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Dynamic Domination in Fuzzy Causal Networks
Jian Ying Zhang, Zhi-Qiang Liu, and Sanming Zhou

Abstract—This paper presents a dynamic domination theory for
fuzzy causal networks (FCN). There are three major contributions.
First, we propose a new inference procedure based on dominating
sets. Second, we introduce the concepts of dynamic and minimal
dynamic dominating sets (DDS and MDDS) in an FCN. To reflect
changes of dominance with time, we also introduce the concept
of a dynamic dominating process (DDP) that has significant im-
plications in many real-world problems. We pay a special atten-
tion to the minimal dynamic dominating process (MDDP) and de-
velop rules for generating DDP and MDDP. Third, we investigate
dynamic dominating sets with extended feedback, which we call
effective dynamic dominating sets (EDDS), and related effective
dynamic dominating process (EDDP). This study unveils a very im-
portant phenomenon in FCN: At any time , either an EDDS exists
or there is a dramatic change of the states of vertices. In the latter
case we also identify the special structure of the sub-FCN induced
by active vertices.

Index Terms—Domination, dynamic system, fuzzy causal net-
work (FCN), fuzzy cognitive map, intelligent system.

I. INTRODUCTION

FUZZY causal networks (FCNs) can be used for decision
support based on the principle of causal discovery in the

presence of uncertainty and incomplete information [12], [14],
[19], [20]. An FCN has two internal features that are very useful
in modeling real-world problems. First, the dynamic behaviors
of an FCN depend on the vertex states that vary with time, where
each vertex stands for a concept with a fuzzy event or prop-
erty described by words or phrases such as young, tall, goals
of a project, high revenue, and so on. The associated vertex
state value specifies the fuzzy event occurring to some degree
at some discrete times [10]. Such fuzzy direct graphs can be re-
garded as a dynamic network. When some vertices receive a se-
ries of external stimuli [14], [15], [17], the vertex states of such
a dynamic network are updated until a final equilibrium stable
state is reached [7], [8]. Furthermore, the feedback mechanism
in FCN enables the system to adjust (adapt) itself in response
to the changing environment and to the information about the
given goals and actual outcomes [17], [18].
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One of the major topics in the study of FCN is to understand
FCN’s dynamic properties and causal inference process. The
study of dynamics of FCNs was evolved from that of fuzzy cog-
nitive maps (FCM) [7]. For example, Miao and Liu [15], [16]
proposed a theory of dynamic cognitive networks (DCN) based
on FCM, where each vertex in a DCN can have its own value,
depending on how precise it needs to be described in the net-
works. More recently, in their preliminary investigation, Liu and
Zhang proposed a dynamic causal algebra for analysing FCNs
in general [13].

In many systems, major changes are often caused by some
“dominant” factors. For instance, the Internet and mobile
communication systems have contributed significantly to our
life styles in this digital era. The dominant factors that have
caused such changes are the fast micro processors, high-speed
communication lines, and the Internet infrastructure. Also,
for example, scientists found significant ozone depletion.
Although there may be other factors that may cause ozone
depletion, scientists have identified a group of substances that
causes the most damage to the ozone layer, which include
CFCs, HydroCFCs (HCFCs), halons, methyl bromide, carbon
tetrachloride, and methyl chloroform that were used widely as
refrigerants, insulating foams, and solvents. This has enabled
international environmental bodies to establish laws to ban the
use of such substances which in turn helped slow down the
rate of depletion and even possibly restore the ozone layer. For
many real-world problems, identifying the dominant factors
(players) will enable us to effectively design and analyze large
inference of decision-making systems.

An FCN in most applications involves a large number of con-
cepts that are interconnected as a directed graph [13]. In addi-
tion, being a causal inference system, FCN has to operate in a
dynamic environment. As a result, dominant factors, which we
call dynamic dominating sets, may change frequently. There-
fore, we must answer the following basic questions.

a) For an arbitrary FCN, how do we measure accurately the
strength of dominance of a dynamic dominating set at
time

b) How do dynamic dominating sets evolve with time
What can we say about the transition of dominance from

to
c) When will a dynamic dominating set have extended feed-

back? What will happen if such a set does not exist?

In this paper, we will develop a dynamic domination theory for
FCN and answer in particular the aforementioned questions.
The major contributions of the paper are as follows.

First, in Section III, we propose a new inference procedure,
which is achieved by setting the vertices in a dominating set
of the FCN active as the initial condition. As we will see, this
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inference procedure allows us to measure more effectively the
impact of the initial condition on the operation of .

Second, to understand better the dynamics of we introduce
in Section IV the concepts of dynamic and minimal dynamic
dominating sets (DDS and MDDS) of for . We will
present an algorithm to generate such dominating sets and define
their dominating strengths. In real-world applications a DDS
or an MDDS can be interpreted as a group of key factors that
collectively plays a dominating role in the inference of at .
This dominance changes with time , just as the change of major
players in the stock market. To reflect this dynamic nature, we
introduce the concept of a dynamic dominating process (DDP):

, which mimics many real-world scenarios.
Its starting point (at ) is the dominating set that was
used to set initial condition. At , is a DDS of . When

is a minimal dominating set of and is an MDDS of for
, the DDP above is called a minimal dynamic dominating

process (MDDP). We will pay a particular attention to MDDP
and present a few rules for generating DDP and MDDP.

The third major contribution of this paper is the recognition
and study of an important and interesting phenomenon which
we call revolution. This is unveiled in our study of the effec-
tive dynamic dominating set (EDDS) and the effective dynamic
dominating process (EDDP), where by an EDDS we mean a
DDS with extended feedback. The phenomenon tells us that, at

, either an EDDS exists in the FCN or the states of
vertices undergo a dramatic change that suddenly makes all the
active dominating vertices inactive at the next time . In other
words, the currently active key factors may all be driven out of
the club of major players in the next round. When this revolu-
tionary change happens, we identify the special structure of the
sub-FCN induced by the active vertices at .

In Section VI we will conduct simulations to demonstrate the
proposed inference procedure and its advantages over the tradi-
tional inference procedure.

II. CONCEPTS AND NOTATIONS

A. FCNs

An FCN is a dynamic system whose topological structure is
a directed graph , where is the set of vertices and

the set of directed arcs of . In the following we will use
to denote the number of vertices of . (In general, for

any finite set , denotes the size of , that is, the number
of elements of .) Each vertex of represents a concept whose
state varies with (discrete) time, and each arc indicates a causal
relationship from the tail to the head of the arc. Thus, associ-
ated with is the vertex state space whose elements are the

-dimensional vectors of

where is the value of the state of vertex at time
, which can be continuous or discrete.

For example, in the binary case the state for
each , and is in the binary state space . For
both continuous and discrete cases, if , then the vertex

is said to be active at ; and if then is said to be
inactive at . Thus, according to the state values the set of

vertices of is partitioned into two subsets: active and inactive.
We will use to denote the subset of active vertices

is active at (1)

As usual we assume throughout the paper that contains no
loops and multiple arcs, where a loop is an arc from a vertex to
itself and multiple arcs are distinct arcs with the same initial and
terminal vertices. Also associated with is its weight function

which specifies the weight of each ordered pair . As
usual we will assume throughout that all the weights

. The weight function defines uniquely the weight
matrix

of (also called adjacency matrix in the literature). Note that
we define if is not an arc of , which means
that the vertex has no influence on at any . In particular,
since we assume the loop is not an arc of for any vertex

, we have . We will adopt the usual convention1

that, if is an arc of , then the weight and may
influence . The strength of such an influence at time is

(2)

Thus, we have the strength matrix

of at time . Note that if or the state
value (which indicates that is inactive at time ). In
particular, since for each , the diagonal entries
of the strength matrix are all equal to 0. In view of (2), we
have the following linear relationship between the vertex states

, the weight matrix and the strength matrix at
time :

where is the (diagonal) matrix with
as the diagonal entries and all other entries being 0, and

the dot means matrix product.
The dynamics of is as follows. First, an initial condition

is set at , where is an -di-
mensional vector in . which specifies the initial state of
and the initial set

of active vertices. At each vertex receives a number of inputs
(stimuli) from other vertices. The total input received by is
given by

(3)

1This has been used in the literature but not stated explicitly. As a matter of
fact, if w = 0 holds for some arcs (u; v) of , we may simply delete all
such arcs from to get a new FCN. The study of is equivalent to the study
of this new FCN, as they have the same dynamics and inference. So assuming
w 6= 0 for all arcs (u; v) will not sacrifice generality.
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Note that, by (2) and the definition of weights , those ver-
tices which are either inactive at or have no arc to contribute
nothing to the sum (3). In the following, we will denote:

and call it the input vector of at . In view of (2) and (3), we
have

The state transition is governed by functions, one for each
. The function for transforms the input received

by at into the next state of :

(4)

or, equivalently

where is the set of real numbers. Define to
be the vector function acting coordinate-wise, that is,

for any . Then, we have

(5)

By this formula, once the initial condition, ,
has been set, the state of at any time can be determined
recursively.

Different state transition functions have been proposed in
the literature. For example, in [10] Kosko suggested the use of
bounded signal functions relating to a given threshold ,
which applies to the case of continuous states. In the case of
binary states, the function is usually chosen [17], [20] to be
a threshold function.

In our discussions, the vertices of are sometimes indexed
as . In this case, we simply write , ,

, , , etc., in place of , , , ,
, etc., respectively. Thus

and so on.

B. Neighborhood and Domination

In this section, we discuss the topological aspects of an FCN
. For this purpose, we may simply consider as

a directed graph, since no dynamics of will be involved at
this stage. A directed path of with length is a sequence

of distinct vertices such that is
an arc of for . If in this sequence
and are pairwise distinct, then the sequence de-
fines a directed cycle of with length .
Note that a directed cycle of length 2, which is allowed in the
FCN, consists of two arcs incident with the same pair of ver-
tices but with opposite directions. We use to denote a
directed path of from to .

For any vertex , we define

and call them the in-neighborhood and out-neighborhood of
in . The sizes of them, namely

are called the in-degree and out-degree of in , respectively.
The vertices in are called the in-neighbors of in and
those in are out-neighbors of in . Denote by

the sets of arcs of coming to and leaving from , respectively.
In general, for any subset of , we define

there exists

such that

there exists

such that

and call them the in-neighborhood and out-neighborhood of ,
respectively. Let

be the set of arcs of from to , and the set of arcs of
from to , respectively. Note that in the case where

is a singleton we have ,
, and . For any ,

from the above we have

With the notation above, we give the following definition,
which is crucial to our subsequent discussions.

Definition 2.1: Let be an FCN. A subset of
is called a dominating set of if , in other

words, for any there exists at least one such
that is an arc of . A dominating set of is called a
minimal dominating set of if, for any , is not
a dominating set of .
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The counterpart concept of domination for undirected graphs
has been studied extensively in the past two decades by re-
searchers in computer science and mathematics [2], [5], [21].
One of the major concerns so far for both directed and undi-
rected cases is to find dominating sets of minimum size. Such
dominating sets are called minimum dominating sets, and the
size of them is called the domination number of the (directed or
undirected) graph, denoted by . A minimum dominating set is
always a minimal dominating set, but the converse is generally
not true. It has been shown that the problem for determining the
domination number is NP-complete (see [3] for definition) in
both undirected and directed cases [1], [5]. Any FCN has at
least one dominating set—the vertex set itself is a dominating
set—and by deleting “redundant” vertices in a dominating set
we can obtain a minimal dominating set. Usually, an FCN may
contain more than one dominating sets and minimal dominating
sets. For relatively few results on domination in directed graphs,
the interested reader is referred to the survey paper [4].

III. NEW INFERENCE PROCEDURE

When using FCN to model real-world applications, we usu-
ally have to estimate the impact of the initial condition on the
whole FCN in decision support or causal discovery. The impact
comes into being through an inference process, which we have
summarized in Section II-A. For most applications, setting an
appropriate initial condition for the FCN plays a crucial role in
obtaining a reliable inference pattern. In the literature, most re-
searchers randomly set a vertex active and leave the remaining
vertices inactive, and then calculate inference patterns [7], [9],
[12], [13], [17]. In other words, for an FCN , usually
a vertex with state , , is chosen and the initial
condition is set

where the state of at is .

A. Inference Procedure

In this section, we propose a new procedure for setting ini-
tial conditions. This is achieved by considering the position of
a subset of vertices. The basic approach is to choose, based on
expert knowledge, a subset that has a significant influ-
ence on the whole FCN , and then set vertices in

active as the initial condition. We first measure the influence
of a subset by its dominance in the FCN. At the same time, in
many cases, to reduce working loads and costs we may require
that the number of vertices in be reasonable. We choose a min-
imal dominating set of , which may be a set of major investors
of a company, the key substances that cause ozone layer deple-
tion, and so on. We can use the following simple algorithm to
find a minimal dominating set of .

Algorithm 3.1 Input: An FCN ;
Output: A minimal dominating set of .
1. Set initially ;
2. for each , check whether sat-
isfies and

simultaneously;

3. if no such a exists, then stop and
output ; otherwise, choose a vertex
such that
for all , set and go
to Step 2.

Note that is required to have the minimum
size in order to output a minimal dominating set with maximum
number of out-going arcs. The correctness of this algorithm is
ensured by the following theorem.

Theorem 3.2: For any , Algorithm 3.1 produces
a minimal dominating set of .

Proof: As mentioned at the end of Section II-B, the initial
set is a dominating set of . Assume inductively that at
some round of iteration the set is a dominating set of . Sup-
pose that no satisfies the conditions in Step 2 simultaneously,
that is, for all either
or . In the former case, there exists
such that but for any . In
other words, is the only member of such that .
Hence is not a dominating set of . Also, in the latter
case is not a dominating set of since there is no arc
from to . Thus, for all , is not a dom-
inating set of if no satisfies the conditions in Step 2. This
is equivalent to saying that in this case the algorithm outputs a
minimal dominating set of . On the other hand, if there ex-
ists such that and

, then
.

Herethe first equality is due to the fact that is a dominating set
of , and the last one is implied by the two conditions. There-
fore, is a dominating set of and the algorithm proceeds
to the next iteration.

After finding a minimal dominating set of , we set all
vertices in active as the initial condition. With the inference
process being initialized, we can use the following procedure to
estimate the impact of the initial condition on the whole FCN.

a) Construct an FCN to model the system with which we
are dealing.

b) Find out a minimal dominating set of by using
Algorithm 3.1.

c) Set all vertices in active as the initial condition.
d) Calculate inference pattern by using (4) or (5).
The second way we propose to measure the influence of a

subset is to calculate the maximum possible strength of the im-
pact it can have on the FCN. This measure is

where is the maximum value allowed for the state
of . For binary states, , which leads to

.
In general, gives the total strength of arcs of from

to when each vertex of exerts its maximum influence.
The larger is, the stronger the impact. To further improve
the above strategy, we propose to find a minimal dominating
set such that achieves the maximum value. Once we
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have found such an , we apply a procedure similar to a)–d) to
calculate the inference pattern.

B. Discussion

Compared with the conventional inference procedures [7],
[9], [12], [13], [17] mentioned at the beginning of this section,
the new inference procedure we suggested has the following ad-
vantages. First, it counts the total impact of the initial active set

by requiring that it dominates the FCN. Moreover, we require
further that has the maximum influence on the FCN.
In this way, we can obtain more accurate measurement of the
impact of the initial condition. In Section VI, we will illustrate
our inference procedure and its advantages by using a simple
example.

An important problem in applying the inference procedure
is: How small could a minimal dominating set of be? This is
related to the estimation of the domination number . Let

and

be the minimum in-degree and maximum out-degree of ver-
tices of , respectively. By using the results from the domi-
nation theory on directed graphs, we have the following lower
and upper bounds for , which are due to [11] (see also [4,
Th. 15.49] and [4, Th. 15.57], respectively).

Theorem 3.3: For any FCN with vertices, we
have

In [12], an FCN is called simple if it contains no directed
cycles (acyclicity). Following the standard terminology in graph
theory, we call strongly connected if, for any two vertices
and , there exists a directed path of from to . Intuitively,
in a simple FCN there is no feedback, but in a strongly con-
nected FCN there are very strong causal relationships among the
concepts of . The following theorem shows that, in these two
extreme cases, we can find dominating sets with certain extra
properties. A subset of vertices of is called an
independent set of if , ; that is, is
independent if there is no causal relationship between any two
vertices of .

Theorem 3.4: Let be an FCN with vertices.

a) If is simple, then there exists a subset of
which is both dominating and independent [4].

b) If is strongly connected, then [11].
Part a) is a classic result of Von Neumann and Morgenstern

proved initially in terms of game theory [4, Sec. 15.6]. The same
result as in a) is true if has a large number of arcs, namely, at
least , proved by Harary and Behzad (see
[4, Th. 15.45]). Part b) is due to Lee [11] and can be found in
[4, Th. 15.59] as well.

IV. DYNAMIC DOMINATION IN FCN

In the previous section, we proposed a new inference proce-
dure by setting vertices in a minimal dominating set active as

its initial condition, after which the state of is updated
recursively, following the rule (4) or (5). In the case of binary
states, since there are only possible states, the system will
converge to a static state after less than steps. (See [22] for
a recent study on the speed of convergence.) In this section, we
will investigate the dynamic behavior of the FCN after the initial
setting. We focus on dynamic dominating sets and the related
dynamic dominating processes which have important implica-
tions in applications, e.g., computer networks, social science,
personnel assignments, stock market analysis, and so on.

Recall that in (1) we defined to be the set of vertices of
activated at . In the following, we use to denote the sub-FCN
induced by :

where

inherits from the causal relationships and weights. Thus,
the weight matrix of is , which can be
obtained from the weight matrix of by deleting those rows
and columns indexed by vertices of . This sub-FCN
alone determines the inference of since all vertices outside
are inactive at .

A. Active Subsets and Active Vertices

In this section, we will discuss the role of an active subset
of by considering the relationship between and the vertices
outside . This is preliminary to our study of dynamic domi-
nating sets and processes. We start with the following definition
of an active subset.

Definition 4.1: Let be an FCN. A subset of
is called an active subset of at time if every vertex in is
active at . In other words is active at if .

For such an active subset , we define

which are the sets of in-neighbors and out-neighbors, outside
and active at , of the vertices of , respectively. Equivalently,
they are the in-neighborhood and out-neighborhood of in the
sub-FCN . Let

Then they are, respectively, the sets of arcs of from to
, and to , whose end-vertices are both active. Thus

where the subscript refers to the operations , ,
and in the sub-FCN .

Definition 4.2: For an active subset of at , we
define

(6)
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and call them the in-strength and out-strength of at ,
respectively.

For , such that is not an arc of
, we have and hence in view of (2).

Thus, . Also, for
, we have and, hence, by (2).

Therefore, we have

(7)

Recall that and .
From this and Definition 4.2, it follows that

(8)

Since ,
(7) and (8) imply

(9)

Therefore, and , respectively, represent the total
impact strength received by from and the total impact
strength that has on . An important part of the out-
strength of is the second term on the right-hand side of (9),
which is the strengths of on those vertices inactive
at . It is this part that may activate some of such inactive vertices

in the next time, namely .
In order to recognize the role of an active subset in , we

may classify active subsets at into the following three cat-
egories by comparing the values of the in-strength and
out-strength : (a) ; (b) ;
(c) . In the first case, the out-strength of is
larger than the in-strength of , which indicates that at time
the influence of on is stronger than the influence of

on . The other two cases can be interpreted in a similar
way.

It is obvious that the smallest active subsets are singletons,
, for which we write , , , ,

and . Thus, from the previous notation we have

We call and the in-strength and out-strength of
at , respectively. The former is the total input received by
from all in-neighbors of (but only active make

contributions to ); and the latter is the total input that has
on all out-neighbors of (active or not). Applying (7) and (9) to
the singleton case, where , and using the definition (3)

of , we obtain the following relationships, for any vertex
of active at :

We can recognize the role of an active vertex at time
by comparing the values of its in-strength and out-strength.

Similar to the classification of active subsets, we may classify
the vertices of into the following three categories: a)

; b) ; and c) .
Let be an active subset of . To quantify mutual influence

of vertices within , we define the inner-strength of at

(10)

Indeed, since for ,
, and hence is the sum of

strengths of all arcs with both end-vertices in . It is not
difficult to verify that

From these and using the definition (10) of , we have the
following relationships for any active subset of at time :

B. Dynamic Dominating Set

Let us first give the following definition of one vertex domi-
nating another.

Definition 4.3: Let be an FCN, and let and
be two vertices of . We say that dominates at time , or is
dominated by at , if the following two conditions are satisfied:

a) is active at , that is, ;
b) there exists an arc of from to .

In other words, dominates if and only if and
.
Note that we require only that the dominating vertex be

active at . The dominated vertex can be active or inactive at .
If is inactive at time , it does not dominate any other vertex .
If dominates at , the strength of this domination is given by

, as defined in (2), which relies on the state
of and the weight only. For example, in Fig. 1, if

and is active, the strength of dominating is:
. However, if is inactive at some other time

, that is, , is regarded as not dominating at
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Fig. 1. Active vertex v dominating another vertex u.

even though the weight of the arc remains the
same.

We are now in a position to give the definition of a dynamic
dominating set in an FCN.

Definition 4.4: Let be an FCN. A subset of
the vertex set of is called a dynamic dominating set (DDS) of

at time if

a) is an active subset of at ;
b) each active vertex in at is dominated by at least

one vertex in .

From Definitions 2.1 and 4.4, we have the following.
Theorem 4.5: For any FCN and subset of ,

the following are equivalent:

a) is a DDS at time ;
b) and is a dominating set of the sub-FCN

induced by ;
c) is an active subset of at such that .

From b), it follows that at any time the FCN has at least
one DDS, the largest being , see the end of Section II-B for a
related discussion.

The strength of dominance of a DDS is measured by how
strong it influences the vertices (active or not) outside . Thus,
we give the following definition.

Definition 4.6: Let be a DDS of at time .
The strength of dominating is defined to be the out-strength

of , which is given by (6).
We illustrate these concepts by the following example.
Example 1: In the FCN shown in Fig. 2, we assume

for , so that and are active.
One can see that dominates and , and dominates

and . So for
. Each active vertex outside is dominated

by one of the two vertices in , although we do not know
which vertices outside are active at . This implies that
is a DDS of at . The strength of dominating at is:

.
The concept of DDS is important in many applications. For

different FCNs the interpretation of domination may be dif-
ferent, but in general we may view vertices in a DDS of as the
major vertices which are influential at . For instance, in a so-
cial network, a DDS may consist of representatives (committee
members) who play dominating roles in making decisions for
the society, where by “dominating” we mean each nonrepresen-
tative is accessible by at least one representative.

Usually, contains a number of DDS. In fact, if is a DDS
of at , then every active superset of in (that is,

) is also a DDS of . In view of this, it would
be desirable to find a DDS of with the smallest size. Such
a DDS is called a minimum DDS of . At the same time, in
many applications it is desirable to seek a DDS with maximum
possible strength. Unfortunately, the problem of finding a min-
imum dynamic dominating set of and that of finding such a set
with maximum strength are both NP-complete for general FCN.

Fig. 2. Dynamic dominating set S = fv ; v g in an FCN.

This follows from the NP-completeness [1] of the problem of
determining a minimum dominating set in an arbitrary directed
graph. Thus, unless “ ,” it would be impossible to de-
vise a polynomial time algorithm to find a minimum DDS of
at or such a DDS with maximum strength.

C. Minimal Dynamic Dominating Set

On the other hand, in most applications there is no need to find
a dynamic dominating set with minimum size. Instead, we are
more interested in those DDS which have no “redundancy,”
meaning that deleting any vertex from will result in a non-
dominating set. In other words, every member in is essential
to maintaining the dominance of . In this sense, is minimal
with respect to the property of domination. A subset of is
called a proper subset if .

Definition 4.7: Let be an FCN. A subset of
the vertex set of is called a minimal dynamic dominating set
(MDDS) of at if is, but any proper subset of is not, a
DDS of at .

From Theorem 4.5, we have the following corollary.
Corollary 4.8: An active set of is an MDDS of if

and only if it is a minimal dominating set of the sub-FCN
induced by .

Alternatively, a DDS is an MDDS if, for any proper subset
of , there exists at least one which is not dom-

inated by any vertex of . Since an MDDS is a DDS, the same
formula (6) can be used to calculate its strength of domination.

The concept of MDDS is very useful in modeling real-world
problems. For instance, suppose that a society, e.g., the National
Geographic Society, plans to send an expedition team to the
Antarctic. In the first instance, the society chooses experts in
the society who have the required expertise to obtain valuable
information effectively. On the other hand, in order to reduce
costs, the society may have to choose as few experts as possible.
In this exercise, the society is in fact building a DDS that con-
sists of a minimum set of currently active, leading experts in the
society. This is a problem of finding a minimum DDS. Similarly,
we can use MDDS to model many other real-world applications
involving the placement of a minimal set of objects with max-
imum dominating strength to the whole FCN, such as hospitals,
schools, fire stations, post offices, police stations, warehouses,
service centers and so on, or even the placement of undesirable
objects with minimum dominating strength to the FCN, such as
toxic wastes, nuclear reactors, airports, etc.
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The following theorem gives a criterion to test when a DDS is
an MDDS. It is essentially the same as the result of Ore (see, e.g.,
[5]), although dynamics is involved in the present case. Note
that condition a) that follows is satisfied if and only if

, and the condition b) says that is a unique vertex in
which dominates .

Theorem 4.9: Let be an FCN, and a DDS of at . Then
is an MDDS of at if and only if, for each vertex ,

one of the following conditions is satisfied:

a) ;
b) there exists a vertex such that

.
Proof: Suppose that is an MDDS of at . Then, is

active at , and for each , is not a dominating set
of at . This latter condition implies that there exists at least
one vertex not dominated by any vertex in

. If , then this means ; hence
and a) is true. If , then since

is dominated by but not by , must be the only
in-neighbor of in , that is, and b) is true.

Conversely, suppose that is a DDS of at such that either
a) or b) is true for each . We will prove that must be an
MDDS of at . Suppose otherwise, then there exists at least
one vertex such that is also a DDS of at .
Thus, is dominated by at least one vertex in , and hence
condition a) does not hold. On the other hand, since is
a DDS of at , every vertex is dominated by at
least one vertex in , that is, condition b) does not hold
for . This contradiction shows that is an MDDS of at , as
required.

An important problem for our domination theory is the gen-
eration of DDS and MDDS for . The following algorithm
generates a DDS and an MDDS successively. Note that from
every DDS we can obtain at least one MDDS just by deleting
the “redundant” vertices one by one. This idea is used in the
second part of the algorithm.

Algorithm 4.10 Input: An FCN ;
Output: A DDS and an MDDS of at
time .
1. Set ;
2.set ;
3.if , then output , set and
go to Step 4; otherwise, choose such
that is as large as possible, set

and go to Step 2;
4.check whether there exists such
that and ;
5.if there exists such a vertex , then
set and go to Step 4; otherwise
stop and output .

Theorem 4.11: Let be an FCN. Let and be
subsets of generated by Algorithm 4.10. Then is a DDS and

an MDDS of at .
Proof: By the algorithm, is an active subset of at time

since at each step an active vertex is added up. This vertex

Fig. 3. Minimal dynamic dominating set S = fv ; v ; v ; v g in an FCN.

dominates the vertices in , and dominates .
Therefore, according to the rule in Step 3, when the algorithm
outputs , the set dominates all vertices active at and hence
is a DDS of at .

Now, let us consider the second part of the algorithm. If there
exists such that and

, then is redundant and, by Definition 4.4, is
also a DDS of at . When the algorithm terminates, there is
no redundant vertices , and hence is not a DDS for
any . In other words, the final is an MDDS of at .

Now, let us illustrate Algorithm 4.10 by the following
example.

Example 2: Applying Algorithm 4.10 to the FCN shown
in Fig. 3, we can obtain an MDDS of at by the following
procedure. We assume that , , , are active at with

and for , and all other ver-
tices are inactive at . Setting initially, we have

and . So we choose, say , and add it
to . Thus, in the next round we have and, hence,

as . Now we choose, say
, and the current then becomes . For this

, we have , and so finally we put into
, so that the next is and the next becomes

empty. So we output which is a DDS of at
. Setting , one can check that, for any ,

is not a subset of . So is an
MDDS of at . The strength of dominating is

.

D. Dynamic Dominating Process

A very important feature of FCN is its dynamic behaviors,
which motivates us to introduce the concept of dynamic dom-
inating process. Let us begin with the following example. In a
limited-liability company, the share holders with large shares
at time form a dominating set that plays a dominating role in
the operation, capital turnover and decision making of the com-
pany. As the time goes on, the turbulent stock market frequently
changes the members in the so-called major players club, which
means that someone who belongs to the DDS at may be driven
out of this subset at time , and at the same time there may
be new comers joining the DDS. This dynamic nature of DDS is
true and reflects many real scenarios. In general, since the vertex
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states are updated automatically when the vertices receive a se-
ries of external input stimuli, a DDS of at may become a
non-DDS at . On the other hand, a non-DDS at may be-
come a DDS at . Therefore, in general we may describe the
domination in an FCN by a dynamic dominating process that
consists of a series of DDS at different . The starting point
of this process is the minimal dominating set of used to set
the initial condition. Formally, we give the following definition
of this process.

Definition 4.12: In an FCN, , a dynamic domi-
nating process (DDP) is a sequence

where is the minimal dominating set of used to set the
initial condition, as in Section III-A, and for , is a DDS
of at generated by using a given set (possibly empty) of rules
and is usually connected with .

When studying this dynamic dominating process, we can re-
gard as an instantaneous dominating set; that is, can be
regarded as transversal of the process at . Understanding this
kind of instantaneous dominating set and its properties will en-
able us to study the behavior of this dynamic dominating process
and its development trend with . This will help us predict more
effectively the future from the current events or make reason-
able decisions in complex, dynamic situations.

The rules governing the generation of the DDP are set ac-
cording to the nature and goal of the problem, and they deter-
mine to a certain degree the transition from to . Thus,
setting rules properly for a given FCN is a very important issue
in the study of DDP. The rules used can be deterministic, sto-
chastic, or a combination of them. In the following, we propose
a few rules for generating DDP. The first one is the following
basic deterministic rule that arises from the requirement of irre-
dundancy at any time.

Rule 4.13: Choose to be an MDDS of for .
We call a DDP generated by using this rule a minimal dy-

namic dominating process.
Definition 4.14: A dynamic dominating process

of an FCN is called a minimal dynamic domi-
nating process (MDDP) if is an MDDS of for .

Rule 4.13 can be used in combination with other rules, which
we will give in the following, to generate DDP

. Note first that, in Rule 4.13, is irrelevant to the
previous . This may, however, not be true in many applica-
tions. For example, an MDDS can be interpreted as the board of
trustees of an organization. From time to time the board needs
to be updated to reflect the up-to-date personnel status and the
operation of the organization. In each change, the board may re-
tain as many trustees as necessary to maintain the stability in the
organization. This suggests the following rule, which is impor-
tant and useful.

Rule 4.15: Choose to be an MDDS of at each time
such that it has the maximum overlap with , that

is, is maximized.
The next rule, based on a similar idea, is to retain all vertices

of that are active at . Note that in this way may not be

an MDDS of , in other words, the DDP generated by this rule
may not be an MDDP.

Rule 4.16: Choose to be a DDS of at each time
such that .

Naturally, one may choose an MDDS each time with the max-
imum possible strength. This leads to the following rule.

Rule 4.17: Choose to be an MDDS of at each time
such that it has the maximum strength .

In the previous rules, the choice of is not unique. Usually
there are many candidates from which can be chosen. We
may choose randomly among all legal candidates, and this
involves the usage of stochastic rule. A basic rule of this kind is
the following one, in which by “uniformly at random” we mean
each legal candidate has the same probability to be chosen. For
instance, if there are eight legal candidates at , then each of
them has the same chance (1/8) of being chosen as .

Rule 4.18: Choose uniformly at random from all MDDS
of at ; in general choose uniformly at random from
all legal candidates that have been generated by a set of deter-
ministic rules.

Depending on the set of rules used, we have different
types of DDP and MDDP. For instance, if we choose uni-
formly at random from all MDDS of with
as large as possible (combination of Rules 4.15 and 4.18),
then we get a “random maximum overlapping” MDDP

. In practice we may generate DDP
and MDDP by using a given order of priorities. For example,
in forming a committee we may set the first priority as being
an MDDS, the second one as having maximum strength, and
the third one as having maximum inner-strength (see (10)
for definition), and so on. So we first choose MDDS of at
, and among them we use the ones with maximum possible

strength. If this determines uniquely, we are done; otherwise,
among the MDDS with maximum strength, we choose with
maximum inner-strength. If can be determined uniquely,
we are done; otherwise, check the next priority. Continue this
procedure until can be determined, or all priorities have
been used but we still have a bunch of candidates remaining. In
the latter case we may resort to the stochastic rule described in
Rule 4.18.

There are many problems in dealing with DDP and MDDP,
which will be the subjects of our future research. In this paper,
however, we present the following theorem in a simple FCN.
(An FCN is simple if it contains no directed cycles, see the para-
graph following Theorem 3.3.)

Theorem 4.19: Let be a simple FCN. Then there
exists a DDP of such that is an
independent set of for each .

Proof: Since is simple, by Theorem 3.4(a) there exists
an such that is a dominating as well as independent
set of . To start the process, we choose such an as the initial
condition. For , is also a simple FCN. (In general, any
subgraph of an acyclic, directed graph is necessarily acyclic.)
Thus, again by using Theorem 3.4(a), we can find such
that it is an independent dominating set of . Since is an
induced directed subgraph of , must be an independent set
of also. Thus, is a DDP of with
desired property.
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V. EFFECTIVE DYNAMIC DOMINATING SET

FCNs are tools for decision support and causal discovery
[13]. Complex real-world applications require FCN to have the
capability to learn, to reason, to adjust, and to react in the way
that is consistent with the way we carry out our daily routines. In
the literature, this goal is usually approached by estimating im-
pact of an initial condition on the whole FCN and by collecting
feedback [6]. Feedback enables the system to adjust (adapt) it-
self in response to the changing environment and to the informa-
tion about the given goals and actual outcomes. In Section III,
we proposed a new inference procedure for setting initial condi-
tions. In this section, we will focus on DDS with extended feed-
back, and introduce effective dynamic dominating set. More-
over, we will reveal an interesting phenomenon, which we call
revolution of vertex states.

A. Extended Feedback

Let us first review briefly the definitions of feedback and
extended feedback. Roughly speaking any directed cycle

defines a piece of feedback for ,
meaning that receives feedback via consecutive effects of
on , on on , and finally on . This
is the feedback received by one particular vertex. In studying
the feedback received by a subset of , it is reasonable to
count not only cycles but also paths with both starting and
terminating vertices in . This leads to the concept of extended
feedback, which improves the inference and representation
capabilities of FCNs.

Definition 5.1: Let be an FCN, and a subset
of . Let be a directed path or cycle (in
the case where ) of . We call a piece of extended
feedback of for if , and for

.
We require , since otherwise will reduce to an arc

within and obtain no feedback from outside . In the special
case where is a singleton, we must have ;
hence is a directed cycle and defines a piece of feedback for
in the usual sense. For as in the previous
definition, the indirect effect of on at via is defined
[13] as

Note that only when all are active at , for ,
is there a nonzero effect of on via , since in the
opposite case one of the factors is equal to 0 and
hence .

B. Effective Dynamic Dominating Set

In this section, we will study dynamic dominating sets with
extended feedback. We first prove the following theorem, which
provides a necessary and sufficient condition for the existence
of a piece of extended feedback for with nonzero effect.

Theorem 5.2: Let be an FCN and a DDS of
at . There exists a piece of extended feedback for with

nonzero effect if and only if .

Fig. 4. Effective dynamic dominating set S = fv ; v ; v g of an FCN.

Proof: Suppose there exists a piece of extended feed-
back for at with . Let .
Then and . Since
is nonzero, from the discussion above, all must be active at
for . In particular, we have . Thus

is dominated by some vertex in at , because is a DDS
of at . From this we have and .

Conversely, suppose and . Then,
and by the definition of . On the other

hand, since is a DDS of at , there exists which
dominates , that is, . (It may happen that ,
but the proof goes the same way.) Consequently, is
a path or cycle (if ) of length 2. Note that , , are
all active at , and that and by the
convention made in Section II-A (see footnote 2). Now we have

, and the path defines
a piece of extended feedback for at with nonzero effect.

Definition 5.3: Let be an FCN and be a DDS
of at . If , then we call an effective dynamic
dominating set (EDDS) of at .

In view of Theorem 5.2, an EDDS can be defined equiva-
lently as a DDS with extended feedback of nonzero effect. We
can imagine an EDDS as a group of decision makers who, as a
whole, receive feedback from those outside the group. Since an
EDDS is required to be a DDS, of course its strength of dom-
ination is given by , as in Definition 4.6. The condition

above is equivalent to the existence of an active
vertex in such that dominates a vertex in at time
; that is, not only does dominate , but also receives

feedback from as well. For example, in the FCN shown
in Fig. 4, is an EDDS, if we assume that all
the vertices in the FCN are active at . In fact, from Definition
4.4 one can see that is a DDS, because , are dominated
by and , , are dominated by . Note that receives
feedback from via or . So is an EDDS
of at by Definition 5.3. Assuming for , 4,
6, the strength of dominating the FCN is then .

In the case where all weights are nonnegative for
, we say that the weight matrix is nonnegative. In this case

we can prove that, for a DDS of at , if and only
if . Note that the “only if” part is not guaranteed if
both positive and negative weights are presented on arcs of .

Theorem 5.4: Let be an FCN with nonnegative
weight matrix. Then a DDS of at is an EDDS of at if
and only if .
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In the following, we will discuss the relationship between
DDS and EDDS. We prove first the following theorem.

Theorem 5.5: Let be an FCN and a DDS of
at . Then one and only one of the following is true.

a) is an EDDS of , or is an EDDS of at for
some .

b) for all .

Proof: Suppose b) is not true. Then there exists
such that ; that is, is an arc of for some

. By definition, if , then is an EDDS of at ;
if , then is an EDDS of at . Thus, a) is
true if b) is not. On the other hand, if b) is true, then there is no
arc from to or from to for
any ; hence neither nor is an EDDS of .
Thus, a) and b) cannot occur at the same time.

We point out that, for an arbitrary FCN , there may exist
no EDDS of at some time . The following theorem provides
necessary and sufficient conditions for the existence of an EDDS
at .

Theorem 5.6: For any FCN , the following con-
ditions are equivalent.

a) There exists an EDDS of at .
b) There exists a vertex of active at such that

and .
c) The sub-FCN induced by contains a directed path

or cycle of length 2.

Proof: Suppose a) is true and is an EDDS of at time
. Then by definition is a DDS at , and there exists an arc

in such that , and is active. Since
dominates , is dominated by a vertex in . (It may happen
that coincides with .) So we have , ;
hence, both sets are nonempty and b) is true.

Suppose b) is true, and let, say, and .
Then is a path or cycle (if ) in with a length
of 2. This means that c) is true.

Finally, suppose c) is true, and let be a path or cycle
(if ) in with length of 2. Then is an EDDS,
thus a) is true. This completes the proof.

Let us define to be the length of a longest directed path
or cycle in . Then condition c) in Theorem 5.6 is equivalent
to saying that . If this is satisfied, then by this theorem
an EDDS of at exists. The following theorem shows further
that, if , then we can obtain an EDDS of at based
on any MDDS of at .

Theorem 5.7: Let be an FCN. Suppose
. Then, we can construct an EDDS of at from any MDDS
of at in the following way.

a) If , then is an EDDS of at .
b) If there exists a vertex such that

, then is an EDDS of at .
c) If neither of the previous conditions is satisfied, then there

exists such that is an EDDS of at
, where is the set

of vertices of having as their unique in-neighbor
in .

Proof: Since , by Theorem 5.6 has EDDS at
time . If , then and hence

is an EDDS of at . If for some
, say , then

is nonempty since it contains the arc . Also,since is a
DDS of at , so is . Hence, is an EDDS of

at . In the following, we assume that the condition in neither
a) nor b) is satisfied. Then, there is no any arc of from
to , and is an independent set of . In other words, all
vertices of have out-degree 0 in the sub-FCN . From
this and the assumption , one can show that there
exists a path of with . In particular, this
implies . Since is an MDDS, from Theorem
4.9 it follows that the set
is nonempty. Also, is dominated by , and by the definition of

each vertex in is dominated by at least one vertex
in . Hence, is a DDS of at . Moreover,
it is an EDDS since contains at least one
arc, namely .

Based on Theorem 5.7 we may develop an algorithm for
finding an EDDS of at if the condition is
satisfied. In a lot of cases the EDDS obtained in this way may
be close to “minimal”—in case a) of Theorem 5.7, itself is an
MDDS, and in b) we obtain an EDDS which has only
one more vertex than the MDDS . This is the advantage of the
method. To start with we will need an MDDS of at , which
can be generated by using Algorithm 4.10. Note that cases a)
and b) in Theorem 5.7 are not mutually exclusive.

C. Revolution: Sudden Change of Dominant Members

An undirected path of an FCN, , is a sequence
of vertices of such that for each

either or is an arc of . A connected compo-
nent of is a maximal subgraph of in which any two vertices
are joined by an undirected path. If any two vertices of are
joined by an undirected path, then has only one component;
in this case is called connected. Without loss of generality
we may always assume that the FCN we are dealing with is
connected, because otherwise we may study each component in-
dividually (see [17, Sec. 3.4] for a more detailed explanation).
In this section we will adopt this assumption. To exclude trivial
cases we will also assume that has at least two arcs. Under
these assumptions, contains a directed path or cycle of length
at least 2. So, by a similar argument as in the proof of The-
orem 5.6, one can prove that contains a dominating set
with extended feedback. This set can be used to set the initial
condition. We will also use it as the starting point of our effec-
tive dynamic dominating process, which is defined as follows.

Definition 5.8: Let be a connected FCN with
at least two arcs. An effective dynamic dominating process
(EDDP) is a sequence , where is a
dominating set of with extended feedback setting the initial
condition, and is an EDDS of at whenever such
an EDDS exists or a minimum DDS of at otherwise.

We emphasize that, at some time an EDDS of may not
exist, so the second possibility for in the definition above
may occur. Moreover, if has no EDDS, then is unique since

has only one MDDS (hence one minimum DDS) by our next
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Fig. 5. Structure of the sub-FCN when a revolution occurs.

theorem. Furthermore, in this case has very special structure.
For a vertex , we use

to denote the in-degree and out-degree of in , respectively.
Theorem 5.9: Let be a connected FCN with at

least two arcs. Then contains no EDDS at time if and only
if the set of active vertices at can be partitioned into three
parts, namely , where

which are all independent sets of . Thus, has the special
structure depicted in Fig. 5, and all arcs of are from to

. Furthermore, has a unique MDDS, namely .
Proof: By Theorem 5.6, contains no EDDS at time if

and only if, for each , at least one of and is
zero. This is equivalent to saying that can be partitioned into

, and as required. The set consists of all vertices
of without either in-coming or out-going arcs. So is an
independent set of and, hence, an independent set of since

is an induced subgraph of . The vertices of have no
in-coming arcs in , and hence there is no arc of between
any two vertices of . In other words, is an independent
set of . Similarly, is an independent set of . Hence all
the arcs of are from to , and has the structure
depicted in Fig. 5. Moreover, must be contained in
any dominating set of , since each vertex of has
in-degree 0 and, hence, is not dominated by any vertex in .
On the other hand, each vertex of is dominated by at least
one vertex of . Hence, is a minimal dominating set
of , that is, an MDDS of at . Moreover, since each vertex
of does not dominate any vertex, any minimal dominating
set of is disjoint from . From this, it follows that
is the unique MDDS of at .

We can summarize the previous discussion as follows: At
, if has no EDDS, then must have the special struc-

ture as shown in Fig. 5. In this case, the -th term of the EDDP
must be , which is

the unique MDDS of at . Also, for each , the total
input [see (3)] received by is 0 since there is no active
in-coming arc to . (There may be in-coming arcs to from in-
active vertices, but they contribute 0 to .) Thus, all vertices
in will become inactive at and are driven out of .
In other words, . Intuitively, this means that all
the dominant members in the set at time (the vertices in )

lose their dominance all of a sudden at . We call this inter-
esting phenomenon a revolution in vertex states, which is stated
formally in the theorem below.

Theorem 5.10: Let be a connected FCN with
at least two arcs. Then at any time either there exists an
EDDS of or there is a revolution. Thus, for any EDDP

of , either is an EDDS of at , or there
is a revolution at . In the latter case we have ,

and has the special structure as described
previously.

Identifying revolution is an important issue because it pre-
dicts when dramatic changes of the FCN will happen. This
problem is solved by Theorem 5.9, in which a necessary and
sufficient condition is given in terms of the structure of . A
number of problems relating to vertex state revolution remains
open and deserves further investigation. For example, under
what conditions will revolution occur, when will the first
revolution appear, what is the behavior of the FCN when a
revolution occurs, and so on.

VI. ILLUSTRATIVE EXAMPLE

In this section, we will apply the new inference procedure
proposed in Section III-A to a simplified application, and com-
pare this procedure with the conventional method of setting ini-
tial conditions. This example will also be used to illustrate the
concepts of EDDS and MDDS. However, in order to keep this
paper in a reasonable length we will not be able to simulate
(minimal, effective) dynamic dominating processes.

Let us construct an FCN for the department of computer sci-
ence at a university, as shown in Fig. 6. To achieve excellence in
education and research, the decision makers of the department
must develop policies and measure their impact on the depart-
ment. Furthermore, they have to modify or adjust their policies
from time to time based on the feedback and extended feedback
collected from the staff. We have conducted two simulations to
investigate the functionality of the FCN. The simulation results
demonstrate the following advantages of the new inference pro-
cedure. First, the inference pattern obtained by our inference
procedure is more reliable and reasonable than that obtained by
the conventional inference procedure [7], [9], [12], [13], [17].
Second, the new inference procedure converges more quickly to
its final stable state than the conventional inference procedure.
Finally, the concept of EDDS proposed in the previous section
further improves the inference and representation capabilities of
the FCN.

Denote by the FCN above and the -th staff member of
the department. Associated with is a fuzzy event that varies
with time. The vertex state of at time speci-
fies the fuzzy degree of at . We assume that the department
has 12 staff members with one leading expert in each of the fol-
lowing areas: computer network, database and computer vision.
As shown in Fig. 6, we assume that the weight matrix of is
given by the equation shown at the bottom of the next page,
where represents the degree that influences
on department’s policies. In the following simulations, the state
transition functions are threshold functions with thresholds

for all vertices involved.
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Fig. 6. FCN of a computer science department.

A. Simulation I: Setting Initial Condition at Random

In the first simulation, we choose randomly one vertex of
and let it be active. We then estimate the impact of such an initial
condition on the whole FCN by calculating its causal inference
pattern. In doing so, we simply keep during the infer-

ence cycle and indicate this as , which means that only the
expert is fully activated by the external input at any time .
The inference pattern changes as follows:

Note that , based on which we know
for . From the expression of

we have
, which means that is

the set of active staff members at the final state at time .
In other words, with the initial activation of and after three
rounds of inference, (another leading expert in network) and

(other six remaining staff members)
are gradually activated directly or indirectly by the depart-
ment’s policies.
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B. Simulation II: Setting a Dominating Set Active

Now, we calculate causal inference pattern of the same FCN
in the following way. First, we choose a minimal dominating set

of and keep the vertices in active. For example, we may
choose , which is a minimal dominating set of

in Fig. 6, and set for . That
is, we keep active during the whole inference process, which

is indicated by :

Since , ; that is, the
FCN reaches its equilibrium state in only one step. From
we have , which indicates that all
staff members in the department are now active after only one
inference cycle.

C. Comparison and Discussion

From the inference pattern obtained in Section VI-A, we can
see that when receives an external input from the department
at , , , are activated through the first inference cycle.
After the second inference cycle, are activated. Finally,

, are activated through the third inference cycle. Thus, for
the conventional inference procedure employed in Simulation I
we need three inference cycles to obtain the inference pattern. In
contrast, Simulation II converges quickly to its final equilibrium
state (after only one inference cycle) and moreover the system
is able to take all members’ concerns into account.

In Simulation I, we notice that receives only two pieces of
feedback: and . This can be
explained as follows: in the final equilibrium state, although the
majority of staff members are gradually activated by the initial
condition directly or indirectly, all other staff members are still
inactive. As a result, there is no active directed path to trans-
port the responses from these activated staff members. There-
fore, the decision makers cannot receive feedback from indi-
vidual staff members if the department gives an external input
to one leading expert only. This is obviously undesirable in most
decision-making or decision-adjusting processes.

For the second simulation, since satisfies
the two conditions in Definition 5.3, it is an EDDS of at .
In addition, it also satisfies the conditions in Definitions 4.4 and
4.7, which means that it is an MDDS as well. In the final equilib-

TABLE I
FEEDBACK P CONTAINED IN S = fv ; v ; v g AND RELATED INFORMATION

TABLE II
EXTENDED FEEDBACK P CONTAINED IN S = fv ; v ; v g

AND RELATED INFORMATION

rium state, every vertex in receives feedback. Table I summa-
rizes all the feedback received by the vertices in along with
the relevant information. From the table we can see that three
vertices in receive 28 pieces of feedback in total. We also no-
tice that all vertices in receive extended feedback. Table II
summarizes all extended feedback received by these vertices
and gives related information.

From Tables I and II, we can see that the three leading ex-
perts in the department form an EDDS and MDDS of . If the
decision makers give an external input to every leading expert in
the MDDS (EDDS), then the remaining staff members will be
activated directly or indirectly by the three leading experts. As
a result, the decision makers not only can obtain feedback and
extended feedback needed for policy/strategy modifications, but
also can estimate their strengths reasonably well. From the ex-
tended feedback of this subset, the department is able to receive
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feedback from all staff members. This provides a good, prac-
tical basis for the department to make sensible policies or policy
modifications. Furthermore, in Simulation II the department is
only responsible for determining the initial condition, i.e., the
MDDS or EDDS, and concerned only with feedback and ex-
tended feedback from the subset.

VII. CONCLUSION

In this paper we developed a dynamic domination theory for
FCN. We introduced in Section II-B the concept of domination
in an FCN, , and presented an algorithm to generate
a minimal dominating set. As the first major contribution we
proposed a new inference procedure, in which we set vertices in
a minimal dominating set active as the initial condition. At time

, we discussed the role played by an active subset of by
considering the strength of influence it receives and gives. Next,
we studied DDS and MDDS, and gave an algorithm to generate
them simultaneously. In practice, a DDS/MDDS can be in-
terpreted as a set of influential vertices which plays dominating
roles in the FCN at . To measure the degree of dominance of ,
we introdued the dominating strength of , which is given by the
out-strength of and is expressed in terms of the states of ver-
tices of at and the weights of arcs from to . To reflect
the change of domination with time we introduced the concepts
of DDP and MDDP, which are crucial in understanding the dy-
namic behavior of an FCN in applications. The starting point
of a DDP/MDDP of is the minimal
dominating set which was used to set the initial condition in
the new inference procedure. For , the -th term of a
DDP/MDDP is a DDS/MDDS of at . We presented several
rules that govern the “power transition” from to . The
study of DDS/MDDS and DDP/MDDP represents the second
major contribution of this paper. The third major contribution is
the unveiling of the following important phenomenon: at each
time either has a DDS with extended feedback or
the state of is undergoing a dramatic change. In the first pos-
sibility, is called an EDDS. It is the second possibility that is
most interesting: In this case, all active vertices at that domi-
nate suddenly become inactive at and be driven out of
the “major players club”; that is, a revolution has occurred. In
this case, we recognized the special structure of the sub-FCN in-
duced by the active vertices at . We also gave necessary and suf-
ficient conditions for the existence of an EDDS at , which were
used to identify the potential revolution. In addition, we studied
the relationship between DDS/MDDS and EDDS. Finally, we
simulated our new inference procedure and illustrated the con-
cepts of EDDS and MDDS by using a simplified application.
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