). If AJ. i^ Ar, then we add to Dj the arc from
the terminal node of AJ. to the initial node of AJ.; and similarly if A', i^ As, then we
add to Dj the arc from the terminal node of AJ, to the initial node of A,. This way
we obtain a balainced demand Lj such that Dj C Lj and \Lj\ = \Dj\ + ij < £ -t- 2,
where tj := |{t : t — r, s, AJ -^ Ai}|. (Note that t\<\ and <« < 1 in general, and
<i = 0 in the case where A = 2.) Set L :- \fj=\ Lj. Then D C L, which implies
that ^{G,D)<-t{G,L).

The graph G contJiins S edge-disjoint Hamilton cycles, say Gi ,G2 , . . . ,Gi. For
each j = 1,2,...,(5 we define a routing Rj for Lj on the cycle Gj in the way
described in the penultimate p^agraph of the proof of Theorem 1. The union of
all such routings Rj constitutes a routing R for the instance {G,L). Since each Lj
is balanced, by Theorem 1 the arc-congestion of the routing Rj is at most [|Lj|/4],
wbich in turn is at most \{l + 2)/4]. Note that Rj uses only edges of Gj. It follows
that if (G, L, R) < \{l -I- 2)/4l, which implies •^(G, L) < \{t. -I- 2)/4"l. This together
with •#(G, £>) < lt{G,L) gives the required bound (6). D
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3 Wavelength number

Now let us focus on the number of wavelengths required to route a balanced demand.
We start witb tbe following theorem for the ring Cn, which is a generalisation of [10]
. Unlike the proof of [10] , we will not employ induction on n in our proof. Instead,
we will give an explicit construction of a routing and a wavelength assignment.
Theorem 3 For any balanced demand D on cycle Gn, we have

(7)

Moreover, there are balanced demands for which this upper bound is exact.

Proof. Since D is balanced, it can be decomposed into circuits Ai, A2 , . . . , Ap,
each being an Euler circuit of a connected component of D. Set d = \D\, the
number of requests in D. Then d = 53j=i l-^il ^ 2, and it is easy to show that
«^(Cn,D) = 1 < ld/3] for d = 2,3,4. So we assume d > 5 in the following.

Let c be the number of circuits Aj of length 3; let Ai, A2, . . . , Ac be the list of
such circuits. For 1 < j < c we route the three requests of Aj on Cn along the same
direction, with the same wavelength assigned to each request. Of course, for distinct
circuits of length 3 we use distinct wavelengths, giving a totad of c wavelengths so
far. If c = p, then all requests have been routed with c wavelengths and so (7)
holds. It remains to consider the case when c <p.

For each j sucb that c + 1 < j < p we group the requests in the circuit Aj (whose
length is at least 4) into consecutive pairs as follows. Let Aj = (ui,U2j • • • 1 w<,Ui),
I = \Aj\. Then we create [^/2J consecutive peiirs of the form (ui, 1*2), ("2,^3);
(u3,U4), (04,115); .. .; if I is odd and at least 5, then one request of Aj will be left
unpaired. Denote by m the number of such odd-length circuits among Ac.fi ,...,Ap.
Then d - 3c > 5m, d - 3c - m is even, and we obtEiin a total of (d — 3c — m)/2 pairs
of requests. One can check that

In fact, this is true when m > 2 since in this case (d - 3c - m)/2 > (d - 3c — (d —
3c)/5)/2 = 2(d - 3c)/5 > \{d - 3c)/3l. If m = 1, then d - 3c is odd and at least
5; and if m = 0, then d - 3c > 4(p - c) > 4 and d - 3c is even; in both cases (8)
is true as well. So one cam always choose rd/3] - c of the above pairs of requests.
Note that the number of remcdning requests is m-t-2((d-3c—m)/2—f(d — 3c)/3]),
wbich is at most (d - 3c)/3. So we can route each chosen pair of requests together
with at most one of the unchosen requests in such a way that the requests in the
chosen pairs are routed along the sjime direction so that no overlap occurs, and
that the unchosen request is routed along the opposite direction on Gn. This way
we can always assign the same wavelength to the three directed paths (or to two
in the case when no unchosen request is involved) without creating a confiict. So
fd/3] - c wavelengths would be enough for all requests in Ac+i , . . . , Ap. Recall that
for circuits of length 3 we used c wavelengths. Therefore, r'^/3] wavelengths are
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sufficient for all requests in D, and the proof of (7) is complete. That the equality
in (7) occurs for some permutation demands was shown in [10]. •

Based on Theorem 3, and using the metbod of routing in the proof of Theorem
2, we can prove the following upper bound for 1^{G,D) for balanced demands D
on general Hamilton decomposable networks G of degree at least three. We omit
the proof since it is similar to that of Theorem 2.

Theorem 4 Let G be a Hamilton decomposable graph with degree A > 2. Let D be
a balanced demand on G, and set (. = ["|I>|/[A/2J]. Then

(9)

4 Consequences and remarks

Consider now the all-to-all demand A := {{u,v) : u,v e V{G), u / v). Then
•#(G) := •#(G, A) is the arc-forwarding index oiG in terms of [8]. For the discussion
that follows we will regard our (undirected) graph G as a symmetric directed graph
with arc set {{u,v),{v,u) : {u,v} € E{G)}. In [8] it was conjectured that, if
a directed (not necessarily symmetric) graph G is strongly A;-connected, of order
n > 3fc > 3, then •#(G) < [(n^ - n)/k] - 2n + fc + 2. In the same paper the
conjecture was verified for fc = 1 and it was suggested that the fc-connectivity
assumption could perhaps be replaced by fc-arc-connectivity. Since A is a balanced
demand, as consequence of Theorems 1 and 2 we have the following related result
for symmetric directed graphs G.

Corollary 1 For any Hamilton decomposable graph G with order n and degree
A>2, we have

The reader is invited to check that this bound is in many cases much better
than the bound conjectured in [8], especially for large n.

Next we turn to edge-forwarding index 7r(G) := n{G, A) where A is the all-to-all
demand. It was conjectured in [6] and verified in [3] that 7r(G) < [n^/4] for any
2-edge connected graph of order n. This result can be improved significantly for
Heimilton decomposable networks G of degree A > 4, as shown in our next corollary.
Since n{G) < 2't{G) and 2\b] < [26] + 1 for any real number b, from Corollary 1
we obteiin the following result.

Corollary 2 For any Hamilton decomposable graph G of order n and degree A > 2,
we have

Observe that in the special case where A = 2 or 3 this bound is weaker than
the known bound [n^/4j.
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For any instance (G,£>), set

wbere p'^iu) and p~{u) are the in- and the out-degree of a vertex u. Clecirly, D
is balanced if and only if p{D) = 0. If D is not balanced, then one can always
add p{D) requests to D, each from a node u with p"'"(u) < p~{u) to a node v with
p'^{v) > p~{v), in such a way that the resulting demand L is balanced on G. In
other words, any non-bzilanced demand D can be augmented to a balanced demand
L. Note that L may have repeated requests (parallel circs) even if D does not. For
an easy example, consider a triangle G with nodes u,v and w and the demand D
consisting of arcs {(u, v), {v, w), {u, w)}. Nevertheless, it can be easily checked that
the obvious inequalities 'f{G,D) < 'i{G,L) and t^{G,D) < ut(G,L) for Z? C L
apply to demands with repeated requests as well. Hence, results from the previous
sections automatically cjirry over as follows.

Corollary 3 Let G be a Hamilton decomposable graph with degree A > 2, and D
any demand on G. Then

^ ^ ^ ' and #(G,D)< I^Hr^l (10)
I 4

where i=\{\D\ + p{D))l[AI2\-\.
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