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Abstract

A finite graph I' is said to be G-symmetric if G is a group of automorphisms of I'
acting transitively on the ordered pairs of adjacent vertices of I'. In most cases, the
group G acts imprimitively on the vertices of I', that is, the vertex set of I' admits
a nontrivial G-invariant partition B. The purpose of this thesis is to study such
graphs, called imprimitive G-symmetric graphs.

In the first part of the thesis, we discuss in detail the geometric approach, in-
troduced by Gardiner and Praeger in 1995, for studying imprimitive symmetric
graphs which we use throughout. According to this approach, three configurations
can be associated with (I, B), namely the quotient graph I's of I" with respect to
B, the bipartite subgraph I'[ B, C] of I induced by two adjacent blocks B, C' of B,
and a certain 1-design D(B) induced on B (possibly with repeated blocks). The
approach involves an analysis of these configurations and addresses the problem of
reconstructing I' from the triple (I's, I'[B, C], D(B)).

In the second part, we study the case where the block size k of D(B) is one less
than the block size v of B. We first assume that D(B) contains no repeated blocks,
and prove that, under the assumption £ = v — 1 > 2, this occurs precisely when I'g
is (G, 2)-arc transitive. In this case, we find a very natural and simple construction
of I' from I's and the induced action of G on B, and prove that up to isomorphism
it produces all such graphs I'. If in addition I's is a complete graph, then we classify
all the possibilities for (I', G). We show that I'[B,C] = K,_1,-1 if and only if I's
is (G, 3)-arc transitive, and that I'[B, C] is a matching of v — 1 edges and I'g is not
a complete graph if and only if I'g is a certain near n-gonal graph for some even
integer n > 4. In the general case where D(B) may contain repeated blocks, we
give a construction of such graphs from G-point- and G-block-transitive 1-designs,
and prove further that up to isomorphism it gives rise to all such graphs. By using
this, we then classify such graphs arising from the classical projective and affine
geometries.

In the last part, we will investigate the influence of certain “local” actions induced
by the setwise stabilizer Gp on the structure of I', with emphasis on the case where
I' is G-locally quasiprimitive. In particular, we will study the case where the actions

of Gg on B and on the neighbourhood of B in ['s are permutationally isomorphic.
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Chapter 1

Introduction

Things have roots and branches; affairs have scopes and beginnings.
To know what precedes and what follows will lead one near the WAY.

Confucius (551-479 B.C.), THE GREAT LEARNING

1.1 Introduction

The study of symmetric graphs has long been one of the main themes in Algebraic
Graph Theory. By definition a graph I' is G-symmetric if I" admits G as a group of
automorphisms such that G is transitive on the ordered pairs of adjacent vertices
of I'. Roughly speaking, in most G-symmetric graphs I', the group G acts imprimi-
tively on the vertices of I', that is, G is transitive on the vertex set V(I') of I" and
V(I') admits a nontrivial G-invariant partition B. In this case I' is said to be an
imprimitive G-symmetric graph.

This thesis is dedicated to a study of imprimitive symmetric graphs, using a
geometric approach which was first introduced by Gardiner and Praeger in 1995 for
locally primitive symmetric graphs. According to this approach, the following three

configurations can be associated with the triple (I', G, B) above:
(i) the quotient graph 'z of T with respect to B;

(ii) the bipartite subgraph I'[B,C] of I" induced on B U C' with isolated vertices
deleted, where B, C' are blocks of B adjacent in I'z; and
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(iii) the 1-design D(B) = (B,I'5(B),I) induced on a block B € B such that alC
for « € B and C € I'g(B) if and only if « is adjacent to some vertex of C,
where I'g(B) is the neighbourhood of B in I';.

The graph I' is thus “decomposed” into the “product” of these configurations, and
the approach involves an analysis of them. Clearly the triple (I'z, I'[B, C], D(B))
reflects the structure of I'. In some cases, it even determines I' uniquely (up to
isomorphism), and this happens in particular when I'[B, C] is a complete bipartite
graph between B and C. In this case I' is the lexicographic product of I'g by an
empty graph on |B| vertices. However, in most cases the triple above does not
determine the graph I'. We will see a simple example of this in Section 4.2, see

Remark 4.2.1. This suggests the following natural question.

Question 1 To what extent does the triple (I's, I'[B, C], D(B)) determine the graph
r?

As is widely recognized, the class of imprimitive symmetric graphs is very large.
Because of this it might be more fruitful to consider some special classes of imprim-

itive symmetric graphs. With respect to this we propose the following problem.

Problem 1 For certain classes of triples (X, 11, D), characterize or classify all pos-
sible (T, G, B) such that (I's, I'[B,C],D(B)) = (3,11, D).

The effectiveness of the approach relies not only on a thorough understanding of
the three configurations above but also on the feasibility of reconstructing I' from
the triple (I'z, I'[B,C], D(B)). Therefore, refining Question 1, one may naturally

ask the following question.

Question 2 Under what circumstances can we reconstruct the graph I' from the

triple (I's, I'[B, C], D(B)) ?

The study in this thesis will be more or less centered around these rather general
problems. We will first discuss in detail the approach above for general imprimitive
symmetric graphs. By using this we will then study an interesting and enlightening
case where, for adjacent blocks B,C' of B, each part of the bipartition of I'[B, C]

has size |B| — 1, that is, there exists a unique vertex in B which is not adjacent to
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any vertex in C. We will give a construction of such graphs I' and, in particular,
we will show that I'" can be reconstructed from I's and the induced action of G on
B. We will also characterize or classify certain subclasses of such graphs. Finally,
we will analyse the induced actions of the setwise stabilizer G on the block B and
on the neighbourhood I's(B) of B in I'z, and study the influence of these actions
on the structure of the graph I'. A more detailed introduction to the main results
in this thesis will be given in Section 1.3.

We now leave this discussion for a while and have an excursion to see some

sample results in the world of symmetric graphs.

1.2 Literature review

Let I' be a finite, undirected graph and let s be a positive integer. An s-arc of I’
is a sequence of s 4 1 vertices of I', not necessarily all distinct, such that any two
consecutive vertices are adjacent and any three consecutive vertices are distinct. If I’
admits a group G of automorphisms such that G is transitive on the s-arcs of I', then
' is said to be (G, s)-arc transitive. In most cases, such a graph is also G-vertex-
transitive, and we assume this throughout without mentioning explicitly. Under this
assumption the (G, s)-arc transitivity of I' implies the (G, s — 1)-arc transitivity of
[, for s > 1. Usually a l-arc is called an arc and a (G, 1)-arc transitive graph is
called a G-symmetric graph.

Investigations of symmetric graphs can be found in the literature as early as in
the 1940’s when Tutte [82] proved that, for a G-symmetric cubic graph I, the order
of the stabilizer G, in G of a vertex a is at most 48. Based on this he proved in
the same paper that there is no finite s-arc transitive cubic graph if s > 5. This
fundamental result stimulated greatly the study of symmetric graphs and highly arc-
transitive graphs, and its far-reaching influence in this area can be felt even after
several decades. For example, by refining the ideas used in [82, 83|, Sims [77, 7§]
generalized this result considerably. He proved in particular that, for a G-symmetric
cubic graph I with G primitive on the vertices, the order of G,, is a divisor of 48. In
a series of papers (see [11] and [27]-[31]), Djokovié (partly with Bouwer) extended
Tutte’s work in several directions. In particular he showed [28] that, if I" has valency

p+1, for a prime p, and if the automorphism group Aut(I") of I contains a subgroup
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acting regularly on the s-arcs of T', then s < 5 or s = 7. (Moreover [29], p must be a
Mersenne prime if p is odd and s > 2.) Almost immediately, Gardiner [37] pointed
out that requiring the existence of such a regular subgroup is a redundancy, and he
proved that the same bound for s is valid if ' is a graph with valency p+1, p a prime,
such that Aut(I") is transitive on the s-arcs but not on the (s + 1)-arcs of I'. That
the case s = 7 actually occurs was shown by the graph [4] derived from the families
of points and lines on certain quadric surfaces in finite geometries. In [38] Gardiner
proved further that, if I" is (G, s)-arc but not (G, s + 1)-arc transitive such that G,
is doubly primitive on the neighbourhood I'(«r) of a in ', and that the pointwise
stabilizer G r(a)ufay) 7# 1, then we have s < 5 or s = 7 as well. By analysing the
stabilizers of adjacent vertices, Goldschmidt [47] obtained an important extension
of Tutte’s result which inspired a lot of subsequent work on groups and geometries.
In particular, he proved that if G is a group of automorphisms of a cubic graph such
that G is transitive on the edges and the stabilizer in G of a vertex is finite, then
the order of the subgroup of G fixing each of two adjacent vertices divides 27. A
significantly simplified proof of this result was given by Weiss in [94]. In the 1970’s
and early 1980’s, Weiss [88, 89, 90, 91, 92] obtained a number of results regarding
the structure of the stabilizer of a vertex for a finite s-arc transitive (not necessarily

cubic) graph, s > 1.

Also inspired by Tutte’s fundamental result above, a lot of work has been done
in constructing symmetric graphs and highly arc-transitive graphs. Tutte himself
gave the first example of a connected 5-arc transitive cubic graph, and Conway con-
structed (but did not publish, see [6, pp.145]) infinitely many such graphs as covers
of a given one. After that, a number of new 5-arc transitive cubic graphs were
constructed [7, 8, 9, 17]. In [18], Conder found infinitely many new 5-arc transitive
cubic graphs by showing that, for all but finitely many positive integers n, both the
alternating and symmetric groups of degree n may be represented as full automor-
phism groups of 5-arc transitive cubic graphs. In [61], all cubic symmetric graphs
with small girth (up to 6) were determined. An infinite family of 4-arc transitive
cubic graphs each with girth 12 was constructed in [19], and a classification of 4-
and 5-arc transitive cubic graphs with girth less than or equal to 13 was given (with
some exceptions) in [62]. In [57] Lorimer determined all cubic symmetric graphs of

order (that is, the number of vertices) at most 120 which are neither bipartite graphs
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nor Cayley graphs. A complete classification of cubic symmetric graphs with order
at most 240 was recently given in [22] by using the result (see e.g. [21]) that the
group of a cubic symmetric graph is a homomorphic image of one of seven finitely
presented groups. There are also a few constructions and characterizations of sym-
metric graphs concerning the valency: Lorimer [56, 59] studied symmetric graphs
with prime valency, and Praeger and Xu characterized [73] connected symmetric
graphs of twice prime valency whose automorphism groups have abelian normal p-
subgroups which are not semiregular on vertices. This latter work motivated the
investigation of symmetric graphs of valency 4 conducted in [41, 42] by Gardiner

and Praeger.

From a group-theoretic point of view, a symmetric graph can be defined as
an orbital graph of a transitive permutation group (see e.g. [70, Section 2|). In
[76] Sabidussi introduced a way of identifying the self-paired orbital involved, and
developed a group-theoretic method for constructing an isomorphic copy of the given
symmetric graph (see also [56, 58, 60]). More precisely, a graph is G-symmetric if
and only if it is isomorphic to a certain kind of “coset graph” with vertices the right
cosets in G of a certain subgroup of G. This group-theoretic approach has proved
to be very useful in constructing and classifying some classes of symmetric graphs.
It also indicates the strong connection between groups and symmetric graphs. In
particular the classification of finite simple groups has had a great impact on research
into symmetric graphs (see e.g. [13, 65]). A number of important results have been
proved by using this powerful mathematical tool. The first one of them is the
celebrated theorem of Weiss [93] which asserts that, apart from the cycles, there are
no s-arc transitive graphs for s > 7. As mentioned earlier, 7-arc transitive graphs
do exist; and Conder and Walker [20] prove recently that there are infinitely many
such graphs. In fact, they proved that, for all but finitely many positive integers
n, there are two connected graphs which admit, respectively, the alternating and
symmetric groups of degree n as 7-arc transitive groups of automorphisms. Before
the classification of finite simple groups, Chao [15] classified symmetric graphs with
prime order. By using the classification of finite simple groups, Cheng and Oxley
[16] determined all symmetric graphs with twice prime orders, and Wang and Xu
[87] classified all symmetric graphs with triple prime orders. In [72], Praeger, Wang

and Xu classified all symmetric graphs of order a product of two distinct primes by
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using the classification [74] of all vertex-primitive graphs of order a product of two
distinct primes. All G-symmetric graphs with order 6p such that p > 5 is a prime

and G is solvable were classified in [85].

Naturally, a G-symmetric graph I' can be called a primitive or imprimitive G-
symmetric graph according to whether G is primitive or imprimitive on the vertices
of I'. By using the result of [77], Wong [96] determined all primitive cubic symmetric
graphs. As a consequence of the work of Wang [86], which relies on the classification
of finite simple groups, all primitive symmetric graphs of valency 4 are known. In
general, for studying primitive symmetric graphs we need to understand the possible
structures of finite primitive groups. The information needed is contained in the
O’Nan-Scott Theorem (see [55] or [80]), which categorizes finite primitive groups
into several types. This theorem has been proved to be very useful in studying
finite primitive groups and their applications, and in particular in studying primitive
symmetric graphs. Similar to the primitive case, a G-symmetric graph I' is said
to be quasiprimitive if G is quasiprimitive on the vertices of I". (A permutation
group is quasiprimitive if each of its nontrivial normal subgroups is transitive. Any
primitive group is quasiprimitive, but not conversely.) Considering the local action,
a G-symmetric graph I' is said to be G-locally primitive (G-locally quasiprimitive,
respectively) if in its induced action G, is primitive (quasiprimitive, respectively)
on I'(«). Since a G-vertex-transitive graph I' is (G, 2)-arc transitive if and only if
G, is 2-transitive on I'(«) and since 2-transitive groups are primitive, it is clear
that any (G, 2)-arc transitive graph is G-locally primitive, and in turn any G-locally
primitive graph is G-locally quasiprimitive.

As a result of the classification of finite simple groups, all the finite 2-transitive
groups are known (see e.g. [13, 51]). Because of this, an extensive study of 2-arc
transitive graphs has been conducted during the past two decades. It was proved
in [14] that, under certain conditions, a 2-arc transitive graph must be the inci-
dence graph of a (known) symmetric design. In [49], Ivanov investigated 2- but not
3-arc transitive graphs. In [50], Ivanov and Praeger classified all primitive affine
2-arc transitive graphs and all bi-primitive affine 2-arc transitive graphs. (A 2-arc
transitive graph I is said to be affine if there is a vector space N and a subgroup
G < Aut(T') such that N < G < AGL(N) with N acting regularly on the ver-
tices of T" and G acting 2-arc transitively on I', where AGL(N) is the group of
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all affine transformations of N and N is identified with the subgroup of transla-
tions.) In [33, 34] Fang and Praeger constructed and classified some classes of 2-arc
transitive graphs admitting a Suzuki group or a Ree group (see also Fang’s PhD
Thesis [35]). Recently, Hassani, Nochefranca and Praeger [48] studied 2-arc transi-
tive graphs admitting a two-dimensional projective linear group. Examples of 2-arc
transitive graphs of girth 5 containing Petersen subgraphs were constructed in [64]
via a certain kind of flag-transitive geometry. A construction is given in [3] for all
the pairs (I', G) such that I' is (G, 2)-arc transitive and G has a minimal normal
subgroup which is nonabelian and regular on the vertices of I'. A classification of
2-arc transitive circulants was given in [1]. In [68] Praeger gave an O’Nan-Scott
type Theorem for finite quasiprimitive groups, and this has been the impetus for a
lot of work on quasiprimitive symmetric graphs and locally quasiprimitive graphs
conducted by Praeger and her colleagues (see for example [52, 54, 71]). In [6§]
Praeger also proved that every finite, non-bipartite, 2-arc transitive graph is a cover
of a quasiprimitive 2-arc transitive graph; and moreover among the possible types
of quasiprimitive groups only four of them (namely, affine type, almost simple type,
product type, twisted wreath type) can appear as a quasiprimitive, 2-arc transitive
group of automorphisms of a connected graph. For bipartite 2-arc transitive graphs,

a useful reduction was given in [69], also by Praeger.

Imprimitive symmetric graphs have been studied in various ways in the literature.
Classical examples of such graphs include the “covering graphs” constructed in [6,
Chapter 19] and some highly arc-transitive graphs constructed in [7, 8, 17, 18, 21, 62].
There have been a few characterizations of some special classes of imprimitive sym-
metric graphs [36, 41, 42, 73, 81]. Nevertheless, unlike the primitive case, it seems
that there is no powerful mathematical tool available for dealing with imprimitive
symmetric graphs. In this sense the main difficulty in studying symmetric graphs
lies in the imprimitive case. Recently, Gardiner and Praeger [43] proposed a geomet-
ric approach to studying imprimitive symmetric graphs and discussed in detail the
case where I' is G-locally primitive. Further [44, 45|, they indicated an extension of
their approach for the whole class of imprimitive symmetric graphs. Recall that a
G-symmetric graph I' is imprimitive if and only if its vertex set admits a nontrivial
G-invariant partition B. So in this case we have a natural quotient graph I's of

I' with respect to B. According to the approach of Gardiner and Praeger, such a
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graph I' can be “decomposed” into the “product” of this quotient and two other
configurations, namely the “inter-block” bipartite graph T'[B,C| and the 1-design
D(B) which we defined in the previous section. It was suggested [43, 44, 45| that

these three configurations may have a strong influence on the structure of I'.

1.3 Main results and the structure of the thesis

This thesis can be divided into the following three parts.

PART 1. The first part consists of this introductory chapter and the next two
chapters. In Chapter 2, we will introduce notation, terminology and preliminary
results for permutation groups, designs and graphs that will be used throughout. In
Chapter 3, we will discuss in detail the geometric approach of Gardiner and Praeger
[43] for studying imprimitive symmetric graphs, and thus set the framework for
the whole thesis. As mentioned in Section 1.1, the triple (I's, I'[B, C], D(B)) will
be associated with any G-symmetric graph I' admitting a nontrivial G-invariant
partition B. Here I'[B, C] is the induced bipartite subgraph of I" with bipartition
{I'(C)YNnB,I'(B)NC}, where I'(B) is the set of vertices of I" adjacent to at least one
vertex of B. In most cases we will identify D(B) = (B, ['5z(B), 1) with the 1-design
with point set B and blocks I'(C') N B (with possible repetition), so D(B) has block
size k = |T'(C')N B|, where C runs over all the blocks in the neighbourhood I's(B) of
B in I'g. The study of ' will involve a detailed analysis of these three configurations,
as well as addressing the problem of the reconstruction of I' from the triple above.

PART II. The heart of the thesis is the second part, which contains Chapters
4 through 9. Since the class of imprimitive symmetric graphs is very large, it is
unrealistic to discuss all the cases in the thesis. In this part we concentrate on
the case where the block size k of the 1-design D(B) is one less than the block
size v of the partition B. As we will see later, this case is rather enlightening and
unexpectedly rich in both theory and examples. Chapter 4 is devoted to a general
analysis of this case and thus provides a basis for subsequent study in this part. As
fundamental properties for this case, we will prove that the induced action of G on
B is faithful and the induced action of G on B is 2-transitive, where Gp is the
setwise stabilizer of B in G. We will also study (Section 4.4) an extreme case for
which all of ', I'g and T'[B, C|] can be determined explicitly. (Chapter 4 is based on
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certain parts of [53] and [101].)

In Chapter 5, we study the case where in addition D(B) contains no repeated
blocks. Not only is this a natural assumption geometrically, but also we will prove
that, under the assumption & = v —1 > 2, D(B) contains no repeated blocks if and
only if the quotient I'g is (G, 2)-arc transitive (Theorem 5.1.2). In this case, the
valency of I's is equal to v, the vertices of I' can be labelled in a natural way by the
arcs of I's, and each vertex of I' has a unique mate. We will give (Section 5.2) a
very natural and simple construction of a class of graphs I" such that k =v—1 > 2
and D(B) contains no repeated blocks. Moreover, we will show that every graph
[’ satisfying these conditions can be constructed by using this construction (see
Theorem 5.2.3). The construction bears some similarity to the “covering graph”
construction of Biggs [6, pp.149-154]. The ingredients for our construction are a
(G,2)-arc transitive graph ¥ and a self-paired G-orbit A on 3-arcs of ¥. Given
these, we define the 3-arc graph of 3 with respect to A to be the graph with vertices
the arcs of ¥ in which two vertices represented respectively by arcs (o, 1), (¢/,7') of
¥ are adjacent if and only if (7, 0,0’,7’) is a 3-arc in A. The possibilities for I'[ B, C|
depend on the pair (I'z, G), and vice versa. For example, under the assumptions
above, we will prove (Theorem 5.3.1) that the extreme case I'|B,C| = K,_1,-1
(where T'[B, C] contains the maximum possible number of edges) occurs if and only
if I'g is (G, 3)-arc transitive. (This chapter is based on publication [53].)

The 3-arc graph construction above enables us to classify in Chapter 6 all the
pairs (I', G) with I" a G-symmetric graph such that k = v—1 > 2, D(B) contains no
repeated blocks and I's is a complete graph. From this construction the classification
of such graphs I' is equivalent to classifying all 3-arc graphs of (G, 2)-arc transitive
complete graphs X of valency v. In this case G is 3-transitive on the vertices of
Y. Thus the classification of such (I', G) relies on the classification of 3-transitive
permutation groups, and hence depends on the classification of finite simple groups.
The examples of such graphs I' arising from 3-transitive projective groups are the so-
called cross-ratio graphs, which can be defined in terms of cross ratios of quadruples
of points of the projective line PG(1, v). Other examples of such graphs I' include two
graphs arising from each of the 3-transitive affine groups, and two graphs arising from
each of the Mathieu groups My; (degree 12) and My, (degree 22). The classification
of all possible (I', G) will be given in Theorem 6.6.1. (This chapter is based on
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certain parts of [46] and [99].)

Continuing our discussion for the case where k = v —1 > 2 and D(B) contains
no repeated blocks, we will study in Chapter 7 the second extreme case for I'[ B, C],
namely the case where I'|B,C] = (v — 1) - K, is a matching of v — 1 edges (and
thus I'[ B, C contains the minimum possible number of edges). In this case, we call
[' an almost cover of I's. If in addition 'z is a complete graph, then using the
result in Chapter 6 we get a classification (Theorem 7.2.1) of all the possibilities for
such (I';G). In the general case where I's is connected but not complete, we find
a surprising connection between such graphs I' and an interesting class of graphs,
namely near-polygonal graphs, which are associated with the Buekenhout geometries

[12, 75] of the following diagram:

More precisely, in this case we will prove (Theorem 7.3.1) that, for some even integer
n > 4, I's must be a near n-gonal graph with respect to a G-orbit on n-cycles of I'g;
and moreover we will show that any (G, 2)-arc transitive near n-gonal graph (where
n is even) with respect to a G-orbit on n-cycles can occur as such a quotient I'g. (A
near n-gonal graph [75] is a connected graph ¥ of girth at least four together with
a set £ of n-cycles of 3 such that each 2-arc of ¥ is contained in a unique member
of £. In this case we also say that ¥ is a near n-gonal graph with respect to £.)
It was known in [43] that any G-locally primitive graph I' admitting a G-invariant
partition B with k = v —1 > 2 is an almost cover of ['s. So the results above apply
in particular to this case, and we get an amended form (see Corollary 7.4.1) of [43,
Theorem 5.4]. We conclude Chapter 7 by giving necessary and sufficient conditions
for a (G, 2)-arc transitive graph of girth at least four to be near-polygonal. In view
of the results above, these are needed in constructing almost covers of (G, 2)-arc
transitive graphs. (This chapter is based on paper [97].)

In Chapter 8 we study a large class of symmetric graphs, namely the class of G-
symmetric graphs such that the dual 1-design of D(B) contains no repeated blocks.
Our study in this chapter reveals a very close connection between such graphs and
certain point- and block-transitive 1-designs. More precisely, we will give a construc-
tion of such graphs I' from some G-point-transitive and G-block-transitive 1-designs

D, and prove that, up to isomorphism, it produces all of them (see Theorem 8.2.1).
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Each of the constructed graphs, called the G-flag graphs of D, has vertex set a
certain G-orbit © on the flags of D which satisfies some natural conditions. In
particular, any G-symmetric graph [' with k& = 1 satisfies the condition above and
thus is isomorphic to a G-flag graph. We will characterize such a graph I' as a
G-flag graph with © satisfying some additional condition (see Theorem 8.3.1). This
chapter is preparatory for the next chapter, and this is the reason why we include
it in the second part. However, we should point out that this chapter is of interest
for its own sake, and the construction above seems to be useful in classifying or
characterizing some interesting classes of symmetric graphs. (This chapter is based
on paper [100].)

In Chapter 9 we return to the general case of k = v—1 > 2 without assuming the
non-repetition of the blocks of D(B). Based on the similar idea as in the previous
chapter, we will give a construction of such graphs I' from some G-point-transitive
and G-block-transitive 1-designs D, and prove that, up to isomorphism, it produces
all such graphs (see Theorem 9.2.1). In the particular case where the design D
involved is the trivial design with block size 2, the construction gives rise to the
3-arc graphs introduced in Chapter 5. (However, the 3-arc graph construction is
interesting and useful for its own sake.) In the case where D is a certain G-doubly
transitive design, the constructed graph I' has complete quotient I's. Using this
construction we will classify (Theorems 9.4.1 and 9.5.1) all the G-symmetric graphs
I such that £k = v — 1> 2 and ' is complete when the design D involved is either
the projective geometry PG(n, ¢q) or the affine geometry AG(n,q). (This chapter is
based on [99] and part of [46].)

PART III. The third part of the thesis consists of the last two chapters. The
main purpose of this part is to investigate certain local actions induced by G, and
to study their influence on the structure of I'. In Chapter 10 we will study the
induced actions of G on B and I'z(B). We will see that the relationships between
the kernels of these two actions affect significantly the structure of I', especially in
the case where I is G-locally quasiprimitive. In the last chapter, Chapter 11, we will
study a specific case where the actions of G on B and I's(B) are permutationally
equivalent. Geometrically, this requires that the group of automorphisms of D(B)
induced by G acts in the same way on the points and blocks of D(B). In this case

D(B) plays a more active role in influencing the structure of I' and I'g, and we will
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show that a labelling method similar to that used in Chapter 5 applies. Based on
this labelling we will prove among other things that I" is such a graph if and only if
it is isomorphic to a 3-arc graph of some G-symmetric but not necessarily (G, 2)-arc

transitive graph. (Chapter 11 is based on publication [98].)



Chapter 2

Notation, definitions and
preliminaries

If names are not rectified, then language will not be in accord with
truth; if language is not in accord with truth, then things cannot be
accomplished.

Confucius (551-479 B.C.), LuN YU [THE ANALECTS| 13:3

This chapter is a collection of basic definitions and preliminary results relating
to permutation groups, incidence structures, designs and graphs that will be used

in subsequent chapters.

2.1 Permutation groups

A bijection from a finite set Q) to itself is said to be a permutation of §2, and the
symmetric group on 2, denoted by Sym((2) as usual, is the group of all permutations
of € equipped with the ordinary composition of mappings. Any subgroup G of
Sym(€) is said to be a permutation group on Q. If the size |Q| of Q is equal to n,
then we say that GG is a permutation group of degree n.

Let G be a finite group. Suppose that, for each a € 2 and g € G, there
corresponds a member of {2, denoted by 9. We say that this correspondence defines
an action of G on €2, or G acts on €2, if for any a € Q and g, h € G the following
(i)-(ii) hold:

(i) a! = a, where 1 is the identity of the group G;
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(i) (a9)" = a9,

In other words, an action of G on () is a mapping («, g) — af from Q x G to
which satisfies the conditions (i), (ii) above. In such a case, the degree of the action
of G on Q is defined to be |Q. We say that an element g of G fizes a point « of
Q if a9 = «a. The kernel of the action of G on € is defined to be the subgroup of
all elements of G which fix each point of €). If this kernel is equal to the identity
subgroup of GG, then G is said to act faithfully on €.

Example 2.1.1 Every permutation group G on () acts naturally on €2, where o is
the image of o under g, for a € 2 and g € . Clearly, such an action of GG on {2
is faithful. Except where stated otherwise, we will always assume that this is the

action we are dealing with whenever we have a permutation group.

Closely related to group actions is the concept of permutation representation.
By definition a permutation representation of a group G on a finite set {2 is a group
homomorphism ¢ : G — Sym(2). For such a permutation representation ¢, the
image (G)y of G is a permutation group on 2, denoted by G. Thus, G acts on Q2 via
the natural action of (G)p on €. That is, for « € Q and g € G we define a9 := a(9¢,
the image of a under the permutation (g)¢ of 2. It is clear that the kernel of
this action of G on € is exactly the kernel Ker(y) of the group homomorphism ¢,
and if Ker(¢) = 1 then we say that the permutation representation ¢ is faithful.
Conversely, if G' acts on a finite set €2, then each g € G induces a permutation g of
) defined by g : a +— af for a € ). Hence such an action determines a permutation
representation ¢ of G on (2, defined by ¢ : g — ¢ for g € GG, whose kernel is exactly
the kernel of the action of G on (2.

Example 2.1.2 (Right multiplication) Suppose G is a group and H < G is a sub-
group of G. Let [G : H| be the set of right cosets of H in G. Then (Ha)? = Hayg,
for Ha € [G : H] and g € G, defines an action of G on [G : H]. One can see that the
kernel of this action is e H?, which is called the core of H in G and is denoted

by Coreq(H), where HY := g 'Hg.

Naturally, an action of G on €2 induces an equivalence relation ~¢g on €2 defined
by



Permutation Groups 15

a ~¢g [ if and only if a9 = § for some g € G.

The equivalence classes of ~¢g are said to be G-orbits on ). So any two G-orbits are

either identical or disjoint, and the G-orbit containing a given point « of €2 is
a%:={a%: g€ G}

We say that G is transitive on € if there is only one G-orbit on (2, and that G is

intransitive on ) otherwise. For a subset A of €2, we define
AV = {a?:a € A}

In particular, if A9 = A for each g € G, then A is said to be G-invariant; in this

case GG induces an action on A. We call the subgroups
Ga:={geG:A"=A}

and

Gy:={9€G:a’ =aforeachaec A}

the setwise stabilizer and the pointwise stabilizer of A in G, respectively. In partic-
ular, for a, 3,7 € €, the subgroup G, := G of G is called the stabilizer of a in
G, and we set Gog = (Ga)p, Gapy = (Gap)y, ete. If G, acts trivially on €, that
is, G, = Coreg(G,) for all a € , then G is said to be semiregular on Q. If G
acts transitively and semiregularly on €2, then we say that G is regular on ). The
following results can be found in standard books on permutation groups (see e.g.

26, 95)).

Lemma 2.1.1 Suppose that G is a group acting on a finite set ). Let o € 2 and
g,h € G. Then

(a) Gos = g7 'Goyg.

(b) a9 = " if and only if Gog = Goh.

(c) |aC| - |Ga| = |G]|. In particular, G is transitive on 2 if and only if |Q| =
|G : G,l|; and in this case G acts reqularly on  if and only if || = |G : Coreq(Ga)|-

Now suppose G1, G are groups acting on finite sets 2y, {2y, respectively. If there

exist a bijection p : 2; — )y and a group homomorphism ¢ : G; — G5 such that

pa?) = (p(a)"?
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for all o € €27 and g € G, then the action of G; on € is said to be permutationally
1somorphic to the action of G on €)y. In particular, if a group G acts on both £2; and
(s, then we say that the actions of G on ; and )y are permutationally equivalent

if there exists a bijection p : €y — )3 such that

pla?) = (p())?

for all « € ; and g € G.

For a positive integer k, we use Q*) to denote the set of k-tuples of distinct

members of . Let G act on 0. Then G induces a natural action on Q*) defined by
(aq, a0, ..., ) = (af,a,...,af)

for (a1, ao,...,a;) € Q¥ and g € G. If, under this action, G is transitive on Q*),
then G is said to be k-transitive on Q; if G is regular on Q®) then G is said to be
sharply k-transitive on €). As a consequence of the finite simple group classification,
all 2-transitive permutation groups are known up to permutation isomorphism. The
following classification theorem is from [13]. For a group G, the socle soc(G) of G

is defined to be the product of all minimal normal subgroups of G.

Theorem 2.1.1 ([13, pp.8]) Let G be a finite 2-transitive permutation group of de-
gree n. Then either soc(G) is an elementary abelian group, orsoc(G) is a nonabelian
simple group and one of the cases listed in Table 1 (next page) occurs, where k is

the maximum degree of transitivity of the group G.

As mentioned in [13], the socle of G is k-transitive in all cases in Table 1 except
where (i) G = 5, is n-transitive while soc(G) = A, is (n — 2)-transitive, (ii) G <
PI'L(2,q) (with ¢ odd) is 3-transitive while soc(G) = PSL(2, q) is 2-transitive, and
(iii) G = Ree(3) is 2-transitive of degree 28 while soc(G) = PSL(2, 8) is 1-transitive.
Note that the 2-transitive groups with abelian socles are not included in Table 1.
For such groups, one can consult [51]. In particular, any group G with AGL(d, q) <
G < ATL(d, q) is 2-transitive on the d-dimensional vector space over GF(q); and
moreover G is 3-transitive if and only if G = AGL(d, 2), or G = Z3.A7 < AGL(4,2).
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soc(G) n k Remarks
An,m>5 n n Two representations if n =6
PSL(d>Q)7dZ 2 (qd_ 1)/(q_ 1) 3ifd=2 (va) # (272)7(273)

2 if d > 2 | Two representations if d > 2
PSU(3, q) ¢ +1 2 q>2
Suz(q) P +1 2 q=2%*l>29
Ree(q) @ +1 2 q=23%t>3
PSp(2d, 2) 92d—1 4 9d-1 2 d>2
PSp(2d, 2) 22d-1 _ gd-1 2 d> 2
PSL(2,11) 11 2 Two representations
PSL(2,38) 28 2
Ay 15 2 Two representations
M11 11 4
My 12 3
Mjs 12 5 Two representations
Moo 22 3
Mas 23 4
Moy 24 D
HS 176 2 Two representations
Cos 276 2

TABLE 1 Socles of 2-transitive groups

Finally, an element of a finite group G is called a 2-element if its order in G is a
power of 2. In particular, an element of G with order 2 is called an involution of G.
We refer to [26, 95] for terminology and notation on permutation groups not defined

above.

2.2 Partitions, blocks and primitivity

A partition of a finite set (2 is a set B of subsets of €2 such that Ugcp B = €2 and
BN C =0 for distinct B,C € B. We call each member of B a block of B, and if B
has n blocks then we say that it is an n-partition of Q2. Clearly, {{a} : a € Q} and
{2} are partitions of €2, which we call the trivial partitions of ). For two partitions
By, By of €, we say that B; is a refinement of B, if each block of By is a union of
some blocks of B;; and we say that B; is a genuine refinement of By if in addition
B, # {{a} :a € Q} and B; # B,.

Let B be a partition of Q and let G act on 2. If BY € B for any B € B and

g € G, then B is said to be a G-invariant partition of ). In such a case, G permutes



18 NOTATION, DEFINITIONS AND PRELIMINARIES

blockwise the blocks of B and thus induces a natural (possibly unfaithful) action
on B. Obviously, the trivial partitions {{a} : a € Q}, {2} of Q are G-invariant.
Suppose G is transitive on ). If the trivial partitions are the only G-invariant
partitions of 2, then G is said to be primitive on €); otherwise G is said to be
imprimitive on §2. In general, if G is k-transitive on €2, for some k£ > 1, such that
the pointwise stabilizer in G of any k& — 1 distinct points of 2 is primitive on the
remaining points, then G is said to be k-primitive on €.

Note that each block B of a G-invariant partition of € is a block of imprimitivity
for G in Q in the sense that, for each ¢ € G, either BY = B or BN B = (.
Conversely, for a transitive group G acting on €2, any block B of imprimitivity for G
in 2 induces a G-invariant partition of 2, namely { BY : ¢ € G'}; and in this case each
block of this partition is also a block of imprimitivity for GG in €. Thus, a partition B
of € is G-invariant if and only if each block of B is a block of imprimitivity for G in
Q2. Hence G is primitive on 2 if and only if the only blocks of imprimitivity for G in
Q are Q and {a}, for a € Q. Clearly, we have G, < G < G for @ € B. Conversely,
for any subgroup H of G with G, < H < G, the H-orbit B := o containing « is a
block of imprimitivity for G in €2, and hence B induces a G-invariant partition of €.
Further, if G, < H; < Hy < G, then ot C a2 and the partition corresponding to
H, refines the partition corresponding to H,. So the lattice of G-invariant partitions
of 2 (with partial order the refinement of partitions) is isomorphic to the lattice of
subgroups H of G containing G,. Therefore, G is primitive on §2 if and only if G,
is a maximal subgroup of G.

In the following we will write G ¢ = (Gg)c, Gpop = (Gpc)p for B,C,D €
B. For any subset T" of GG, we define

fixg(T) :=={a € Q:a =aforallg € T},

the fized point set of T in €2. The following lemma will be used in our later discussion.

Lemma 2.2.1 ([26, pp.19]) If a group G acts transitively on a finite set §2, then,
for each o € Q, fixg(Gy) is a block of imprimitivity for G in .

We conclude this section by giving the definition of quasiprimitivity, which relies

on the following result.
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Lemma 2.2.2 (see e.g. [70, Lemma 10.1]) Let a group G act on a finite set 2, and
let N be a normal subgroup of G. Then the set of N-orbits on §2 is a G-invariant
partition of €.

We will denote this partition by By and called it the G-normal partition of 2
induced by N. Clearly, the trivial partitions {{a} : @ € Q} and {Q} are G-normal
partitions induced by the identity subgroup and G itself, respectively. If these are
the only G-normal partitions of €2, then G is said to be quasiprimitive on ). In other
words, G is quasiprimitive on 2 if and only if every non-indentity normal subgroup
of GG is transitive on €2. Thus, GG is quasiprimitive on ) implies in particular that
it is transitive on 2. It follows from the definition that G is primitive on {2 implies
that it is quasiprimitive on €. Note that the converse of this is not true (see e.g. [70,

Section 10]).

2.3 Incidence structures and designs

We refer to [5, 10] for terminology and notation on design theory. An incidence
structure is a triple D = (V,B,I), where V', B are disjoint finite sets and I is a
binary relation between V' and B, that is, I C V x B. The members of V', B and
[ are called the points, blocks and flags of D, respectively. If (a, X) is a flag of D,
then we simply write alX and say that a, X are incident with each other. The trace
of a block X (a point «, respectively) of D is the subset {ov € V : alX} of V' (the
subset {X € B : alX} of B, respectively). If two blocks have the same trace, then
they are said to be repeated blocks of D. As usual in the literature, in the case where
D contains no repeated blocks we may identify each block with its trace and thus
identify B with a set of subsets of V. If the traces of all blocks of D have the same
cardinality k£ (which we call the block size of D) and if the traces of all points of D
have the same cardinality r, then D is said to be a 1-(v, k, r) design, where v := |V|.
In such a case, we have vr = bk by counting the number of flags of D in two different
ways, where we set b := |B|. A 1-(v, k,r) design D is said to be a t-(v, k, \) design,
for some integers t > 2 and A > 1, if any ¢ distinct points are incident with A blocks
simultaneously. The dual of a 1-(v, k,r) design D = (V, B, 1) is the 1-(b, r, k) design
D* := (B, V,I*) with XI*« if and only if alX. For two 1-designs D = (V, B, I) and
D' = (V',B,T'), an isomorphism from D to D’ is a bijection ¢ : VUB — V' U B’
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such that (V) = V', ¢(B) = B’, and alX if and only if ¢)(a)I'yp(X). If there exists
an isomorphism v from D to D*, then D is said to be self-dual; and if moreover
1?2 = 1 then 9 is called a polarity of D. An isomorphism from D to itself is said to be
an automorphism of D, and all such automorphisms form the (full) automorphism
group of D, denoted by Aut(D). In general, if G is a group acting on the points and
the blocks of D respectively such that the incidence relation of D is preserved by
these actions, that is, alX if and only if a91XY for a € V, X € B and g € G, then
we say that D admits G as a group of automorphisms. In this case G induces an
action on the flags of D. If G is transitive on the points (blocks, flags, respectively)
of D, then D is said to be G-point-transitive (G-block-transitive, G-flag-transitive,
respectively). As a convention, when we say D is G-transitive, we mean it is G-
point-transitive. Similar convention applies to G-doubly transitive 1-designs. For a
point « of D, we set B, := {X \ {a} : X € B,alX} and let I, be the incidence
relation between V' \ {a} and B, induced by I. If D is a 2-(v, k, \) design, then
D, :=(V\{a},Bs 1) isa l-(v—1,k—1,A—1) design, and in this case D is said
to be an extension of D,,.

A linear space [5] is an incidence structure of points and blocks (called lines) in
which any two distinct points are incident with exactly one line, any point is incident
with at least two lines, and any line with at least two points. A linear space with

each line incident with exactly two points is called a trivial linear space.

2.4 Graphs

All the graphs in this thesis will refer to finite, undirected and simple graphs. Such
a graph I' can be defined as an incidence structure (V, F, 1) with no repeated blocks
such that each block is incident with exactly 2 points. The members of V| E are
called the vertices and edges of T', respectively. As usual, we use V(I') and E(I)
to denote respectively the vertex set V' and the edge set E of I', and thus we write
I'=(V(I),E()). Two vertices a, 3 of I" are said to be adjacent if there exists an
edge e of I' which is incident with both a and (. In such a case, we say that e
joins o and § and we may identify e with the unordered pair {«, 5}. So we may
identify £(I") with the set of all such unordered pairs of vertices of I'. For a € V/(I'),

we use I['(a) to denote the neighbourhood of o in T', that is, the set of vertices of I'
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adjacent to a. The wvalency of v in T" is defined to be the size of I'(«). A vertex of
I with valency 0 is called an isolated vertex of I'. If all vertices of I' have the same
valency, then I' is said to be regular. In this case, this common valency is called
the valency of I' and is denoted by val(I'). A complete graph is a graph in which
any two distinct vertices are adjacent, whilst an empty graph is a graph in which
any two vertices are not adjacent. A subgraph of I' is a graph ¥ = (V(X), E(X))
with V(X) C V(I'), E(X) C E(T'). For a subset X of V(T'), we use I'[X] to denote
the subgraph of I' induced by X, that is, the graph with vertex set X in which
a, 3 € X are adjacent if and only if they are adjacent in T'. In particular, if T'[X] is
a complete graph, then X is said to be a clique of T'; and if I'[X] is an empty graph,
then X is said to be an independent set of I'. The graph I is said to be an n-partite
graph if V(I") admits an n-partition with each block an independent set of I". If in
addition any two vertices in distinct parts of this n-partition are adjacent, then I'
is said to be a complete n-partite graph. In particular, a 2-partite graph is called a
bipartite graph. For two graphs I' = (V/(I'), E(I")) and ¥ = (V(X), E(X)) (with or
without common vertices), the union of I' and X, denoted by I' U ¥, is the graph
with vertex set V(I') UV (X) and edge set E(I') U E(X). The union of finitely many
graphs is defined similarly. In particular, we will use n - I' to denote the union of n
vertex-disjoint copies of I'. The lexicographic product T'[X] of T by ¥ is defined to
be the graph with vertex set V(I') x V(%) in which (o, ) and (o, 7) are adjacent if
and only if either a, o are adjacent in I', or @« = ¢ and 3,7 are adjacent in ». We
will use T to denote the complement of a graph I, that is, the graph with the same

vertices as I' in which «, § are adjacent if and only if they are not adjacent in I'.

A path of a graph T" of length n is a sequence ag, aq,...,a, of n 4+ 1 distinct
vertices such that a;_1,a; are adjacent for ¢ = 1,2,...,n. Such a path is said to
connect o and «,,. Define a binary relation ~pr on V(I') such that o ~rp ( if and
only if there exists a path of I' connecting o and (3. Then it is an equivalence relation
on V(I'), and we call the subgraphs of I" induced by the equivalence classes of ~r
the connected components of I'. The graph I is said to be connected if it has only one
connected component, and disconnected otherwise. The distance in I' between two
given vertices a, 3, denoted by dr(«, 3) (or simply d(«, 3) if no ambiguity exists),
is the shortest length of a path of I' connecting o and [ if they are in the same

connected component of I', and is defined to be co otherwise. (As a convention, we
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define d(a, ) = 0.) The diameter of T', denoted by diam(I"), is the largest distance
in I between any two vertices of I'. For n > 3, an n-cycle (or a cycle of length n) of
['is an (n+ 1)-tuple (g, a1, . .., 1, ) of vertices of T" such that ag, aq, ..., @, 1
are pairwise distinct and «;_1, o; are adjacent for i = 1,2,...,n (subscripts modulo
n). The girth of T, denoted by girth(I"), is the shortest length of a cycle of T" if I"
contains cycles, and is defined to be oo otherwise.

Let ', ¥ be two graphs. A mapping ¢ : V(I') — V(X)) is called a (graph)
homomorphism from I' to X if 1 maps adjacent vertices of I' to adjacent vertices of
Y. If in addition v is one-to-one, then it is called a (graph) monomorphism; and if
in addition ¢ is a bijection with ¥»~! a homomorphism from ¥ to I, then 9 is said
to be a (graph) isomorphism from I' to . In particular, an isomorphism from T’
to itself is said to be an automorphism of I'. All such automorphisms of I' form a
subgroup of Sym(V(T")), called the full automorphism group of I' and denoted by
Aut(T"). Any subgroup of Aut(I") is called an automorphism group of I". In general,
if G is a group acting on V(I') such that, for any g € G, two vertices «, 5 of I' are
adjacent in I implies that o9, 39 are adjacent in ', then we say that I' admits G as
a group of automorphisms.

We will use K,,, P, Cp,, Ky m, K, to denote, respectively, the complete graph on
n vertices, the path of length n, the cycle of length n, the complete bipartite graph
with m vertices in each part of its bipartition, and the complete n-partite graph
with m vertices in each part of its n-partition. The graph n - Ky with n edges is

called a matching.



Chapter 3

Imprimitive symmetric graphs: A
geometric approach

From TAO proceeds the one; one produces two; this makes three.
From these three proceed all things. All things thus bear the imprint of
the negative yin behind and embrace the positive yang in front, and

through the blending of the vital force (ch’i) they achieve harmony.
Lao Tzu (6th or 4th Cent. B.C. ?), TA0o TE CHING 42

The geometric approach we will use in this thesis was first introduced by Gardiner
and Praeger in [43]. Although their paper was written in the context of G-locally
primitive graphs, the same approach is well suitable for studying general imprimitive
G-symmetric graphs, and the theory was extended to such graphs in [44, 45, 53]. In
this chapter we will introduce this approach and prove some basic results involved,
and thus set the framework for the whole thesis. Most results in Section 3.2 were
known explicitly or implicitly in [43, 44, 45, 66]. We start with some definitions

relating to symmetric graphs.

3.1 Symmetric and highly arc-transitive graphs

Let I' be a graph and s a positive integer. An s-arc of I' is an (s + 1)-tuple
(v, a1, ..., ) of vertices of T' such that «; 1 is adjacent to a; for 1 < i < s
and a;_1 # ;1 for 1 <i < s—1. We will use Arcs(I") to denote the set of s-arcs of
I'. Usually a l-arc is called an arc, and instead of Arcy(I") we use Arc(I") to denote

the set of arcs of I
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Suppose that I' admits a group G as a group of automorphisms. Then, in
a natural way, G induces an action on Arcs(I') defined by (a9, q,...,q5)9 =
(af,af,...,a9), for (ap,ay,...,as) € Arcy(T") and g € G. If, under this induced
action, G is transitive on Arcy(T"), then T' is said to be (G, s)-arc transitive. As
usual in the literature, a (G, 1)-arc transitive graph is called a G-symmetric graph,
or simply a symmetric graph if the group G is not important in the context. Like-
wise, if G is transitive on V(I'), then I' is said to be G-vertez-transitive. Clearly,
any G-vertex-transitive graph is regular.

Perhaps it is the right time to say a few words about the definition of a (G, s)-arc
transitive graph. In most cases (but not always), such a graph I is also G-vertex-
transitive; and this is the case researchers are interested in. In fact, if I' is a G-
symmetric graph with no isolated vertices, then it must be G-vertex-transitive since
each vertex of I' can be taken as the initial vertex of an arc. In general, it follows
from [70, Theorem 9.3] that, if " is a (G, s)-arc transitive graph with each connected
component containing at least one s-arc, then either I' is G-vertex-transitive and is
(G, i)-arc transitive for each i with 1 <14 < s, or the connected components of I are
isomorphic trees. Therefore, as usual in the literature, we will be concerned with

G-vertex-transitive, (G, s)-arc transitive graphs only.

Convention 3.1.1 By a (G, s)-arc transitive (G-symmetric, respectively) graph,
we will always refer to a G-vertex-transtive, (G, s)-arc transitive (G-symmetric,

respectively) graph with valency at least one.

As we see above, under the assumption of G-vertex-transitivity, (G, s)-arc transi-
tivity implies (G, s—1)-arc transitivity. Here, for s = 1, we may interprete (G, 0)-arc
transitivity as G-vertex-transitivity. Conversely, if I is (G, s — 1)-arc transitive and,
for some fixed (s — 1)-arc (g, a1, ..., as-1) of I, the stabilizer Guya,. a. , 1S transi-
tive on I'(as-1) \ {as—2}, then I' is (G, s)-arc transitive. In particular we have part
(b) of the following lemma. Part (a) of this lemma follows from the definition of a

G-symmetric graph.

Lemma 3.1.1 Let I' be a G-vertex-transitive graph, and let o« € V(I'). Then the
following (a)-(b) hold.

(a) ' is G-symmetric if and only if G, is transitive on I'(«).

(b) T" is (G, 2)-arc transitive if and only if G, is 2-transitive on T'(a).
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We should warn that, for s > 3, the similar assertion “I" is (G, s)-arc transitive
if and only if G, is s-transitive on I'(«)” is not valid. In view of (a) above, if I'
is G-symmetric such that G, is primitive on I'(«), then I' is said to be G-locally
primitive. Similarly, if I' is G-symmetric such that G, is quasiprimitive on I'(«),
then T' is said to be G-locally quasiprimitive. In general, for a given property P,
if the action of G, on I'(«) has the property P, then following [66] we say that I'
is G-locally P. Since any 2-transitive group is primitive, it follows from (b) above
that any (G, 2)-arc transitive graph is G-locally primitive. Similarly, any G-locally
primitive graph is G-locally quasiprimitive.

Since the objects studied in this thesis are imprimitive symmetric graphs, we

now give a formal definition for such graphs.

Definition 3.1.1 Suppose I' is a G-symmetric graph. If G acts imprimitively on
V(T), then I is said to be an imprimitive G-symmetric graph.

Finally, if a graph I" admits G as a group of automorphisms, then G induces a
natural action on the edges of I' defined by {«, 5} := {9, 39}, for {«, 5} € E(T)
and g € G. If, under this action, G is transitive on E(I"), then I' is said to be

G-edge-transitive.

3.2 The geometric approach

Suppose [ is an imprimitive G-symmetric graph. Then it follows from the definition
that V(') admits a nontrivial G-invariant partition 5. For a vertex « of I', we will
always use B(a) to denote the (unique) block of B containing «. Since B is G-
invariant, we have

B(a?) = (B(a))? (3.1)

for any a € V(') and g € G. A standard approach to studying such a graph I is to
analyse the quotient graph of I' with respect to B, denoted by I's, which is defined
to be the graph with vertex set B in which two blocks B, C € B are adjacent if and
only if there exists at least one edge of I' joining a vertex of B and a vertex of C'. To
extract useful information about I' from this quotient graph, we require naturally
that 'z is a nonempty graph. In this case we have the following lemma (see [6,

Proposition 22.1] or [66, Lemma 1.1(c)] for the “only if” part).
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Lemma 3.2.1 Suppose that I' is a nonempty G-symmetric graph whose vertex set
admits a nontrivial G-invariant partition B. Then Uz is a nonempty graph if and

only if each block of B is an independent set of .

Proof Since I' is nonempty, there exists an arc («, 3) of I'. The G-symmetry of
[ implies that each arc of I has the form (a9, 39) for some g € G. So from (3.1)
we have: I's is a nonempty graph < B(a) # B(f) for some arc (a,3) of I' &

B(a%) # B(p9) for all arcs (a9, 39) of I' (where g € G) < each block of B is an
independent set of T'. a

In other words, ['s is an empty graph if and only if each block of B consists of
connected components of I'. In order to avoid this somewhat trivial case, we make

the following convention throughout this thesis.

Convention 3.2.1 For the pair (I, B) above, we always assume that I's is a non-

empty graph. Thus each block of B is an independent set of I'.
The following lemma shows that 'z inherits the G-symmetry from I'.

Lemma 3.2.2 ([66, Lemma 1.1(a)]) Suppose that I is a G-symmetric graph and B
is a nontrivial G-invariant partition of V(I'). Then I's is G-symmetric under the

induced action of G on B.

Proof Since G is transitive on V(I') and B is a G-invariant partition of V(I'), it
follows that G is transitive on B, that is, ' is G-vertex-transitive. Let (B,C), (D, E)
be two arcs of I'g. Then there exist « € B,3 € C,v € D,§ € FE such that
(a, ), (7,0) € Arc(T'). By the G-symmetry of T', there exists g € G such that
(e, 3)9 = (v,6). From (3.1) above, this implies BY = (B(«))? = B(a9) = B(y) = D,
and similarly CY = E. Hence (B,C)¢ = (D, E) and I'g is G-symmetric. O

We remark that, if T’ is connected, then T's is connected as well ([66, Lemma
1.1(b)]). Since the connected components of a symmetric graph are all symmetric
and are pairwise isomorphic, without loss of generality we may even require that
I's is connected. Nevertheless we will not assume this in most parts of this thesis.

(Whenever we need the connectedness of I's we will state this explicitly.)
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The induced action of G on B is not necessarily faithful. If the kernel of this
action is K, then BX9 := B9, for B € B and Kg € G/K, defines a faithful action of
G/K on B. Moreover, under this action I's is (G/K)-symmetric.

The quotient graph I's conveys a lot of information about the graph I'. Never-
theless, it does not determine I' completely since it does not tell us how adjacent
blocks of B are joined by edges of I'. To compensate for this shortage, we need to
consider the “inter-block” subgraph I'[ B, C] of I' induced by (I'(C)NB)U(I'(B)NC),
where B, C' are adjacent blocks of B, where for any block D € B we set

I'(D):= J T(a).
aeD
Since each block of B is an independent set of I', this subgraph I'|B, C] is a bipartite
graph with bipartition {I'(C') N B,T'(B) N C'}. Denote by I'g(B) the neighbourhood
of B in I'g. To depict genuinely the structure of I' we also need a “cross-sectional”
geometry, namely the incidence structure D(B) := (B,['5z(B),I) in which a point
a € B and a block C' € I'g(B) are incident if and only if « is adjacent in I' to at
least one vertex of C. Clearly, the trace of the block C of D(B) is I'(C') N B. We
denote by I's(a) the trace of a in D(B), that is,

Ip(a) :={C el'g(B): acl(C)}.

We will show in the following that, up to isomorphism, I'[B,C] and D(B) are re-
spectively independent of the choice of adjacent blocks B, C and the block B, and
that D(B) is in fact a 1-design (see Lemmas 3.2.3(a) and 3.2.5(a) below). Thus,
with any imprimitive G-symmetric graph [' and nontrivial G-invariant partition B
of V(I') we have associated three configurations, namely the quotient graph I'z, the
bipartite graph I'[ B, C], and the 1-design D(B). In a very informal way we can say
that the graph I' is “decomposed” into the “product” of these three configurations
which, according to Gardiner and Praeger [43], might have a strong influence on the
structure of I'. The usefulness of this geometric approach to studying imprimitive

symmetric graphs lies in the following two aspects:
(i) a detailed analysis of the three configurations above; and

(ii) an attempt at reconstructing I' from the triple (I'z, I'[ B, C], D(B)).
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In the subsequent chapters we will follow this approach and study some specific
classes of imprimitive symmetric graphs.

Now let us prove some basic properties regarding I'[B, C| and D(B).

Lemma 3.2.3 Suppose the triple (I', G, B) is as in Lemma 3.2.2. Then the following
(a)-(c) hold for adjacent blocks B,C" of B.

(a) The bipartite graph T'[B, C| is, up to isomorphism, independent of the choice
of adjacent blocks B,C' of B.

(b) ([66, Lemma 1.4(b)]) I'[ B, C] is (G puc)-symmetric and (G g ¢ )-edge-transitive.

(c) I(C)NB and I'(B) N C are two (Gpc)-orbits on V(I').

(d) |Gpue : Gec| =2, and hence G < Gpuc.

Proof Let B,C; D, E be two pairs of adjacent blocks of B. Then (B, C), (D, E) are
arcs of I's. Hence by Lemma 3.2.2 there exists g € G such that (B,C)? = (D, E).
The restriction g of g on BUC' is a bijection from BUC to DUFE. Since g preserves
the adjacency of I', ¢ is an isomorphism form I'[B,C] to I'[D, E], and thus (a) is
proved.

Now let us prove (b). Since I' is G-symmetric, for any two arcs (a, 3), (7,0) of
['[B, C], there exists g € G such that («, 3)9 = (,9). Since either «,y are in the
same block of B, C'and (3, ¢ in the other, or «;, § are in the same block of B, C' and 3, v
in the other, it follows from (3.1) that (B,C)? = (B, C) or (C, B) respectively. So
g € Gpuc and hence I'[B, C] is (G gyc)-symmetric. For any two edges {«a, 8}, {v,d}
of T'[B, C], we may assume without loss of generality that a,y € B and 3, € C.
Then there exists h € G such that (a, 3)" = (7, ). Again by (3.1) we have h € G c.
Thus I'[B, C] is (Gp,¢)-edge-transitive, and hence (b) is proved. Since each vertex
in I'(C') N B is incident with an edge of I'[B, C| and since Gp ¢ is transitive on the
edges of I'[ B, C|], we conclude that G ¢ is transitive on I'(C') N B. Similarly, Gp ¢
is transitive on I'(B) N C. Since I'(C') N B and I'(B) N C are (Gp ¢)-invariant, part
(c) follows.

Finally, for any g,h € Gpuc \ Gpc and z € Gp ¢, one can check that g~'zh €
Gpc and hence g7 (Gpc)h = Gpeo. Therefore, |Gpuc @ Gpel = 2 and thus
Gp,c A Gpuc. O
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Lemma 3.2.4 Suppose the triple (I', G, B) is as in Lemma 3.2.2, and let o« € V(I).
Then the following (a)-(b) hold.

(a) ([66, Lemma 1.4(a)]) I'(a) admits a G-invariant partition, namely {I'(a) N
C:CeTlg(a)}. Moreover, G, is transitive on the blocks of this partition.

(b) If T'[B, C] is a matching, then the blocks of this partition are singletons and

the actions of G, on I'(a) and I'p(c) are permutationally equivalent.

Proof Set P := {['(a) NC : C € I'g(a)}. Then clearly P is a partition of I'(«).
For any block I'(a) N C of P and g € G,, one can easily check that (I'(a) N C)9 =
['(a) N C9 € P and hence P is G,-invariant. Let I'(a) N D be a second block of P.
Then there exist g € C,v € D which are adjacent to a. So there exists h € G such
that (o, 8)" = (a,7). Thus h € G, and (3.1) implies C" = D. Therefore, we have
(T(a)NC) =T (a) NC" = T'(a) N D, which implies that G, is transitive on P and
hence (a) is proved.

If I'[B,C] is a matching for adjacent blocks B,C of B, then (a) implies that
each C € I'g(«) contains a unique vertex adjacent to a and hence p : 5 +— B(f),
for 5 € T'(«), defines a bijection from I'(«r) to I'g(a). From (3.1), we then have
p(B9) = B(B9) = (B(B))! = (p(B))? for g € G4, and hence (b) follows. O

From Lemma 3.2.3(a), we know that
k:=|I(B)NC|

is independent of the choice of adjacent blocks B, C of B. Since G is transitive on
V(T'), the value

r:= [Ip(a)]
is independent of the choice of a € V(I'). Consequently, the incidence structure
D(B) is a 1-(v, k,r) design, where

v:=|B]

denotes the block size of B. Similarly, the G-vertex-transitivity of I' and Lemma

3.2.4(a) together imply that
s:= |T(a)NC]
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is independent of the choice of the flag (c, C') of D(B) (where o € B and C' € I'(«)).
Clearly, we have val(T') = rs and val(T'[B, C]) = s. Let

b :=val(I'p)

denote the valency of I'z. Then b is equal to the number of blocks of D(B). Through-
out this thesis we will reserve these symbols v, 7, b, k, s for the above-defined param-
eters with respect to the G-invariant partition B of V(I'). In particular, if k = v,
s = 1, then the bipartite graph I'[B, C] is a perfect matching between B and C, and
in this case the graph I' is called a cover of I'g. In general, if k£ = v, then following
[54], T is said to be a multicover of T'g. Similarly, if k = v — 1 and s = 1, that is,
['[B,C] = (v —1) - K, then we say that I is an almost cover of I's and that I'
is almost covered by I". Lemma 3.2.4 has the following consequence for G-locally

primitive graphs.

Corollary 3.2.1 ([43, Lemma 3.1(b)]) Suppose that T is a G-locally primitive graph
and B is a nontrivial G-invariant partition of V(I'). Then either
(a) T'[B,C] 2 k- Ky is a matching of k edges, for adjacent blocks B,C" of B; or
(b) T is a bipartite graph with each part of the bipartition of a connected compo-
nent contained in some block of B, the traces of any two distinct blocks of D(B) are
disjoint (thus D(B) contains no repeated blocks), and v = bk.

Proof Let B € B and o € B. By Lemma 3.2.4(a), {I'(a) NC : C € T'g(a)} is
a G,-invariant partition of I'(«r). Since I' is G-locally primitive, for C' € I'g(a) we
have either (i) |[I'(a) N C| = 1; or (ii) ['(a) N C' = I'(«). In the first case, we have
['[B,C] 2 k- K3 and (a) occurs. In the second case, we have I'(a) C C. This,
together with Lemma 3.2.3, implies that the connected component of I containing
« is a bipartite graph with one part of its bipartition contained in I'(C') N B and the
other contained in I'(B) N C. Thus I is a bipartite graph. Moreover, we have r = 1
and the traces of any two blocks of D(B) are disjoint. Hence v = bk and (b) occurs.
O

Lemma 3.2.5 Suppose the triple (I', G, B) is as in Lemma 3.2.2. Then the following
(a)-(c) hold for B € B.



Geometric Approach 31

(a) D(B) is a 1-(v, k,r) design; moreover, up to isomorphism, it is independent
of the choice of B € B.

(b) G induces a group of automorphisms of D(B) which is transitive on the
points, the blocks and the flags of D(B).

(¢) G induces a transitive action on the set of triples (D(B), «, C), where B € B
and (o, C) is a flag of D(B).

Proof (a) That D(B) is a 1-(v, k,r) design has been shown earlier. For two blocks
B, D € B, there exists g € G such that B = D. So we have (I's(B))?Y = I'g(D)
and hence ¢ induces a bijection from B U T'g(B) to D UT's(D). For a € B and
C € I'p(B), we have: (a,C)isaflagof D(B) . a e '(C)NB < o € I'(C9) N BY
o e I'(C)ND < (a9,09) is aflag of D(D). Therefore, g induces an isomorphism
from D(B) to D(D).

(b) Similarly, each g € G induces a bijection from BUT'z(B) to itself such that
B? = B and (I'g(B))? =I's(B). We have: (a,C)isaflagof D(B) < ac'(C)NB
S o el(C9)NB < (a9,09) is a flag of D(B). So g induces an automorphism of
D(B). Therefore, G induces a group of automorphisms of D(B).

Since I' is G-vertex-transitive, G is transitive on the point set B of D(B).
Since I'g is G-symmetric (Lemma 3.2.2), by Lemma 3.1.1(a) G is transitive on the
block set I's(B) of D(B). Suppose («,C), (3, D) are two flags of D(B). Then «
is adjacent to a vertex v € C and f is adjacent to a vertex 6 € D. By the G-
symmetry of [, there exists g € G such that («,7)? = (5,d). This implies g € Gp
and (o, C)? = (B, D), and hence G is transitive on the flags of D(B).

(¢c) Clearly, (D(B),a,C)? := (D(BY),a?,CY), for g € G, defines an action of G
on the set of triples (D(B), «,C) such that B € B and («,C) is a flag of D(B).
Since G is transitive on B and Gp is transitive on the flags of D(B), as shown in

(b), we see that G is transitive on the set of such triples. O

By Lemma 3.2.5(b), the number of times a block C of D(B) is repeated is
independent of the choice of B,C. We call this number the multiplicity of D(B).
For most of the time, we will view D(B) as the 1-(v,k,r) design with point set B
and blocks the subsets I'(C)N B of B (for C € I'p(B)) each repeated m times, where
m is the multiplicity of D(B).
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We conclude this section by examining certain “local actions” induced by the
action of G on V(I'). For B € B, the pointwise stabilizer G(py is, by definition,
the kernel of the action of Gp on B. We will use G|p) to denote the kernel of the
action of Gg on I'g(B). Thus, Gp is the subgroup of Gz fixing each C' € I'p(B)
blockwise. For ao € V/(T'), the stabilizer G, of a in G induces a natural action on
I'z(e). We denote by G4 the kernel of this action, that is, G[y) is the subgroup of
G, fixing each B € I'g(a) setwise. One can see that G, is also the subgroup of G,
fixing each I'(«) N B setwise, and hence it induces a natural action on I'(a) N B. A
detailed study of the influence of these “local actions” on the structure of I will be
conducted in Chapters 10 and 11. For the moment we content ourselves with the
following lemma the proof of which is straightforward. For a vertex a € V(I') and
a block B € B, we set G, 5 := (Ga)5B-

Lemma 3.2.6 Suppose the triple (I', G, B) is as in Lemma 3.2.2.
(a) For B,C € B, the following (i)-(ii) hold.

(i) The action of Gg on B and the action of Go on C are permutationally
isomorphic; and the action of Gg on I's(B) and the action of Go on
['z(C) are permutationally isomorphic.

(i) The action of G(py on I's(B) and the action of G(cy on I'p(C) are per-

mutationally isomorphic.
(b) For any a, B € V(I'), the following (i)-(iii) hold.

(i) The action of Gy on I'(a) and the action of Gy on I'(3) are
permutationally isomorphic. In particular, if o, 8 € B, then the actions

of Gy on I'(a) and T'(B) are permutationally isomorphic.

(i) The action of G(p)) on I's(a) and the action of G )y on I's(3) are
permutationally isomorphic. In particular, if o, 3 € B, then the actions

of Gy on I'g(a) and I'p(B) are permutationally isomorphic.

(iii) The action of G, on I'p(a) and the action of Gz on I's(B) are permuta-

tionally 1somorphic.

(¢) For any a € V(I') and B,C € I'g(«), the following (i)-(ii) hold.
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(1) The action of Gop on I'(a) N B and the action of Goc onI'(a) NC are

permutationally isomorphic.

(i) The actions of Ga) on I'(a) N B and on I'(a) N C' are permutationally

isomorphic.

Proof (a) Since G is transitive on B, there exists g € G such that BY = C. So g
induces a bijection p from B to C. By Lemma 2.1.1(a), z — ¢ 'zg for x € G defines
an isomorphism from Gg to G¢. Since, for v € B, p(v*) = (7%)9 = (79)9 %9 =
(p(7))?" %9, the first assertion in (i) follows. We have (I'z(B))¢ = I's(C) and g
induces a bijection A : D +— D9 from I'g(B) to I's(C). Since \(D*) = (D*)? =
(D9)9"'%9 = (\(D))? '®, the second assertion in (i) then follows.

Similarly, for any « € Gp), we have g~'zg € G(¢) and @ — g 'zg defines an
isomorphism from G(p) to G(¢). One can see that the action of G(py on I'g(B) is
permutationally isomorphic to the action of G(¢y on I's(C') with respect to .

(b) Since G is transitive on V(I'), there exists g € G such that af = 5. Hence
g induces a bijection p : ['(a) — T'(B) defined by p : v +— 79 for v € I'(«). For

'2g defines an

each = € G(p(a)), one can see that g~'zg € G(p(s)) and hence z — g~
isomorphism from G g(a)) to G(p(s))- It is clear that, for any v € I'(ar) and x € G py,
we have p(7%) = (%) = (49)9 %9 = (p(7))? '*9, and hence (i) follows. Similarly,
g induces a bijection A : I's(ar) — I'p(3) defined by A : D — D9 for D € I'g(«).
We have A\(D*) = (A\(D))? '*9 for D € I'g(a) and z € G(B), and hence (ii) follows.

lzg, for x € G, defines an

By Lemma 2.1.1(a), we have Gg = ¢7'G,yg, and z — g~
isomorphism from G, to Gg. Since A(D*) = (D*)9 = (D9)9 9 = (\(D))9 ' for
D € I'g(a) and x € G, the assertion in (iii) then follows.

(c) Since B,C € T'g(a), « is adjacent to a vertex v in B and a vertex § in
C. So there exists ¢ € G such that («,7)? = («,d). This implies that g € G,
and BY = C, and hence (I'(o) N B)Y = I'(a) N C. Thus ¢ induces a bijection
p from I'(a) N B to I'(a) N C defined by p : v +— 9 for v € I'(a) N B. By
Lemma 2.1.1(a), we have Goc = (Go)c = (Ga)ps = 9 HGa)sg = 9 (Ga.5)g, and
hence z +— ¢!
p(7) = (7%) = (79)7 %9 = (p(7))? ®, the action of Gy p on I'(a) N B and the

action of G, ¢ on I'(a) N C are permutationally isomorphic with respect to p. For

xg, for x € G, p, defines an isomorphism from G, g to G, . Since

each z € G|,), we have g lzg € Gla)y and z +— g 'zg defines an automorphism of
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G[o)- By a similar argument as above one can see that the actions of Gjo) on I'(a) N B

and ['(o) N C are permutationally isomorphic with respect to p. O

3.3 Refining the given partition

The main result of this section is the following theorem, which shows that in some
cases we can get a (nontrivial) refinement B* of the given G-invariant partition
B. For B*, the parameters v*, r*, k*, s* have analogous meanings to the parameters

v, r, k, s respectively for B.

Theorem 3.3.1 Suppose that ' is a G-symmetric graph admitting a nontrivial G-
imwvariant partition B. Then I' admits a second G-invariant partition B*, which is
a refinement of B (possibly B* = B), such that the block size v* of B* is a common
divisor of v and k, and that s = cs*,r* = cr for some integer ¢ > 1. The block of
B* containing o € B is B* := Ncery(a)(L(C) N B). In particular, if G, is primitive
on I'g(a), then either

(a) D(B) has no repeated blocks, or

(b) k divides v, B* = {(I'(C) N B)! : g € G} (where C € T's(B)), I' is a
multicover of U'p« with v* = k* = k,s* = s,r* =r, and T'[B, C| =2 T'[B*,C*|, where
B* € B* and C* € I'g«(B").

49 7

Proof Let B € B. For a fixed vertex a € B, we define a binary relation “~, ” on
I's(c) by
E~, F&T(E)NB=T(F)NB

for E, F € I'g(a). Then clearly “ ~, ” is an equivalence relation on I'g(a). Let n
be the number of equivalence classes of “ ~, 7, and let R(a) := {R;(«) : 1 <7 < n}
denote the partition of I'g(a) induced by “ ~, ”. Then, for g € G, and E,F €
Ts(a), we have: E ~, F < T(E)NB = I(F)NB < T(E%) N B = I(F*) N B
& B9 ~, F9. This implies that R(«a) is a G,-invariant partition of I'g(a). The
block size of R(«) is equal to the multiplicity m of D(B). Hence mn = r, and
in particular n is a divisor of r. Also, since F € I'g(a) implies £ € I'g(af)
and ['(E9) N B = (I'(E) N B)Y for g € Gp, from the definition of “ ~, ” we have
R(a?) = (R(a))? = {(R;(«))? : 1 <i < n}. Hence the size n of R(«) is independent
of the choice of a € B.
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Now we define an equivalence relation “ ~” on B by
a~ < I'gla) =Tp(F) and R(a) = R(p)

for o, 5 € B. Since, for g € Gg, a ~ fimplies I's(a?) = T'5(B9) and R(af) = R(/9),
the partition of B induced by “ ~ 7"
and let B* be the block of this partition containing . Then G, < Gp« < Gp, and
so (see the third paragraph of Section 2.2) B* := {B*? : g € G} is a G-invariant
partition of V(I') refining B. Thus v* = |B*| = v/|Gg : Gp+| divides v. We
claim that B* = Neery) (I'(C) N B). In fact, let Cyy, ..., Can be representatives
from Ri(«),..., R,(«), respectively. If g € N;(I'(Cyi) N B), then for each i,
B eT(Cy)nNB =T(C)N B for each C' € R;(«), and hence I'g(#) = I'g(a) and
Cat, - - ., Cap are representatives from Ry(3),..., R,(3). This implies R(a) = R(f)
and hence § € B*. Conversely, for any § € B*, we have R(a) = R(/3) and hence
{R1(B),....R.(B)} = {Ri(a),....,Ru()}. So 8 € N, (['(Cyi) N B). Thus we
have proved that B* = (L, (['(Cas) N B), that is, B* = Neerg)(I'(C) N B). Let
v € I'(D) N B, where D € I'g(a). Then there exists g € Gp such that v = a9. So
v € B = Neerg(L'(C) N B)Y = Neergy)(I'(C) N B). Note that v € I'(D) N B
implies D € I'p(7y). So we have B* C I'(D) N B. Therefore, I'(D) N B is a union
of blocks of B*. Hence v* is a divisor of k. Let ¢ denote the number of blocks B*Y
of B* contained in D such that T'(«) N B*? # (). Since Gp is transitive on the flags
of D(B) (Lemma 3.2.5(b)), ¢ is independent of the choice of D. Clearly, we have

s = ¢s*. Since val(I') = rs = r*s*, this implies r* = cr.

is Gg-invariant. Let a be a fixed vertex in B,

Now we suppose that G, is primitive on I's(«). If D(B) contains repeated blocks,
say C, D, let a« € I'(C) N B =T(D) N B. Then each part R;(«) of the G,-invariant
partition R(«a) of I's(«) has size at least 2. So the primitivity of G, on I'g(«) implies
that R(a) must be the trivial partition {I's(«)}. Hence I'(C') N B is the same for all
C € I'g(«). Thus the equivalence relation “ ~” on B defined above becomes: o ~ 3
if and only if '(E)NB =T'(F)N B for any FE € I'g(«), F' € T'g(). This implies that
the block of B* containing « is I'(C') N B, and hence B* = {(I'(C) N B)? : g € G}.
Thus k£ = v* and so k is a divisor of v, and I is a multicover of 'z (that is, k* = v*).
In this case, we have s* = s,7* = r and I'[B,C] = I'[B*,C*| for adjacent blocks
B*:=T(C)NnB,C*:=T(B)NC of B*. O

Theorem 3.3.1 implies the following known result.
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Corollary 3.3.1 ([43, Lemma 3.3(c)]) Suppose that T is a G-locally primitive graph.
Suppose further that V(I') admits a nontrivial G-invariant partition B such that the
block size k of D(B) satisfies 2 < k <wv — 1. Then either

(a) D(B) contains no repeated blocks, or

(b) k divides v, and V(') admits a second nontrivial G-invariant partition B*,

which is a refinement of B, such that ' is a cover of I'gs.

Proof Since I' is G-locally primitive, Corollary 3.2.1 applies. If the second possi-
bility in Corollary 3.2.1 occurs, then (a) above holds; otherwise we have s = 1 and
hence G, is primitive on I'z(«) by the G-local primitivity of I' and Lemma 3.2.4.
In this latter case, from the second half of Theorem 3.3.1, either (a) or (b) above

holds. O

Remark 3.3.1 We should emphasize that B* could be a trivial partition of V(I)
or identical with B in some cases. For example, if k£ = 1, then v* = 1 and of course
B* is trivial. However, there are other cases for which B* is a genuine refinement of
B, and these are the cases we are interested in. Corollary 3.3.1 above shows that
this is the case whenever I' is G-locally primitive such that 2 < k < v —1 and D(B)

contains repeated blocks.

A nontrivial G-invariant partition B of V(I') is said to be minimal if there is
no genuine refinement of B which is also a G-invariant partition of V(I'). Any
imprimitive G-symmetric graph I' admits at least one minimal nontrivial G-invariant
partition. Applying Theorem 3.3.1, the minimality of such a partition B implies
that either v* = 1 or v* = v. In the first case, we have Neery @) (I(C) N B) #
Neergs) (I'(C) N B) for distinct o, 8 € B, and in this case we say that I' is vertez-
distinct with respect to B. In the second case, since we have proved that v* is a
divisor of k, we must have v* = v = k and thus I' is a multicover of I's. So Theorem

3.3.1 has the following consequence.

Corollary 3.3.2 Suppose that I is an imprimitive G-symmetric graph, and let B be
a minimal nontrivial G-invariant partition of V(I'). Then either I' is vertex-distinct

with respect to B, or I' is a multicover of I'p.



Chapter 4

The case Kk =v — 1: A general
analysis

There is never a case when the root is in disorder and yet the
branches are in order.

Confucius (551-479 B.C.), THE GREAT LEARNING

In this chapter and the four chapters hereafter we will concentrate on the case
where £ = v — 1. This requirement is equivalent to the following: For distinct blocks
B, C € B, either there are no edges between B and C, or there is a unique vertex
a € B such that I'(a) N C' = (). Thus in this case the design D(B) is degenerate,
with each (v — 1)-element subset of B occurring as a (possibly repeated) block of
D(B).

This chapter is devoted to a general analysis for the case k = v — 1. The results

obtained here will be used in the next four chapters and Chapter 11.

4.1 Notation and preliminary results

Let us first introduce some special notation for the case where kK = v — 1. Suppose
I' is a G-symmetric graph admitting a nontrivial G-invariant partition B such that
k=v—1. Let B= B(a) for a« € V(T'), and let

B(a):={C € B:T(C)NB =B\ {a}}. (4.1)

Thus B(«) is the set of blocks which are adjacent to B(«) in I'g but contain no vertex
adjacent to o in T'. Tt is easy to check that (B(«))? = {CY9: C € B(a)} = B(a?) for
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any o € V(') and g € G. If B(a) € B(f) and B() € B(a) hold simultaneously,
then we say that «, 5 are mates and that « is the mate of 5 in B(a). Clearly, if 3
is the mate of o in B(f3), then « is the mate of 5 in B(«). Let

A(a) = {(B,C) : C € B(a)}, (4.2)

the set of arcs of I's from B to an element of I's(B) containing no vertices adjacent

to a. Then we can view A(«) as a label attached to the vertex a. Denote
A(B):={A(a) : a € B} (4.3)
for a block B € B, and set
A :={A(a) : e V(I')}. (4.4)

Lemma 4.1.1 Suppose I' is a G-symmetric graph which admits a G-invariant par-
tition B of V(I') such that k = v —1 > 1. Then A is a G-invariant partition
of Arc(I's), and hence G induces an action on A. The action of G on V(I') and
this action of G on A are permutationally equivalent with respect to the bijection
A a— A(a). In particular, we have (A(«))? = A(a¥9) for a € V(I'),g € G.

Proof Let o, be distinct vertices of I'. If B(«) # B(f3), then the arcs in A(«)
and A(f) have different initial vertices; if B(«) = B(), then B(a) N B(5) = 0 as
k = v —1. In both cases, we get A(a) N A(B) = () and hence A is a partition of
Arc(T'p). It is straightforward to show that this partition is a G-invariant partition
of Arc(I's), and hence G induces an action on A. Furthermore, the argument above
shows that A : a — A(«) is a bijection from V(') to A. For any o € V(I') and
g € G, since B(a9) = (B(a))?, we have A\(a?) = A(a9) = (A(a))? = (AMw))?.
Therefore, the actions of G on V(I') and A are permutationally equivalent with

respect to . a

Next we define a graph I" associated with (I", B) in the case where k = v — 1.

Definition 4.1.1 Let I be the graph with vertex set V(I') in which two vertices
a, (0 are adjacent if and only if they are mates (see Figure 1). In other words, «, 3
are adjacent in I if and only if B(«), B(3) are adjacent in I'g, a is the only vertex
in B(«) not adjacent to any vertex in B(f3), and [ is the only vertex in B(f) not

adjacent to any vertex in B(«).
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Note that (a, 3) — (B(«), B(()) establishes a bijection from the set of arcs of
IV to the set of arcs of I's.

FiGURE 1 The definition of T

Theorem 4.1.1 Suppose ' is a G-symmetric graph which admits a nontrivial G-
invariant partition B such that k = v — 1 > 1. Then the graph I" defined above is

G-symmetric.

Proof Let (a,f),(v,6) be distinct arcs of IV. Then (B(«), B(f)), (B(v), B(9))
are distinct arcs of I'z. Since 'z is G-symmetric, there exists ¢ € G such that
(Bla), B3)) = (B(7), B(3)), that is, (B(a?), B(3)) = (B(x), B(b)). Since a s
the only vertex in B(«) not adjacent to any vertex in B((3), we know that af is
the only vertex in B(a¥) = B(y) not adjacent to any vertex in B(39) = B(d), and
~v is the only vertex in B(7) not adjacent to any vertex in B(J). So we must have
a¥ = . Similarly, 49 = §. Hence (o, 5)? = (7,0) and I" is a G-symmetric graph.
(]

We say that the graph I' is vertez-distinguishable with respect to B if, for any
two adjacent blocks B,C of B and distinct vertices o, 5 € ['(B) N C, we have
I'(a) N B # T'(B) N B. We conclude this section by proving the following lemma
which exemplifies graphs of this kind. This lemma will be used in Theorem 4.3.1(d)
and in the proof of Corollary 4.3.1.

Lemma 4.1.2 Suppose I is a G-symmetric graph admitting a nontrivial G-invariant
partition B. Then T is vertex-distinguishable with respect to B if, for adjacent blocks
B, C of B, one of the following conditions holds:

(a) T'[B, C] is a matching;

(b) T[B,C] is a complete bipartite graph minus a perfect matching between the
vertices of T'(C)N B and T'(B) N C;

(¢) Gp,c acts primitively on I'(B) N C and I'|B, C] 2 K.
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Proof Clearly, the result is true whenever (a) or (b) occurs. Suppose that the
condition (c) is satisfied. If there exist distinct o, 8 € I'(B)NC such that I'(a)NB =
I'(B)N B, then {y € C: I'(y) N B =T'(a) N B} is a block of imprimitivity for Gg ¢
in I'(B) N C and has size at least 2. Since this action is primitive, it follows that
I'(y) N B =T'(«a) N B for all v € I'(B) N C. This implies that I'[B, C] = K, a

contradiction. Thus, I' is vertex-distinguishable with respect to B. O

4.2 The case where k=1 and v =2

We will distinguish the following two cases:
. k=v—1=1;and
II. k=v—-1>2.

In this section we discuss Case I, which can occur in a nontrivial way (see the
examples in [43, Section 5] and see also Theorem 5.1.3 and the remarks following
it). The characterization of I" in Case I varies in difficulty according to the nature
of I's. For example, if I's = C,,, then r = 1 and I' is uniquely determined (see
[43, Theorem 4.1(a)]), namely I' = n - K5, while if 'z is a complete graph, then it
seems rather difficult to determine or describe I' (see [43, Section 4]). In Section 8.3
we will give a general construction of imprimitive G-symmetric graphs with & = 1
and v > 2. Here we prove some properties which hold only for the case where
k=v—-1=1.

Suppose then that k = v — 1 = 1. For each vertex «, let B(a) = {«, o’} denote
the block of B containing «, so B(«) = B(«’). The adjacency relation for the graph
[ defined in Definition 4.1.1 becomes: « and ( are adjacent in I if and only if o/
and 3’ are adjacent in I". Besides I/, we can associate with I two other graphs I'*
and I'” (see Figure 2) defined as follows.

Definition 4.2.1 (a) Let I'* be the graph with vertex set V(I') in which {«, 5} is
an edge if and only if either {«, 5} or {/, 3’} is an edge of T';

(b) Let I'# be the graph with vertex set V(T') such that {a, 3} and {«/, 3} are
edges of I'# if and only if either {a, 3} or {o/, '} is an edge of T.
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T*

FIGURE 2 The definitions of I",I"* and T'#

The graph T'* was defined in [43, Section 5] for a G-locally primitive graph
[. The following result is analogous to [43, Lemma 5.1] without assuming G-local
primitivity. It shows that the quotient graph I's may be covered by two (possibly
non-isomorphic) symmetric graphs. Let z be the involution which interchanges the

two vertices in each block of B.

Theorem 4.2.1 Suppose that I' is a G-symmetric graph and B is a nontrivial G-
invariant partition of V(I') with block size v =k + 1= 2. Then

(a) I'' =T, and I is G-symmetric; and

(b) both T* and T'# are (G x (z))-symmetric, and B is a (G x (z))-invariant
partition of V(I'). Also, I'y = T§ =I'g and both T* and T'# are covers of I'g.
Furthermore, if G is faithful on V(T'), then it is faithful on B as well.

Proof By Theorem 4.1.1, I is G-symmetric, and the mapping z : a — o/, for
a € V(I'), is an isomorphism from I" to I". Thus (a) is proved.

Clearly, (G, z) = G X Zy. Since the edge set of I'* is the union of the sets of edges
of I and I it follows from (a) that G x (z) < Aut(I'*) and that G x (z) is transitive
on the arcs of T*. Also, B is a (G x (z))-invariant partition of V(T'), and I'* is a
cover of I'y = I'g. Moreover, I'g = F?, and I'* is a cover of I'g. For two adjacent
blocks B = {a,a’} and C = {3, 5’} of I's, suppose that («a, 3) is an arc of I'. Then
(a, @) and (3,a’) are arcs of I'# which are interchanged by 2. It is also easy to
check that G preserves the edge set of I'#. It follows that G x (z) is transitive on
the arcs of I'”.

Let B(a) = {a,a’} be a block of B. If g € G is any element which maps « to o/,
then ¢ interchanges « and o/. Hence g interchanges I'g(a) and I'g(a’). Note that
I's(ar) and I'g(a’) are disjoint since k = 1. Thus, g acts nontrivially on B. It follows
that, if G is faithful on V(I'), then G is also faithful on B. O
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Remark 4.2.1 The graphs I'*, I'# defined in Definition 4.2.1 may, or may not, be
isomorphic to each other. For example, under the conditions of Theorem 4.2.1, if
I's = C4, then both T'* and I'# are 2 - Cy; while if 'y = O3, then I'* = C whilst

I'# =2.C5. SoI'* and I'# may be non-isomorphic covers of I's.

4.3 A general discussion: k=v—12> 2

In the remaining sections of this chapter we investigate the general case where
v = k+1 > 3. Note that if, in addition, I' is G-locally primitive, then D(B)
contains no repeated blocks (by Corollary 3.3.1, noting that & does not divide v
here). This however is not true in general, that is, the multiplicity of D(B) can be

greater than one for general symmetric graphs with v =k 4+ 1 > 3.

Theorem 4.3.1 Suppose that I' is a G-symmetric graph and B is a nontrivial G-
invariant partition of V(I') with block size v =k+1 > 3. Let B be a block of B and
a € B. Then the following (a)-(d) hold.

(a) D(B) has v distinct blocks and the multiplicity m of D(B) is equal to |B(«)|,
sob=mv, r=m(v—1), and D(B) is a 2-(v,v — 1, m(v — 2))-design.

(b) G, has two orbits on I's(B), namely, B(a) and T's(B) \ B(«a).

(c) Gip) < Gy and equality holds whenever D(B) contains no repeated blocks.
Moreover, if G is faithful on V(I'), then it is also faithful on B.

(d) If G is faithful on V(I'), D(B) contains no repeated blocks, I'g is connected
and I' is vertez-distinguishable with respect to B, then Gg acts faithfully on B and
I's(B).

Proof (a) Since Gp is transitive on B, each (v — 1)-subset of B is the trace of a
block of D(B) and hence D(B) has v distinct blocks each repeated m times. So
we have m = |B(«)| and b = mwv. This, together with vr = bk = b(v — 1), gives
r =m(v —1). In particular, D(B) is a 2-(v,v — 1,m(v — 2))-design.

(b) Clearly, B(«) is G,-invariant. Let C, D € B(«). Since I'p is G-symmetric,
there exists g € G with BY = B,C9 = D. Now o9 = « for otherwise « is adjacent
to no vertex in C' but of is adjacent to at least one vertex in CY9 = D. Thus,
g € G, and hence G, is transitive on B(«). Now let C, D € T's(B) \ B(«). Then
ae(C)NT(D)NB. So there exist § € C,y € D which are adjacent to a. Since
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[' is G-symmetric, there exists ¢ € G with (a,3)Y = (a,7). Thus, ¢ € G, and
C9=D. SoI's(B)\ B(a) is a G,-orbit.

(c) If g € Gyp) then, for each § € B, g fixes setwise each block C' € B(3) and
hence fixes setwise I'(C') N B. Therefore, g fixes B\ (I'(C) N B) = {#}. Thus, we
have G|g < G(py. Moreover, if g € G fixes setwise each block of B, then it lies in
Gp) for each B, and hence fixes each vertex of I'. This implies g = 1 provided that
G is faithful on V(I'). So, if G is faithful on V(I'), then it is faithful on B. Suppose
that D(B) contains no repeated blocks and g € G(py. Then for each a € B, g fixes
the unique block in B(a), and hence g fixes each block of I's(B) setwise. So g € G
and thus Gig) = G(p).

(d) From (c) and the assumption that D(B) contains no repeated blocks, we
have G(p) = Gp). Let g € G(py = Gip. Then for C € I'g(B), g fixes the unique
vertex in C'\ (I'(B) N C), and for each § € I'(B) N C, we have 59 € I'(B) N C' and
['(B)N B =T(47) N B (since g fixes B pointwise). Since I' is vertex-distinguishable
with respect to B, we get 39 = 3. Thus g € G(¢) and hence Gy < G(¢). By a
similar argument Gy < G(p), so G(p) = G(¢). Since I'p is connected, this equality
is true for any two blocks B, C' (not necessarily adjacent), and hence G(py = 1 = G
since G is assumed to be faithful on V(I'). Thus, G is faithful on B and on I'z(B).
O

By Lemma 4.1.1 the induced action of G on A can be defined by (A(«))? =
A(a9), for a € V(I'),g € G, and this action is permutationally equivalent to the
action of G on V(I'). Clearly, A(B) is a Gp-invariant subset of A. Thus, Gpg
induces an action on A(B). Also, one can see that B(B) := {B(a) : « € B} is a
G g-invariant partition of I's(B), and hence G g induces an action on B(B) defined
by (B(«))? = B(a9) for « € B and g € Gp. The following theorem will play an
important role in our later discussion. It shows in particular that the actions of Gy

on B, A(B) and B(B) are permutationally equivalent and doubly transitive.

Theorem 4.3.2 Suppose that I" is a G-symmetric graph admitting a nontrivial G-
invariant partition B with block sizev = k+1> 3. Let B€ B, a € B and C' € B(«).
Then the following (a)-(c) hold.

(a) The action of Gg on B is permutationally equivalent to the actions of Gp
on A(B) and B(B) with respect to the bijections defined by o — A(a), o — B(a),
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for a € B, respectively.

(b) Gp,c is transitive on B\ {a}, A(B) \ {A(a)} and B(B) \ {B(«a)}. In par-
ticular, the actions of Gg on B, A(B) and B(B) are doubly transitive.

(¢) Gpc = Gac = Gsp = Gas, where § is the mate of o in C.

Proof (a) Clearly, the actions of Gg on B(B) and A(B) are permutationally
equivalent with respect to the natural bijection B(a) — A(a), for « € B. The
permutation equivalence of the actions of Gp on B and A(B) follows immediately
from Lemma 4.1.1.

(b) First, since G is transitive on B, from (a) above Gp is transitive on A(B)
and B(B). Second, since v = k + 1 > 3, for distinct vertices 5,7 € B\ {«a}
there exist €,n € C \ {0} which are adjacent in I' to (3,~ respectively, where §
is the mate of o in C. By the G-symmetry of I', there exists ¢ € G such that
(B,€)9 = (v,7n). This implies g € Gpc and (A(5))? = A(7). Hence G ¢ is transitive
on A(B)\{A(«a)}. Since by (a) above the actions of Gp ¢ on B\{a}, A(B)\{A(a)}
and on B(B) \ {B(«)} are permutationally equivalent, it follows that Gp ¢ is also
transitive on B\ {a} and B(B) \ {B(«)}. Note that, since (B,C) € A(a) and A is
a G-invariant partition of Arc(I's) (Lemma 4.1.1), Gp ¢ is a subgroup of the setwise
stabilizer (G)a() of A(a) in Gp. So (Gp)a( is transitive on A(B) \ {A(«)}.
Therefore, we conclude that Gg is doubly transitive on A(B) and hence doubly
transitive on B and B(B).

(c) Clearly, we have G, < Gpc since an element of G fixing o must fix B
setwise. Conversely, if ¢ € G fixes B and C setwise, then it must fix the unique
vertex o of B not adjacent to any vertex of C'. So we have G ¢ < Gy, and hence

Gp,c = Go,c. Similarly, one can show Gpc = Gsp and G o = G . O

Now let us consider the case where, in addition to our assumption k =v—1 > 2,
I' is G-locally primitive and I's is connected. In such a case, since k does not divide
v, from Corollary 3.3.1 we know that (i) D(B) contains no repeated blocks, and
hence b = v > 3 and r = v — 1 by Theorem 4.3.1(a). Also, Corollary 3.2.1 implies
that (ii) ['[B,C] = (v — 1) - K5 is a matching. From (ii) and Lemma 4.1.2 we know
that T" is vertex-distinguishable with respect to B, and hence Gp is faithful on B
provided that G is faithful on V(I") (Theorem 4.3.1(d)). Also from (i) and (ii) we
know that, for each o € B, there exists a bijection from B \ {a} to I'(«), namely
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each § € B\ {a} corresponds to the unique neighbour of « in the unique block
of B(#). So G, is primitive on B\ {«a} as G, is primitive on I'(«). Therefore,
Gp is doubly primitive on B, and hence is doubly primitive on I's(B) by Theorem
4.3.2(a). So we deduce the following result which was proved in [43, Theorem 5.3].

Corollary 4.3.1 Suppose that I' is a G-locally primitive graph admitting a nontriv-
1al G-invariant partition B such that v = k+1 > 3 and I'g is connected. Then b = v,
r =wv — 1, and the actions of Gg on B and I's(B) are permutationally equivalent,

and doubly primitive. Moreover, these actions are faithful if in addition G is faithful
on V(I).

Now we consider the graph I defined in Definition 4.1.1. Each maximal clique
of I'" has at most m + 1 vertices since the valency of I'' is m, where m = |B(«)|. The
following result shows that if each maximal clique of I does contain m + 1 vertices,
or equivalently if IV =2 ¢ - K, 1 for some ¢, then we obtain a second G-invariant
partition of V(I'). This condition holds in particular when m = 1, and the following

result will be used in this case in the next chapter.

Theorem 4.3.3 Suppose that ' is a G-symmetric graph admitting a nontrivial G-
invariant partition B with blocks of size v = k+1 > 3. Let « € V(I'). Then
P={({a}ul'(«))? : g € G} is a G-invariant partition of V(T') if and only if V(T')

is a disjoint union of (m + 1)-cliques of I", where m = |B(«)|.

Proof Set I"(a) = {a, 9, ..., } and B’ = {a} UI"(«), and suppose that V(I
is a disjoint union of (m + 1)-cliques of IV. Then B’ is the unique (m + 1)-clique of
[ containing «. Since G permutes the connected components of I, it follows that
P is a G-invariant partition of V(I").

Conversely, suppose P is a G-invariant partition of V(I'). For any 7, 1 <i < m,
let ¢ € G be such that o9 = a;. Then B'Y = B’ since «; is in both B’ and B",
and hence I'"(a;) = I'"(a?) = (I"(«))? = (B'\ {a})? = B’ \ {a;}. Therefore, B’ is
a clique of I" with the maximum possible size m + 1. In other words, V(I') is a

disjoint union of (m + 1)-cliques of I". O
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4.4 Analysing an extreme case

Let n := |B(a) N B(B)| for adjacent vertices a, 3 of I'. Since I' is G-symmetric,
this parameter n is independent of the choice of such o and 3. Clearly, we have
0 < n < m with the extreme case n = 0 occurring only if girth(I'z) > 4, where
m = |B(«)| is the multiplicity of D(B). We will study this extreme case in the next
chapter under the additional assumption m =1 (see Theorems 5.1.2 and 5.1.3). In
this section we study the second extreme case where n = m, that is, the case where
B(a) = B(3) for adjacent vertices a, 8 of I'. Our study below shows that in this
case all of T', 'z and T'[B, C] can be determined explicitly. We first give examples
of symmetric graphs with this property.

Example 4.4.1 (a) Let X be a 3-transitive group acting on a finite set I of degree
v+ 1> 4. Let T be the graph with vertex set V := I® in which (i, h), (', ') are
adjacent if and only if 7 # i and h = h'. Then the 3-transitivity of X implies that
[' is X-symmetric and admits the X-invariant partition B := {i : i € I}, where i
consists of members of V' with first coordinate i. Clearly, we have k = v — 1 > 2,
I'=(v+1)-K,,I'p = K,1, ['[B,C] = (v—1)- K, for adjacent blocks B, C of B, and
D(B) contains no repeated blocks. Also, for adjacent vertices o = (i, h), o’ = (¢, h)
of I', we have B(a) = B(«') = {h}.

(b) Now let us consider the case where the multiplicity m > 2. Let X and [
be as in (a) above and let Y be a 2-transitive group acting on a finite set J of
degree m. Then G := X x Y is transitive on V := I® x J in its action defined by
(i, h, §)@¥) = (i%, h*, j¥) for (i,h,j) € V and (z,y) € G. Define the graph I' with
vertex set V' in which (i, h, 7), (¢, i/, j') are adjacent if and only if i # " and h = }'.
Then I' ¥ (v+1) - K, and the assumptions on X, Y imply that ' is G-symmetric.
Clearly, I admits B := {[;,j] : i € I,j € J} as a G-invariant partition, where
[i,7] == {(i,h,7) : h € I\ {i}}. We have I's = K% with [4, ], [, j'] adjacent if and
only if i # 4. Also, we have I'| B, C] = (v—1)- K for adjacent blocks B, C of B (hence
k =v—12>2), and the multiplicity of D(B) is equal to m. Moreover, for adjacent
vertices a = (i, h, j), o/ = (', h,j") of T, we have B(«a) = B(a') = {[h,{] : ¢ € J}.

In the following theorem, we will show that the graphs I' in Example 4.4.1 are
the only G-symmetric graphs with I's connected such that £ = v — 1 > 2 and
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B(a) = B(() for adjacent vertices «, 5 of I', and that 'z, I'[B, C] are as shown in
this example. First, we have the following simple observation, which shows that the

fact I'[B, C] = (v — 1) - K5 in Example 4.4.1 is not a coincidence.

Lemma 4.4.1 Suppose that I' is a G-symmetric graph admitting a nontrvial G-
invariant partition B such that k = v —1 > 2. Let m be the multiplicity of D(B),
and let n = |B(a) N B(B)] for (a, B) € Arc(T'), as defined above. Then we have

sn < m,

where, recall that, s = |I'(a) N C| (for a flag (a,C) of D(B)) is the valency of
I'[B,C]. In particular, if n > m/2, then I'|B,C] = (v —1) - Ks.

Proof Let B € Band a € B. Let C € I'g(a) and set ['(a) N C' = {f,...,Fs}
Then B(a) N B(f;), for i = 1,..., s, are pairwise disjoint and each of them contains

n blocks of B(«). So we have sn < m. In particular, if n > m/2, then we must have
s =1 and thus I'[B,C] = (v —1) - K. O

Theorem 4.4.1 Suppose that ' is a G-symmetric graph admitting a nontrivial G-
inwvariant partition B such that k = v —1 > 2. Suppose further that I'g is connected
and that B(«a) = B(B) for adjacent vertices cv, 3 of I'. Let m be the multiplicity of
D(B). ThenT = (v+1)- K!, Tg = KM, T[B,C] = (v—1) - Ky for adjacent
blocks B,C', and the induced action of G on the natural (v + 1)-partition B of I'g
is 3-transitive (thus (U'g)s = Kyi1 is (G, 2)-arc transitive). Moreover, the vertices
of I' can be labelled by ordered triples of integers such that the following (a)-(c) hold
(where we set I :=={0,1,...,v} and J :={1,2,...,m}):

(a) V(T) = I® x J, and two vertices (i, h, j), (i',h’,j') € V(T) are adjacent in
I if and only if i #1i and h = h'.

(b) B = {[i,j] : i € I,5 € J}, where [i,j] == {(i,h,j) : h € I\ {i}}, and
[i,7],[i', 7] are adjacent blocks if and only if i # i’

(c) B={i:iel}, wherei={[i,j]:j € J}.

Conversely, the graph ' defined in (a) together with the group G = X XY satisfies
all conditions of the theorem, where X is a group acting 3-transitively on I, Y is a
group acting 2-transitively on J whenever m > 2, and the action of G on V(I') is
as defined in Example 4.4.1.
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Proof By our assumption we have n = m > m/2. Thus Lemma 4.4.1 implies
(1) I'[D, E] = (v —1) - Ky for adjacent blocks D, E of B.

Let B be a block of B and let aq, as, ..., a, be vertices of B. For each a; € B, we
label (in an arbitrary way) the m blocks in B(«;) by [i, j], 7 € J. Also, we label the
unique mate (3;; of a; in the block [7, j] by (7,0, ), 7 € J. For each block [i, j] and
for each h € I'\ {0} distinct from ¢, (1) implies that [¢, j] contains a unique vertex
adjacent to ay,. We label such a vertex in [z, j] by (i, h,j). In view of (1) one can
see that each vertex in [i, j] receives a unique label, and that the labels of distinct
vertices in [7, j] have distinct second coordinates. Therefore, for each i € I\ {0} and
J € J, we may identify the block [z, j] with the set {(i,h,j) : h € I\ {i}}. By our
assumption, for i,h € I'\ {0} with ¢ # h and j € J, we have

(2) B((i,h,j)) = Blaw) = {[h, 1], [h,2], ..., [h,m]}.
In particular, this implies that
(3) [i, 7], [, 5] are adjacent blocks, for distinct i,i" € I\ {0} and any j,j" € J.

Moreover, if two vertices (i, h, 7), (', h', j') are adjacent, where i,4', h, b’ € I\ {0}
with @ # h, i/ # h' and j,j' € J, then by (2) and our assumption we must have
B(ayn) = B((i,h,j)) = B((i', 1, j")) = B(ap ), which is true only when h = h'. This,
together with (1) and (3), implies the following assertion.

(4) For distinct 7,7 € I\ {0} and any j,j" € J, two labelled vertices (i, h, j),
(7,1, 7") of T are adjacent if and only if h = A’. In other words, for adjacent
blocks D = [i, j|, E = [i/, j'] of B, the bipartite subgraph I'[D, E] of T" is the
(v — 1)-matching with edges joining (i, h, j) and (7', h, j'), for h € I\ {i,7'}.

Therefore, (i,7,j) and (i, 1, j') are mates and hence, for the graph I"” defined in

Definition 4.1.1, we have

() T'((2, b, 7)) = {(h,1,5") - 5" € T}

Now let us examine a particular labelled vertex, say (i, h,7). From Theorem
4.3.1(a) and (1) above, the valency of I' is m(v — 1), and hence the neighbourhood
['((i,h, 7)) of (i,h,j) contains m(v — 1) vertices. From (4) we have {(¢',h,7’) :
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i" € I'\{0,h,i},j" € J} CT((4,h,j)) and this contributes m(v — 2) neighbours of
(i,h,7). Note that «y, is also a neighbour of (i, h,j). Apart from these, there are

m — 1 remaining neighbours of (i, h, j), which we denote by 0, ..., d,,, respectively.
By (1) these vertices dy, . .., d,, belong to distinct blocks, say B, ..., By, of B. For
each &, we have B(8;) = B((i,h,j)) = B(an) = {[h, 1], [h,2],...,[h,m]} by (2) and

our assumption. In particular, this implies that all the blocks [h,{], for ¢ € J,
are adjacent to the block B;. On the other hand, from (5) we have I''((h, k', ()) =
{(W,h,t) : t € J} for each vertex (h,h' £) € [h,€]\ {Bne}. In other words, the m
mates of each vertex in [h, £]\{Bu¢} are in Upep o py1es [P51]. So the only possibility
is that [y, is the mate of §; in [h, ¢], for each ¢ € J. Consequently, we have

(6) B(Br1) =+ = B(fpm) = {B, Bs, ..., By}, and hence none of B, By, ..., B,
coincides with [i, j] for any i € '\ {0}, j € J.

We know from (3) that the blocks [, '], for i € I\ {0,h} and j* € J, are all
adjacent to [h, f]. Besides these m(v — 1) blocks, B, By, ..., B, are the only blocks
of B adjacent to [h, {] in T's since I's has valency mv (Theorem 4.3.1(a)). Therefore,
if we apply the procedure above to another vertex (i, h, j'), we would get the same
blocks B, ..., B,,. In other words, these blocks are independent of the choice of
the vertex (i, h, j) (depending only on k), and hence they are adjacent to the block
i, 7] for any @ € I\ {0} and j € J. Moreover, since the mate &, of fy, in By is
unique, the vertices ds, . . ., d,, are also independent of the choice of (i, h, j) and thus
they are common neighbours of all such vertices (i, h, j). Thus, since the valency
of I'g is mv, B, Bs, ..., B, are the only unlabelled blocks of B. From this and by
a similar argument to that above, we see that for each h € I\ {0}, all the vertices
(i,h,j), i € I\ {0,h}, j € J, have a common neighbour in each B;, which we now
label by (0, h,t). Since for distinct h, k' the vertices (i, h, j), (i, ', j) have different
neighbours in B;, the vertices of B; receive pairwise distinct labels. Now let us
label B, Bs, ..., B,, with [0,1],]0,2],..., [0, m], respectively, and label each «; with
(0, h,1). Then all the vertices of I" and all the blocks of B have been labelled. From
the labelling above, the validity of (a) and (b) follows immediately.

Since the valency of I' is m(v — 1), the argument above also shows that for each
h € I the connected component of I' containing the vertex «y is the complete v-

partite graph K, with v-partition {{(7, h,j) : j € J} : ¢ € I}, where we set oy = (311.
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Hence we have I' & (v + 1) - KY. Also, I's is the complete (v 4 1)-partite graph
Kt with (v + 1)-partition B := {i : i € I}, where i := B(a;) = {[i,j] : j € J}
for i € I. Clearly, (I's)p = K,41 and B is a G-invariant partition of B. From
Theorem 4.3.2(b), G is doubly transitive on {B(v) : v € B}. The setwise stabilizer
in G of the block 0 contains G g as a subgroup, and so is doubly transitive on the
neighbourhood B \ {0} of 0 in (I'z)g. Therefore, (I'z)p is (G, 2)-arc transitive and
hence GG is 3-transitive on B.

Finally, for G = X x Y with X triply transitive on I and Y doubly transitive
on J whenever m > 2, Example 4.4.1 shows that the graph I" defined in (a) satisfies

all the conditions in the theorem. O

Remark 4.4.1 In Theorem 4.4.1, G may or may not be faithful on B. (This can be
seen from Example 4.4.1, where the action of G on B is permutationally equivalent
to the action of X on I which is not necessarily faithful.) Let K be the kernel of the
action of G on B, and set H := G/K. Then H is 3-transitive and faithful on B of
degree v+1, and G is an extension of K by H. From the classification of finite highly
transitive permutation groups (see Theorem 2.1.1 and the comments following it), H
is one of the following: S,.1 (v > 3), Ayy1 (v >4), Mg (v =10,11,21,22,23), My4
(v =11), AGL(d,2) (v =2¢—1), z3.A; (v =15), and PSL(2,v) < H < PT'L(2,v)
(v a prime power). Example 4.4.1 shows that the multiplicity m of D(B) can be

any positive integer and H can be any group listed above.



Chapter 5

The case k=v— 12> 2: D(B)
contains no repeated blocks

What is most perfect seems to be incomplete; but its utility is
unimpaired. What is most full seems to be empty; but its usefulness is
inexhaustible. What is most straight seems to be crooked. The greatest
skills seems to be clumsy. The greatest eloquence seems to stutter.
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In this and the next two chapters we continue our study for the case where
k = v —1 > 2 under the additional assumption that D(B) contains no repeated
blocks (that is, the multiplicity of D(B) is equal to 1). Not only is this a natural
assumption geometrically, but also we will prove (Theorem 5.1.2) that it occurs if
and only if ['g is (G, 2)-arc transitive. In this case each vertex of I' can be labelled in
a natural way by an arc of I'z. Inspired by this labelling we then give a very simple
and elegant method for constructing all such graphs. In particular, our construction
shows that such a graph I' can be reconstructed from the quotient I'z and the action
of G on B.

5.1 The case D(B) contains no repeated blocks

In the following we suppose that I' is a G-symmetric graph admitting a nontrivial
G-invariant partition B such that &k = v — 1 > 2 and D(B) has no repeated blocks.
Then the valency of the graph I (defined in Definition 4.1.1) is 1 and thus each
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vertex o € V(I') has a unique mate o', namely the unique vertex adjacent to «
in I'V. Hence the blocks of the partition P defined in Theorem 4.3.3 are the pairs
{a,a'}, and the map z : a — o' defines a G-invariant bijection on V(I'). So A(«)
contains only one arc (B(«), B(¢)) and, by Theorem 4.3.1(b), B(/) is the unique
block in I's(B) fixed setwise by G,. As in the G-locally primitive case [43], the
mapping A : a — A(«) of Lemma 4.1.1 defines, for each o € V(I'), a unique label
“B(a)B(«)” for a with the blocks of B containing « and o' as the first and the
second coordinates, respectively. Set B* = B* = {“CB” : C' € I'y(B)} for B € B.
Then it follows from the definition that no vertex in B* is adjacent to any vertex in
B, that is, B* N T'(B) = (). Thus no neighbour of o € B has a label involving B as

either coordinate.

Theorem 5.1.1 Suppose that I' is a G-symmetric graph, B is a nontrivial G-
invariant partition of V(I') with block size v = k+1 > 3 such that D(B) contains no
repeated blocks. Then T's has valency b =v. Let z : a — o, a € V(T'), as defined
above. Then

(a) the actions of G on V(') and on the set of arcs of I'g are permutationally
equivalent, and each o« € V(I') can be uniquely labelled by a pair “BB'" of adjacent
blocks of B, where B = B(«a) and B’ is the unique block in I'g(B) fized setwise by
Go;

(b) z centralises G and is an involution (that is, 2> = 1), and z ¢ G; also
P={{a, '} :a e V(I')} is a (G x (z))-invariant partition of V(I');

(c) B :={(B*)? : g € G} is a G-invariant partition of V(I') with blocks of size

v; and Gg« = Gpg is doubly transitive on B and B*.

Proof Theorem 4.3.1(a) implies that b = v. Each A(a) can be identified with the
arc (B(«), B(a')) of I'g and each arc of I's has this form. So it follows from Lemma
4.1.1 that the actions of G on V(I') and on the set of arcs of 'z are permutationally
equivalent. Clearly, z is an involution and leaves P invariant. This and Theorem
4.3.3 together imply that P is a (G x (z))-invariant partition of V(I'). For each
g € Gand “BD” € V(I'), we have “BD”*9 = “DB"9 = “DIB9” = “BIDI"* =
“BD”9%* and hence z centralises G. If B* N (B*)9 # () for some g € G then, since
(B*)9 = {“C9BY” : “CB” € B*} = (BY)*, we have B* N (BY)* # (), which implies
g € Gp and consequently (B*)Y = B*. Thus, B* is a G-invariant partition of V(T")
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with block size v. Since z interchanges B and B* whilst G leaves B invariant, it
follows that z ¢ G. Clearly, Gg- = Gp and the actions of Gg on B and B* are
permutationally equivalent with respect to z : a — «'. So by Theorem 4.3.2(b), G

is doubly transitive on both B and B*. O

Corollary 5.1.1 Suppose that ' is a G-symmetric graph with B a nontrivial G-
invariant partition of block size v =k + 1 > 3 such that D(B) contains no repeated
blocks. Then for any 2-arc (B,C, D) of I's, we have

(a) Geop» = Geper = Gp e and hence Gsopr p = Gpeop; and

(b) the actions of Gg.cp on D\ {“DC”} and I's(D) \ {C} are permutationally

equivalent.

Proof By Theorem 5.1.1(a) we have G«cp» = Gegc» = Gp,¢, and hence Gecp» p =
Gp,cp- Note that Gpop (< Gp) fixes “DC” and fixes C setwise. Also, Theorem
4.3.2 implies that the actions of Gp on D and I'g(D) are permutationally equivalent
with respect to the bijection p : “DE” +— E for E € I'g(D). Therefore, Gpcp
induces actions on D\ {“DC”} and I'g(D)\ {C}, respectively, and these two actions
are permutationally equivalent with respect to the restriction of p to D\ {“DC” }.
]

As advertised at the beginning of this chapter, we now prove that, if k = v—1 > 2,
then D(B) contains no repeated blocks if and only if ' is (G, 2)-arc transitive.

Theorem 5.1.2 Suppose that ' is a G-symmetric graph, and B is a nontrivial G-
invariant partition of V(I') with block size v =k + 1 > 3. Then D(B) contains no
repeated blocks if and only if T'g is (G, 2)-arc transitive. Furthermore, in this case
either

(a) adjacent vertices have labels involving four distinct blocks, or

(b) there exist two adjacent vertices of I' which share the same second coordinate.
In this case, T[B,C] = (v—1)- Ky, T[B*| 2 K,, T 2 n(v+1)- K, and g = n- K,
for some integer n > 1, and the group induced by G on the connected component
{B} UTg(B) of I'g is 3-transitive. In particular, if I'p is connected, then I" =
(v+1)- K, I's = Ky,11 and G acts on B as a 3-transitive permutation group of

degree v + 1.
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Proof Suppose D(B) has no repeated blocks. Then for each o € B, B(«a) can
be identified with the unique block it contains, and thus B(B) can be identified
with I'g(B). So Theorem 4.3.2(b) implies that G is doubly transitive on I'z(B).
Since G is transitive on B, it follows from Lemma 3.1.1(b) that 'z is (G, 2)-arc
transitive. Conversely suppose that I's is (G, 2)-arc transitive, and let «, 3,7 be
pairwise distinct vertices of B. (Note that v > 3.) If D(B) contains repeated
blocks, then there are distinct blocks Cy,Cy € B(a). Let D € B(f) and E € B(v).
By the (G, 2)-arc transitivity of I'g there exists g € G with (C1,C3)¢ = (D, E).
Note that, as mentioned before Theorem 4.3.2, B(B) = {B(d) : § € B} is a Gp-
invariant partition of I's(B). So C{ = D implies (B(«))? = B(3), whilst C§ = F
implies (B(«))? = B(~). This contradiction shows that D(B) contains no repeated

blocks. Thus the first assertion is proved.

For the rest of the proof we assume that D(B) has no repeated blocks. If adjacent
vertices of I have different second coordinates, then it follows from the definition of
the labels that two adjacent vertices of I' have labels involving four distinct blocks.
Suppose there exist two adjacent vertices whose second coordinates are the same.
Since G acts transitively on B, we may assume without loss of generality that there
are two adjacent vertices in B*. Since G+ is doubly transitive on B* (Theorem
5.1.1(c)), it follows that B* induces a complete graph K,. Since I' is G-symmetric
and since B* is a G-invariant partition of V(I') (Theorem 5.1.1(c)), it follows that
each edge of I' joins two vertices in the same block of B*. This means that each
block of B* induces a connected component K, of I' and hence I' = |B*| - K. This
implies in particular that I'[B, C] is a matching of v — 1 edges. Note that any two
blocks in I's(B) are adjacent in 'z and hence {B} U I'g(B) induces a complete
subgraph K, .; of I'z. Since the valency of I'z is b = v, the subgraph induced by
{B}UTI's(B) is a connected component of I'z. This implies (i) I's = n - K,41, and
hence I' = n(v+1) - K, where n is the number of connected components of I's; and
(ii) since G is transitive on B and G g is doubly transitive on I'g(B), as shown above,
it follows that the group induced on the connected component {B} UT'z(B) of I's
is 3-transitive. In particular, if I'z is connected, then I'y = K, 1, ' = (v + 1) - K,
and G is 3-transitive on B = {B} UT'g(B) with degree |B| = v + 1. O



No Repeated Blocks 55

Remark 5.1.1 Under the assumption that D(B) contains no repeated blocks, two
adjacent vertices «, 3 of I' share the same second coordinate if and only if the size
of B(a) N B(p) is equal to 1. Hence we can also prove the assertions in part (b) of
Theorem 5.1.2 by applying Theorem 4.4.1 to each connected component of I'z. If G
is faithful on V(I') and T'g is connected, then G acts faithfully (Theorem 4.3.1(c))

on B as one of the 3-transitive permutation groups listed in Remark 4.4.1.

According to Theorem 5.1.2, under the assumption that D(B) contains no re-
peated blocks, all possibilities for the graphs I', 'z, I'[B, C] and the group G are
known if there are two adjacent vertices of I' sharing the same second coordinate.
For the remaining case where the labels of any two adjacent vertices involve four
distinct blocks, the following theorem gives some structural information about I'

and I'g provided the girth of I's is sufficiently large.

Theorem 5.1.3 Suppose that T is a G-symmetric graph, and B is a nontrivial G-
invariant partition of V(I') with block size v =k 4+ 1 > 3 such that D(B) contains
no repeated blocks. Suppose further that girth(I'g) > 5. Then

(a) T[{a, '}, {03, B’} = Ky for adjacent blocks {ca, '} and {3, 5'} of P.

(b) T[B*, C*] is a matching for adjacent blocks B*,C* of B*, and if in addition
girth(T'z) > 7 then I'|B*, C*] = K.

(¢) The involution z : a — o' (o € V(I')) defines a graph monomorphism from
' to the complement T, and z interchanges the two partitions B and B*. Moreover,
2 induces graph monomorphisms from I'g to I'g«, and from T'g- to I's, defined by

B — B*, and B* — B, respectively.

Proof The assumption girth(I'z) > 5 implies that adjacent vertices of I" have labels
involving four distinct blocks. Suppose that {“BD”, “DB”} and {“CE”, “EC" } are
blocks of P with “DB” and “EC” adjacent in I". (This is represented diagramat-
ically in Figure 3, where the two dashed boxes represent B* and C* respectively.)
Then B,C, D, E are pairwise distinct blocks by our assumption about the labels.
Note that “BD” is not adjacent to “EC” and “DB” is not adjacent to “C'E” for
otherwise (B, D, E, B) or (C, D, E,C) would be a triangle of I'g, contradicting the
assumption that girth(I'z) > 5. Similarly, “BD” = “DB”? is not adjacent to
“CE” = “EC”# for otherwise (B, D, FE,C,B) would be a 4-cycle of T'z. Thus,
C{“BD”,“DB”},{“CE”,“EC”}] 2 K, and (a) holds.



56 NO REPEATED BLOCKS

In particular, the non-adjacency of “BD” and “C'E” implies that z is a graph
monomorphism from I" to I'. By the definition of z, two vertices a, 3 lie in the same
block B of B if and only if o, 5* lie in the same block B* of B*. Hence z induces
the bijection B — B* from B to B*. Suppose B*, C* are adjacent blocks of B*, say
“DB”,“EC” are adjacent vertices of I', where D € I'g(B), E € I'g(C) (see Figure
3). If B and C were adjacent in I'g then (B, D, E, C, B) would be a 4-cycle in I'g,
which is not the case. Thus B, C' are not adjacent in I'g, that is to say, if B, C
are adjacent in I'g, then B* C* are not adjacent in I'g-. Therefore, the bijection
B+ B* induced by z is a graph monomorphism from I'z to I'z-, and similarly the
bijection B* — B is a graph monomorphism from I'z- to I'z.

If “DB” were adjacent to a second vertex, say “E1C”, in C*, then (D, E,C, E1, D)
would be a 4-cycle of I'g, contradicting the assumption that girth(I'z) > 5. There-
fore, I'|B*, C*] is a matching. Now suppose girth(I'z) > 7, and suppose that there
is an edge {“D1B”, “E1C”} connecting B* and C*, distinct from {“DB”, “EC”}.
If Dy = D then F; # E and (D, E,C, Ey, D) is a 4-cycle, and similarly if £y} = F
then Dy # D and (E, Dy, B, D, E) is a 4-cycle. Hence {D, E} N{D;, E;} = (), but
in this case (B, D, E,C, Ey, Dy, B) is a 6-cycle. Hence I'|B*, C*] & K. a

i D E] |
B ' ' C

FiGure 3 Blocks of B, B* and P

It is worth noticing that, under the assumptions of Theorem 5.1.3, the G-
invariant partition P satisfies all the assumptions of Section 4.2. Thus, from Theo-
rem 4.2.1, we know that the graphs I'* = T UT” and I'# defined in Definition 4.2.1

with respect to P are both covers of I'p.

Remark 5.1.2 From the group theoretic point of view (see, for example, [70, The-
orem 2.1(b)]), Theorem 5.1.3(c) shows that z carries the arc set Arc(I') of I' to a
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self-paired G-orbital on V(I') disjoint from I'; and hence z(Arc(I')) C I'; for some
i > 2, where I'; :== {(a, ) : dr(a, 3) = i}. This parameter ¢ might have a strong
influence on the structure of I'. Essentially the same argument as that used in the
proof of Theorem 5.1.3 shows that ¢ > girth(I's) — 3 (so in particular ¢ > 2 if

girth(I'z) > 5). However, we have been unable to determine the exact value of i.

One consequence of Theorem 5.1.3 is that the valencies of I and 'z« are bounded

as shown below. Recall that val(I") denotes the valency of a graph .

Corollary 5.1.2 Under the assumptions of Theorem 5.1.3, val(I') < (|V/(I')|—2)/4,
and g+« has valency at most (|V(I')|/v) —v — 1. If in addition girth(I'g) > 7, then
val(I') < ([V(I)|/v*) = (1/v) = 1.

Proof By Theorem 5.1.3, each edge of I' joining o and 3 corresponds to a unique
3-path o, 3, o/, 3 of T, and conversely each 3-path of T' of this form corresponds to
a unique edge of I'. One can see that the 3-paths of I with this form corresponding
to distinct edges of I' are pairwise edge-disjoint, and that they have no common
edges with I (the latter being contained in T'). So |E(T)| > 3|E(T)| + [V(T)|/2,
that is, val(T') > 3 - val(T') + 1. Thus, we have val(I') < (|[V(T')] — 2)/4. Now by
Theorem 5.1.3(c), we have val(I'g)+val(I'z-) < |B|—1 = (|V(I")|/v) —1, which yields
the second inequality since val(I'z) = v by Theorem 5.1.1. Note that by Theorem
5.1.3(b), val(I'p+) = v - val(I") if girth(I'g) > 7, which implies the last inequality. O

5.2 The 3-arc graph construction

As mentioned in Section 3.2, a fundamental problem arising from the geometric ap-
proach used in the thesis is that of reconstructing I" from the triple (I's, I'[ B, C], D(B)).
In this section we study this problem for the case where k = v — 1 > 2 and D(B)
contains no repeated blocks. In this case I'g is (G, 2)-arc transitive by Theorem
5.1.2, and we will show that the reconstruction can be achieved satisfactorily. We
will give an explicit construction of such graphs from (G, 2)-arc transitive graphs
of valency v > 3, and prove further that, up to isomorphism, it gives rise to all

G-symmetric graphs I' with properties above.
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We present the construction in a general setting, starting with a regular graph 3
of valency v > 3. For a subset A of the set Arc;(X) of i-arcs of X, the paired subset
of A is defined by

A° :={(04,0i1,...,01,00) : (00,01,...,0i_1,0;) € A}

and A is said to be self-paired if A = A°. The data needed for our construction are

a regular graph X and a self-paired subset of Arcs(X).

Definition 5.2.1 Let ¥ be a regular graph of valency v > 3, and let A be a non-
empty self-paired subset of Arcs(3). Define Z(X, A) to be the graph with vertex set
Arc(X) such that (o,7),(0',7') € Arc(X) are joined by an edge in Z(3, A) if and
only if (1,0,0',7") € A. We call Z(X, A) the 3-arc graph of ¥ with respect to A.

The requirement that A is self-paired ensures that adjacency in =(X, A) is well-
defined (in the sense that (o, 7) is joined to (o', 7’) if and only if (¢’,7') is joined to

(0,7)). There are several natural partitions of the vertex set of Z(X, A), namely

(i) P(X) = {{(o,7),(r,0)} : (0,7) € Arc(2)};
(ii) B(X) :={B(o):0 € V(X)}, where B(o) :={(o,7) : 7 € 3(0)};
(i) B*(X) :={B*(0) : 0 € V(X)}, where B*(0) :={(7,0) : 7 € X(0)}.

Now let G be a group of automorphisms of 3. Then G induces natural actions
on Arc(X) and Arcs(X), and provided G leaves A invariant, G will preserve the
adjacency relation for Z(3, A) and hence will induce an action as a group of auto-
morphisms of Z(X, A). Moreover, the three partitions P(X), B(X) and B*(X) are
all G-invariant. We note the following relations between the G-actions on > and

=(X, A): the proofs are straightforward and are omitted.

Lemma 5.2.1 Let X, A be as in Definition 5.2.1, and let G be a group of automor-
phisms of ¥ which leaves A invariant. Then

(a) If G is faithful on the vertices of ¥, then it is also faithful on the vertices of
=(%,A).

(b) (X, A) is G-vertex-transitive if and only if ¥ is G-symmetric.
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(c) Z2(X, A) is G-symmetric if and only if ¥ is G-symmetric and A is a self-paired
G-orbit on Arcs(X).
(d) For o € V(X), Go = Gp(o) = GB=(s), and the actions of G, on X(0), B(o)

and B*(o) are permutationally equivalent.

Thus, if ¥ is G-symmetric and A is a self-paired G-orbit on Arcs(X), then Z(3, A)
is an imprimitive G-symmetric graph relative to each of the partitions above. The
following self-evident lemma tells us when a G-orbit on Arcs(X) is self-paired, and
this will be used in the next two chapters.

Lemma 5.2.2 Suppose Y is a G-symmetric graph. Then a G-orbit A = (1,0,0",7')¢
on Arc3(X) is self-paired if and only if there exists an element of G which reverses
the 3-arc (1,0,0’,7"), and this in turn is true if and only if there exists an element

of G which interchanges the arcs (o,7) and (o', 7").

Bearing in mind the remarks at the beginning of this section, we now study
3-arc graphs Z(X, A) of a (G, 2)-arc transitive graph 3 with respect to self-paired
G-orbits A on Arcg(X), paying particular attention to the partition B(X). A 3-arc

(1,0,0",7") of ¥ is said to be properif 7 # 7/, that is, (,0,0’,7’) is not a 3-cycle.

Theorem 5.2.1 Suppose ¥ is a (G,2)-arc transitive graph with valency v > 3.
Suppose A is a self-paired G-orbit of 3-arcs of 3. Set I' := Z(X,A). Then the
following (a)-(d) hold.

(a) For adjacent blocks B(c), B(c') of I'pesy, (0,0") is the unique element of B(o)
which is not adjacent to an element of B(o’) (that is, “k = v —1"), and the valency
of U[B(0), B(d")] is equal to the size |(7')%<c'| of the (Gryer)-o0rbit containing 7',
where (1,0,0',7') € A. Hence val(T') = (val(X) — 1) - |(7) oo’

(b) Ipy = X, and D(B(0)) has no repeated blocks.

(c¢) If A contains a 3-cycle then A consists of all the 3-cycles of ¥, and both
=(X,A) and X are vertex disjoint unions of complete graphs, as specified in Theo-
rem 5.1.2 (b). The connected components of Z(X, A) are the induced subgraphs on
the blocks of B*(X).

(d) On the other hand if A consists of proper 3-arcs then adjacent vertices of

=(%, A) involve four distinct vertices of 3.
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Proof Since B(c), B(co') are adjacent in I'z(sy, there exist (o, 7), (o', 7) € Arc(X)
such that (7,0,0',7") € A. In particular (o,0") € Arc(X). Conversely, if (0,0") €
Arc(X) then, since A # ) and ¥ is (G, 2)-arc transitive it follows that there exist
7,7" such that (1,0,0’,7") € A and hence such that (o, 7) and (¢’,7") are adjacent
in I'. Thus B(o) is adjacent to B(o”) in I'zxy. This proves that Iz = 3.

It follows from the definition of a 3-arc that (o, 0’) is not adjacent to any vertex
of B(o'). Let (0,e) € B(o) with ¢ # ¢’. Then some g € G maps the 2-arc
(1,0,0") to the 2-arc (¢,0,0') of ¥, and hence g maps the edge {(o,7), (¢/,7")} of
I' to {(a,¢), (0’ (7")9)}. Thus (o,¢) is joined to some vertex of B(o’) \ {(¢’,0)}.
It is now clear that the set of points of D(B(¢)) incident with the block B(c’)
is B(o) \ {(o,0')}. So D(B(0)) has no repeated blocks. Clearly the valency of
['[B(0), B(c")] is equal to |(7/)%ree’|, and from this the equality regarding the valency
of I' follows.

If A contains a 3-cycle then, since ¥ is (G, 2)-arc transitive, the end vertices
of every 2-arc of 3 are adjacent vertices of X, so ¥ is a disjoint union of complete
graphs. From the previous paragraph it follows that A contains all the 3-cycles
of ¥, and that (o, 7) is adjacent to (¢/,7’) in Z(3,A) if and only if (o,0’) is an
arc of ¥ and 7 = 7/. Thus the connected components of =(X, A) are the blocks
B*(7) of B*(X) and each is a complete graph. By Lemma 5.2.1, the conditions of
Theorem 5.1.2 (b) hold, so I' = Z(X, A) and 'z = X are as given there. On the
other hand, if A consists of proper 3-arcs then adjacent vertices (o, 7) and (o, 7’)

of Z(X, A) involve four distinct vertices of X. O

Thus, under the assumptions of Theorem 5.2.1, we see that the graph Z(3, A) is a
G-symmetric graph admitting the G-invariant partition B(X) such that k = v—1 > 2
and D(B(c0)) contains no repeated blocks. We now show that every G-symmetric
graph I' with these properties for some G-invariant partition B is isomorphic to a
3-arc graph =(I'g, A) of the quotient graph I'g, for a certain self-paired G-orbit A
on Arcz(I's). Note that in this case we may identify B with B(I'g), and similarly
identify B*, P defined in Theorem 5.1.1 with B*(I'g), P(I'g) respectively.

Theorem 5.2.2 Suppose that I" is a G-symmetric graph admitting a nontrivial G-
invariant partition B of block size v = k+1 > 3 such that D(B) contains no repeated

blocks, so I'p is (G, 2)-arc transitive and the vertices of ' are labelled with the arcs of
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L. Then I' = Z(I'g, A) for A the (self-paired) G-orbit in Arcs(I's) containing the
3-arc (C, B, D, E), where (“BC”, “DE") is an arc of I". In particular, A contains
a 3-cycle if and only if T',T's are as in Theorem 5.1.2 (b).

Proof Let (“BC”,“DE”) be an arc of I'. Then by the labelling defined before
Theorem 5.1.1, it is clear that (C, B, D, FE) is a 3-arc of I's. Let A be the G-
orbit containing it. Since G is transitive on Arc(I'), A is independent of the choice
of arc (“BC”,“DE”), and A is self-paired. Since every arc of T" is of the form
(“BICY9”  “DIEI”) for some g € G, and since (CY9, B9, D9, E9) = (C, B, D, E)? € A,
it follows from Definition 5.2.1 that I' = Z(I's, A). Finally, by Theorem 5.2.1 (c)
and (d), A contains a 3-cycle if and only if the second coordinates of labels for

adjacent vertices of I' are equal, and hence I', I's are as in Theorem 5.1.2 (b). O

Remark 5.2.1 (a) The structure of Z(3, A) for (G, 2)-arc transitive graphs X is
of considerable interest. We will explore in Chapter 7 the family of these graphs
for which ¥ is a near-polygonal graph and A is the set of 3-arcs occurring in the
distinguished “polygons” of 3. This case is of particular interest in connection with
Section 5 of [43].

(b) The construction of the graphs Z(X, A) bears some similarity to the cover-
ing graph construction of Biggs [6, pp.149-154]. The graphs Z(X, A) are “almost
multicovers” of the 2-arc transitive graph .

(c) Let 3 be a (G,2)-arc transitive graph, and let 0,0’ be a pair of adjacent
vertices of ¥. Then G contains an element g which interchanges o and o’. Let
7 € X(o) \ {¢'}. Then 7" := 79 € X(o') \ {0}, and (7,0,0",7') is a 3-arc of %.
Also 79 € %(0) \ {o’}. If it is possible to choose g and 7 such that 79° = 7, then
g maps the 3-arc (7,0,0',7') to its reverse (7/,0’,0,7), and hence the G-orbit A
containing (7,0,0’,7’') is self-paired. This is certainly possible if any one of the

following conditions holds:
(i) o and o’ are interchanged by an involution g;

(ii) the valency |X(o)| of X is even (since we may take g to be a 2-element, and

92 S Gaa’);

(iii) ¥ is (G, 3)-arc transitive;
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(iv) the actions of G, on X(0) \ {0’} and X(o’) \ {0} are permutationally iso-
morphic, in the sense that G,/ fixes a point ¢ € ¥(¢’) \ {o}, and o', 7 are
the only points of ¥(o) fixed by Gyorr. (For if h € G4, maps 7’ to €, then gh
interchanges o and o', and maps 7 to e, and hence normalises Go/r = Gygre.

Therefore gh interchanges T and ¢, and hence reverses the 3-arc (7,0,0’,¢).)

If any of these conditions holds, then ¥ will occur as the quotient graph I's for a

graph I' satisfying the hypotheses of Theorem 5.2.2.

To facilitate our later references, we summarize in the following the key infor-

mation contained in Theorems 5.1.2, 5.2.1 and 5.2.2.

Theorem 5.2.3 Let I' be a G-symmetric graph, and B a nontrivial G-invariant
partition of V(I') with block size v > 3 such that D(B) has block size v — 1. Then
D(B) contains no repeated blocks if and only if U'g is (G,2)-arc transitive. In this
case I' =2 =(I'p, A) for some self-paired G-orbit A of 3-arcs of I'g. Conversely,
for any self-paired G-orbit A of 3-arcs of a (G, 2)-arc transitive graph % of valency
v > 3, the graph T' = Z(X, A), group G, and partition B(X) satisfy all the conditions

above.

5.3 Three-arc transitive quotient

From the discussion in the previous two sections, we see that even under the as-
sumption that k = v — 1 > 2 and D(B) contains no repeated blocks, we are unable
to determine the graph I" completely. This suggests that more information on either
the quotient graph I'g or the bipartite graph I'[B, C] may be needed in order to de-
termine I'. With regard to the quotient, since we have proved that I's is (G, 2)-arc
transitive, we know that G is 2-transitive on I'g(B) by Lemma 3.1.1(b), and thus

we may naturally investigate the following two extreme cases:
(i) T'pis (G, 3)-arc transitive;
(ii) Gp is sharply 2-transitive on I'(B).

With respect to the bipartite graph I'[B, C], we have also the following two extreme
cases in which T'[B, C] contains the maximum and minimum possible numbers of

edges, respectively:
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(I) F[Ba C] = Kv—l,v—l;
(Il) T[B,C] = (v —1) - K.

The purpose of this section is to study the extreme case (I). We find (see Theorem
5.3.1 below) with surprise that case (I) occurs if and only if the extreme case (i)
for I's occurs, which in turn occurs if and only if the self-paired G-orbit A needed
in Theorem 5.2.2 for reconstructing I' is equal to Arcs(I'z). Therefore, in this case
the graph I' is uniquely determined by I'z. In Chapter 7 we will study in detail the
extreme case (II), and in particular we will prove (Proposition 7.1.1) that (ii) occurs

only if (II) occurs.

Theorem 5.3.1 Suppose that " is a G-symmetric graph, and B is a nontrivial G-
invariant partition of V(I') with block size v =k + 1 > 3 such that D(B) contains
no repeated blocks. Then the following conditions (a)-(c) are equivalent:

(a) s is (G, 3)-arc transitive;

(b) T[B, C] = Ky_10o1;

(c) I = =(I'p, A) with A the set of all 3-arcs of T's.

Thus in this case I' is uniquely determined by I'g.

Proof Since D(B) has no repeated blocks, I's is (G, 2)-arc transitive by Theo-
rem 5.1.2. Suppose that (“BC”, “DE") is an arc of I" and let A be the G-orbit on
Arcs(I's) containing the 3-arc (C, B, D, E)). By Theorem 5.2.2, I = Z(I'z, A). Now
each 3-arc (C1, B, D, Ey) of I'g corresponds to a unique ordered pair “BC,”, “DE;”
of vertices of I' and vice versa, where C; € I's(B) \ {D} and E, € I'g(D) \
{B}. Thus we have the following: I'[B,D] = K,_1,-1 < for any such C, E,
“BCY”, “DFE,” are adjacent in I' < for any such (4, E;, there exists ¢ € G with
(“BC”,“DE”)9 = (“BC,”, “DE,”) < for any such C}, E, there exists g € G with
(C,B,D,E)? = (C,B, D, E,) < for any such C, Ey, the 3-arc (C1, B, D, F) is
in A & A = Arc3(I'p) < I's is (G, 3)-arc transitive. Thus (a), (b) and (c) are

equivalent. O
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Chapter 6

Three-arc graphs of complete
graphs: Classification

When things had been classified in organic categories, knowledge
moved toward fulfillness.
Confucius (551-479 B.C.), THE GREAT LEARNING

The purpose of this chapter is to classify all G-symmetric graphs which admit a
G-invariant partition B such that k = v — 1 > 2, D(B) contains no repeated blocks
and I's = K, (note that val(I's) = v by Theorem 5.1.1), where G < Aut(T).
By Theorem 5.2.3, this is equivalent to classifying 3-arc graphs of complete (G, 2)-
arc transitive graphs ¥ := K, ;1. In this case G must be 3-transitive on V(X) (see
Lemma 6.1.1 below), and by Theorem 4.3.1(c) and Lemma 5.2.1(a), G is also faithful
on V(X). Hence, by the classification of highly transitive groups (see Theorem 2.1.1
and the comments following it), G is one of the following groups of degree v+ 1 with

the natural 3-transitive permutation representation on V' (3):

(i) Svt1 (v =3);

(i) Ay (v =4);
(iii) AGL(d,2) (v=27—1>3);
(iv) z5.A7 (v =15);

(v) Mathieu groups M, 7 (v =10, 11,21,22,23) and My; (v = 11); and
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(vi) 3-transitive groups G satisfying PGL(2,v) < G < PT'L(2,v) (v > 3 is a prime

power).

We will classify all the 3-arc graphs of ¥ with respect to self-paired G-orbits
on Arcg(X). The feasibility of such a classification is due to the classification of 3-
transitive permutation groups, as shown above, and hence relies on the classification
of finite simple groups. To study 3-arc graphs of ¥ arising from the groups G in (vi),
we need a detailed description of the 3-transitive subgroups of PI'L(2,v), and this
will be given in Section 6.2. The 3-arc graphs obtained in this case are the so-called
cross-ratio graphs, which were first introduced in [43] and studied systematically in
[46]. Those arising from the other 3-transitive groups were classified in [45]. The
3-arc graphs arising from the groups G in (iii) and (iv) belong to a large class of
symmetric graphs associated with the classical affine geometries which we will study
in detail in Section 9.5. The results obtained in this chapter will be used in the next

chapter.

6.1 Simple examples

Lemma 6.1.1 Let ¥ be a connected (G, 2)-arc transitive graph with valency v > 3.
Then girth(X) = 3 if and only if ¥ = K11, which in turn is true if and only if G is
3-transitive on V(%).

Proof If ¥ = K, then girth(X) = 3 and G is 3-transitive on V(X) since G, is
2-transitive on X(0) = V() \ {¢} and G is transitive on V(X). Next suppose that
G is 3-transitive on V(X). Then, for each o € V(X), G, is 2-transitive on V(X)\ {o}
and hence V(X) \ {0} induces a complete graph K, (note that V(3)\ {o} contains
adjacent vertices). This implies ¥ = K,y. Finally, if girth(X) = 3, then (o)
induces a complete graph K, by the 2-transitivity of G, on ¥(0). Hence ¥ = K4
by the connectedness of 3. O

In the remaining part of this chapter we will suppose ¥ := K1, G is one of the
groups in (i)-(vi), and I' := Z(X, A) with A a self-paired G-orbit on Arcs(X). For
simplicity we use o7 to denote the arc (o, 7) of ¥ if there is no danger of confusion.

We begin with the following two simple examples.
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Example 6.1.1 Unions of complete graphs. 1If A contains a 3-cycle of ¥, then
by Theorem 5.2.1(c), A is the set of all 3-cycles of V(X), and in this case we have
I'==2(%,A) = (v+1)-K,, I'[B(c), B(0")] = (v—1)- K, for any two distinct vertices

0,0’ of ¥, and G can be any one of the groups listed in (i)-(vi) above.

Therefore, in the following discussion we may suppose that A consists of proper
3-arcs of ¥. Also by the 3-transitivity of G on V(X), to seek self-paired G-orbits
A = (d',0,7,7)% on Arc3(X), we can start from any chosen 2-arc (¢/,0,7) of X.
The next example determines all the 3-arc graphs of ¥ (other than (v + 1) - K,)
arising from 4-transitive groups. For integers ¢,n with 2 < 2¢ < n, the Kneser
graph K(n, ) is the graph with vertices all /-subsets of a given n-set in which two

such f-subsets X,Y are adjacent if and only if X NY = ().

Example 6.1.2 Let ¥ := K, 4, and let G be 4-transitive on V(X). Then either
G = Spp1 (v >3),or G = A1 (v>05),or G= My (v=10,11,22,23).
In each case, GG is transitive on the set A of all proper 3-arcs of ¥, and hence
A is the unique self-paired G-orbit on such 3-arcs. As mentioned in Section 5.2,
P .={{or,70} : 0,7 € V(X),0 # 7} is a G-invariant partition of the vertex set of
' = Z(X,A). One can see that two blocks P := {o1,70}, Q := {de,e6} of P are
adjacent if and only if {o,7} N {d,e} = 0, and in this case we have I'[P, Q] = K»».
So I'p is isomorphic to the Kneser graph K (v + 1,2), and o7, de are adjacent in I'
if and only if {o,7} N {§,e} = 0. Thus T is isomorphic to (K (v + 1,2))[K3], the
lexicographic product of K (v + 1,2) by the empty graph K, on two vertices. One
can see that, for distinct blocks B, C of B(X), I'[B, C] is isomorphic to K,_1,1

minus a perfect matching.

So the only remaining groups are those in (iii), (iv), (vi), and the Mathieu
groups My; (with degree v+ 1 = 12) and My, (with degree v + 1 = 22). (Note that
S, = PGL(2,3) and As = PGL(2,4).) In the remaining sections of this chapter we

will study the 3-arc graphs arising from such groups.
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6.2 The 3-transitive subgroups of PI'L(2,v)

Let v = p® where p is a prime and e > 1. Then the multiplicative group GF(v)# of
units of the finite field GF(v) is a cyclic group of order p® — 1. As is well-known,

Sq(v) == {2% : 2 € GF(v)*}

is a subgroup of GF(v)# with index one or two according as v is even or odd. We
may identify the projective line PG(1,v) with GF(v) U {oco} by identifying a point
[(y, )] of the former with the element y/z of the latter, where oo satisfies the usual
arithmetic rules such as 1/o00 =0, 0o —y = 00, y —00 = —00, (00-y)/(00-2) =y/z,
ooP = 00, etc. With respect to the bijection [(y, z)] — y/z, the action of PGL(2,v)
on the points of PG(1,v) is permutationally equivalent (see e.g. [10, 63]) to the

action of the group of Mobius transformations

az+b
cz+d

ta,b,c,d N

(a,b,c,d € GF(v),ad — be # 0)

acting on GF(v) U {oo}. So we may identify PGL(2,v) with this group in the
following. Then PSL(2,v) = {tspca : ad — bc € Sq(v)}, and it follows from the
definition that PI'L(2,v) = PGL(2,v).(¢), the semidirect product of PGL(2,v) by
(1), where 1 is the Frobenius mapping defined by

Yz 2Pz e GF(v) U {oo}. (6.1)

For an integer ¢ with 0 < i < e, we call (i,t,p.4) & twisted pair if either i is even and
ad — be € Sq(v), or i is odd and ad — be € GF(v)# \ Sq(v). The following theorem
shows that the 3-transitive subgroups of PI'L(2, v) fall into two categories.

Theorem 6.2.1 Let v = p°®, where p is a prime and e > 1. Then a group G with
PSL(2,v) < G < PTL(2,v) is 3-transitive on GF(v) U {oo} if and only if G is one
of the following:

(a) G = PGL(2,v).(¢™) for n a divisor of e;

(b) G = M(n,v) = {V"™apea : (i,taped) a twisted pair}, where p is an odd

prime, e > 2 is an even integer and n is a divisor of e/2.

Proof Suppose first that PGL(2,v) < G < PI'L(2,v). Then, since PGL(2,v) is
(sharply) 3-transitive on GF(v) U {oo} (e.g. [10, Theorem 2.6.2]) and PT'L(2,v) =
PGL(2,v).(¢), we have G = PGL(2,v).(¢™) for some divisor n of e.
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In the following we suppose that PSL(2,v) < G < PI'L(2,v), G ? PGL(2,v)
and that G is 3-transitive on GF(v) U {oo}. Since PSL(2,2°) = PGL(2,2°), p must
be an odd prime (and hence Sq(v) has index two in GF(v)#). Let 6 be a fixed
element of PGL(2,v) which is not in PSL(2,v), and let 1, 6 be the left cosets
of PSL(2,v) containing v, 6 respectively. Then PGL(2,v)/PSL(2,v) = (f) & 7,
and PTL(2,v)/PSL(2,v) = () x (§) = Z. x Zy. Since PGL(2,v) £ G, we have
G = G/PSL(2,v) = (¢"0") for a divisor n of e with 1 <n < eand t =0 or 1. If
t =0, then G = PSL(2,v).(¢") and hence Gooo = {¢™t4001:0 <i < e,a € Sq(v)}.
Thus G is not 3-transitive on GF(v) U {oo} since Sq(v) # GF(v)# and since each
element @Z)inta707071 in Gy maps 1 to a € Sq(v). This contradiction shows that ¢t = 1
and hence G = (p"f). If e/n is odd, then (")*/" = /" = § € G, which is not the
case as PGL(2,v) £ G. Hence e is even and n divides /2. Note that (i, 0%, .4) is
a twisted pair for each ¢ with 0 < i < e/n and for any t,p.4 € PSL(2,v). Therefore,
we have G = {0t p.qa: 0 <i<e/n,ad —bc € Sq(v)} = M(n,v).

To complete the proof, one can see that M(n,v) is 3-transitive on GF(v) U {co}
for any v = p® with p an odd prime and e > 2 an even integer and for any divisor n

of e/2. O

Note that if n = e then PGL(2, v).(¢") = PGL(2, v). For p,e,n as in part (b) of
Theorem 6.2.1, it follows from the definition that M(n,v) = (PSL(2,v),9"t400.1),
where a is a primitive element of GF(v). This expression of M(n,v) is independent

of the choice of the element a.

Corollary 6.2.1 Let v = p°, where p is a prime and e > 1. Let G be a 3-transitive
subgroup of PI'L(2,v), as specified in Theorem 6.2.1. Then Gy = (") if G =
PGL(2,v).(¢™) (n a divisor of e); and Gwo1 = (V*") if G = M(n,v) (for suitable
p,e,n).

Proof For G = PGL(2,v) - (¢"), we have Goo = {¢)™t,001 : 7 > 0,a € GF(v)#}.
So we get Gooo1 = (¥™). On the other hand, for G = M(n, v), by definition we have
Goco1 = {0 : i is even } = (7). O

In particular, this implies that (M(e/2,v))o01 = 1 and hence M(e/2, v) is sharply
3-transitive on GF(v) U {oo} (see e.g. [26, pp. 242-243] for details on this group).
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6.3 Definitions of cross-ratio graphs

In this section, we use ¥ to denote the complete graph K, with vertex set GF(v)U

{00}, where v = p® with p a prime and e > 1 an integer. So ¥ has arc set

Q) :=={yz:y,z € GF(v) U {oo},y # z}.

Suppose G is a 3-transitive subgroup of PI'L(2,v), so that ¥ is (G, 2)-arc transitive.
We will define cross-ratio graphs as 3-arc graphs of ¥ with respect to self-paired G-
orbits on Arcz(X). In accordance with Theorem 6.2.1, we distinguish the following
two cases.

We first consider 3-arc graphs of ¥ arising from 3-transitive groups G given in
Theorem 6.2.1(a). From the theory of finite fields, for each element = € GF(v)\ {0},
the subfield of GF(v) generated by z has the form GF(p"®)), for some divisor n(z)

of e.

Lemma 6.3.1 Let x € GF(v) \ {0,1}. Let n be a divisor of n(x) and G =
PGL(2,v).(¢"). Then A := (0,00,1,7)% is a self-paired G-orbit on Arcs(3).

Proof Since 1-(—1)—(—xz)-1=2—1%#0, t1 ;1,1 is an element of PGL(2,v). So
t1,—21,—1 is an element of G since PGL(2,v) < G. Clearly, t; _, 1 1 maps (0,00, 1, x)
to (z,1,00,0). Hence, by Lemma 5.2.2, A is self-paired. O

Definition 6.3.1 Let z, n, G and A be as in Lemma 6.3.1. Then the 3-arc graph
=(X,A) of X with respect to A is well-defined. We call this graph an untwisted
cross-ratio graph and denote it by CR(v;x,n).

For 3-transitive subgroups of PI'Li(2,v) given in Theorem 6.2.1(b), we have the

following lemma.

Lemma 6.3.2 Let v = p°® with p an odd prime and e an even integer, and let
x € GF(v) \ {0, 1} be such that n(x) is even and x — 1 € Sq(v). Let n be an even
divisor of n(x) and let G := M(n/2,v). Then A = (0,00,1,2)% is a self-paired
G-orbit on Arcz(X).
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Proof Since x — 1 € Sq(v), we have ¢;_, 11 € PSL(2,v). Hence t;_,1_1 €
M(n/2,v) as PSL(2,v) < M(n/2,v). Since t; _, 1,1 reverses (0,00, 1, ), the result

follows immediately from Lemma 5.2.2. a

Definition 6.3.2 Let p, e, x, n, G and A be as in Lemma 6.3.2. Then the 3-arc
graph Z(X, A) of ¥ with respect to A is well-defined. We call this graph a twisted
cross-ratio graph and denote it by TCR(v; z,n).

In the following theorem, we show that the (untwisted and twisted) cross-ratio
graphs can be defined equivalently in terms of cross-ratios. This approach for defin-
ing untwisted cross-ratio graphs was adopted in [46], and it justifies the terminology

used. For distinct elements u, w,y, z € GF(v) U{oo}, the cross-ratio is defined as

(u—y)(w = 2)

(u = 2)(w —y)

clu,w;y, z) =

(see e.g. [63, pp. 59]) with the usual convention for co as mentioned in previous
section. The cross-ratio can take all values in GF(v) except 0 and 1. For z €
GF(v)\ {0,1} and a divisor n of n(z), the field automorphism ¥" acts on GF(p"(*))

and there are exactly n(z)/n images of z under the elements of (¢)™), namely
B(z,n) := {z¥" : 0 <i < n(z)/n}. (6.2)
Thus B(z,n) is the (¢")-orbit on GF(p™®) containing x.

Theorem 6.3.1 Suppose v = p°®, where p is a prime and e > 1 an integer.

(a) Let x € GF(v) \ {0,1}. Let n be a divisor of n(x) and G := PGL(2,v).(y™).
Then CR(v;z,n) is the G-symmetric graph with vertex set Q(v) in which vw and
yz are adjacent if and only if c(u,w;y,z) € B(x,n).

(b) Let x € GF(v) \ {0, 1} be such that n(zx) is even and x — 1 € Sq(v). Let n
be an even divisor of n(x) and let G := M(n/2,v) (where p is odd and e is even).
Then TCR(v;z,n) is the G-symmetric graph with vertex set Q(v) in which yz and
o0 are adjacent if and only if y € GF(v)* and

e B(z,n)y, if y € Sq(v)
B(xz,n)"""y, ify € GF(v)# \ Sq(v).



72 CLASSIFICATION

Proof The cross-ratio is invariant under the action of PGL(2,v) on 4-tuples of
distinct elements of GF(v) U {00}, and moreover PGL(2,v) is transitive on such
4-tuples with a fixed cross-ratio (see e.g. [63, pp. 59]). Under the action of the

Frobenius mapping 1, we have
c(u?, wsy?, 2%) = (c(u,w;y, 2))".

(a) By the definition of CR(v;xz,n) as a 3-arc graph and by Lemma 5.2.1(c),
CR(v;x,n) is G-symmetric. Since c¢(o00,0;1,2) = x, by the definition of a 3-arc
graph we have: uw and yz are adjacent in CR(v;z,n) < (w,u,y,z) € (0,00,1,2)¢
& c(u,w,y, 2) € B(z,n).

(b) This can be proved in a similar manner, by using the properties of the cross-

ratio mentioned above. O

Since B(z,n(z)) = {z}, part (a) of Theorem 6.3.1 implies that two vertices uw
and yz are adjacent in CR(v;z,n(z)) if and only if ¢(u,w;y,z) = z. Recall that
B(z,n) is the (¢™)-orbit containing x, so in part (b) of Theorem 6.3.1 the sets
B(z,n) and B(z,n)?""” are disjoint and their union is B(z,n/2).

From the discussion in Section 5.2, for I' = CR(v; z,n) and G = PGL(2,v).(¢™),
or for I' = TCR(v;x,n) and G = M(n/2,v), the vertices of I' admit the following

three G-invariant partitions:

P(v) == {{yz 2y} 1y, 2 € GF(v) U{oo},y # z};
B(v) :=={B(y) : y € GF(v) U{oo}}, where B(y) := {yz: 2z € GF(v) U{oc},y # z};
B*(v) :=={B*(y) : y € GF(v)U{oo}}, where B*(y) := {zy : z € GF(v)U{oo},y # z}.

Moreover, yz is the unique vertex of B(y) not adjacent to any vertex of B(z) in I.
Since |B(z,n)| = n(x)/n and I'pwy = K1 (Theorem 5.2.1(b)), this together with

Theorem 6.3.1 implies the following consequence.

Corollary 6.3.1 Let I' = CR(v;x,n) or I' = TCR(v;z,n) (for proper x and n).
Then for distinct blocks B,C of B(v), the graph T'|B, C] has valency n(x)/n. Hence
the valency of T is equal to (¢ — 1)n(x)/n.

More results concerning cross-ratio graphs can be found in [46]. For example,

all instances of isomorphism between the cross-ratio graphs are determined in [46,
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Theorem 7.2]. In particular, there are no isomorphisms between an untwisted cross-

ratio graph and a twisted cross-ratio graph.

6.4 Characterizing cross-ratio graphs

In this section we will show that, for G a 3-transitive subgroup of PI'L(2,v), the
(twisted or untwisted) cross-ratio graphs are the only 3-arc graphs of ¥ = K,
with respect to self-paired G-orbits on proper 3-arcs of ¥. In fact, we have the
following characterization for the cross-ratio graphs. Here we adopt the notation in

the previous section.

Theorem 6.4.1 Let v = p® > 3, where p is a prime and e > 1. Suppose that T’
is a G-symmetric graph with vertex set Q(v), where G is a 3-transitive subgroup of
PT'L(2,v) with the induced natural action on Q(v). Then either

(a) ' = (v+1) - K, with connected components being either the blocks of B(v)
or the blocks of B*(v), or

(b) T = (”;1) - Ky, with connected components the blocks of P(v), or

(¢) T is isomorphic to CR(v;x,n) or TCR(v;z,n) for some x,n.

Proof Let (000,dz) be an arc of I'. If d = oo, then since G is 3-transitive on
GF(v) U {oo} and since the action of G on §2(v) is induced by the action of G on
GF(v) U {oo}, we know that two vertices uw,yz of I' are adjacent if and only if
u = y, that is, if and only if (a) holds with components the blocks B(u) of B(v), for
u € GF(v) U {oo}. Similarly, if z = 0 then (a) holds with components the blocks
B*(u) of B*(v), for u € GF(v) U {o0}; and if dz = 0co then (b) holds. So suppose
in the following that d # oo, x # 0, and dxr # Oocc. Suppose that d = 0, so that
x # 0o0. Any element of G which maps 000 to Ox must map Ox to xz, for some z,
and hence there is no element of G which interchanges co0 and Ox, contradicting the
arc-transitivity of I'. Hence d # 0 and similarly x # oo, so 00,0, d, x are pairwise
distinct. Since G is 3-transitive on GF(v) U {oo}, we may assume that d = 1.

By Theorem 6.2.1, for some divisor n of e, we have G = PGL(2,v).(y"™), or G =
M(n/2,v), where in the latter case p is odd and both e and n are even. By Corollary
6.2.1, Gooo1 = (¥™), and since G is 3-transitive on GF(v) U {o0}, and transitive on
arcs of I', it follows that (¢)™) is transitive on the vertices of I'(c00) N B(1). Thus this
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set, consists of all pairs 12/, for 2/ € U(z) := {2 : for some i}. We can determine
['(000) since it is the orbit of Gy containing lz. If G = PGL(2,v) - (¢") then
I'(000) consists of the pairs uw where w € U(z)u. If G = M(n/2,v), then I'(c00)
consists of the pairs uw where w € U(z)u if u is a square, and where w € U(z)*"*u

if u is not a square.

The set U(x) is contained in the subfield GF(p"(®)) generated by x, and so each
element of U(x) is left invariant by ¢™®). Moreover 1)™® maps squares to squares.
It follows that I'(c00) is left invariant by (Gueo, ™) and hence that (G,¢"®)
leaves the set of arcs of I invariant, that is, (G, ¥"™®) is contained in Aut(I'). Thus
we may assume that ¢"@) € G, and hence that n divides n(x). This means that
U(z) is the set B(z,n), as defined in (6.2). If G = PGL(2,v) - (¢") then we have
shown that the set of vertices adjacent to 000 is the same for I' and CR(v;x,n), and
they admit the same arc-transitive group G. Hence in this case I' = CR(v; x, n).

Suppose therefore that G = M(n/2,v). Since G is arc-transitive on I, some
element g = ', .4 of G interchanges oo0 and lz. Since g interchanges oo and
1, and maps 0 to x, we have g = ¥ty _, ;1. Then, since g maps x to 0, we have
2" = z, and hence n(z) divides i. Since n divides n(x), this means that n divides
i, and hence ¢ € G. Therefore t; ,; 1 € G NPGL(2,v) = PSL(2,v), and so
x — 1 € Sq(v). Therefore the graph TCR(v;z,n) is defined, and we have shown
that the set of vertices adjacent to 000 is the same for I' and TCR(v; x,n), and they

admit the same arc-transitive group M(n/2,v). Hence in this case I' = TCR(v; z,n).
O

Theorem 6.4.1 and its proof imply the following corollary.

Corollary 6.4.1 Let v =p® > 3 with p a prime and e > 1.

(a) The graphs CR(v;z,n), TCR(v;z,n) and (v+1) - K, (as in Example 6.1.1)
are the only 3-arc graphs of ¥ = K, 11 with respect to self-paired G-orbits on Arcg(X),
where G is a 3-transitive subgroup of PT'L(2,v).

(b) For T' = CR(v;x,n) or I' = TCR(v;x,n), the 3-transitive subgroup H such
that T is H-symmetric is equal to PGL(2,v)- (¢') or M(t/2,v) respectively, for some
divisor t of e such that ged(n(z),t) = n.
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6.5 Affine 3-arc graphs

For an integer d > 2 and a prime power ¢, we use V' (d, q) to denote the d-dimensional
linear space of row vectors over GF(q). We use e; to denote the unit vector of V(d, q)
with i-th coordinate 1 and the remaining coordinates 0, for¢ = 1,2,...,d. The affine

group AGL(d, q) consists of all affine transformations
tvw 2z zM +w (6.3)

of V(d, q), where M is a dxd invertible matrix over GF(¢q) and w € V(d, ¢). Similarly
the group AT'L(d, q) consists all semilinear transformations ty;w,, : 2 — 2°M +w
of V(d, q), where p € Aut(GF(q)) and p acts componentwise on vectors of V(d, q).
The affine geometry AG(d,q) is the geometry with point set V(d,q) and n-flats
(1 <n <d) of the form U +w := {u+w:u € U}, where U is an n-dimensional
subspace of V(d,q) and w € V(d,q). A 1-flat (2-flat, respectively) of AG(d, q) is
usually called a line (plane, respectively) of AG(d, q). Three points of AG(d, q) are
said to be collinear if they lie on a line, and four points of AG(d, q) are said to be
coplanar if they lie on a plane.

In studying 3-arc graphs of ¥ = K, arising from the groups in (iii) and (iv),
we need the following basic result for AG(d, ¢), which we will use in Section 9.5 as

well.

Lemma 6.5.1 Suppose AGL(d,q) < G < AT'L(d, q), where d > 2 and q is a prime
power. Then, for 1 <n < d, G is transitive on ordered (n + 1)-tuples of points of
AG(d, q) not lying on any (n — 1)-flat of AG(d, q).

Proof Any given n + 1 points xg,x1,...,%, of AG(d,q) do not lie on the same
(n—1)-flat if and only if x; —xq, . . ., X,, —X( are independent vectors of V'(d, ¢). So in
this case x; — X, . . . , X, — X can be taken as the first n vectors of an ordered base of
V(d,q). Hence there exists ty;o € GL(d, ¢) which mapsey, ..., e, tox;—Xg, ..., X,—
Xo, respectively. Thus ¢y x, € AGL(d, ¢) maps (0,eq,...,€,) to (Xo,X1,...,X,).
Since (0,ey,...,e,) is a typical (n+1)-tuple not lying on any (n—1)-flat of AG(d, ¢),

the result follows immediately. a

We now determine the 3-arc graphs arising from the 3-transitive affine group (iii)

in the introduction of this chapter. These graphs were classified in [45].
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Example 6.5.1 Affine 3-arc graphs. Let G := AGL(d,2), d > 2, and let ¥ be the
complete graph with vertex set V' (d,2). Then the proper 3-arcs (7,0, 0’, 7') of ¥ can

be partitioned into the following two parts:
Ay = A (d,2) ={(1,0,0",7") : 7,0,0", 7" coplanar in AG(d,2)},

Ay = Ay(d,2) = {(7,0,0",7") : 7,0,0", 7 non-coplanar in AG(d, 2)}.

Clearly, both A; and A, are self-paired. Note that each line of AG(d,2) contains
exactly two points, and each plane of AG(d,2) contains exactly four points (see
e.g. [84, Theorem 1.17]). Thus, for any proper 3-arc (7,0,0’,7") in Ay, the points
7,0,0" are non-collinear and moreover we have 7 — 0 = 7/ — ¢/. This together
with Lemma 6.5.1 implies that G is transitive on A;. Similarly, G is transitive on
As. Since G preserves coplanarity, we conclude that A;, Ay are both self-paired
G-orbits on proper 3-arcs of 2, and they are the only such G-orbits. So we get two
3-arc graphs of X, namely Z;(d,2) := Z(X, A;) for i = 1,2. (In defining the graph
Z5(d,2) we require that d > 3 since Ay # () if and only if d > 3.) Tt follows from
the definition that =;(d,2) is the graph with vertices the ordered pairs of distinct
vectors of V(d,2) in which uw, yz are adjacent if and only if u, w,y, z are distinct
and u—w =y —z. Also, Z5(d,2) is the graph with the same vertices in which

uw, yz are adjacent if and only if u, w,y,z are non-coplanar in AG(d, 2).

Example 6.5.2 The group G := Zj3.A; is a subgroup of AGL(4,2), where Z; acts
on V(X) := V(4,2) by translations and, for 7 := 0, G, = A; is a subgroup of
GL(4,2) = Ag acting 2-transitively on V' (4,2) \ {7} in its natural action. Let o, 0’
be distinct points of V(4,2) \ {7}. Then from [24, pp.10] we have G,, = PSL(2,7),
which is transitive on V(4,2) \ {o,7}, and each involution in A; and also each
element of order 3 in PSL(2,7) fixes exactly 3 nonzero vectors in V(4,2). Hence in
the action of Gyorr = Ay on V(4,2)\ {0, 0, 7,0+ 0’ + 7} the stabilizer of any vector
is trivial, that is, G,,> has an orbit of length 12. Apart from this orbit, G,./, has
another orbit on V'(4,2) \ {o,0’,7}, namely {0 + ¢’ + 7}. Since G is 3-transitive
on V(X), there are two G-orbits on proper 3-arcs of ¥. It is clear that these two
G-orbits are A1(4,2) and Ay (4,2). Therefore, we have exactly two 3-arc graphs of
¥, namely =;(4,2) and =5(4, 2).
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6.6 Mathieu graphs, and the classification
theorem

In this last section we determine 3-arc graphs from the two Mathieu groups M,
(with degree v + 1 = 12) and Mg, (with degree v 4+ 1 = 22), and thus complete our

classification. These graphs were classified in [45].

Example 6.6.1 The Mathieu group M;; with degree v + 1 = 12 is the automor-
phism group of the unique 3-(12,6,2) design D. We assume that the point set
of D is the same as the vertex set of ¥ := Kjy. For a 2-arc (¢/,0,7) of X,
let X(¢’,0,7) denote the union of the two blocks of D containing o', o, 7. Then
(Mi1)o0r = S5 has two orbits on V() \ {0’,0,7} (see [26, pp.231-232]), namely
V(E)\ X(¢',0,7) and X(o',0,7) \ {0/,0,7}. Let 7 € V(X)\ {0’,0,7}. By the
3-transitivity of My, there exists ¢ € Mj; such that (o,7,7")9 = (7,0,0"). Set
(6”9 =9, so (¢o/,0,1,7")9 = (§,7,0,0"). Since g is an automorphism of D, the
points o', o, 7,7’ lie in the same block of D if and only if d, 7, 0,0’ lie in the same
block of D. This implies that, 7" € V() \ X(¢/,0,7) (7' € X(¢/,0,7)\ {0/,0,7},
respectively) if and only if 6 € V(X) \ X(¢/,0,7) (§ € X(0',0,7)\ {0',0,7}, re-
spectively). That is, § and 7’ are in the same (M ),/or-0rbit on V() \ {o’, 0, 7}.
So there exists h € (Mj1)gor such that 6" = 7/. This implies that gh reverses
(¢',0,7,7") and hence A is self-paired (Lemma 5.2.2). So there are exactly two
self-paired (M;j;)-orbits on proper 3-arcs of 3, namely A, := (0,0, 7,7 )M for
e V() \ X(d,0,7), and Ay := (¢/,0,7,7 )M for 7 € X(o/,0,7)\ {0,0,7}.
Thus we get two 3-arc graphs, namely =;(My;) := =(3, A;) for ¢ = 1,2. Note that
V(X)) \ X(o/,0,7)] = 3 and |X(¢',0,7)\ {0',0,7}| = 6. So by Theorem 5.2.1(a)
each vertex of B(co) other than o7 is adjacent to three vertices of B(7) in Z(My;),
and adjacent to six vertices of B(7) in Z3(M;j1). One can see that aa/, 33" are ad-
jacent in =y (Mj;1) (29(M;j1), respectively) if and only if o/, «, 3, 3" are distinct and
geVE)\ X, ap) (8 e X(,a,p)\ {,a, 3}, respectively). Thus, =;(M;i;)
and Z5(M;j;) are the graphs defined in Proposition 5.1(e)(1) and (2) of [45], respec-
tively.

Example 6.6.2 The Mathieu group My, of degree v + 1 = 22 is the automorphism
group of the 3-(22,6,1) Steiner system D. We assume that the point set of D
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is the same as the vertex set of ¥ := Ky. As in Example 6.6.1 above, we get
two 3-arc graphs of ¥, namely the graph =;(Mas) in which ad/, 35" are adjacent
if and only if o/, «, 3,3 are distinct and 3 € V(X) \ X(</, o, ), and the graph
Z9(May) in which ad, 83" are adjacent if and only if o/, «, 3, (3’ are distinct and 3’ €
X a,p8)\ {d, a, B}, where X (o, «, ) denotes the unique block of D containing
o', a, B. These two graphs are the graphs defined in Proposition 5.1(d)(1) and (2)
of [45], respectively. Based on the same reason as in Example 6.6.1 one can see that
each vertex of B(a) other than o3 is adjacent to sixteen vertices of B(/3) in =;(Mas),

and adjacent to three vertices of B(f3) in Z5(Mas).

Applying Theorem 5.2.3, the discussion in this chapter gives rise to the following
classification of all G-symmetric graphs I' such that v = k+1 > 3, D(B) contains no
repeated blocks and I's is a complete graph. This classification was obtained in [45]
by using a different approach. (By Theorem 4.3.2(b), in our case above G must be
doubly transitive on B. So such graphs I' are precisely those graphs studied in [45]
with the additional properties that val(I's) = v and v = k+ 1 > 3. The objective of
[45] is to classify G-symmetric graphs with complete quotients such that the induced

action of G on each block of the G-invariant partition is doubly transitive.)

Theorem 6.6.1 Suppose that I' is a G-symmetric graph which admits a nontrivial
G-invariant partition B of block size v = k + 1 > 3 such that D(B) contains no
repeated blocks and U'g is a complete graph, where G < Aut(I'). Then I'g = K1,
G 1is 3-transitive and faithful on B, and either I' = (v + 1) - K, with G an arbitrary
3-transitive permutation group of degree v+ 1, or one of the following (a)-(f) holds.

(a) T = (K(v+ 1,2))[Ks], and G is either S,y1 (v > 3), or Ayy1 (v > 5), or
M,.1 (v=10,11,22,23).

(b) (I',G) = (CR(v;z,n), PGL(2,v).(¢")), where v = p® with p a prime and
e > 1, x € GF(v) \ {0,1}, n is a divisor of n(x), and t is a divisor of e with
ged(n(z),t) =n.

(c¢) (I',G) = (TCR(v; z,n), M(t/2,v)), where v = p° with p an odd prime and
e > 2 an even integer, x € GF(v) \ {0,1} with n(x) even and v — 1 a square of
GF(v), n is an even divisor of n(x), and t is a divisor of e with ged(n(z),t) = n.

(d) T =Z,(d,2) or Z5(d,2) (defined in Example 6.5.1), v =2%—1, where d > 2,
and either G = AGL(d,2) or d =4 and G = Z3.A;.
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[1]

(e) I
T

1(My1) or Z9(Myy) (defined in Example 6.6.1), G = My, and v = 11.
(f) 1

(May) or Z5(Mao) (defined in Example 6.6.2), G = May, and v = 21.

[1]

In possibility (b) above, if v = 3 then PGL(2,3) = Sy and we get only one
cross-ratio graph CR(3;2,1) = 3 - Cy; if v = 4, then PGL(2,4) = A; and we also
have a unique cross-ratio graph CR(4;¢,2) = CR(4;t?,2), which is isomorphic to the
dodecahedron (see [43, Example 2.4(a)]), where we set GF(4) = {0,1,¢,¢* =1+ t}.
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Chapter 7

Almost covers of two-arc
transitive graphs

Study it extensively, inquire into it accurately, think over it
carefully, sift it clearly, and practice it earnestly.

Confucius (551-479 B.C.), THE DOCTRINE OF THE MEAN 20

In this chapter we continue our study of the case where k = v —1 > 2 and D(B)
contains no repeated blocks. We notice that the possibilities for I'[ B, C] depend on
the pair (I'z, G), and vice versa. For example, we have proved in Theorem 5.3.1
that the extreme case I'[B,C] = K,_;,-1 occurs if and only if I's is (G, 3)-arc
transitive. In this chapter we investigate the other extreme case for I'[B, C], namely
['[B,C] = (v—1)- K,. In this case I is said to be an almost cover of I's (see Section
3.2). By using Theorem 6.6.1, we first classify all such graphs I' in the case where in
addition I's = K, 1 (Theorem 7.2.1). In the general case where I'z 2 K,1 and '
is connected, we find a surprising connection (Theorem 7.3.1) between such graphs
I' and an interesting class of graphs, namely near-polygonal graphs. For an integer
n > 4, a near n-gonal graph [75] is a pair (X, E) consisting of a connected graph 3
of girth at least 4, together with a set £ of n-cycles of ¥, such that each 2-arc of ¥ is
contained in a unique member of £. In this case we also say that X is a near n-gonal
graph with respect to £. The main results in this chapter may be summarized as

follows.

Theorem 7.0.2 Supposel is a G-symmetric graph admitting a nontrivial G-invari-

ant partition B of block size v > 3 such that D(B) contains no repeated blocks, and
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['s is connected and is almost covered by ', where G < Aut(I"). Then the following
(a)-(b) hold.

(a) If T'g = Kyu1, then all possibilities for I' and G are known explicitly.

(b) If 'y 2 K,y1, then for some even integer n > 4, I'g is a (G, 2)-arc transitive
near n-gonal graph with respect to a certain G-orbit on n-cycles of I's. Moreover,
any (G, 2)-arc transitive near n-gonal graph (where n > 4 is even) with respect to a

G-orbit on n-cycles can appear as such a quotient I'g.

In Section 7.4, we will study the special case where I' is a G-locally primitive
almost cover of I'z, and in the last section we will give criteria for testing when a
(G, 2)-arc transitive graph is near-polygonal. We will present and prove our results
in this chapter in terms of 3-arc graphs. By Theorem 5.2.3, the graphs ' in Theorem
7.0.2 are precisely 3-arc graphs = := Z(X, A) which almost cover Zp(x), where ¥ is
a (G,2)-arc transitive graph and A is a self-paired G-orbit on Arcg(X). In this case

we also say that Z almost covers ¥ since Zpx;y = X (Theorem 5.2.1(b)).

7.1 Preliminaries

As in the last Chapter, we will denote an arc (o, 7) of a graph ¥ by o7 when this
is convenient and unlikely to cause confusion. The following simple lemma follows
from Theorem 5.2.1(a).

Lemma 7.1.1 Let ¥ be a connected (G,2)-arc transitive graph. Let A be a self-
paired G-orbit on Arcs(X), and let (1,0,0",7") € A. Then =(X, A) almost covers 3
if and only if 7' is fized by Groor (that i3, Groer = Grogrsr).

Let I' = Z(X,A) be a 3-arc graph of the (G,2)-arc transitive graph ¥. If T’
almost covers X, then for each 7 € ¥(0) \ {0’} there exists a unique 7" € 3(0’)\ {o}
such that (7,0,0’,7") € A, and hence 7 — 7' defines a bijection from (o) \ {0’} to
Y(0’) \ {o}. Note that this bijection depends on A. Since there will be no danger
of confusion, we will denote it just by ¢,.. Recall that a G-vertex-transitive graph
Y is (G, 2)-arc transitive if and only if G, is 2-transitive on (o) for o € V(%) (see
Lemma 3.1.1(b)).
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Lemma 7.1.2 Let ¥ be a connected (G, 2)-arc transitive graph, where G < Aut(X).
Let A be a self-paired G-orbit on Arc3(X) and let o1 be an arc of 3. Suppose that
the 3-arc graph T' := Z(X, A) almost covers 3. Then the following (a)-(d) hold:

(a) The actions of G, on B(o) and ¥(o) are permutationally equivalent, doubly
transitive and faithful.

(b) The actions of Gor on (o) \ {7} and on I'(o7) are permutationally equiv-
alent, where I'(oT) is the neighbourhood of ot in I'. In particular, T' is G-locally
primitive if and only if G, is 2-primitive on X(0); and G, is reqular on I'(oT) if
and only if G, is sharply 2-transitive on (o).

(€) bor = bro-

(d) (57 (€))7 = Ggara(e9) fore € X(o)\{7} and g € G. In particular, the actions
of Gor on (o) \ {7} and X(1) \ {0} are permutationally equivalent with respect to

Dor-

Proof (a) By Lemma 5.2.1(d), the actions of G, on B(c) and ¥(o) are permuta-
tionally equivalent with respect to the bijection B(o) — ¥ (o) defined by o7 — 7 for
7 € ¥X(0). Since ¥ is (G, 2)-arc transitive, these actions are doubly transitive. The
faithfulness follows from Lemma 5.2.1(a), Theorem 4.3.1(d) and Lemma 4.1.2(a).

(b) For each € € 3(0)\ {7}, let A(¢) denote the unique vertex in B(e) adjacent to
ot in I'. (The existence of A(¢) follows from Theorem 5.2.1(a).) Then A establishes
a bijection from (o) \ {7} to I'(o7). Clearly, (A(¢))? € I'(o7) for g € G,,. Since
Ae) € B(e), we have (A(€))? € (B(g))? = B(e9) and hence A(e?) = (A(¢))? by
the definition of A\. Thus, the actions of G,, on X(o) \ {7} and on I'(o7) are
permutationally equivalent with respect to A\. From this the last two assertions in
(b) follow immediately.

(c) This is obvious from the definition of ¢, .

(d) For (e,0,7,m) € A and g € G, since A is G-invariant we have (¢9, 09,79, 19) €
A and 80 (¢,7(€))? = 09 = ¢Poera(e?) (by the definitions of ¢,, and ¢yerq). In
particular, (¢,-(€))? = ¢or(€9) for ¢ € G,, and hence the assertion in the last

sentence of (d) is true. O

The following result was advertised in Section 5.3. It shows that, if G, is sharply
2-transitive on (o) (that is, G, holds the “weakest” 2-transitivity on (o)), then

all the 3-arc graphs of X are forced to be almost covers of X.
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Proposition 7.1.1 Suppose that ¥ a (G, 2)-arc transitive graph of valency v > 3
such that G, is sharply 2-transitive on (o) for o € V(X). Then, for every self-
paired G-orbit A on Arcs(X), the 3-arc graph T :== Z(3, A) is an almost cover of 3
and G, is reqular on the neighbourhood I'(o1) of o € V(I') in T.

Proof Let o7 be an arc of ¥. Then the sharp 2-transitivity of G, on ¥(¢) implies
that G, is regular on X(o) \ {7}, and hence we have |G,,| = |X(0)| — 1. Since
['(o7) contains exactly s points of each block B(9) for § € ¥(o) \ {7}, where s is
the valency of the bipartite graph I'[B(¢), B(d)] as defined in Section 3.2, we then
have |I'(o7)| = s(|X(0)| — 1) = $|G,-|. On the other hand, since G, is transitive
on ['(o7), by the orbit-stabilizer property (see Lemma 2.1.1(c)), |['(o7)| is a divisor
of |Gy|. So we have s = 1, that is, I'[B(0), B(7)] = (v—1) - K3, and hence I" almost
covers . Since G, is regular on (o) \ {7}, from Lemma 7.1.2(b) we know that

G, is also regular on I'(o7). O

For a near n-gonal graph (3, £), the cycles in £ are called basic cycles of (X, E).
We use C(o,T,¢) to denote the unique basic cycle of (¥, ) containing a given 2-arc
(o, 7,¢) of ¥. We also use Arc3(3, E) to denote the set of all 3-arcs of ¥ which are
contained in some basic cycle of (3, ). Since the number of 2-arcs contained in a
basic cycle of (X, ) is 2n and since each 2-arc is contained in a unique basic cycle,
we have 2n|E| = |Arce(X)] = v(v — 1)|V(2)| = (v — 1)|Are(X)], where v = val(X).

So n and || are connected by
€| = (v —1)|Arc(X2)|/2n.

Any subgroup G' < Aut(X) induces an action on n-cycles of 3, and if & is G-
invariant, then GG induces an action on €. A circulant is a Cayley graph Cay(Z,, S)
with vertex set the additive group Z, of integers modulo n in which x,y € Z, are
adjacent if and only if x —y € S, where S is a subset of Z, such that 0 ¢ S and
—S :={—x:x € S}isequal to S.

Lemma 7.1.3 Suppose (X,€) is a finite (G,2)-arc transitive near n-gonal graph.
Then the following statements (a)-(c) are equivalent:

(a) € is G-invariant.

(b) € is a G-orbit on n-cycles of ¥.
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(c) Arcs(3,E) is a self-paired G-orbit on Arcs(X).
Moreover, if one of these occurs, then the following (d)-(e) hold:

(d) Any element of G fixing a 2-arc (o, T,€) of ¥ must fix each vertex in C(o,T,¢).

(e) The subgraph of ¥ induced by the vertex set of a basic cycle of (3,E) is
isomorphic to a circulant graph Cay(Z,,S), for some S with 1 € S. Moreover, each
such basic cycle is chordless (that is, Cay(Z,, S) = C,,) unless, for adjacent vertices
o, T of X, either

(i) G, is sharply 2-transitive on (1) (and hence |X(7)| is a prime power); or

(ii) Gor is imprimitive on X(7) \ {o}.

Proof The equivalence of (a) and (b) is obvious since each 2-arc of X lies in a
unique cycle of £. If (a) holds, then Arcs(X, ) is a G-orbit on Arcz(X). Moreover,
in this case Arc3(X, €) is also self-paired. In fact, for (o,7,&,n) € Arcz(X,E) there
exists g € G such that (o,7,6)9 = (n,e,7) as ¥ is (G, 2)-arc transitive. Thus,
(C(o,T,¢))9 = C(n,e, 7). But C(o,1,¢) is the unique basic cycle containing (o, 7, €),
and it is also the unique basic cycle containing (n,e,7). So g fixes C(o,7,¢) and
n? = o, implying (n,e,7,0) = (0,7,6,m)9 € Arc3(X,€). Hence Arcz(X, ) is self-
paired. Thus (a) implies (c). Conversely suppose that (c) holds. Let

0(00,0'1,0'2) = (0'0,0'1,0'2, .. .,O'nfl,ao)

be the basic cycle of (X,&) containing the 2-arc (0g,01,02), and let ¢ € G. For
each i =0,1,...,n — 1 (subscripts modulo n here and in the remaining part of the
proof), it follows from (c) that both (of_,,07,07,1,0] ) and (07,07, 1,07 5,07 3)
lie in basic cycles, and they must lie in the same basic cycle since these two 3-arcs
have the 2-arc (07, 07,,,07,,) in common and since each 2-arc of ¥ is contained in a
unique basic cycle of (£, £). Since this is true for all 4, it follows that (C(oy, 01, 02))¢
must be a basic cycle of (X, &) and hence (c) implies (a).

In the remainder of this proof, we suppose £ is G-invariant, so both (b) and
(c) hold. Thus the vertex sets of the basic cycles of (3, £) induce mutually isomor-
phic subgraphs. If g € G fixes the 2-arc (0g, 01, 02), then it fixes the basic cycle
C(0g,01,092) and, since g fixes each of oy, 09, it follows that g must fix o3. Induc-
tively, one can see that g fixes each vertex in C(oy,01,02) and thus (d) is proved.

In proving (e), we set V' := {09,01,09,...,0,_1}, the vertex set of C(0y,01,09),
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and denote by ¥; the subgraph of ¥ induced by V. Since ¥ is (G, 2)-arc transitive,
there exists h € G such that (0,_1,00,01)" = (00,01,02). Since £ is G-invariant it
follows that h fixes V' setwise and leaves C'(0y, 01, 02) invariant. The only element of
Aut(3y) which leaves C(0y, 01, 02) invariant and maps (0,1, 09, 01) to (og, 01, 09)
is the rotation p : 0; — 0,1, for all i. Thus the permutation h" of V induced by
h is p, and by [6, Lemma 16.3], since (p) = Z, is regular on V', 3 is isomorphic to
a circulant Cay(Z,,S) for some S. Since o; is adjacent to o;y1, we have 1 € S and
the first part of (e) is proved. In proving the second part of (e), we assume that
C(0g, 01, 02) contains a chord. Since the group induced on C(oy, 01, 02) contains p,
it follows that oy is adjacent to some vertex o; with i # 0,2, that is to say, {01, 0;}
is a chord; and the set X := fiXy(5,)\({00}(Gopoi0,) contains both oy and ;. On
the other hand, the (G, 2)-arc transitivity of ¥ implies that G,,,, is transitive on
Y(01) \ {00}, and the stabilizer Gyy,0, (Which fixes C(09, 01, 02) pointwise) fixes
|X| > 2 points of X(o1) \ {00}. By Lemma 2.2.1, X is a block of imprimitivity for
Gopoy 10 2(071) \ {00}. Hence either X = ¥(oq) \ {00} or X induces a nontrivial
G oy -invariant partition of ¥(oq) \ {op}. In the former case the possibility (i) in
(e) occurs; whilst in the latter case the possibility (ii) in (e) occurs. Note that if (i)
occurs then by [95, pp. 23] |X(01)| must be a prime power. O

7.2 Almost covers of complete graphs

In this section we assume that 3 := K, is a (G, 2)-arc transitive graph of valency
v > 3, where G < Aut(X). So, by Lemma 6.1.1, G is 3-transitive on V(X) and thus
is one of the groups listed at the beginning of the previous chapter. In the following
we will show that almost covers Z(X, A) of ¥ exist (where A is a self-paired G-orbit
on Arcz(X)), and the goal of this section is to determine all of them. Recall that in
Theorem 6.6.1 we have classified all 3-arc graphs of 3. So what we need to do here
is to determine which of them are almost covers of X.

By Lemmas 5.2.2 and 7.1.1, a G-orbit A := (1,0,0’,7")% on Arc3(X) is self-paired
and Z(3, A) almost covers X if and only if o7, 0’7’ can be reversed by an element of G
and G,yor = Grooro- In the case where (7,0, 0", 7') is a 3-cycle of 3, we get a unique
graph Z(3, A) = (v+1) - K, which almost covers ¥ (see Example 6.1.1). Therefore,

we may assume in the following that (7,0, 0’,7’) is proper. Then the requirement
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Groor = Gro0r implies that either v4+1 = |V(3)| = 4, or G is 3- but not 4-transitive
on V(X). Hence the groups listed in Example 6.1.2 and the corresponding graph
(K (v + 1,2))[K3] therein can be excluded. From the discussion in Examples 6.6.1
and 6.6.2, we can also exclude the Mathieu group Mi; of degree 12 and the Mathieu
group Mg, of degree 22. Therefore, from the list at the beginning of Chapter 6,
only AGL(d,2) (v =2¢—1 > 3), z3.A; (v = 15) and the 3-transitive subgroups of
PI'L(2,v) (v is a prime power) can satisfy the conditions in Lemmas 5.2.2 and 7.1.1
for a proper 3-arc (7,0,0’,7") of ¥. The 3-transitive subgroups of PI'L(2,v) were
described in Theorem 6.2.1, and by Corollary 6.4.1(a) the 3-arc graphs arising from

such groups are (twisted or untwisted) cross-ratio graphs. The following example

tells us when a cross-ratio graph is an almost cover of 3.

Example 7.2.1 Cross-ratio graphs which almost cover K,.,. Let v=p® > 3 be a
prime power. For I' = CR(v;z,n) and G = PGL(2,v).(¢") or for I' = TCR(v; z,n)
and G = M(n/2,v) (for proper x and n), the vertex set of I' admits the G-invariant
partition B := B(v) (see Section 6.3 for definition) such that the block size of
D(B) is equal to v — 1, where B € B. By Corollary 6.3.1, for distinct blocks
B, C of B, the bipartite subgraph I'| B, C] has valency n(z)/n. So I' almost covers
Y if and only if n(x) = n. Thus, by Corollary 6.4.1(a), the only 3-arc graphs
=(X,A) of ¥ = K,4; which almost cover ¥ are CR(v; z,n(z)) and TCR(v; z, n(x)),
for v € GF(v) \ {0,1}, where A is a self-paired G-orbit on Arcs(X). Note that
ged(n(x),t) = n(x) implies that n(x) is a divisor of t. So by Corollary 6.4.1(b), the
only 3-transitive subgroups H of PI'L(2,v) such that CR(v; x,n(x)) is H-symmetric
have the form H = PGL(2,v).(¢"), where ¢ is a divisor of e and a multiple of n(z).
Similarly, the only 3-transitive subgroups H of PI'L(2,v) such that TCR(v; z, n(z))
is H-symmetric have the form H = M(t/2,v), where ¢ is an even divisor of e and a

multiple of n(x).

The next example determines the 3-arc graphs arising from AGL(d, 2) and Z3. A7

which almost cover X..

Example 7.2.2 In Example 6.5.1 we have shown that, apart from the graph (v +
1) - K, there are only two 3-arc graphs of ¥ arising from the group G = AGL(d, 2)
(v =2%—1 > 3) or the group G = z3.A; (if d = 4), namely =;(d,2) for i = 1,2. It

follows from the definition that =, (d, 2) is, and Z5(d, 2) is not, an almost cover of 3.
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The analysis above leads to the following classification theorem.

Theorem 7.2.1 Suppose ¥ = K,y is a (G, 2)-arc transitive complete graph, where
v >3 and G < Aut(X). Suppose further that I' = Z(X, A) almost covers ¥, where A
is a self-paired G-orbit on Arcs(X). Then either I' = (v+1) - K, with G an arbitrary
3-transitive permutation group of degree v + 1, or (I',G) is one of the following
(where in (a), (b), v = p® with p a prime and e > 1):

(a) (CR(v;z,n(x)), PGL(2,v).(¢")), where x € GF(v)\ {0,1}, and t is a divisor
of e and a multiple of n(x);

(b) (TCR(v;z,n(x)), M(t/2,v)), where p is odd, e is even, x € GF(v) \ {0,1}
with n(x) even and x — 1 a square of GF(v), and t is an even divisor of e and a
multiple of n(x);

(c) (21(d,2), AGL(d, 2)), where v =24 —1>3; or

(d) (21(4,2),25. A7), where v =15.

7.3 Almost covers of non-complete graphs

Now we discuss the general case where ¥ is a connected, non-complete, (G, 2)-arc
transitive graph with valency v > 3. Then girth(X) > 4 by Lemma 6.1.1. The main
result in this case is the following theorem which, together with Theorems 5.2.3 and

7.2.1, yields a proof of Theorem 7.0.2 stated at the beginning of this chapter.

Theorem 7.3.1 Suppose that ¥ is a connected (G,2)-arc transitive graph with va-
lency v > 3 and that ¥ % K,y1. Then ¥ is almost covered by a 3-arc graph =Z(X, A)
of ¥ if and only if, for some even integer n > 4, ¥ is a near n-gonal graph with
respect to a G-orbit € of n-cycles of ¥, and in this case we have A = Arcz(X, &),

the set of all 3-arcs of X2 contained in the n-cycles in &.

Proof Suppose ¥ is almost covered by a 3-arc graph I' := Z(X, A) of ¥, where
A is a self-paired G-orbit on Arcs(X). Recall that, for adjacent vertices o, ¢’ of
Y, we use ¢, to denote the the bijection from ¥(o) \ {¢'} to X(d’) \ {o} such
that ¢y (7) = 7' precisely when (7,0,0',7") € A. Let (0¢,01,02) be a 2-arc of
Y. Set 03 = ¢5,0,(00), and inductively define 0,49 := ¢o,0,,,(0i-1) for i > 1.

Then we get a sequence og, 01,09, ...,0,_1,0;,0i+1, 012, ... of vertices of ¥ such
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that (0;_1, 04, 0441, 0i42) € A for each ¢ > 1. Our assumption X 2% K, implies that
girth(X) > 4 (Lemma 6.1.1) and hence all such 3-arcs (0,_1, 0;, 05+1, 0;12) are proper,
that is, any four consecutive vertices in this sequence are pairwise distinct. Since
>} has a finite number of vertices, the sequence must eventually contain repeated
vertices. Let o, be the first vertex in the sequence that coincides with one of the
preceding vertices. We claim that o, must coincide with 0. Suppose to the contrary
that o,, = o, for some ¢ such that 1 < ¢ < n. Then since ¥ is (G, 2)-arc transitive,
there exists g € G such that (o, 0411, 0042)9 = (00,01, 02). From Lemma 7.1.2(d),

we have 0] 5 = b0t (07) = bo,0,(00) = 03. Inductively we have that o7, ; = o;

Ofra
for each ¢« > 0. In particular, 0f = azf’Jr(nfg) = 0,_¢. But since g, = gy, we have
On—¢ = 09 = 0] = 0y, contradicting the minimality of n. Therefore we must have
o, = 09. Thus, each 2-arc (0g,01,02) of ¥ determines a unique (undirected) n-
cycle C(og,01,02) := (00,01,09,...,0,-1,00) of X. Note again that n > 4 since
girth(X) > 4.

Set T := (g0, (02), then we have o9 = ¢y,0, (7) by Lemma 7.1.2(c). We claim that
7 must coincide with o,,_;. For the 2-arc (7, 09, 01), the construction in the previous
paragraph will give the sequence 7, 0¢,01,09,...,0,_1,0, = 09, and since the first
repeated vertex is the same as the starting vertex 7, it follows that 7 = ¢,,_;. Sim-
ilarly, one can show that 0,9 = ¢y, _,(01) and hence o1 = ¢y, 50 (0n_2). There-
fore, reading the subscripts modulo n (here and in the remainder of this section),
we have 012 = ¢g,0,,,(0i—1) and hence 0,_1 = o, , o, (0i42) for each i > 1 (Lemma
7.1.2(c)). This implies that the 2-arcs (0,-1, 0;, 0541) and (0,41, 04, 05—1) contained in
C(09,01,09) (for i > 1) also determine the same n-cycle C(0g, 01, 02). By definition
of C(0g,01,09) and by Lemma 7.1.2(d), we have C(0{, 0¥, 095) = (C(09, 01, 02))¢ for
g € G and hence £ := {C(o,1,¢) : (0,7,6) € Arcy(X)} is G-invariant and each
2-arc lies in a unique cycle of €. By the (G, 2)-arc transitivity of X, the length n of
C(o,1,¢€) is independent of the choice of (o, 7,¢) and G is transitive on €. Thus & is
a G-orbit on n-cycles of ¥ and ¥ is a near n-gonal graph with respect to £. More-
over, the argument above shows that A = Arc3(X, £). In particular, in the sequence
0001, 0100, 0903, 0302, . .., 029091, 02 _109;_2, 02,0211, 021109, . . . of vertices of I,
for each i, the (2i — 1)-st vertex og;_209;_1 and the 2i-th vertex gq;_109;_o are not
adjacent, while the 2i-th vertex and the (2i 4 1)-st vertex oq;09;11 are adjacent. By

the definition of n, the n-th vertex of this sequence is o, _10,_», and it is adjacent



90 ALMOST COVERS

to g0y (= 0,0,41) since (0;_1, 04, 0141, 0i12) € A for each i (subscripts modulo n).
It follows that n must be an even integer.

To prove the “if” part of the theorem, suppose that (X, £) is a (G, 2)-arc transitive
near n-gonal graph with valency v > 3 and £ is a G-orbit on n-cycles of ¥, for some
even n > 4. Then by Lemma 7.1.3, A := Arcs(X%, ) is a self-paired G-orbit on
Arcg(X). Let I' := Z(X,A) and let (7,0,0',7") € A. Then o7 € B(0) is adjacent
to o't € B(o') in I'. If o7 is adjacent in I' to a second vertex, say o’c’, of B(d'),
then (7,0,0',7'), (1,0,0',¢’) are distinct 3-arcs in A and hence the 2-arc (7,0,0")
is contained in two distinct basic cycles of (X,&). This contradiction shows that

I'B(o), B(0')] = (v —1) - K5 and hence I' almost covers I'gy). O

Remark 7.3.1 By Lemma 7.1.3(e), the vertex set of each basic cycle of (X,&) in
Theorem 7.3.1 induces a circulant subgraph of 3, and these basic cycles are chordless
unless either (e)(i) or (e)(ii) in that lemma occurs. This latter fact is interesting from
a combinatorial point of view. The following example shows that the basic cycles of
(33, &) may contain chords. It also provides an example of such a graph ¥ with the
smallest valency (namely 3) and shows that the near n-gonal graph (X%, €) occurring
in Theorem 7.3.1 is not necessarily an n-gonal graph. (A near n-gonal graph is said
to be an n-gonal graph [75] if n is equal to the girth of the graph.) Moreover, it
shows that the graph Z(X, A) may not be connected, even if ¥ is connected and

(G, 2)-arc transitive.

Example 7.3.1 Let X be the complete bipartite graph K33 with vertex set {0, 1,2,
3,4,5} and bipartition ({0,2,4},{1,3,5}). We will show that there exists a unique
subgroup G < Aut(X) such that ¥ is a (G, 2)-arc transitive near 6-gonal graph with
respect to a G-orbit £ of 6-cycles of ¥. By the definition of near polygonal graphs,

one can easily check that
&1:=4(0,1,2,3,4,5,0),(0,5,2,1,4,3,0),(0,1,4,5,2,3,0)}

and

& :=1{(0,1,2,5,4,3,0),(0,3,2,1,4,5,0),(0,1,4,3,2,5,0) }

are the only possible sets £ of 6-cycles of X such that (X, £) is a near 6-gonal graph.
On the other hand, we have Aut(X) = S;wr.S; = ((024), (02), (01)(23)(45)) and
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again it is easily checked that (024) and (01)(23)(45) fix & and & setwise, whilst
(02) interchanges &£ and &. Thus Aut(X) interchanges £ and & and so a subgroup
G of Aut(X) with index 2 fixes £ and & setwise. We have seen that G contains
H = ((024), (01)(23)(45)) = A3 wr Sy, but does not contain (02). Thus |G : H| = 2.
The element (13) is the conjugate of (02) by (01)(23)(45), and hence (13) € Aut(X)
and (13) interchanges & and &. Therefore (02)(13) fixes & and &, setwise and does
not lie in H, so G = (H,(02)(13)). It is easy to check that G is transitive on the
2-arcs of X, and hence (%, ;) is a (G, 2)-arc transitive near 6-gonal graph for i = 1
and ¢ = 2. If ¥ is (K, 2)-arc transitive and K preserves the &;, then K < G and
| K| is divisible by the number of 2-arcs, that is, by 36. Hence K = G. Finally, for
A; = Arcg(%, &), i = 1,2, we have Z(X, A;) = 3 - Cs (see Figure 4 below).
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FIGURE 4 T'=3-C6,X = K33

The following proposition shows further that the graph X in Example 7.3.1 is
the only connected trivalent non-complete graph which is (G, 2)-arc transitive and

near n-gonal for an even integer n such that the basic cycles have chords.

Proposition 7.3.1 Suppose 3 is a connected, (G, 2)-arc transitive, trivalent graph
and ¥ % K4. Suppose A is a self-paired G-orbit on Arcs(X) such that I := =Z(X, A)
almost covers . Then X is a near n-gonal graph with respect to some G-orbit £
of n-cycles (and n is even). Moreover the cycles in € have chords if and only if
Y22 K3, '=3-Cs, and € = & or &, where G, & and & are as in Example 7.5.1.
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Proof By Theorem 7.3.1, X is a near n-gonal graph with respect to some G-orbit
& of n-cycles for an even integer n > 4. So we need only to prove that the cycles
in £ have chords if and only if ¥, ', G, £ are as claimed. The “if” part was in fact
proved in Example 7.3.1. We prove the “only if” part in the following.

Suppose {0y, o4} is a chord of the basic cycle C(oy, 01, 02) := (00, 01,09, ..., 0p_1,
09). Then {o;,0;1¢} is a chord of C(og,01,02) for each i (by Lemma 7.1.3(e)).
Since ¥ is trivalent and connected, the only possibility is ¢ = n/2 and ¥ =
Cay(Z,,{1,¢,n — 1}). Since ¥ 2 K,, we have £ > 3. Now the unique n-cycle
C(oy, 00, 01) containing (o, 0¢, 01) must be the following sequence of vertices: oy, oy,
01,0041,004+2,09,03, 0013, 0¢4a, - ... 1f £ is even, this sequence does not even form an
n-cycle since it never returns to the vertex o,. (Once we arrive at oy_1, the next ver-
tex in the sequence is 0,,_; and from o,_; the sequence returns to oy. For example,
if ¢ = 4, then the sequence is the 7-cycle (og, 01,05, 06, 02, 03,07, 00).) So £ is odd,
and in this case the sequence does give an n-cycle. By the (G, 2)-arc transitivity of
Y, there exists g € G such that (0,1, 00,01)? = (04, 00,01). From Lemma 7.1.2(d),
we have (C(0y,-1,00,01))? = C(oy,00,01). Therefore, of = 0g,0] = 01,00_; =
00,09 _3 = 0,_1. Since g, 0, are adjacent, we know that of and of are adjacent,
and hence the only possibility for of is 0] = 0,_1 (note that of # of = 01,07 #
o?_ = o0y). But 0?_5 = 0,1 as mentioned above, so we get of = oJ_5 and hence
0y = 0y—3. Therefore, n = 6 and hence ¥ = Cay(Zs, {1,3,5}) = K33. From the
discussion in Example 7.3.1, we then have I' = 3 - Cg, & is either &; or &, and G is
the group ((024), (02)(13), (01)(23)(45)). O

7.4 Locally primitive almost covers

In this section, we examine an important special case which was the original moti-
vation for the study in this chapter. Recall that if I is a G-locally primitive graph
admitting a nontrivial G-invariant partition B of block size v = k 4+ 1 > 3 such
that ' is connected, then D(B) contains no repeated blocks (Corollary 3.3.1) and
I's is almost covered by I'" (Corollary 3.2.1). By Theorem 5.2.3, I' = Arca(2) for
some self-paired G-orbit A on 3-arcs of ¥ := I'g, and B is identical with B(X) (see
the comments before Theorem 5.2.2). Since I' is G-locally primitive, from Corol-

lary 4.3.1, Gp is 2-primitive on B and X(B) (this result also follows from Lemma
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7.1.2(a) and (b)). If in addition girth(X) = 3 (that is, ¥ = K, 1, see Lemma 6.1.1),
then G is 3-primitive on B and the argument in the proof of [43, Theorem 5.4]
from (Line, Page) = (25, 534) to (12, 535) shows that we get the possibilities for
(', G) listed in part (a) and the second half of part (b) of [43, Theorem 5.4]. (It
also comes from the classification of 3-primitive groups and the discussion in Exam-
ple 7.2.1.) However, in the general case where girth(¥) > 4, the argument in [43,
lines 33-41, pp. 534] should be modified since the block D therein is not adjacent
to C. In this case, as mentioned in Theorem 7.0.2(b), 3 is a near n-gonal graph
with n > 4 and n even. Moreover, GE(B) is 2-primitive. Hence if basic cycles of ¥
have chords, then by Lemma 7.1.3(e), G is sharply 2-primitive on ¥(B). Hence
G'p is also sharply 2-primitive on B, and so, v is a prime power and, for a € B,
GaB\{a} = Z,_1 with v — 1 a prime. Hence either v = 3, or v = 2? for a prime p
with ¢ = 2 — 1 a Mersenne prime. In the former case Proposition 7.3.1 implies
that ¥ = K33, ' = 3 - Cg, and G and £ are as in Example 7.3.1. In the latter case
K = {g € GB : g =1 or g fixes no vertex in B} is a regular normal elementary
abelian subgroup of G% ([26, Theorem 3.4B, pp.88]) and so G5 = (Z3)?.Z,. Theo-
rems 5.2.3 and 7.3.1 and the argument above imply the following corollary, which is

an amended form of [43, Theorem 5.4].

Corollary 7.4.1 Suppose that I' is a G-locally primitive graph admitting a nontriv-
1al G-invariant partition B of block size v =k + 1 > 3 such that U'g is connected.
Then T's is a (G, 2)-arc transitive graph of valency v and is almost covered by I, the

actions of Gg on B and I's(B) are permutationally equivalent and 2-primitive, and

the following (a)-(b) hold.
(a) If g = K41, then either

(i) I' 2 (v+1)-K, and G is one of the following: S,41 (v > 3), Aps1 (v >4),
Mysr (v =10,11,22,23), My, (v = 11), PGL(2,27) (v = 2° with 2 — 1
a Mersenne prime), or

(ii)) ' = CR(3;2,1) =3-Cy and G = PGL(2,3) (v=3), or

(iii) I' = CR(27; z,n(x)) and G = PGL(2,2?) (v = 2P) for some x € GF(2P) \
{0, 1} with 2P — 1 a Mersenne prime.
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(b) If 'z 2 K,y1, then for some even integer n > 4, U'g is a near n-gonal graph
with respect to a certain G-orbit £ on n-cycles of I'g, and I' = Z(I'g, A) for
A = Arc3(I'5, £). Moreover, each basic cycle of (I'g,E) is chordless unless

GE is sharply 2-primitive and either

(i) v=3,T'p= K33, ' 23-Cs, and G and € are as in Example 7.3.1, or

(ii) GB = (z2)*.Z, and v = 2P with p a prime and ¢ = 2" — 1 a Mersenne

prime.

The smallest v in part (b)(ii) above is v = 22 = 4. In this case we have G5 =
(Z3)*.Z3 and a similar argument as in the proof of Proposition 7.3.1 shows that, if
the basic cycles of (I's, £) have chords, then the subgraph induced by the vertex set
of each basic cycle is isomorphic to the circulant Cay(Z,, S) for S = {1,n/2,n — 1}.

7.5 Two-arc transitive near-polygonal graphs

Let us review briefly the group-theoretic method for constructing 2-arc transitive
graphs. Let G be a finite group. A subgroup H of G is said to be core-free if its
core in G (see Example 2.1.2 for the definition) is equal to the identity, that is,
Ngec HY = 1. For such a subgroup H and for a 2-element g of G with g ¢ Ng(H)
(where Ng(H) is the normalizer of H in G), define I'(G, H, HgH) = (V*, E*) to be
the graph such that

V*=[G:H)={Hx:2€ G}, B .= {{Hx,Hy} : xy ' € HgH}.

Sabidussi [76] (and others, see e.g. [56]) proved that I'(G, H, HgH ) is a G-symmetric
graph, and that any G-symmetric graph is isomorphic to I'(G, H, HgH) for a certain
core-free subgroup H and 2-element g of G. Moreover, the graph ['(G, H, HgH) is
connected if and only if (H, g) = G. By refining this classic result, Fang and Praeger
[33, Theorem 2.1] (see also [70, Theorem 11.1]) gave the following construction of
(G, 2)-arc transitive graphs.

Theorem 7.5.1 ([33, Theorem 2.1]) Let G be a finite group with a core-free sub-
group H and a 2-element g. Then the graph T'(G, H, HgH) is a finite, connected,
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(G, 2)-arc transitive graph with G transitive on vertices (acting by right multiplica-

tion as defined in Example 2.1.2) if and only if
g g NG(H)ng € Ha <va> = G7
and the action of H on [H : H N HY] by right multiplication is doubly transitive.

Let F denote the class of G-symmetric graphs I' such that k =v —1> 2, 'z is
connected and (G, 2)-arc transitive, and I'g 22 K, 1. Theorem 7.0.2(b) shows that
the construction of the graphs in F can be reduced to that of (G, 2)-arc transitive
near n-gonal graphs (3, &) of valency v > 3 such that € is a G-orbit on n-cycles of
3], for an even integer n > 4. In view of Theorem 7.5.1 above, in constructing the
graphs in F we can start, at least theoretically, from (G, 2)-arc transitive graphs
Y. To make this approach effective, we need to know when such a graph ¥ is a
near-polygonal graph (X, &) with £ as above. The purpose of this section is to give
the following necessary and sufficient conditions for a 2-arc transitive graph to be a

near-polygonal graph.

Theorem 7.5.2 Suppose that ¥ is a connected (G,2)-arc transitive graph with
girth(X) > 4, where G < Aut(X). Let (0,7,¢) be a 2-arc of ¥ and set H = Gyre.
Then the following conditions (a)-(c) are equivalent:

(a) there exist an integer n > 4 and a G-orbit £ on n-cycles of ¥ such that (%, )
1 a near n-gonal graph;

(b) H fizes at least one vertex in X(e) \ {7},

(c) there exists g € No(H) such that (o,7)9 = (1,¢€).

Proof (a) = (b) Suppose that (£,€) is a near n-gonal graph for a G-orbit €
on n-cycles of ¥, where n > 4. Let C(o,1,e) = (0,7,¢,7,...,0) be the basic cycle
containing the 2-arc (o, 7,¢). Then we have n € X(¢) \ {r}. We claim that 7 is
fixed by H. Suppose otherwise, say n? # n for some g € H, then (C(o,T,¢))? =
(o,7,e,m9,...,0)is a basic cycle containing (o, 7, £) which is different from C'(o, 7, €).
This contradicts with the uniqueness of the basic cycle containing a given 2-arc, and
hence (b) holds.

(b) = (c) Suppose H fixes n € X(¢) \ {7}. Then we have H < G,.,. Since X
is (G, 2)-arc transitive, there exists g € G such that (o, 7,¢)9 = (7,¢,n) and hence
Gren = HY. Therefore, HY = H and g € Ng(H).
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(c) = (a) Suppose that there exists g € Ng(H) such that (o,7)7 = (7,¢). Set
n:=¢9. Then n € ¥(e) \ {7}, (0,7,¢)? = (7,¢,7n) and hence G.., = HY = H. Set
09 = 0,01 = T,00 = € and o3 = 7, and set 04 = 0. Then o4 € X(03) \ {02} and
Goyosos = (Goyosos)? = H? = H. Now set o5 = of, then similarly o5 € X(04) \ {03}
and Goyoio5 = (Goyoso,)? = H9 = H. Continuing this process, we get inductively a
sequence gy, 01,09, 03,04, 05, . . . of vertices of ¥ with the following properties:

i

(1) 05 =07, for all i > 1, and hence 0,41 € X(0;) \ {0;_1} for i > 1 and o; = of

for ¢ > 0; and
(2) Goy 101000, = H for all i > 1.

Since we have finitely many vertices in X, this sequence will eventually contain re-
peated terms. Suppose o, is the first vertex in this sequence which coincides with
one of the preceding vertices. Without loss of generality we may suppose that o, co-
incides with oy for if o, = o, for some ¢ > 1 then we can begin with o; and relabel the
vertices in the sequence. Thus, we get an n-cycle J := (09, 01,02, 03,04, ...,0,_1,00)
(note that n > 4 as girth(X) > 4). Let £ denote the G-orbit on n-cycles of ¥ con-
taining J. In the following we will prove that each 2-arc of X is contained in exactly
one of the “basic cycles” in € and hence (3, £) is indeed a near n-gonal graph.

By the (G, 2)-arc transitivity of X, it is clear that each 2-arc (o/,7',¢’) of ¥ is
contained in at least one member J* of £, where z € G is such that (¢/,7,¢') =
(o, 7,€)*. So it suffices to show that if two members of £ have a 2-arc in common
then they are identical; or, equivalently, if J* and J have a 2-arc in common then
they are identical.

Suppose then that J* and J have a 2-arc in common for some = € G. Note that,
for each ¢ > 0, g* maps each vertex o to 0,4; and so (g) leaves J invariant (subscripts
modulo n here and in the rest of this proof). So, replacing J* by J 9" for some i if
necessary, we may suppose without loss of generality that (og, oy, 09) is a common
2-arc of J* and J. Then (0¢,01,02) € J* implies that (og, 01,09) = (0;-1, 04, 011)"
for some 1 < i < n. Thus, (09,01, 09) = (00, 01, 02)91719” and hence ¢'~'z € H. From

i—1

the properties (1)-(2) above, we then have of,; | = 0f * = o for each vertex o

on J. That is, 0] = 0j_;41 for each j and hence J* = J. Thus, we have proved
that each 2-arc of ¥ is contained in exactly one member of £, and so (X, £) is a near

n-gonal graph. a



Chapter 8

Flag graphs: A general
construction

He who learns but does not think is lost; he who thinks but does
not learn is in great danger.

Confucius (551-479 B.C.), LUN YU [THE ANALECTS| 2:15

In this chapter we temporarily leave the case where v = k + 1 > 3. Instead we
will give a natural construction of a large class of symmetric graphs, namely the class
of G-symmetric graphs I such that the dual 1-design of D(B) contains no repeated
blocks. We will prove that up to isomorphism this construction produces all such
graphs, and in particular that I' can be reconstructed from the quotient I's and
the action of G on B. The study in this chapter reveals a close connection between
symmetric graphs and 1-designs. In fact, the ingredients for our construction are a
G-point-transitive and G-block-transitive 1-design D, a G-orbit © on the flags of D
satisfying some natural conditions, and a certain self-paired G-orbit ¥ on the ordered
pairs of distinct flags of D. Given these, the constructed graph, called a flag graph, is
defined to have vertex set © and arc set W. The construction was initially introduced
in the course of our attempt to construct symmetric graphs with v = k+1 > 3.
However, for convenience of narration we will first present in this chapter the general
construction. The utility of this construction is not fully explored in this thesis: We
just apply it to characterizing two large classes of symmetric graphs, namely the
classes of symmetric graphs with £k =1 and v = k+ 1 > 3, respectively. It is hoped

that some interesting symmetric graphs can be constructed and characterized by
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using this rather general approach.

8.1 Preliminary

Let I" be a G-symmetric graph admitting a nontrivial G-invariant partition 5. We
use D*(B) := (I'p(B), B,I*) to denote the dual 1-design of D(B) = (B,I'5(B),1).
So the “points” of D*(B) are those blocks of B which are adjacent to B, and the
“blocks” of D*(B) are the points of B. Note that the trace of the “block” o € B
of D*(B) is the subset I'g(a) of I's(B), and that D*(B) has block size r, where
r = |I'g(a)| as in Section 3.2. By Lemma 3.2.5(b), G induces a point-, block-
and flag-transitive group of automorphisms of D*(B). As a vital observation, we
notice that D*(B) can be “expanded” to the following 1-design which has point set
B and admits G as a point- and block-transitive group of automorphisms. For each
aeV(T), set

L(a):={B(a)} UTz(a). (8.1)
We should warn that, for distinct vertices o, 3 of I', it may happen that L(«) = L(5).
(This might be true even for distinct vertices «, § in the same block of B.) Denote
by L the set of all L(a), o € V(I'), with repeated ones identified. Note that L(«) =
L(B) if and only if L(a9) = L((7) for any g € G. Therefore, (L(a))? := L(a?), for
a € V(') and g € G, defines an action of G on L. We define

DT, B) := (B,L)
to be the incidence structure where B is incident with £(«) if and only if B € L(«).

Lemma 8.1.1 Suppose that I" is a G-symmetric graph admitting a nontrivial G-
mwvariant partition B. Then

(a) D(T', B) is a 1-design with block size r + 1; and

(b) D(T', B) admits G as a group of automorphisms, and G is transitive on the
points and the blocks of D(T', B).

Proof It is clear that GG is transitive on B and on L, and that GG preserves the
incidence relation of D(I', B). So G induces a group of automorphisms of D(I", B),
and each B € B is incident with the same number of elements of L. Clearly, D(T", B)
has block size r + 1. O
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We notice that in a lot of cases (see Examples 8.1.1 and 8.1.2 below) the 1-
design D*(B) contains no repeated blocks, and the purpose of this chapter is to
give a construction of all G-symmetric graphs with this property. (Recall that two
“blocks” a, B of D*(B) are said to be repeated if I's(«r) = I'g(3).) The feasibility of
such a construction lies on the observation that in this case the flags (B(a), L(«))
of D(T', B), for a € V(I'), are pairwise distinct, or equivalently, for each B € B the
members of

L(B) :={L(a):a € B}

are pairwise distinct. Therefore, in this case V(I') can be identified with the set
O(T, B) := {(B(a), £(a)) : € V(I')}
of flags of D(T', B) by a — (B(«a), L(«)). We denote by
E(B) = {Ts(0) - o € B) (8.2)

the set of distinct traces of the “blocks” of D*(B). Denote by G'pry) and Gp r(a)
the setwise stabilizers of I'z(a) and L(«) in G g, respectively. Note that G preserves

L(B) and hence induces an action on L(B).

Lemma 8.1.2 Suppose that " is a G-symmetric graph admitting a nontrivial G-
invariant partition B. Then ©(T', B) is a G-orbit on the flags of D(I',B). The flags
(B(a), L()) for a € V(I') are pairwise distinct if and only if D*(B) contains no
repeated blocks, and in this case the following (a)-(d) hold (where B € B in (c) and
(@).

(a) The mapping p : a — (B(a), L(w)), for a € V(T'), defines a bijection from
V(T') to O(T, B).

(b) The actions of G on V(I') and on O(T',B) are permutationally equivalent
with respect to the bijection p in (a).

(¢) The action of Gg on B is permutationally equivalent to the actions of Gg
on E(B), L(B) with respect to the bijections defined by a — I'p(ar), a — L(«), for
a € B, respectively. Hence we have Gprygz) = GB (o) = Ga-

(d) GB,c(a) is transitive on I'p(a), for a € B.
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Proof Since G is transitive on V(I'), it is easy to see that ©(I", B) is a G-orbit
on the flags of D(I', B). Clearly, the flags (B(«a), L(«)), (B(B),L(3)) in O(T, B)
corresponding to two distinct vertices «, 3 are identical if and only if B(a) = B(f)
and L(o) = L(F), that is, if and only if «, are in the same block of B and
['s(a) = I'g(B). In other words, the flags (B(«a), L(«)) for a € V(I') are pairwise
distinct if and only if D*(B) contains no repeated blocks. In this case it is easily
checked that both (a) and (b) are true. The truth of (c¢) follows from a routine
argument. From Lemma 3.2.5(c) it follows that G, is transitive on I'g(«), that is,

G'B,z(a) 1s transitive on I'g(ar). Thus (d) is proved. O

Remark 8.1.1 Under the assumption that D*(B) contains no repeated blocks,
D(T', B) is an extension of D*(B) if and only if ' is a complete graph. (See Section
2.3 for the definition of an extension of a design.) In this case D(I', B) is a 2-design
with G acting doubly transitively on its points.

We conclude this section by giving examples of two large classes of symmetric

graphs such that D*(B) contains no repeated blocks.

Example 8.1.1 Suppose [' is a G-symmetric graph such that & = 1, that is,
I'[B, C] = K, for adjacent blocks B, C of B. Then clearly we have I's(a)NI's(3) = ()
for distinct vertices a, § in the same block of B. In particular, D*(B) contains no
repeated blocks. Note that in this case the block size r of D*(B) is equal to the

valency val(I') of I'. Moreover, we have val(I'g) = vr.

We remind the reader that symmetric graphs satisfying £ = 1 have appeared in
Sections 4.1, 4.2 and Theorem 5.1.3(a)(b).

Example 8.1.2 Suppose I' is a G-symmetric graph such that £ < v and Gp is
doubly transitive on B. Then D*(B) must contain no repeated blocks. In fact,
suppose otherwise, then since Gg is doubly transitive on the blocks of D*(B) we
would have I'g(a) = I'g(B) for all a, 5 € B. This implies k = v and thus contradicts

our assumption.
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8.2 Flag graphs

For simplicity we assume without mentioning explicitly that the 1-designs used for
our constructions in this chapter have no repeated blocks. Let D = (V,B) be a 1-
design. As usual we may identify each block L. € B with the subset of V' consisting of
the points incident with L. Let © be a set of flags of D, and ¥ a subset of the set ()
of ordered pairs of distinct flags in ©. If W is self-paired, that is, ((o, L), (1, N)) € ¥
implies ((7, V), (o, L)) € ¥, then we define the flag graph of D with respect to (0, V),
denoted by I'(D, ©, V), to be the graph with vertex set © in which two “vertices”
(0,L), (1, N) € © are adjacent if and only if ((o, L), (7, N)) € . The self-parity of
U guarantees that this graph is well-defined. For a given point ¢ of D, we denote by
©(0o) the set of flags in © with point entry o. Let G be a group of automorphisms
of D. If © is a G-orbit on the flags of D, then ©(c) is a G,-orbit on the flags of D
with point entry o. In this case, ['(D, ©, V) is G-vertex-transitive and its vertex set
© admits

B(©O):={0(c) :0 €V} (8.3)

as a natural G-invariant partition. If furthermore W is a G-orbit on ©® (under the
induced action), then I'(D, ©, ¥) is G-symmetric. For a flag (o, L) of D, we use G, f,
to denote the subgroup of G fixing (o, L), that is, the subgroup of G fixing o and
L setwise. For the purpose of this chapter, the G-orbit © will be required to satisfy

some additional properties.

Definition 8.2.1 Let D be a G-point-transitive and G-block-transitive 1-design
with block size at least 2. Let o be a point of D. A G-orbit © on the flags of D is
said to be feasible if

(a) [©(0)] = 2; and

(b) G, is transitive on L\ {o}, for some (and hence all) (o, L) € ©.
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F1GURE 5 A compatible ordered pair of flags

Since G is transitive on the points of D, the validity of (a), (b) above does not
depend on the choice of the point o. Let © be a feasible G-orbit on the flags of D.
We say that ((o, L), (7, N)) € ©®@ is compatible with © if ¢ # 7 and 0,7 € LN N
(see Figure 5). In the following we use C(D, ©) to denote the set of those members of
©® which are compatible with ©. One can easily see that C(D, ©) is a G-invariant
subset of ©® . In this chapter we will consider only those flag graphs I'(D, ©, ¥)
such that D and G are as in Definition 8.2.1, © is a feasible G-orbit on the flags of
D, and V is a self-paired G-orbit on C(D, O) (that is, ¥ is a self-paired G-orbit on
©®) whose members are all compatible with ©). For such a ¥, either L = N for all
((o,L),(1,N)) € W, or L # N for all ((o,L),(r,N)) € ¥. For convenience we will
call such a graph the G-flag graph of D with respect to (O, V). In the following we
show that these graphs can represent all G-symmetric graphs admitting a nontrivial

G-invariant partition B such that D*(B) contains no repeated blocks.

Theorem 8.2.1 Suppose that I" is a G-symmetric graph admitting a nontrivial G-
invariant partition B such that D*(B) contains no repeated blocks. Let 1 be the block
size of D*(B), that is, r = |I'g(a)|. Then I' = I'(D,0,¥) for a certain G-point-
transitive and G-block-transitive 1-design D with block size r + 1, a certain feasible
G-orbit © on the flags of D, and a certain self-paired G-orbit ¥ on C(D, ©).
Conwversely, for any G-point-transitive and G-block-transitive 1-design D with no

repeated blocks and with block size r + 1, any feasible G-orbit © on the flags of D,
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and any self-paired G-orbit ¥ on C(D,0), the graph T' := I'(D,0,V), group G,
partition B := B(©) and integer r satisfy all the conditions above.

Proof Suppose that I', G, B and r are as in the first part of the theorem. Then by
Lemma 8.1.1, D := D(I', B) is a G-point-transitive and G-block-transitive 1-design
with block size r + 1. From Lemma 8.1.2, © := O(I", B) is a G-orbit on the flags of
D, and the mapping p : v — (B(7), L(7)), for v € V(T'), is a bijection from V(I')
to ©. In particular, we have |©(B)| = |B| > 2. For (B, L) € ©(B), say L = L(«)
for some a € B, we have £\ {B} = I'g(a). So it follows from Lemma 8.1.2(d) that
Gp, is transitive on £\ {B}. Therefore, © is a feasible G-orbit on the flags of D.

Clearly, for each arc (a, 3) of T', we have B(a) # B(3) and B(«), B(8) € L(a)N
L(3). Therefore, setting

V= {((B(@), L(@)), (B(B), £(8))) : (a, B) € Are(I')},

then ¥ C C(D,©) and V¥ is self-paired. By Lemma 8.1.2(b), the actions of G on
V(') and © are permutationally equivalent with respect to the bijection p defined
above. Since I is G-symmetric, this implies that ¥ = ((B(«), L(«)), (B(3), L(3)))¢,
for a fixed arc (a, 3) of I'. Hence VU is a self-paired G-orbit on C(D,0). One can
easily check that the bijection p defines an isomorphism from I' to the G-flag graph
['(D, O, V), and hence the first part of Theorem 8.2.1 is proved.

Suppose conversely that D, G, 0, ¥ and r are as in the second part of Theorem
8.2.1. Let I':=T'(D, 0, V), and let B := B(O) be as defined in (8.3). Then it follows
from the definition that I' is a G-symmetric graph with vertex set ©, and that B
is a nontrivial G-invariant partition of © with block size |©(c)| > 2, where o is a
point of D. To complete the proof, we need to show that the block size of D*(O(0))
is equal to r and that D*(O(0)) contains no repeated blocks.

Let ©(0),0(7) be adjacent blocks of B. Then there exist (o,L) € O(c) and
(1, N) € O(7) such that (o, L), (1, N) are adjacent in T, that is, ((o, L), (1, N)) € .
So we have ¢ # 7 and 0,7 € LNN by the compatibility of the members of ¥. Since ©
is feasible, it follows from (b) in Definition 8.2.1 that, for any 77 € L\{c}, there exists
g € G, 1, such that 79 = 7y, Setting Ny := N9, then we have (1, N;) = (1, N)9 € O.
Since ¢ fixes o, it fixes O (o) setwise, and moreover o € N implies 0 € N;. Also, o #
7 implies that ¢ = 09 # 79 = 7. Thus we have ((o, L), (11, N1)) = ((0, L), (7, N))? €
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U, that is, (o, L) and (71, N7) are adjacent in T'. Hence O(7y) € I's((o, L)) provided
that 7 € L\ {o}. We now prove that the converse of this is true as well. In fact,
suppose that ©(d) € T'z((o, L)). Then there exists (§, M) € ©(4) such that (o, L)
and (6, M) are adjacent in I'. So ((o, L), (6, M)) € ¥ and hence there exists h € G
such that ((o, L), (1, N))* = ((0, L), (6, M)). Thus we have h € G, r, 7" = § and
N" = M. Since h fixes ¢ and fixes L setwise, and since 7 € L\ {0}, we have
§=71" e L\ {o}. So we have proved that ['5((c, L)) = {©(§) : § € L\ {o}}, and
thus D*(O(0)) has block size |L \ {o}| = r. Moreover, since D contains no repeated
blocks, we have L # L; for distinct (o, L), (0, L;) € O(o). This together with the
argument above implies that I'g((o, L)) # I's((0, L1)), and hence D*(©(0)) contains
no repeated blocks. O

The special case where in addition I'g is a complete graph (that is, I'g & K1)
is particularly interesting. Since I'g is G-symmetric, this case occurs if and only if G
is doubly transitive on B. So in this case D(I', B) = (B, L) is a G-doubly transitive
and G-block-transitive 2-(b+ 1,r + 1, \) design, for some integer A > 1. Conversely,
if D is a G-doubly transitive and G-block-transitive 2-(b + 1,7 + 1, A) design, then
for any G-flag graph I' := I'(D, ©, ¥) of D we have I'g) = Kp41. So Theorem 8.2.1

implies the following corollary.

Corollary 8.2.1 Let b > 2 and r > 1 be integers, and let G be a group. Then the
following (a), (b) are equivalent.

(a) T' is a G-symmetric graph admitting a nontrivial G-invariant partition B
such that D*(B) contains no repeated blocks and has block size r, and such that
I's = Kyp1.

(b) ' 2 (D, 0,V), for a G-doubly transitive and G-block-transitive 2-(b+ 1,7+
1, ) design D, a feasible G-orbit © on the flags of D, and a self-paired G-orbit ¥
on C(D, ©).

Let us consider the graphs I' in Example 8.1.2 with the additional property that
I's = Kpi 1. From the corollary above, they are all G-flag graphs of some G-doubly
transitive 2-designs. So all the graphs appearing in [45, Theorems 1.1 and 1.2] are in
fact G-flag graphs. Thus, from the general theory above, the close connection of such

graphs with certain doubly transitive 2-designs shown in [45] is not a coincidence.
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8.3 Symmetric graphs with £ =1

In this section we will study G-symmetric graphs [' admitting a nontrivial G-
invariant partition B such that k& = 1, that is, I'[B,C] & K, for adjacent blocks
B, C of B. This seemingly trivial case is notoriously difficult to manage, even in the
case where in addition I's is a complete graph (see [43, Section 4]). The behaviour
of such graphs seems to be quite wild, and to the best knowledge of the author there
is no useful description of them up to now. In Example 8.1.1 we have shown that in
this case D*(B) has block size val(I") and contains no repeated blocks. Hence, from
Theorem 8.2.1, I' is isomorphic to a G-flag graph of D := D(I", B). In the following
we will further characterize I' as a G-flag graph I'(D, ©, V) with © satisfying some
additional condition. Using the notation in Section 8.1, we see that in this case
D*(B) has “blocks” I'g(a) ={C € B:I'(C)N B(a) = {a}}, for a € B. Recall that
D*(B) has “block” set E(B) = {I's(«) : @ € B}.

Lemma 8.3.1 Suppose that " is a G-symmetric graph admitting a nontrivial G-
invariant partition B such that T'[B,C| = Ky for adjacent blocks B,C of B, and let
r be the valency of T'. Then the following (a)-(c) hold.

(a) E(B) is a Gp-invariant partition of T'g(B).

(b) If G is faithful on V(T), then the induced action of G on B is faithful.

(c) If L(a) = L(B) holds for some pair of distinct vertices o, 3 of I', then I' =
n- K, 1 for some integer n; and in this case L(7y) = L(J) holds for any vertices v, o

in the same component of T'.

Proof (a) Since there is only one edge of I" between two adjacent blocks of B,
it follows from the definition that E(B) is a partition of I'g(B). Suppose that
(Tg(@))?! NTa(B) # O for some o, € B and g € Gp, say C9 = D for some
C € T's(a) and D € T'p(3). Since « is the unique vertex in B adjacent to a vertex in
C and since 3 is the unique vertex in B adjacent to a vertex in D, CY = D implies
a? = [ and hence (I'g(a))? = I'g(B). Therefore, E(B) is a Gp-invariant partition
of I'z(B).

(b) Suppose that g € G fixes setwise each block of B. Then, for each B € B and
a € B, g fixes in particular each of the blocks in I'g(a). So it follows from (a) that
g fixes each vertex in B. Since this holds for each B € B, g fixes each vertex of I'.
So, if G is faithful on V(I"), then ¢ = 1 and hence G is faithful on B.
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(c) Suppose that L(«) = L() for two distinct vertices o € B and § € C. Then
B #C,C eTl'g(a) and B € I'z(f), and in particular B, C are adjacent. Moreover,
since there is only one edge between B and C, a, 3 must be adjacent in I'. So the
transitivity of G, on I'(«v) implies that, for each v € I'(«v), there exists g € G, such
that 49 = ~. Since L(a) = L(3) we then have L(«) = (L(@))? = (L(5))? = L(7). In
particular this implies that each block in L£(«) other than B(7) contains a (unique)
neighbour of 7, and so any two blocks in £(«) are adjacent. For distinct vertices
7,0 € T'(a), say 6 € D, let ¢’ be the neighbour of v in the block D. Then by
the G-symmetry of T' there exists h € G such that («,d)" = (v,¢’). This implies
(L(a)) = L(7) and (L(8))" = L(§). Since L(a) = L(5) as shown above, we have
L(8) = L(y) = L(a). Thus ¢’ is adjacent to a vertex in B. However, our assumption
on I'[B, D] implies that 0 is the unique vertex in D adjacent to a vertex in B. So we
must have ¢’ = ¢. Thus we have shown that any two vertices in I'(«) are adjacent.
Hence {a} UT'(a) induces the complete graph K, i, which must be a connected
component of I' since I' has valency r. Therefore, I' is a union of disjoint copies of
K, 1. Obviously in this case L£(7) = L£(J) holds for any vertices 7,9 in the same

component of I'. a

Part (¢) of Lemma 8.3.1 implies that, if £ = 1 and I' is not a union of complete
graphs, then the sets L(a) (for a € V(I')) of blocks of B are pairwise distinct and
thus D(T', B) = (B, {L(a) : & € V(T')}). On the other hand, we will see in Example
8.3.1 that the opposite case can occur, that is, it may happen that L(a) = L(5)
for some pair of distinct vertices «, 3 of I'. Inspired by part (a) of Lemma 8.3.1, we

give the following definition.

Definition 8.3.1 Let D and G be as in Definition 8.2.1. A G-orbit © on the flags
of D is said to be a 1-feasible G-orbit if it is feasible and L N N = {o} holds for
distinct (o, L), (o, N) € O(0), where o is a point of D.

Now we prove that, up to isomorphism, the class of G-symmetric graphs with
k =1 is precisely the class of G-flag graphs I'(D, ©, V) such that © is 1-feasible.

Theorem 8.3.1 Suppose that I" is a G-symmetric graph admitting a nontrivial G-
invariant partition B such that T'[B,C| = Ky for adjacent blocks B,C of B, and let
r be the valency of I'. Then I' = I'(D, 0, V) holds for a certain G-point-transitive
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and G-block-transitive 1-design D with block size r + 1, a certain 1-feasible G-orbit
© on the flags of D, and a certain self-paired G-orbit ¥ on C(D, O).

Conversely, for any G-point-transitive and G-block-transitive 1-design D with
block size r + 1, any 1-feasible G-orbit © on the flags of D, and any self-paired G-
orbit U on C(D, ©), the graph I' :=T'(D, 0, V), group G, partition B := B(©) and

integer r satisfy all the conditions above.

We will show further that, in both parts of this theorem, G is faithful on the
vertices of I' if and only if it is faithful on the points of D.

Proof For the first part, we have seen in Example 8.1.1 that D*(B) contains no
repeated blocks and that the block size of D*(B) is equal to r, the valency of I'. By
Lemma 8.1.1, D := D(I', B) is a G-point-transitive and G-block-transitive 1-design
with block size r+1. We have shown in the proof of Theorem 8.2.1 that © := (T, B)
is a feasible G-orbit on the flags of D, that ¥ := {((B(«), L(«)), (B(5),L(5))) :
(a, B) € Arc(I')} is a self-paired G-orbit on C(D,0), and that I' = I'(D,0, V).
From Lemma 8.3.1(a), we have £L NN = {B} for distinct (B, L), (B,N) € O(B).
Hence © is 1-feasible, and the first part of the theorem is proved. Moreover, by
Lemma 8.3.1(b), if G is faithful on V(T'), then it is also faithful on the point set B
of D.

Suppose conversely that D, G, ©, ¥ and r are as in the second part of the
theorem. We have proved in Theorem 8.2.1 that I' := I'(D, ©, ¥) is a G-symmetric
graph, that B := B(0©) is a nontrivial G-invariant partition of the vertex set © of T,
and that D*(©(c)) has block size r and contains no repeated blocks, where o is a
point of D. Let ©(c), ©(7) be adjacent blocks of 5. Then there exist (o, L) € O(0)
and (7, N) € ©(r) such that ((o,L),(r,N)) € V. So we have 0 # 7 and 0,7 €
LN N. Since O is 1-feasible this implies that, for any (o, L;) € ©(0) \ {(0, L)} and
(1, N1) € O(1)\{(7, N)}, we have 0 ¢ N; and 7 ¢ L;. Thus none of ((¢, L), (1, N1)),
((o,L1),(m,N)) and ((o, L1), (7, N1)) belongs to V. In other words, the edge of I’
joining (o, L) and (7, N) is the only edge between ©(c) and O(7). Hence we have
['©(0),0(7)] = K3, and consequently the valency of T is equal to the block size r
of D*(O(0)). If an element of G fixes each flag in ©, then it must fix each point of
D. So if GG is faithful on the points of D, then it must be faithful on ©, the vertex
set of I'. This completes the proof of Theorem 8.3.1, and that of the statement
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immediately following it. a

Analogous to Corollary 8.2.1, we have the following consequence of Theorem
8.3.1.

Corollary 8.3.1 Let v > 2 and r > 1 be integers, and let G be a group. Then the
following (a), (b) are equivalent.

(a) ' is a G-symmetric graph of valency r which admits a nontrivial G-invariant
partition B of block size v such that T[B,C] = Ky for any two blocks B,C of B (so
g2 Kygr).

(b) ' = I'(D,0,V), for a G-doubly transitive and G-block-transitive 2-(vr+1,r+
1, \) design D, a 1-feasible G-orbit © on the flags of D, and a self-paired G-orbit ¥
on C(D, ©).

We conclude this chapter by giving the following illustrative examples.

Example 8.3.1 (a) If D is a G-flag-transitive linear space, then of course the flag
set © of D is the only G-orbit on the flags of D. Clearly, O satisfies (a) in Definition
8.2.1 and the condition in Definition 8.3.1. So © is feasible if and only if it satisfies
(b) in Definition 8.2.1, and in this case © is 1-feasible. For such a O, one can see
that any self-paired G-orbit on C(D,©) has the form ¥ = {((o, Ly ), (7, Lor)) :
(o,7) € A}, for some self-paired G-orbit A on ordered pairs of distinct points of
D, where L,, denotes the unique line of D through ¢ and 7. For such a ¥, we set
I':=T(D,0,¥) and L := L,, for a fixed (0,7) € A. From (b) in Definition 8.2.1,
for any 6 € L\ {o} there exists g € G, 1, such that 79 = 6. So (0,6) = (0,7)? € A
and ((o,L),(8,L)) = ((o, L), (1, L)) € W. It follows that (o, L) is adjacent in I" to
any (6,L) € © with 6 € L\ {o}. Therefore, each connected component of I" is a
complete graph induced by a line L,,, for (o,7) € A. Such a graph I' satisfies the
condition in Lemma 8.3.1(c).

(b) In particular, if D is a G-doubly transitive linear space with vr + 1 points
and block size r 4+ 1, then D is G-flag-transitive and its flag set © is 1-feasible. In
this case the only self-paired G-orbit on C(D, ) is

U :={((o,L),(r,L)) : Lis aline of D, o, 7 are distinct points on L}.

Hence D has a unique G-flag graph I'(D, ©, ¥) of which each connected component
is a complete graph induced by a line of D.
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A 1-design D with block size 2 can be viewed as a regular graph X, and vice
versa, if we identify the blocks of D with the edges of ¥. The automorphism groups
of the design D and the graph ¥ are the same. Moreover, under this identification
each flag (o, L) of D, say L = {o,7}, can be identified with the arc (o,7) of X.

Hence D is G-flag-transitive if and only if ¥ is G-symmetric.

Example 8.3.2 A G-flag-transitive 1-design D with block size r + 1 := 2 such that
each point is incident with ¢ > 2 blocks can be identified with a G-symmetric graph
Y} of valency c. Since D is G-flag-transitive, the only G-orbit on the flags of D is the
set © of all flags of D, that is, the arc set Arc(X) of ¥. It is clear that © is 1-feasible,
and that the only self-paired G-orbit on C(D,0) is ¥ := {((o,7), (1,0)) : (0,7) €
Arc(X)}. So we get a unique G-flag graph Il := I'(D, ©, V), which has vertex set
Arc(X) and edges joining (o, 7) and (7,0), for all pairs o, 7 of adjacent vertices of
Y. Clearly, we have II = n - Ky and Ilge) = X, where n is the number of edges
of ¥. From Theorem 8.3.1, these graphs Il can represent all G-symmetric graphs I"
of valency r = 1 such that V(I') admits a nontrivial G-invariant partition B with
['[B,C] = K, for adjacent blocks B, C of B. Moreover, any G-symmetric graph 3

with valency at least 2 can appear as the quotient 'z of such a graph I'.

The graph I" in Corollary 8.3.1(a) with the additional property r = 1 is precisely
the unique G-flag graph (given in Example 8.3.1(b)) of a trivial G-doubly transitive
linear space D with v + 1 points. Corollary 8.3.1 and Examples 8.3.1(b), 8.3.2
together imply the characterization of such graphs given in [43, Theorem 4.2].
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Chapter 9

The case k=v—1 > 2:
Construction

If I have presented one corner of the square and they cannot come
back to me with the other three, I should not go over the points again.
Confucius (551-479 B.C.), LUN YU [THE ANALECTS| 7:8

In this chapter, we continue our study of G-symmetric graphs I' with v = k+1 >
3, without necessarily assuming the non-repetition of blocks of D(B). We will
first give a construction of such graphs and then prove that, up to isomorphism,
it produces all of them. In particular, if D(B) contains no repeated blocks, then
the construction gives rise to 3-arc graphs introduced in Section 5.2. Note that
v =k + 1 > 3 does not guarantee the non-repetition of the blocks of the dual 1-
design of D(B). Thus in this case we cannot apply the G-flag graph construction to
" directly. The approach we will use is to consider the graph I'' defined in Definition
4.1.1, which is G-symmetric and admits the same G-invariant partition B such that
I"[B,C] = K, for blocks B,C of B adjacent in I'; (= I'z). As in the previous
chapter, the construction here requires a G-point-transitive and G-block-transitive
1-design D with no repeated blocks, and the resultant graph is a certain flag graph of
D. The case where in addition ['s is a complete graph occurs if and only if the design
D involved is a G-doubly transitive 2-design. Since, as a result of the classification
of finite simple groups, all the finite doubly transitive groups are known (see Section
2.1), our construction makes it possible to classify all such graphs I'. As a moderate

goal, we will in the last two sections of this chapter classify all such graphs I' in the
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case where D is a classic projective or affine geometry.

9.1 Preliminary discussion

Let I be a G-symmetric graph admitting a nontrivial G-invariant partition B such
that v = k+ 1 > 3. As before, for each a € V(I'), we use B(«) to denote the set
of blocks of B which are adjacent to B(«) in I'z but contain no vertex adjacent to
a in I, that is, B(a) = I'g(B(«a)) \ I's(@). In Section 4.3 we have seen that, for
B € B, B(B) = {B(«a) : « € B} is a G-invariant partition of I'g(B). In Definition
4.1.1 we defined I'" to be the graph with the same vertices as I' in which two vertices
a, 3 are adjacent if and only if they are mates, that is, if and only if B(«) € B(f)
and B(f) € B(a) hold simultaneously. Recall that I” is G-symmetric (Theorem
4.1.1) and admits the same G-invariant partition B such that I"[B,C] = K, for
blocks B, C' of B adjacent in Iz (= I'z). In other words, I'" satisfies the condition
of Example 8.1.1, and hence the discussion in Section 8.3 applies to I''. Using the
notation in Section 8.1, we know that B(a) = I'z(«) and thus B(B) is equal to E(B)
defined in (8.2) for I". Set

L'(a) :={B(a)} U B(a).

Then £'(«) is equal to L(«) defined in (8.1) for IV. From Lemma 8.3.1(c), if there
exist two distinct vertices «, # such that £'(a) = £'(5), then I' is a union of disjoint
copies of K, 1, where m is the multiplicity of D(B). In the following we denote by
L’ the set of all the distinct £'(«), for a € V(). Then, as shown in Section 8.1,
G induces a natural action on L’ defined by (£'(«))? := L'(a?) for a € V(T") and
g € G. Clearly, we have

DI, B) = (B,L)

and
o(I",B) = {(B(a),L'(a)) : a € V(T')}.
Set
L'(B):={L'(a) : « € B}.

From Lemma 8.1.2(c) the action of G on B is permutationally equivalent to the
actions of Gp on B(B), L'(B) with respect to the bijections defined by «a — B(a),
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a— L'(a), for a € B, respectively. By Theorem 4.3.2(b), these actions are doubly
transitive. In the following we collect some simple results that we will use in the

next section.

Lemma 9.1.1 Suppose that " is a G-symmetric graph admitting a nontrivial G-
invariant partition B with block size v = k 4+ 1 > 3. Let m be the multiplicity of
D(B), and let B € B, a € B and C € B(«). Then the following (a)-(d) hold.

(a) DI, B) is a 1-design with block size m + 1 which admits G as a point- and
block-transitive group of automorphisms.

(b) (I, B) is a G-orbit on the set of flags of D(I", B), and the actions of G on
V(T) and O(I", B) are permutationally equivalent with respect to the bijection defined
by p:a— (B(a),L'(a)), for o € V(I'). Hence we have Gp gy = G o) = Ga-

(c) G,rr(a) i transitive on B(a), for o € B.

(d) Gpc is transitive on L'(B) \ {L'(a)}.

Proof Parts (a)-(c) follow directly from Lemmas 8.1.1, 8.1.2 and Example 8.1.1.
Since the actions of Gp on B(B) and L/(B) are permutationally equivalent with
respect to the bijection defined by B(7y) — L'(7), for v € B, part (d) is a restatement
of Theorem 4.3.2(b). O

9.2 Construction

We will use the notation and terminology of the previous chapter. Let D be a G-
point-transitive and G-block-transitive 1-design with no repeated blocks and with
block size at least 2. Let © be a 1-feasible G-orbit on the flags of D. We use
F(D,©) to denote the set of ordered pairs ((o, L), (7,N)) € ©® which are not
in C(D,©) but are such that there exist (o,L') € O(0) and (7, N') € O(7) with
((o, L), (1,N")) € C(D,©). In other words, ((c,L),(r,N)) € F(D,©) if and only if
o N, 7¢ Lbut 0 € N', 7 € L for some (o,L"), (17, N') € ©. In this case we have
L# L', N+# N, and the 1-feasibility of © implies that both (o, L) and (7, N') are
unique. Moreover, for any (o, L), (7, N;) € © with L; # L' and N; # N’, we have
((o, L), (1, N1)) € F(D,0). It is easy to see that F(D, ©) is a G-invariant subset of
©®). For a subset ¥ of F(D,0), we set

V= {((o, L), (r, N')) : (o, L), (r, N)) € U}
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Then ¥’ is a subset of C(D,©). Clearly, if ¥ is a G-orbit on F(D, 0), then V' is
a G-orbit on C(D,0); and if ¥ is self-paired, then U’ is self-paired as well. (The
converses of these assertions are not necessarily true.) To construct G-symmetric

graphs with v = k + 1 > 3, we should impose more conditions on ©.

Definition 9.2.1 Let D and G be as above. A G-orbit © on the flags of D is said
to be a strict 1-feasible G-orbit if it is 1-feasible and is such that |©(c)| > 3 and
that, for (o, L) € © and 7 € L\ {o}, G, is transitive on ©(c) \ {(o, L)}.

The first major result in this chapter is the following theorem.

Theorem 9.2.1 Suppose that I" is a G-symmetric graph admitting a nontrivial G-
wmwvariant partition B with block size v =k + 1 > 3, and let m be the multiplicity
of D(B). Then T' 2 T'(D,©,¥) holds for a certain G-point-transitive and G-block-
transitive 1-design with block size m+ 1, a certain strict 1-feasible G-orbit © on the
flags of D, and a certain self-paired G-orbit ¥ on F(D, ©).

Conversely, for any G-point-transitive and G-block-transitive 1-design D with no
repeated blocks and with block size m+ 1, any strict 1-feasible G-orbit © on the flags
of D, and any self-paired G-orbit ¥ on F(D,0©), the graph I' :== T'(D, 0, V), group
G, partition B := B(0©) and integer m satisfy all the conditions above.

Remark 9.2.1 In both parts of Theorem 9.2.1, GG is faithful on the vertices of I"
if and only if it is faithful on the points of D. Moreover, the graph I defined in
Definition 4.1.1 for I' is isomorphic to the G-flag graph I'(D, ©, ¥’).

Proof of Theorem 9.2.1 Suppose that [, G and B are as in the first part of the
theorem, and let I be the graph defined in Definition 4.1.1. By Lemma 9.1.1(a)(b),
D = D(I",B) is a G-point-transitive and G-block-transitive 1-design with block
size m + 1, and © := O(I", B) is a G-orbit on the flags of D. It follows from the
definition that ©(B) = {(B,£) : L € L/(B)} for B € B. So |O(B)| =v > 3 and
L NN = {B} holds for distinct flags (B, L), (B,N) in ©(B). For (B, L) € O(B),
say L = L'(«) for some a € B, we have L\ {B} = B(a) and ©(B) \ {(B,£)} =
{(B,N): N e L'(B)\{L}}. So Lemma 9.1.1(c)(d) and the argument above imply
that © is a strict 1-feasible G-orbit on the flags of D.
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For an arc («, ) of I, the blocks B := B(«a) and C := B(f3) are adjacent in
['s. So there exist o/ € B and 3’ € C such that o/, 5" are mates, that is, (/, ') €
Arc(I"). Thus we have B € L'(') and C' € L'(a/). It follows from the definition
that B ¢ L'(8) and C' ¢ L'(«), and therefore we have ((B,L'(«)), (C,L'(3))) €
F(D,0). Thus, setting ¥ := {((B(«), L (a)), (B(5),L(F))) : (o, B) € Arc(I')},
then ¥ C F(D,0) and V is clearly self-paired. By Lemma 9.1.1(b), the actions
of G on V(') and © are permutationally equivalent with respect to the bijection
p v (B(7),L(y)), for v € V(I'). Since I' is G-symmetric, this implies that
U is a (self-paired) G-orbit on F(D,©). It is easily checked that the bijection p
above defines an isomorphism from I' to I'(D,©, V), and hence the first part of
Theorem 9.2.1 is proved. In addition, from Theorem 4.3.1(c), if G is faithful on
the vertices of I', then it is also faithful on the points of D. Clearly, we have
U = {((B(a), L), (B(B),L(F))) : («,5) € Arc(I")}. From the comments
before Definition 9.2.1, ¥’ is a self-paired G-orbit on C(D, ©). Thus, from the proof
of Theorem 8.3.1, it follows that IV = I'(D, ©, V).

Suppose conversely that D, G, ©, ¥ and m are as in the second part of the theo-
rem. Let I':=T'(D,0,¥), and let B := B(0O) be as defined in (8.3). Then it follows
from the definition that I" is a G-symmetric graph with vertex set ©, and B is a
nontrivial G-invariant partition of © with block size v := |O(o)| > 3, where o is a
point of D. To complete the proof, we need to show that the block size k of the
1-design D(O(0)) induced on the block O(o) of B satisfies v = k + 1, and that the
multiplicity of D(©(0)) is equal to m.

Let ©(0),0(7) be adjacent blocks of B. Then there exist (o,L) € O(c) and
(1, N) € ©(r) such that (o, L), (7, N) are adjacent in I', that is, ((o, L), (1, N)) €
V. Since ¥ is a G-orbit on F(D,0), we have 0 ¢ N, 7 ¢ L but there exist
(o,L"),(1,N') € © such that 0 € N',7 € L'. Clearly, for any (o,L;) € O(0),
we have ((o, L), (r,N")) € F(D,©) and hence (7, N') is not adjacent in I' to any
vertex in O(c). Similarly, (o, L’) is not adjacent in I' to any vertex in ©(7). On
the other hand, since © is a strict 1-feasible G-orbit and since 7 € L'\ {0}, it
follows from Definition 9.2.1 that G,, is transitive on ©(o) \ {(o, L")}. Thus, for
any (o,L;) € O(o) \ {(o,L")}, there exists g € G,, such that (o,L)? = (o, Ly).
Since 0 ¢ N and g fixes o, we have ¢ ¢ NY9. But ¢ € N’, so we have (1, N;) :=
(r, N)9 € O(7) \ {(r, N')}, and (o, Ly), (1, N1) are adjacent in I". Thus each vertex
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in O(o) \ {(o, L")} is adjacent in I' to at least one veretx in ©(7) \ {(7, N')}, that
is, I'(©(7)) N O(c) = BO(c) \ {(0,L)}. Hence v = k + 1. From the comments before
Definition 9.2.1, we know that W' = ((o, L), (1, N'))¢ and that ¥’ is a self-paired
G-orbit on C(D,©). Moreover, the argument above shows that the G-flag graph
['(D, 0, V) is exactly the accompanying graph I'' of I" defined in Definition 4.1.1. It
follows from Theorem 8.3.1 that I'” has valency m. In other words, the multiplicity
of D(O(0)) is equal to m.

Finally, if an element of G fixes each flag in ©, then it must fix each point of D.
So if G is faithful on the points of D then it must be faithful on the vertices of T'.
This completes the proof of Theorem 9.2.1, as well as that of Remark 9.2.1. O

From the proof above, the graph I' = I'(D, ©, ¥) in Theorem 9.2.1 coexists with
the G-flag graph I" = I'(D, ©, ¥'). For brevity we will call such a graph I'(D, ©, ¥)
a coexisting G-flag graph. Now we illustrate our construction of such graphs by
examining an important special case. The following example shows that, in this
“simplest” case, the construction produces precisely the 3-arc graphs associated

with (G, 2)-arc transitive graphs.

Example 9.2.1 As mentioned before Example 8.3.2, a G-flag-transitive 1-design
D with block size 2 can be viewed as a G-symmetric graph ¥, and vice versa, if
we identify the blocks of D with the edges of . Under this identification each flag
of D can be identified with an arc of ¥, and hence the valency v of ¥ is equal to
the number of blocks of D incident with a given point. We assume v > 3 in the
following. Since D is G-flag-transitive, the only G-orbit on the flags of D is the set
© of all flags of D, that is, the arc set Arc(X) of 3. Clearly, O is 1-feasible and
|©(0)| = v > 3. The second condition in Definition 9.2.1 is equivalent to requiring
that 3 is (G,2)-arc transitive. Therefore, D has a strict 1-feasible G-orbit on its
flags if and only if ¥ is (G, 2)-arc transitive, and in this case the only such G-orbit
is ©. The G-invariant partition B(©) of © (defined in (8.3)) can be identified with
the G-invariant partition B(X) := {B(0) : 0 € V(X)} of Arc(X) defined in Section
5.2, where B(o) is the set of arcs of ¥ initiated at 0. Moreover, an ordered pair
((o,L),(1,N)) € 3 say L = {0,0'}, N = {7,7'}, lies in F(D,0) if and only
if (o/,0,7,7') is a 3-arc of X. So we may identify such a pair ((o, L), (7, N)) with
(¢’ ,o,7,7"), and thus identify F(D,0) with Arcz(X). Hence a self-paired G-orbit
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U on F(D, 0) can be identified with a self-paired G-orbit A on Arcs(X), and vice
versa. Therefore, the flag graph I'(D, ©, V) is isomorphic to the 3-arc graph Z(X, A)
of ¥ with respect to A.

Remark 9.2.2 Let I' be a G-symmetric graph I' admitting a nontrivial G-invariant
partition B with block size v = k41 > 3. Then D(B) contains no repeated blocks if
and only if the 1-design D := D(I”, B) has block size 2. In this case we may identify
D with the quotient graph I's by identifying each block {B, C'} of D with the edge
of I's joining B and C'. So Theorem 9.2.1 and the discussion in Example 9.2.1 imply

Theorem 5.2.3 as a consequence.

9.3 Coexisting G-flag graphs of doubly transitive
designs

In this section we examine the case where v = kK + 1 > 3 and in addition I'g is a
complete graph, that is, I's = K, 41 (note that val(T'z) = mv by Theorem 4.3.1(a)).
Similar to Corollaries 8.2.1 and 8.3.1, we have the following consequence of Theorem

9.2.1.

Corollary 9.3.1 Let v > 3 and m > 1 be integers. Then the following (a), (b) are
equivalent.

(a) I is a G-symmetric graph admitting a nontrivial G-invariant partition B of
block size v such that v =Fk+1 and I'g = K p11-

(b) I' 2 T'(D,0,¥), for a G-doubly transitive and G-block-transitive 2-(muv +
L,m + 1, ) design D, a strict 1-feasible G-orbit © on the flags of D, and a self-
paired G-orbit ¥ on F(D, ©).

Moreover, the integer m is equal to the multiplicity of the 1-design D(B), and G
is faithful on V(I") if and only if it is faithful on the points of D. Thus, by studying
G-doubly transitive, G-block-transitive 2-(mwv + 1,m + 1,\) designs D, it seems
feasible to classify all G-symmetric graphs I" in Corollary 9.3.1. If and only ift m =1
such a design D is a G-doubly transitive 2-(v + 1,2, 1) design, that is, a G-doubly
transitive trivial linear space. From Example 9.2.1, in this case the existence of

coexisting G-flag graphs of D requires that D is G-triply transitive, and such graphs
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are precisely the 3-arc graphs of the (G, 2)-arc transitive graph K,.; and thus are
those graphs classified in Theorem 6.6.1. In the following we suppose m > 2 and D
admits a strict 1-feasible G-orbit © on its flags. Let V denote the point set of D.
The double transitivity of G on V' implies that, for each pair o, 7 of distinct points
of D, there exists (o, L) € © such that 7 € L. Thus, since O is 1-feasible, V' \ {o}
admits a G,-invariant partition of block size m, namely P := {L\ {c} : (0, L) € ©}.
In particular, this implies that G is not 2-primitive and hence not 3-transitive on
V. Moreover, by the strict 1-feasibility of ©, for any P € P and 7 € P, G, p is
transitive on P and G, is transitive on P \ {P}. This latter assertion implies that
any G,,-orbit X on V \ P intersects with the same number of points in each of
the v — 1 blocks of P\ {P}, and hence v — 1 must be a divisor of | X|. (If we use
vg = mv + 1 and kg = m + 1 to denote the number of points and the block size of
D respectively, then this is equivalent to saying that (vo — kg)/(ko — 1) is a divisor
of |X|.) This necessary condition can be used to exclude some 2-transitive groups

G involved, as shown in the following example.

Example 9.3.1 (a) We show that the Higman-Sims group HS cannot serve as the
group G above. Suppose otherwise, then since HS is 2- but not 3-transitive with
degree 176, we have mv = 175 = 52x7 and m > 2 by the discussion above. Hence the
only possibilities for (m,v) are (5,35),(7,25),(25,7),(35,5). For distinct o,7 € V,
we have HS, = PSU(3,5) : z; > PSU(3,5) (split extension, see [24, pp.81]), and so
HS,, = Ag.z3 > (PSU(3,5)), (see [24, pp.34]). In the action of PSU(3,5) with
degree 175, (PSU(3,5)), has orbits of lengths 1,21,28,125, respectively. So the
HS,-orbits on V'\ {o, 7} have lengths at least 21. In view of the necessary condition
above, this happens only when (m,v) = (25,7) or (35,5). In these two cases there
must have an HS,,-orbit with length 21, and either there are two remaining HS, -
orbits with lengths 28,125 respectively, or there is only one remaining HS, -orbit

with length 28 + 125. Note that v — 1 is either 6 or 4, but 6 *28, 125,28 + 125 and

4 * 125,28 4 125. This contradicts our condition above, and hence the group HS can
be excluded.

(b) Similarly, we can show that the Conway group Cog cannot serve as the group
G above. Suppose otherwise, then since Cos is 2- but not 3-transitive with degree
276, we have mv = 275 = 5?x11 and m > 2. Hence (m,v) = (5,55), (11,25), (25,11),
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or (55,5). By [24, pp.134], (Cos), = McL : Zy > McL; and by [24, pp.100]
McL, = PSU(4, 3) has orbits of lengths 1,22,252 in its action of degree 275. Since
Cog is not 3-transitive on V, (Cos),, must have two orbits on V' \ {0, 7} and the
lengths of them must be 22,252, respectively. Using the necessary condition above,
we can see that all the possibilities for (m,v) cannot appear. Hence the group Cos

can be excluded as well.

As a result of the finite simple group classification, all doubly transitive linear
spaces are known [51, Theorem 1]. Because of this, it seems possible to classify the
flag graphs I'(D,©, V) appeared in Corollary 9.3.1 for G-doubly transitive linear
spaces D, and this will contribute to the classification of all the graphs I' therein.
As an effort towards this project, we will classify in the next two sections such
graphs I'(D, ©, ¥) for two typical G-doubly transitive linear spaces D, namely the
projective geometry PG(d — 1,¢) (d > 3) and affine geometry AG(d,q) (d > 2),
where G is a group with PSL(d, q) < G < PT'L(d, q) or AGL(d, q¢) < G < AT'L(d, q),

respectively.

Remark 9.3.1 (a) A G-doubly transitive linear space D must be G-flag-transitive,
and hence the only G-orbit on the flags of D is the flag set © of D. In this case ©
satisfies (b) in Definition 8.2.1 and the condition in Definition 8.3.1 automatically.
Hence © is strictly 1-feasible if and only if a point is incident with at least three
lines and, for two points o, 7, G, is transitive on the lines incident with ¢ but not 7.
Note that in this case we have F(D,0) = {((o, L), (1, N)) : (0, L),(1,N) € ©,0 &
N,7 & L}.

(b) Conversely, if the flag set of a G-flag-transitive 2-design D is 1-feasible, then

D is forced to be a linear space.

9.4 Projective flag graphs

Let d > 3 be an integer, and let ¢ = p® with p a prime and e > 1. The projective
geometry PG(d — 1, ¢) is the geometry obtained by taking n-flats of AG(d, q) as its
(n—1)-flats, for 1 < n < d. As usual in the literature we will use the same notation
to denote the (point, line)-incidence structure of PG(d — 1, ¢). Then, for any group
G with PSL(d, q) < G < PT'L(d, q), PG(d—1, q) is a G-doubly transitive linear space
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with mv+1 := (¢¢—1)/(g—1) points in which each line contains m+1 := ¢+1 points
(see e.g. [84, Theorem 2.5(ii)]). So we have v = (¢%~* — 1)/(¢ — 1) and m = q. The
purpose of this section is to classify the coexisting G-flag graphs of PG(d—1, ¢), and
to characterize them as the only such graphs arising from any G-doubly transitive
2-design.

Recall that we use V' (d, ¢) to denote the d-dimensional linear space of row vectors
over GF(q). Let V denote the point set of PG(d — 1,q). Then V = {[x] : x €
V(d,q) \ {0}}, where [x] denotes the point of PG(d — 1, q) representing non-zero
multiples of the vector x. For 1 <n < d—1, n+ 1 points of PG(d — 1, ¢) are said to
be independent [84, pp. 72] if they do not lie on any (n — 1)-flat of PG(d — 1,¢). In
particular, three points of PG(d—1, q) are non-collinear if they are independent, and
collinear otherwise. We will exploit the following basic result in projective geometry.
(See [84, Theorem 2.10(iii)] for a proof in the special case where G = PGL(d, q).

The result in general case can be derived from [25, 1.4.24].)

Lemma 9.4.1 Suppose PSL(d,q) < G < PI'L(d,q), where d > 3 and q is a prime
power. Then, for any integer n with 1 < n < d—1, G s transitive on the set of

ordered (n + 1)-tuples of independent points of PG(d — 1, q).

Let ©(P;d, q) denote the set of flags (that is, (point, line)-flags) of PG(d — 1, q).
In the following lemma we will show that ©(P;d,q) is strictly 1-feasible. Thus,
setting F(P;d, q) :== F(PG(d—1,q),0(P;d,q)), then from Remark 9.3.1(a) we have

F(P;d,q) ={((o,L), (T, N)) : (0, L), (T, N) € O(P;d, q),0 ¢ N,7 & L}.

Two distinct lines L, N of PG(d — 1, q) are said to be intersecting if there exists a
unique point incident with both L and N (that is, L, N lie on the same plane of
PG(d—1,q)), and skew otherwise. We use U (P;d, q) (respectively, U=(P;d, q)) to
denote the set of ordered pairs ((o, L), (1, N)) € F(P;d, q) such that L, N are inter-
secting (respectively, skew). Then W1 (P;d,q) and U=(P;d, q) consist of a partition
of F(P;d,q). Note that U=(P;d,q) # 0 if and only if d > 4 (see e.g. [84, pp.71]).
So we have F(P;3,q) = UT(P;3,q).

Lemma 9.4.2 Suppose PSL(d,q) < G < PT'L(d, q), where d > 3 and q is a prime
power. Then the following (a), (b) hold.
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(a) There exists a unique strict 1-feasible G-orbit on the flags of PG(d — 1,q),
namely O(P;d, q).

(b) If d = 3, then G is transitive on F(P;3,q); if d > 4, then G has two orbits
on F(P;d,q), namely Wt (P;d,q) and Y=(P;d,q).

Proof (a) Since PG(d — 1,q) is a G-doubly transitive linear space, it is G-flag-
transitive, and hence O(P;d, q) is the only candidate for a strict 1-feasible G-orbit on
the flags of PG(d—1, q). In PG(d—1, q) each point is incident with (¢®~*—1)/(¢g—1) >
3 lines ([84, Theorem 2.5(iii)]). For distinct points o, 7, let L be the unique line
incident with both ¢ and 7. Let Ny, N5 be two lines incident with o but not 7, and
let 9; € N;\{c},i=1,2. Then (0,7,6), (0,7, 09) are triples of non-collinear points.
So by Lemma 9.4.1 there exists g € G such that (o,7,01)? = (0, 7,02), and hence
g € Gyr. Since N; is the unique line incident with o and ¢;, this implies Ny = Ny,
and hence ©(P;d, q) is strictly 1-feasible by Remark 9.3.1(a).

(b) Let ((o1, L1), (11, N1)), (02, La), (T2, No)) € ¥ (P;d,q). Let ¢; be the com-
mon point of L; and N;, for i = 1,2. Then (0y,71,d1), (02,7,ds) are triples
of non-collinear points. By Lemma 9.4.1 we have (o1,71,01)? = (092,7,ds) for
some g € G. This implies ((o1, L1), (11, N1))? = ((02, La), (72, N2)), and hence G
is transitive on U*(P;d,q). Similarly, for ((oy, L1), (11, N1)), ((02, L), (12, N3)) €
U=(P;d,q), we can choose o, € L; \ {0;} and 77 € N; \ {r;}, for i = 1,2. So
(01,01,71,71), (0}, 09, ,74) are quadruples of independent points of PG(d — 1, q).
Again by Lemma 9.4.1 we have (01,01,71,7)? = (04,09, T, T5) for some g € G.
This implies ((o1, L1), (11, N1))? = ((09, L), (72, N3)), and hence G is transitive on
U=(P;d,q). Since G preserves relative positions between lines and since ¥ (P; d, q)
and U=(P;d, q) consist of a partition of F(P;d,q), the assertions in (b) follow im-
mediately. a

Clearly, both U*(P;d,q) and U=(P;d, q) are self-paired. Hence the flag graphs
of PG(d—1, q) with respect to (O(P;d,q), V" (P;d,q)), (O(P;d,q), V=(P;d,q)) are
well-defined. We denote these graphs by T'"(P;d, q), I'=(P;d, q), respectively. (In
defining I'(P; d, q) we require that d > 4.) From Lemma 9.4.2 they are the only
coexisting G-flag graphs of PG(d — 1, q). Moreover, we have the following charac-

terization of such graphs.
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Lemma 9.4.3 Suppose PSL(d,q) < G < PI'L(d, q), where d > 3 and q is a prime
power. Suppose further that D is a 2-design, other than the trivial linear space,
which admits G as a faithful, doubly transitive group of automorphisms. Then any
coezisting G-flag graph of D is isomorphic to T (P;d,q) or T=(P;d,q).

Proof The group G has only two faithful permutation representations, namely the
natural actions on the points and hyperplanes of PG(d — 1, ¢). Such representations
are interchangable by an outer automorphism of PT'L(d, ¢). So in the following it
suffices to consider the usual action of G on the point set V of PG(d — 1, q).

Since D is nontrivial, its block size is at least three. Suppose © is a strict 1-
feasible G-orbit on the flags of D, and let (¢, L) € ©. Then, as shown in Section

9.3, we have:
(1) {N\{o}:(0,N) € ©} is a G,-invariant partition of V' \ {o}.
We claim further that:
(2) For any 7,0 € L\ {0}, the points o, 7, must be collinear in PG(d — 1, q).

Suppose otherwise, and let € be a point in a block N of D with (o, N) € ©(0)
and N # L. Then in PG(d — 1,q) either o, 7,& are non-collinear, or o,d,¢ are
non-collinear, since otherwise o, 7, would be collinear, which contradicts our as-
sumption. Without loss of generality we may suppose that o, 7, ¢ are non-collinear in
PG(d—1,¢q). Then by Lemma 9.4.1 there exists g € G such that (o, 7,)? = (0,7, ¢).
So we have g € G,,. Since g fixes 7, by (1) it must fix L setwise. On the other hand,
since g maps ¢ to ¢, again from (1), ¢ must map L to N. This is a contradiction
and hence (2) is proved. From this it follows that, for each (o, L) € ©, the block L

of D consists of some collinear points of PG(d — 1,¢). Moreover, we have:

(3) For each (o, L) € O, the block L of D is a line of PG(d — 1, q).

Suppose otherwise, then from (1), (2) there exists (o, N;) € © such that the
points of L and NV lie on the same line, say L*, of PG(d —1, ¢). Since d > 3, we can
take (o, Na) € © such that the points in L and those in N, do not lie on the same
line of PG(d — 1,¢). Take a point 7 € L\ {o}. Since © is strictly 1-feasible, by the
second condition in Definition 9.2.1, there exists g € G, such that N{ = N,. Since
g fixes o and 7, it must fix the line L* of PG(d — 1, ¢q). Hence the points in N; are
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mapped by g to some points on L*. That is, the points in Ny must lie on L*. This
is a contradiction and hence (3) is proved.

The claims (1) and (3) together imply that ©(c) = O(P;d, q)(o) for each o € V.
So we have © = ©(P;d, q). In particular each line of PG(d — 1, ¢) is a block of D.
Thus it follows from the definition that F(D,©) = F(P;d, q). From Lemma 9.4.2(b),

the result in Lemma 9.4.3 follows. O

Applying Corollary 9.3.1 and Theorem 6.6.1, the discussion above leads to the

following classification theorem, which is the main result in this section.

Theorem 9.4.1 Suppose PSL(d, q) < G < PI'L(d, q), where d > 2 and q = p® with
p a prime and e > 1. Then, if and only if either d > 3 or d = 2 and G s 3-
transitive, there exists a G-symmetric graph I' with G faithful on V (I') which admits
a nontriwial G-invariant partition B such that v = k+ 1 > 3 and I'g = Kpi1,
where m is the multiplicity of D(B). Moreover, all the possibilities of such ', G and
the corresponding m,v can be classified as follows.

(a) ' = (¢+1) - K,, G=PGL(2,q9).(¢") or M(n,q) (for suitable p, e and n),
and (m,v) = (1,q).

(b) (I, G) = (CR(q; z,n), PGL(2, q).(¢'")) and (m,v) = (1, q), where x € GF(q) \
{0,1}, n is a divisor of n(x), and t is a divisor of e with ged(n(x),t) = n.

(c¢) (I,G) = (TCR(q; x,n), M(t/2,q)) and (m,v) = (1,q), where p is odd, e > 2
is even, © € GF(¢)\ {0, 1} with n(z) even and x —1 a square of GF(q), n is an even
divisor of n(x), and t is a divisor of e with ged(n(x),t) = n.

(d) T = I't(P;d,q) or I=(P;d,q), where d > 3, G is any doubly transitive
subgroup of PTL(d, q), and (m,v) = (¢, (¢*t —1)/(q —1)). (The graph I'=(P;d, q)
appears only when d > 4.)

We conclude this section by proving the following properties of the projective
flag graphs I'"(P; d, q) and T'=(P;d, q). As before, we denote by L,, the unique line
of PG(d — 1, q) through two distinct points o and 7.

Theorem 9.4.2 Let d > 3 and q a prime power, and let © := O(P;d, q). Then the
following (a)-(c) hold.
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(a) Both Tt (P;d,q) and T=(P;d, q) are connected graphs with diameter two and
girth three, and with valencies (¢t — ¢®) /(¢ —1) and (¢** — ¢*)(¢? — ¢*) /(¢ — 1)?,
respectively.

(b) For distinct blocks ©(c),O(T) of B(O), each vertex of ©(c) other than
(0, Lyr) is adjacent to exactly q vertices of O(7) in I'M(P;d,q), and adjacent to
ezactly (¢* ' — ¢?)/(q — 1) vertices of O(7) in I'=(P;d,q). In particular, for T :=
I't(P;3,q) we have T'[O(0),0(7)] = K, -

(¢) For PSL(d,q) < G < PT'L(d,q), any G-symmetric graph with vertex set ©
(under the induced action) is isomorphic to either T (P;d,q), or T=(P;d,q), or
(¢ —1)/(g—1)- K (ga-1_1))(q—1) with connected components the sets of flags incident
with a common point, or (¢*1 —1)(¢? — 1)/(q — 1)(¢*> — 1) - K41 with connected

components the sets of flags incident with a common line.

Proof Let (0,L), (7, N) € © be distinct flags of PG(d — 1, ¢). If L # N then, since
each line of PG(d — 1, ¢q) contains ¢ + 1 > 3 points, we can take 6 € L\ {o,7}, ¢ €
N\{o, 7} and n € Ls.\{d,e}. One can check that the sequence (o, L), (1, Ls.), (7, N)
is a path of I'"(P;d, q) with length two. In particular, if (o, L), (7, N) are adjacent
in T'"(P;d,q), then the sequence (o, L), (n, Ls.), (T, N), (0, L) is a triangle. Simi-
larly, if o # 7 but L = N, then we can take § € L\ {o,7} and a point € not
incident with L. Thus the sequence (o, L), (e, Ls.), (7, L) is a path of T't(P;d, q)
with length two. Hence I'V(P;d,q) is connected with diameter two and girth
three. The definition of I'*(P;d,q) requires that d > 4. So for any distinct
(o,L),(t,N) € ©, we can choose a line M which is skew with both L and N.
For any § € M, the sequence (o, L), (6, M), (r,N) is a path of I'*(P;d,q) with
length two. Moreover, if (o, L), (7, N) are adjacent in I'*(P;d, q), then the sequence
(o, L), (6, M),(1,N), (0,L) is a triangle. Hence I'*(P;d, q) is connected with diam-
eter two and girth three as well.

For any flag (o, L) and any point 7 not incident with L, there are exactly ¢ lines
which are incident with 7 and intersect with L at a point other than ¢, namely those
lines joining 7 and one of the points in L \ {o}. Hence there are exactly v — ¢ — 1
lines which are incident with 7 and skew with L (note that L., is not skew with
L), where v = (¢%~1 — 1)/(q — 1) as before. From these the assertions in (b) follow
immediately. Note that, for a point 7 incident with L, (o, L) is not adjacent to any

vertex of Q(7) in either I'"(P;d, q) or I'=(P;d,q). Since L contains ¢ + 1 points
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and PG(d — 1,q) has (¢¢ — 1)/(g — 1) points in total, from (b) the assertion in (a)
concerning the valencies of I'"(P;d, q) and I'*(P;d, q) follows.

Now let us prove (c). Suppose I' is a graph with vertex set © which is G-
symmetric under the induced action of G on ©. Let ((o, L), (7, N)) be an arc of
[ If o = 7, then L # N, and two flags (o1, L), (71, N1) are adjacent in I" if
and only if oy = 7, and L; # N;. Since PG(d — 1,q) has (¢ — 1)/(¢ — 1) points,
and since each point is incident with exactly (¢¢~! — 1)/(q — 1) lines, in this case
we have I' = (¢ — 1)/(q — 1) - K(ga-1_1)/(g—1)- Similarly, if L = N, then we have
I~ (¢t —1)(¢"—1)/(¢g — 1)(¢> — 1) - K;41. In the following we suppose that
o # 17 and L # N. Then the G-symmetry of I' implies that there exists g € G
which interchanges (o, L) and (7,N). So we have ¢ ¢ N for otherwise we would
have 0 € LN N and thus 7 = 09 € (LN N)? = LN N, which implies 0 =
7 and so contradicts with our assumption. Similarly, we have 7 ¢ L and hence
((o,L),(1,N)) € F(P;d,q). Thus, since I' is G-symmetric, its arc set Arc(I') is a
self-paired G-orbit on F(P;d,q). Therefore, from Lemma 9.4.2, T" is isomorphic to
either T'"(P;d, q) or T=(P;d, q). O

9.5 Affine flag graphs

For an integer d > 2 and a prime power ¢, we use the same notation AG(d, q) to
denote the (point, line)-incidence structure of the affine geometry AG(d, ¢). Thus,
for any group G with AGL(d, ¢) < G < ATL(d, q), AG(d, q) is a G-doubly transitive
linear space. The purpose of this section is to classify and characterize the coexisting
G-flag graphs of AG(d, q).

From Lemma 6.5.1 and Remark 9.3.1, it is easily verified that the flag set
©(A;d,q) of AG(d, q) is strictly 1-feasible. Thus, setting

F(A;d, q) == F(AG(d, q),0(A;d, q)),
we have
F(4;d,q) ={((o,L),(7,N)) : (0,L), (7, N) € O(A;d,q),0 ¢ N, ¢ L}.

We call two distinct lines of AG(d, q) intersecting if they share a unique common

point, parallel if they lie on the same plane but have no point in common, and skew
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in the remaining case. We use U1 (A;d,q) (V=(A4;d, q), ¥=(A;d, q), respectively) to
denote the set of ordered pairs ((o, L), (1, N)) in F(A;d, q) such that L, N are inter-
secting (parallel, skew, respectively). Then U (A;d, q), V=(A;d, q) and U=(A;d, q)
consist of a partition of F(A;d,q). (Note that ¥=(A;d,q) # 0 if and only if d > 3,
see [84, Theorem 1.15(i)].) Using Lemma 6.5.1 and by a similar argument as in the

proof of Lemma 9.4.2, one can prove the following lemma.

Lemma 9.5.1 Suppose AGL(d, q) < G < ATL(d, q), where d > 2 and q is a prime
power. Then the following (a), (b) hold.

(a) There exists a unique strict 1-feasible G-orbit on the flags of AG(d, q), namely
O(A4;d,q).

(b) If d = 2, then G has two orbits on F(A;d,q), namely ¥(A;2,q) and
U=(A;2,q); if d > 3, then G has three orbits on F(A;d,q), namely VT (A;d,q),
U=(A;d,q) and V=(A;d,q).

Clearly, U (A;d, q), V=(A;d, q) and U=(A;d, q) are all self-paired. Thus the flag
graphs of AG(d, q) with respect to (O(A;d,q), V), for U = VT (A;d, q), V=(A;d, q)
and U=(A;d, q), are well-defined. We use 'V (A;n,q), I=(A4;n,q) and T=(A;n,q)
respectively to denote these graphs. (In defining I'=(A;d, ¢) we require that d > 3.)
From Lemma 9.5.1, these are the only coexisting G-flag graphs of AG(d,q), for
G as above. Moreover, the following lemma shows that they are in fact the only
coexisting G-flag graphs of any G-doubly transitive 2-design. The proof of this result
is similar to that of Lemma 9.4.3 and hence is omitted. (In the proof we make use of
the following fact: The only faithful permutation representation of G is its natural

action on V'(d, q).)

Lemma 9.5.2 Suppose AGL(d,q) < G < ATL(d, q), where d > 2 and q is a prime
power. Suppose further that D is a 2-design which admits G as a faithful, dou-
bly transitive group of automorphisms. Then any coexisting G-flag graph of D is
isomorphic to T (A;d, q), T=(A;d, q), or T=(A;d, q).

Remark 9.5.1 The affine geometry AG(d,q) has mv + 1 := ¢? points, and each
line of it contains m+ 1 := ¢ points. So we have v = (¢*—1)/(¢—1) and m = ¢ — 1.
Thus, AG(d, q) is the trivial linear space if and only if ¢ = 2, which in turn is
true if and only if AGL(d, q) is 3-transitive on V' (d, ¢). Hence, from Example 9.2.1,
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I'"(A;d,2), T=(A;d,2) and T'=(A;d,2) are all 3-arc graphs of the complete graph X
with vertex set V(d,2). The vertices of these three graphs are ordered pairs uw of
distinct vectors of V'(d, 2). Since each plane of AG(d, 2) contains exactly four points
([84, Theorem 1.17]), one can see that uw, yz are adjacent in I'* (A; d, 2) if and only
if w=12z. So I'"(4;d,2) is isomorphic to 2¢ - K,«_; and is the 3-arc graph of ¥ with
respect to the set of all 3-cycles of ¥. Similarly, uw, yz are adjacent in I'=(A;d, 2)
if and only if u,w,y,z are distinct and u — w =y — z, and they are adjacent in
['=(A;d,?2) if and only if u,w,y,z do not lie on the same plane of AG(d,2). Thus
I'=(A;d,2) and I'=(A;d, 2) are, respectively, the 3-arc graphs Z(d, 2) and Z5(d, 2)
defined in Example 6.5.1.

From Corollary 9.3.1 and the discussion above, we come to the following main

result of this section.

Theorem 9.5.1 Suppose AGL(d,q) < G < ATL(d,q), where d > 2 and q is a
prime power. Then there exists a G-symmetric graph T' with G faithful on V(I)
which admits a nontrivial G-invariant partition B such that v = k+1 > 3 and
s 2 Kpr1. Moreover, each such graph T is isomorphic to TT(A;d, q), T=(A;d, q),
or '=(A;d,q) (the third graph appears only when d > 3). In each case we have
v=_(¢*—1)/(qg—1) and the multiplicity m of D(B) for B € B is equal to q — 1.

By a similar argument as in the proof of Theorem 9.4.2, one can prove the

following properties of the affine flag graphs above.

Theorem 9.5.2 Let d > 2 and q > 2 be a prime power, and set © = O(A;d,q).
Then the following (a)-(d) hold.

(a) Both T (A;d,q) and T=(A;d, q) are connected graphs with diameter two and
girth three, and with valencies (q—1)(q¢?—q) and (¢*—q*)(¢®—q)/(q—1), respectively.

(b) T=(A;d,q) has valency q¢® — q and contains (¢ — 1)/(q — 1) connected com-
ponents, each of which is a complete ¢ '-partite graph with q vertices in each part.
Moreover, I'=(A; d, q) is an almost cover of K.

(c) For distinct blocks ©(0),0O(7) of B(O©), each vertex (o, L) of ©(c) other than
(0, Lyr) is adjacent to exactly ¢ — 1 vertices of O(t) in I'V(A;d,q), and adjacent
to exactly (¢ — q*)/(q — 1) vertices of O(7) in I=(A;d,q). In particular, for T' :=
I't(4;2,q), T'0(c),O(7)] is isomorphic to K, , minus a perfect matching.
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(d) For AGL(d,q) < G < AT'L(d, q), any G-symmetric graph with vertez set ©
(under the induced action) is isomorphic to Ut (A; d, q), orT=(A;d, q), orT=(A;d, q),
or ¢ - K (ga_1))(q—1) with connected components the sets of flags incident with a com-
mon point, or ¢* (¢ —1)/(q — 1) - K, with connected components the sets of flags

ncident with a common line.



Chapter 10

Local actions

To say that you know when you do know and say that you do not
know when you do not know — that is the way to acquire knowledge.

Confucius (551-479 B.C.), LUN YU [THE ANALECTS] 2:17

10.1 Introduction

In Section 3.2 we defined G5y and G to be the kernels of the actions of Gp on B
and ['g(B), respectively. In this chapter, we will study actions induced by these two
kernels. In particular, we will investigate the action of G|z on B and the actions
of G(p) on I'p(B), I'(a) and I'p(cr) (where o € B), and the influence of these “local
actions” on the structure of I'. It is expected that the investigation in this chapter
would provide a basis for future study of imprimitive symmetric graphs. For our
purpose it seems natural to distinguish whether one of G gy, Gp) is a subgroup of
the other. With respect to this, we have the following (not necessarily exclusive)
possibilities: (1) G < G(py; (ii) Gig) £ Gp): (iil) Gy < Gipy; (iv) Gsy £ Gay;
(v) Gig) £ Gy and Gy £ G|p). Setting M = G(5)G|p], then M <IGp and we have
Figure 6 in the lattice of subgroups of Gp.

We will put our discussion in a general setting and consider the following sub-
groups of Gp. Let d := diam(I'g), which can be finite (if I's is connected) or oo
(otherwise). For each integer i with 0 < ¢ < d+1, let I'5(i, B) denote the set of blocks
of B with distance in I'z no more than i from B. Then I's(i, B) is G g-invariant and

hence Gp induces a natural action on I'z(i, B). We will use Gi,p) to denote the
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kernel of this action, so in particular we have G = G|o,g] and G| = G|1,p). Figure
7 illustrates the relationships among these groups G|; p) in the lattice of subgroups

of G when d is finite.

Gp
M = G)Gp
Gy G
]

G(B) ﬂG[B

FIGURE 6 G(p) and G|
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— .
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FIGURE 7 Relationships among G; p)’s
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The main results of this chapter are as follows. In Section 10.2, we will show
(Theorem 10.2.1) that each G|; g induces a G-invariant partition B; of V(I') such
that the sequence B = By, By, Bs, ..., B;, ... is a tower possessing some nice “level
structure” properties, where as in [66] a sequence of G-invariant partitions is said to
be a tower if each partition is a refinement of the previous partition. We will show
(Theorem 10.2.2) further that, if G|; ) < G(py for some ¢ > 1 then G is faithful on
B; whilst if G|; g £ G(p) for some i > 1 then either B; is a genuine refinement of B
or I' is a multicover of I's. In Section 10.3 we will study a special case where, for
any C, D € T'g(B), either T(C)NB =T(D)N B, or T(C)NT(D)N B = (). Based
on the discussions in these two sections, we then study in Section 10.4 the case
where I' is G-locally quasiprimitive. In this case we will show (Corollary 10.4.1)
amongst other things that, if B is a minimal G-invariant partition, then either
k =1, or Gigp = G(p), or I' is a multicover of I'z. Recall that, for o € V(I'), we
use Gy to denote the subgroup of G, fixing setwise each block C' € I'g(a). So Gy
induces a natural action on I'(o) N C. In Section 10.4 we will also study G-locally
quasiprimitive graphs I' such that G|y is transitive on I'(ar) N C', and prove that in
this case either T' is a bipartite graph or T'[B, C|] is a matching.

As in most part of this thesis, we will identify in this chapter the blocks of D(B)
with the subsets I'(C) N B of B (with multiplicity m), for C' € I's(B). We conclude

this introductory section by making the following observations.

Lemma 10.1.1 Suppose I is a G-symmetric graph admitting a nontrivial G-invari-
ant partition B. Let B € B and a € B, and set d := diam(I's). Then the following
(a)-(f) hold.
a) Gpy < Gp.
b) G 1 G,.
c) Glo 4 G,.
d) Gpi,py < G for each integer i with 0 < i < d+ 1. In particular, we have
Gip 2 Gp.

(e) G,y < Gli—1,p) for each integer i with 1 < i < d+ 1.

e)
(f) If i is at least the diameter of the connected components of I's, then G; g is

(
(
(
(

equal to the kernel of the induced action of G on the component of 'y containing

B. In particular, if I's is connected, then Gqp) is equal to the kernel of the action

of G on B.
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Proof Since G(p) is the kernel of the action of Gp on B, we have G p) JGp. Since
G'p is transitive on B whilst G'(p) is not, we have G(p) # G5 and (a) is proved. From
this and G(p) < G, < G, we get (b) immediately. Similarly, (c) follows from the
fact that Gy is the kernel of the action of Gy on I'z(«r). Since G|; g is the kernel
of the action of G on I's(i, B), we have G|; py I Gp for each i with 0 <i < d + 1.
In particular, we have Gp = G}1,5) < Gp and thus (d) is proved. For 1 <i <d+1,
since G5 < G—1,8) < G and since G|, gy I G by (d), we get (e) immediately.
The G-symmetry of I'g implies that its connected components are isomorphic and
hence have the same diameter. If 7 is no less than this diameter, then I'z(i, B) is
equal to the set of blocks in the component of I'z containing B and G induces an

action on I's(i, B). Hence the validity of the statements in (f) follows. 0

10.2 G-invariant partitions induced by Gj; g

We first prove the following general result, which shows that each normal subgroup

of Gp induces a refinement of the given G-invariant partition B.

Lemma 10.2.1 Suppose I is a G-symmetric graph admitting a nontrivial G-invari-
ant partition B, and let B € B. Then each normal subgroup N of Gg induces a G-
invariant partition By of V(I'). Moreover, By is a refinement of B and the following
(a)-(c) hold.

(a) By is the trivial partition {{a} : a € V(I')} if and only if N < G(p).

(b) By coincides with B if and only if N is transitive on B.

(¢) If N is a normal subgroup of G, then By coincides with the G-normal parti-
tion By of V(') induced by N (defined after Lemma 2.2.2).

Proof Since N <Gp and Gp is transitive on B, Lemma 2.2.2 implies that B* := o
(for some v € B) is a block of imprimitivity for Gg in B. Since B is a G-invariant
partition of V(I'), this implies that B* is a block of imprimitivity for G in V(I').

Hence B* induces a G-invariant partition of V(I'), namely,
By :={(B*)?:g € G}. (10.1)

The validity of (a)-(c) follows from the definition of B} immediately. O
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Remark 10.2.1 For distinct blocks B, C' € B, there exists g € GG such that BY = C.
So (Gp)? = G¢ by Lemma 2.1.1(a), and hence N < Gp if and only if N9 < Ge. It
is easy to see that By, = Bx. So, in studying the G-invariant partition By, we can

start from any chosen block B € B.

In Lemma 10.1.1(d) we have seen that G; g is a normal subgroup of Gp, for
each integer ¢ with 0 < i < diam(I's) + 1. So it follows from Lemma 10.2.1 that

Gi,p) induces a G-invariant partition
B;:={B!:g€G} (10.2)

of V(T') which is a refinement of B, where B; := a%i# (for some a € B) is a
typical block of B;. Let v;,r;, b;, k;, s; denote the parameters with respect to B;,
as defined in Section 3.2. Since By is precisely the original partition B, we have
(vo, 70, bo, ko, So) = (v, 7, b, k,s). The following theorem gives some “level structure”

properties concerning these partitions.

Theorem 10.2.1 Suppose T is a G-symmetric graph admitting a nontrivial G-
invariant partition B. Let B € B and set d := diam(I'g). Then for each integer
i with 0 < i < d+ 1, G ) induces a G-invariant partition B;, defined in (10.2),
which is a refinement of B. Moreover, for 1 <i <d+ 1, B; is a refinement of B;_1
and the following (a)-(d) hold.

(a) v; is a common divisor of v;_1 and k;_1, $; is a divisor of s;_1, and r;_1 is a
divisor of r; (with s;_1/s; = 1i/1i_1).

(b) Each block of the 1-design D(B;_1) (for Bi_1 € Bi_1) is a disjoint union
i—1» GliBl
leaves T'(Cij—1) N B;_y invariant and the (G p))-orbits on I'(Ci—1) N B,y form a
(GB,_,.c;_,)-invariant partition of I'(C;—1) N B;_;.

(¢) I'p,_,(a) =T'g,_,(B) for any vertices v, 3 in the same block of B;.

(d) For each integer j with 0 < j < i, the set B; admits a G-invariant partition
By; such that T's, = (I's,)B

to Bij satisfy Vij = Uj/viakij = kfj/’l}i,bij = bj,rij = ’I"j, Sij = bi/rj.

of some blocks of B;. More precisely, for adjacent blocks B;_1,C;_1 of I'g

and that the parameters v;;, r;j, bi;, Kij, ;5 with respect

ij

Proof Let a € B and B; := a%#5), and let B; be as defined in (10.2) for each
i. Then, since G|; py < Gp by Lemma 10.1.1(d), Lemma 10.2.1 implies that B; is
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a G-invariant partition of V(I') and is a refinement of B. For 1 < i < d + 1,
since Gj;,5) 9 Gji—1,5 (Lemma 10.1.1(e)), it follows that B; is a refinement of B;_;.
Consequently, v; is a divisor of v;_;.

Now suppose C;_; is a block of B;_; adjacent to B;_; in I's, ,, and let C' be
the block of B containing C; ;. Then there exist § € I'(C;_1) N B;_; and v €
['(B;_1) N C;_1 such that (,~ are adjacent in I". By the definition of B;_;, we have
Bi_1 = pY%-18 and C;_; = 4“i-1.9 and by Lemma 3.2.3(c) we have I'(C;_;) N
B;_; = (%Fi-1.Ci1 and N(Bi1)NCiqy = ~CBi-1:Cio1 . Note that B, C are adjacent
blocks of B. So we have I'g(i — 1,C) C I's(4, B) and hence G}; ) < Gji—1,¢). This
implies that G|; p) fixes C;_; setwise. Since G; g < Gi—1,p], Gpi,p also fixes B;_;
setwise. Thus, we have GJ; gy < Gp,_,c,_,.- This implies G|; gy I Gp,_, ¢,_, since
GB, 1,0, < Gpand Gj; 5 IGp (Lemma 10.1.1(d)). So G; g leaves I'(Ci—1) N B4
invariant and, again by Lemma 2.2.2, the (G; g))-orbits on I'(C;_1) N B;_; constitute
a (Gp,_,.c;_, )-invariant partition of I'(C;_;) N B;—;. Thus, each block I'(C;_1) N B;_4
of the 1-design D(B;_1) is a disjoint union of some blocks of B;. This implies in
particular that v; is a divisor of k;_1, and so v; is a common divisor of v;_; and k;_;.
One can see that each block C;_; of I's,_, () contains the same number of blocks
of I'p, (). Hence r;_; is a divisor of r;. Since 7;_15,-1 = 1;8; = val('), this implies
that s; is a divisor of s;_;.

If §,e are in the same block of B;, without loss of generality we may suppose
that §,¢ € B;. Then since B; is a (G; p))-orbit there exists € GJ; g such that
6% = ¢, and hence (I'z,_,(6))* = I'z,_, (¢). On the other hand, the elements of G; g
fix setwise each block C;_; in I's,_, (B;—1) since G|; gy I Gp,_,c,_,, as shown above.
In particular, x fixes setwise each block in I'g,_,(d) since I'z,_,(§) C T's,_, (Bi_1).
Thus, we have I'g,_,(§) = (I'p,_,(0))* = 'p,_, (¢).

Let 7 be an integer with 0 < 5 < 7. Since for each ¢ with j + 1 < ¢ < i the
partition By is a refinement of the partition B, 1, as shown above, we know that B;
is a refinement of B; and hence each block C; of B; is a union of some blocks of B;.
Denote C;; = {B} : Bf C (}, z € G}, the set of blocks of B; contained in C;. Then
B, :={C;; : C; € B;} is a partition of B;. We claim further that B;; is a G-invariant
partition of B; under the induced action of G on B;. In fact, if (ij NC;; # 0 for
some g € G, say (Bf)? = B for some BY, B! € C;;, then Bf, B/ C C; and hence
(Bf)? = BY C Cj. Since Cj is a block of imprimitivity for G in V(T'), this implies
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that g fixes C; setwise. Therefore, we have C; = {(B})? : Bf C Cj,z € G} = Cy;
and hence B;; is G-invariant indeed. Clearly, the mapping ¢ : C; — C;; is a
bijection from B; to B;;. By the definition of a quotient graph, one can see that
I'p, = (I'p,)B,, With respect to 1. Clearly, we have v;; = v;/v;, kij = k;/vi, bi; = b;
and r;;s;; = val(I'g,) = b;. From v;;r;; = b;k;;, we get (v;/v;)r;; = b;j(k;j/v;), which
in turn implies r;; = r; since vjr; = b;k;. Finally, we have s;; = b;/r;; = b;/r; and

the proof is complete. a

Remark 10.2.2 If G|; 5 < G for B € B, then from Lemma 10.2.1(c), B; is the
G-normal partition of V/(I') induced by GJ; ). In this case I' is a multicover of I's,
(see [66, Section 1] or [71, Theorem 4.1]). This happens in particular for 'z, when
I's is a complete graph since in this case we have d = 1 and G|p is the kernel of the

action of GG on B.

Theorem 10.2.2 Suppose the triple (I', G, B) is as in Theorem 10.2.1. Let B € B
and let an integer i satisfy 1 < i < d + 1, where d := diam(I'g). The one of the
following (a), (b) holds.

(a) Gup < Gpy, in this case G is faithful on B if in addition G is faithful on
V(D).

(b) Gpi.p £ G(), and either

(i) Gp,p induces the G-invariant partition B; of V(T'), defined in (10.2),
which is a genuine refinement of B such that v; is a common divisor of v

and k, s; is a divisor of s, and r is a divisor of r;; or

ii) T' is a multicover of I'g and Gy; gy is transitive on B.
[i,B]

Proof Suppose that G|; 5y < G(p). Then, since G is transitive on B and since
Gpi,ps) = (Gpi,p))? and G ey = (G(p))? for any g € G, we have G|, o] < G ¢ for all
blocks C' € B. Thus, if g is in the kernel of the action of G on B, then g € G; ¢ in
particular and hence g € G(¢). In other words, g fixes each vertex in C'. Since this
holds for all C, it follows that g fixes each vertex of I'. So, if G is faithful on V(T'),
then g = 1 and hence G is faithful on B as well.
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Now suppose that Gj; 5 £ G(p). Then, by Lemma 10.2.1(a), the partition B; of
V(I') induced by G; g is a nontrivial G-invariant partition of V(I'). So we know
from Lemma 10.2.1(b) and Theorem 10.2.1 that, either B; is a genuine refinement of
B, or G|; g is transitive on B. In the former case, it follows from Theorem 10.2.1(a)
that v; is a common divisor of v and k, s; is a divisor of s and r is a divisor of r;,
and hence (i) in (b) occurs. Since GY; g fixes setwise the block B and each block
C € I'y(B), it also fixes setwise I'(C') N B. So in the latter case where G; g is
transitive on B, we must have I'(C') N B = B, that is, I is a multicover of I'z and

hence (ii) in (b) occurs. O

Note that, if case (i) in Theorem 10.2.2(b) occurs, then at least one of the B;;
given in Theorem 10.2.1(d), say B,o, is a nontrivial partition of B;. If case (ii) in
Theorem 10.2.2(b) occurs, then from Lemma 10.2.1(b), the partition B; induced by
Gi,p) coincides with B. Applying Theorem 10.2.2 to Gp), we have the following

consequence.

Corollary 10.2.1 Suppose the triple (I',G,B) is as in Theorem 10.2.1. Then one
of the following (a), (b) holds.

(a) Gig) < Gy, in this case G is faithful on B if in addition G is faithful on
V(D).

(b) Gip) £ G(), and either

(i) Gip) induces a G-invariant partition of V(I'), namely By defined in (10.2) for
t =1, which is a genuine refinement of B such that vy is a common divisor of v and
k, s1 is a divisor of s, and r is a divisor of ri; or

(ii) T’ s a multicover of I'g and Gp) is transitive on B.

If the vertices in B are “distinguishable” in some sense, for example if T'g(a) #
['s(5) for distinct a, B € B, then case (a) in Corollary 10.2.1 occurs. (This happens
for G-symmetric graphs with £k = v —1 > 1. See Theorems 4.2.1 and 4.3.1(c).)
If B is chosen to be a minimal nontrivial G-invariant partition of V(I'), then case
(b)(i) in Corollary 10.2.1 does not appear. We conclude this section by giving the
following example which shows that case (b)(ii) in Corollary 10.2.1 occurs if G is

not quasiprimitive on V(I') and if B is a nontrivial G-normal partition of V().
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Example 10.2.1 Suppose I' is a G-symmetric graph, with G faithful but not
quasiprimitive on V(I'). Then there exists a nontrivial normal subgroup N of G
which is intransitive on V(I'), so the G-normal partition By of V(I') induced by N
(see Lemma 2.2.2) is nontrivial. Let I'y be the quotient graph of I" with respect to
By. Since N is contained in the kernel of the action of G on By, G is not faithful on
By . So from Corollary 10.2.1 we must have G £ G(p) for B € By. Since N 1Gp,
we have B = o C o%5 C B for a € B, which implies a®B = B. Hence Gip is
transitive on B, and consequently we come to the result (see e.g. [71, Theorem 4.1])

that I' is a multicover of I'y. Thus, case (b)(ii) in Corollary 10.2.1 occurs.

10.3 Two blocks of D(B) incident with either the
same or disjoint subsets of B

In Corollary 10.2.1 we have seen that, if G|p) £ G(p), then either I' is a multicover
of I'g, or we get a genuine refinement of B. Note that G is transitive on I's(B) and
G() <Gp by Lemma 10.1.1(a). So in the opposite case where Gy £ G(p), Lemma,
2.2.2 implies that the G(p)-orbits on I'z(B) form a nontrivial G'g-invariant partition
of I'p(B). Since G(p) fixes B pointwise, any two blocks in the same G p)-orbit on
I'3(B) induce repeated blocks of D(B). In some cases, blocks in distinct G p)-orbits
on I'p(B) may induce disjoint blocks of D(B). For example, in Remark 10.3.1 below
we will see that this happens in particular when I' is G-locally quasiprimitive and
G) £ G- This motivates us to study the case where, for any C,D € I'g(B),
either I(C)NB=T(D)N B, or I'(C)NT(D)N B = (. In this case, the multiplicity
m of D(B) is equal to r. This seemingly trivial case is by no means trivial because

it contains the following two very difficult but important subcases:
(i) k=1
(i) k=w.

We have studied the first subcase (i) in Section 8.3, where we gave a construction
of such graphs from certain kinds of G-point- and G-block-transitive 1-designs. In
the second subcase (ii), I' is a multicover of I's. Our study in this section shows
that (see Remark 10.3.2(a) below), in some sense, the study of G-symmetric graphs
with blocks I'(C) N B of D(B) (for C' € I'g(B)) satisfying the condition above can
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be reduced to the study of these two subcases. The results obtained here will be

used in the next section.

Lemma 10.3.1 Suppose I" is a G-symmetric graph admitting a nontrivial G-invar-
iant partition B. Let B € B, o € B, and let (a), (b), (c) be the following statements.
Then (a) implies (b), and (b) in turn implies (c).

(a) Gy £ Gp), and either G or (G)ry(a) 5 quasiprimitive on I'p(a);

(b) Gpy is transitive on I'p(ar);

(c) for C, D € T's(B), either T(C)NB=T(D)NB or T(C)NT(D)N B = 0.

Proof (a) = (b) Suppose G(p) £ Gip. Then there exist + € G(p) and C,D €
['s(B) with C' # D such that C* = D. Let a € T'(C)NB, so that C' € I'g(«). Since z
fixes each vertex in B and hence fixes « in particular, we have (I'(a)NC)* = I'(a)ND.
Since T'(a) N C' # B, we have I'(a) N D # () and hence D € T'g(). Thus the
action of Gy on I'g(c) is nontrivial. On the other hand, since G(p) < Gp (Lemma
10.1.1(a)) and G(py < (GB)rg < Gp, we have G(p) < (GB)ry()- S0 if (GB)rg(a)
is quasiprimitive on I'z(«), then G(p) must be transitive on I'z(«). Similarly, since
G 9 G4 (Lemma 10.1.1(b)) and G(py acts on I'z(a) in a nontrivial way, the
quasiprimitivity of G, on I'g(cr) implies the transitivity of G(py on I'g(«).

(b) = (¢) The assumption (b) and Lemma 3.2.6(b)(ii) together imply that G g,
is transitive on ['g(a) for each o € B. That is, for any C, D € I'g(«), there exists
r € G(py such that C* = D. This implies (I'(C) N B)* = I'(D) N B. However, since
x fixes each vertex in B, we have (I'(C)NB)* =T'(C)NB. SoI'(C)NB =T(D)NB.
In other words, if two blocks I'(C') N B, I'(D) N B of D(B) have a common vertex a,
then I'(C') N B = I'(D) N B. Hence (c) is true. O

Remark 10.3.1 Clearly, the quasiprimitivity of G, on I'(«) implies the quasiprim-
itivity of G, on I'g(a). So, if I' is a G-locally quasiprimitive graph admitting a
nontrivial G-invariant partition B such that G(py £ Gp), then by Lemma 10.3.1,
either (C)NB=T(D)NBor I'(C)NI'(D)NB =0, for any C,D € T'g(B).

The main result in this section is the following theorem.

Theorem 10.3.1 Suppose T' is a G-symmetric graph admitting a nontrivial G-
invariant partition B. Suppose further that, for any C, D € T's(B), either I'(C)NB =
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I(D)NB orT(C)NT(D)NB = 0. Then V(T') admits a second G-invariant partition
B* :={(B*)?: g € G}, where B* is a block of D(B). Moreover, the following (a)-(c)
hold.

(a) B* is a refinement of B, and it is a genuine refinement of B if and only if
2<k<ov-—-1.

(b) T is a multicover of U'g«, k is a divisor of v, and the parameters v*,r* b* k* s*
with respect to B* satisfy v* =k* =k, 0" =r* =r,s* = s.

(¢c) There exists a G-invariant partition B of B* such that (I'g<) = I's and the
parameters v, r, b, k, s with respect to B satisfy v =v/v", k =s=1,b=1b

andr =r.

Proof Our assumption on D(B) implies that the set of subsets of B of the form
['(C) N B, for C € I'g(B), is a partition of B, which we denote by P(B). Thus
the blocks of P(B) have size k and k divides v. Let B* := I'(C') N B be a typical
block of P(B), where C € I'g(B). Since Gp is transitive on I'z(B) and since
(B*)? =T(CY9) N B for g € Gp, we have P(B) = {(B*)? : g € G} and hence P(B)
is a Gp-invariant partition of B. We claim further that B* := {(B*)? : g € G}
defines a G-invariant partition of V/(T'). In fact, if (B*)? N B* # () for some g € G,
then BYNB # () since B* C B and (B*)9 C BY. But B is a block of imprimitivity for
G in V(I'), so we have BY = B and hence g € Gp. Thus (B*)? C B and (B*)? is a
block of P(B) having nonempty intersection with B*. Since P(B) is a Gp-invariant
partition of B, as shown above, this implies (B*)? = B*. Therefore, B* is a block of
imprimitivity for G in V(I') and so B* is a G-invariant partition of V/(I'). It is easily
checked that B* = Upcp P(B). Clearly, B* is a refinement of B, and it is a genuine
refinement of B if and only if 2 < k < v — 1. Since I'g is G-symmetric, there exists
h € G which interchanges B and C. So I'(B) N C = (I'(C) N B)" = (B*)" € B*,
and hence each vertex in B* is adjacent to at least one vertex in (B*)". Therefore,
I' is a multicover of I'g-, and hence v* = k* = k, 0" = r* = r, s = s. Finally, it is
straightforward to show that B := {P(B) : B € B} is a G-invariant partition of B*
and that (I'g<)g = I's. Also, it is clear that the parameters v, r, b, k, s with
respect to B are as specified in (c). O

Remark 10.3.2 (a) The partition B* in Theorem 10.3.1 is equal to the trivial
partition {{a} : a € V(I')} if and only if £ = 1, and is equal to B if and only if
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k = v. In the general case where 2 < k < v — 1, B* is a genuine refinement of B,
and as k* = v*, the partition (B*)* resulting from applying Theorem 10.3.1 to B*,
is equal to B*. Moreover, the quotient graph I'z- admits a G-invariant partition,
namely B, for which £ = 1 and thus the construction given in Section 8.3 applies to
g«

(b) Setting ¢ = 1 in Theorem 10.2.1(b), we know immediately that the partition
B; (defined in (10.2) for i« = 1) is a refinement of B*. Moreover, B; admits a G-
invariant partition By := {P(B*) : B* € B*}, where P(B*) := {a“® C B* :
a € B*}, such that (I'p,)B, = 'z« and I'p, is a multicover of 'z, and that the
parameters vy, ry, by, ki, s; with respect to By satisfy vi = k; = k/v, r1 = by =7,

S1 = bl/T.

10.4 Locally quasiprimitive graphs

We now apply the results obtained in the last two sections to G-locally quasiprimitive
graphs. Such graphs were studied initially in [66, 67], and more recent results were
obtained in [54]. In this case we have the following theorem, which can be viewed

as a generalization of [43, Lemma 3.4].

Theorem 10.4.1 Suppose I' is a G-locally quasiprimitive graph which admits a
nontrivial G-invariant partition B. Suppose further that Gg # G (p).

(a) If Gy £ Gip), then Gpy is transitive on I'(«) for each oo € B. Moreover,

either

(i) k=1 and G[B] < G(B); or

(i) k > 2, k divides v, and V(') admits a second nontrivial G-invariant
partition B* such that B* is a refinement of B, I is a multicover of Tz«
and the parameters v*,r* b* k*, s* with respect to B* satisfy v* = k* =

kb =r*=rs" =s.

(b) If G £ G(p), then Gp) induces a nontrivial G-invariant partition By of V/(I')
(defined in (10.2) fori = 1) such that By is a refinement of B, vy is a common

divisor of v and k, sy is a divisor of s, and r is a divisor of ry.
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Proof (a) Suppose G(p) £ Gp). Then there exist + € G(p) and distinct blocks
C, D of T'g(B) such that C* = D. Let a € T'(C)N B, so I'(a) NC # (). Since z fixes
each vertex in B, it fixes « in particular and hence maps a vertex in I'(a) N C' to a

vertex in I'(a) N D. Since G(p) < G, (Lemma 10.1.1(b)), this implies that G(Fg;‘) is

@)

. Therefore, by the G-local quasiprimitivity
of I', we conclude that G g is transitive on I'(«). From Lemma 3.2.6(b)(i), this

a nontrivial normal subgroup of GL(

assertion is true for all vertices « in B.

If £k = 1, then T'g(a) N Tg(B) = 0 for distinct o, € B. Hence, if g € Gp
fixes each block C' € I'g(B) setwise, then it also fixes each vertex in B. So we have
G|p < G(p) in this case.

If £ > 2, then by Remark 10.3.1, for any C, D € I's(B), either I'(C) N B =
I'(D)NBor I'(C)NT(D)N B = . Hence Theorem 10.3.1 applies, and the partition
B* defined therein is a nontrivial G-invariant partition of V(I') and is a refinement
of B. The truth of the remaining statements in (ii) follows from Theorem 10.3.1(b).

(b) Now we suppose Gz £ G(p). Then B; := a1l has length at least two,
where o € B. Hence it follows from Theorem 10.2.1 that the partition 5; (defined
in (10.2) for ¢ = 1) is a nontrivial G-invariant partition of V(I') and is a refinement of
B, and that the parameters vy, s1, r; with respect to B; have the required properties.

O

For minimal nontrivial G-invariant partitions, we have the following consequence
of Theorem 10.4.1.

Corollary 10.4.1 Suppose I is a G-locally quasiprimitive graph, with G faithful on
V(T'). Suppose further that B is a minimal nontrivial G-invariant partition of V(T').
Then one of the following (a)-(c) holds.

(a) G = Gpy, in this case G is faithful on B;

(b) Gigy < G(p) and k = 1;

(c¢) T is a multicover of I'p.
Moreover, if I'g is a complete graph, then the occurrence of (a) implies Gip) = G(p) =

1; if Gig) £ Gy, then the occurrence of (c) implies that Gyg) is transitive on B.

Proof In the case where G(p) = Gp}, G is faithful on B by Corollary 10.2.1(a).
Suppose Gy # G- Then either Ggy £ Gip) or G| £ G(p). In the former case,
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Theorem 10.4.1(a) applies. If (i) in Theorem 10.4.1(a) appears, then we have k = 1
and G(p) < G(p), and hence (b) above occurs. If (ii) in Theorem 10.4.1(a) appears,
then by the minimality of B, the partition B* therein must coincide with B; hence
I' is a multicover of I's and (c) holds. In the latter case where Gz £ G(p), by
Corollary 10.2.1 and the minimality of B, we know that I' is a multicover of I'g
(hence (c) above occurs), and moreover Gp) is transitive on B.

Now suppose that I's is a complete graph, and that case (a) occurs. Then G
is the kernel of the action of G on B and hence Gp) = G(py < G. This implies
that G(p) = ¢7'G(B)g = Gps) for any g € G. Since BY runs over all blocks of B
when g runs over G, this means that G/p) fixes each vertex of I, and hence by the

faithfulness of G on V(I') we get Gz = G(py = 1. O

Recall that G| is the subgroup of G,, fixing setwise each block in I'g(c). So Gy
induces an action on I'(a) N C, for each C' € I'(a). As exemplified in the following
lemma, it may happen that G, is transitive on I'(a) N C, or, equivalently, I'(ar) N C
is a (G|q))-orbit on I'(a).

Lemma 10.4.1 Suppose I' is a G-symmetric graph admitting a nontrivial G-invari-
ant partition B, and let o € V(). If G, is regular on I'g(a), then Gy is transitive
on I'(a) N C, for each C € I'p(av).

Proof For any C € I'g(«a) and 3,7 € I'(a)NC, by the G-symmetry of I" there exists
x € G4 such that g% = ~, and hence z fixes C' setwise. Since by our assumption
G, acts regularly on I'z(«), this implies that D* = D for all D € I'g(«), and hence
r € Gg. Thus, any vertex 3 in I'(a) N C' can be mapped to any other vertex v in
['(a) N C by an element of G,). In other words, G4 is transitive on I'(a) N C. O

We conclude this section by studying G-locally quasiprimitive graphs I' such that
Gy is transitive on I'(a) N C, for C' € I'p(a). In this case we have the following

theorem which is a counterpart of Corollary 3.2.1.

Theorem 10.4.2 Suppose I' is a G-locally quasiprimitive graph admitting a non-
trivial G-invariant partition B. Suppose further that Gy is transitive on I'(a) N B,
for some o € V(I') and B € T's(«w). Then either

(a) T'[B,C] = k- Ky is a matching of k edges, for adjacent blocks B,C" of B; or
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(b) T is a bipartite graph with each part of the bipartition of a connected compo-
nent contained in some block of B, and for any C, D € I'g(B), either ['(C)N B =
I'(D)NB orT(C)NT(D)N B =0 (hence v = bk).

Proof From Lemma 3.2.6(c)(ii), our assumption on G|y implies that G, is transi-
tive on I'(a) N C for each C' € T'g(a). So, if GEI(]O‘) = 1, then we have |[I'(a) N C| = 1.
That is, I'[B, C] is a matching for adjacent blocks B, C' of B, and hence (a) holds.
In the following we suppose that G&a) # 1. Then, since G&a) AGE@ by Lemma
10.1.1(c) and since I' is G-locally quasiprimitive by our assumption, G, must be
transitive on I'(av). However, G fixes I'(a)) N C setwise for each C' € I'y(ar). So we
must have r = |[['g(a)| = 1 and hence I'(ar) C C for some C. Let B be the block
of B containing «. Then, since G is transitive on arcs of I, for any 3 € I'(a) there
exists an element of G which interchanges o and (8 and hence interchanges B and
C. Hence I'(a) C C implies I'(#) € B. Similarly, I'(3) € B implies I'(y) C C
for any v € I'(#). Continuing this process, one can see that I'[B, ] consists of
connected components of I', and hence each such component is a bipartite graph
with the two parts of the bipartition contained in B, C| respectively. This, together
with the fact » = 1, implies that I is a bipartite graph with v = bk, and that either
rC)yNnB=T(D)NBorT'(C)NT(D)N B =0 for any C, D € T'g(B). 0

From Lemma 10.4.1, the results in Theorem 10.4.2 hold in particular when I' is
a G-locally quasiprimitive graph such that G, is regular on I'z(«) for o € V/(I'). In
this case, if " is not a bipartite graph, then I'[ B, C] is a matching and hence, by
Lemma 3.2.4(b), G, is regular on I'(«). Hence G is regular on the arcs of I' if in
addition T is connected. Examples of such graphs include G-Frobenius graphs [32,

Definition 1.2] arising from self-paired G-orbitals of a Frobenius group G.
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Chapter 11

Local actions: Heritage of the
labelling method

He who by reanimating the Old can gain knowledge of the New is
qualified to teach others.
Confucius (551-479 B.C.), LUN YU [THE ANALECTS] 2:11

Continuing our study on “local actions”, we will investigate in this chapter the
particular case where the induced actions of G on B and I's(B) are permutationally
equivalent. That is, we will study G-symmetric graphs [' admitting a nontrivial G-
invariant partition B such that the following [P] holds for some, and hence all (see
Lemma 3.2.6(a)), blocks B of B.

[P] The induced actions of Gg on B and I'z(B) are permutationally equivalent

with respect to some bijection p : B — I'g(B).

From a geometric point of view, this requires that the automorphism group of D(B)
induced by G (Lemma 3.2.5) acts in essentially the same way on the points and the
blocks of the 1-design D(B) = (B,I'5s(B),1I). Clearly, any G-symmetric graph such
that K = v — 1 > 2 and D(B) contains no repeated blocks possesses this property
(see Example 11.1.1 below), and this observation is one of the motivations for the
study in this chapter. Recall that in this case I'p is (G, 2)-arc transitive (Theorem
5.1.2); we will characterize such graphs as the only graphs I' satisfying [P] such
that I'p is (G, 2)-arc transitive (Theorems 11.3.1(c)). Under the assumption [P],

we will develop a labelling technique similar to that used in Section 5.1, and we
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will show that D(B) plays a more active role in influencing I', I's and I'[ B, C]. We
will study the case where in addition the bijection p in [P] preserves the incidence
relation of D(B) in the sense that, for « € B and C € I'g(B), olC if and only if
p~1(C)Ip(c). Finally, based on the labelling technique, we will prove that the class
of G-symmetric graphs satisfying [P] is precisely the class of 3-arc graphs Z(%, A) of
G-symmetric graphs 3 with respect to self-paired G-orbits A on Arcs(X). Therefore,
this chapter may be viewed as an extension of Chapter 5. To avoid triviality, we

assume val(I') > 1 in this chapter.

11.1 Examples

Example 11.1.1 Let I be a G-symmetric graph admitting a nontrivial G-invariant
partition B such that k = v — 1 > 2 and D(B) contains no repeated blocks. Then,
for each a € B, the set B(«) defined in (4.1) contains a unique block C,, and, by
Theorem 4.3.2(a), [P] is satisfied for the bijection p : a — C,, from B to I'z(B).

Graphs in Example 11.1.1 have been studied in Chapters 5-7. The following
example shows that, besides these graphs, there exist other G-symmetric graphs
for which [P] is satisfied. Note that in this example we have k < v — 1 and D(B)

contains repeated blocks.

Example 11.1.2 Let PG(2,2) be the Fano plane whose points 1,2,...,7 are as
shown in Figure 8. Let X be the set of ordered pairs of distinct points of PG(2, 2).
Then G := PGL(3,2) is transitive on X ([10, Theorem 2.5.4]). Define T" to be the
graph with vertex set X in which af3,v6 € X are adjacent if and only if (i) «, 3,7, 0
are distinct, and (ii) 3,9 and the unique point collinear with «,~ are distinct and
are collinear in PG(2,2). For example, 17,26 are adjacent in I' since the unique
point collinear with 1,2 is 3 and since 7,6,3 are collinear in PG(2,2). Similarly,
one can see that ['(17) = {26,62,35,53}. Note that the pointwise stabilizer Gy7
of 1,7 in GG contains an element which exchanges 2 and 6, and exchanges 3 and
5; also (G17 contains an element which exchanges 2 and 3, and exchanges 6 and
5. So Gy7 is transitive on I'(17), and hence I' is G-symmetric. One can see that
['=7-Kys9 and B := {B(0) : ¢ is a point of PG(2,2)} is a G-invariant partition
of X, where B(o) := {o7 : 7 is a point of PG(2,2) with 7 # o}. We have I's = K7,
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['[B(o),B(1)] 2 4- K, for 0 # 7, D(B(1)) is a 1-(6,4,4) design, and the traces of
the blocks of D(B(1)) are {12,13,14,17}, {14,15,16,17}, {12,13, 16, 15} with each
repeated twice. Thus the block size of D(B(1)) is less than |B(1)| — 1. Clearly, the
induced actions of G'p(,) on B(o) and I'z(B(c)) are permutationally equivalent with
respect to the bijection p : o7 — B(7). Note that o7 is adjacent to a vertex in a
block B(0) if and only if 06 is adjacent to a vertex in the block B(7).

FIGURE 8 Fano plane

11.2 The labelling technique

As a fundamental fact, we now show that [P]| holds if and only if the vertices of
I' can be labelled in a natural way by the arcs of I's. For convenience, we call a
mapping p : V(T') — Arc(Tg) compatible with B if, for any o € V(T'), the arc p(«)
of I'p is initiated at the block B(«) containing a.

Lemma 11.2.1 Suppose that T" is a G-symmetric graph admitting a nontrivial G-
invariant partition B. Then [P] holds if and only if the actions of G on V(') and
Arc(T'g) are permutationally equivalent with respect to some bijection p : V(I') —
Arc(I'g) compatible with B. Moreover, in this case we have b=v > 2, Gig) = G(py,
and G is faithful on B if G is faithful on V(T).

Proof Suppose first that [P] holds for some B € B and a bijection p : B — I'z(B),

and let « be a fixed vertex of B. Then, since I' is G-vertex-transitive, each vertex



148 HERITAGE OF LABELLING METHOD

of I has the form a” for some z € G. We will show that p : a® — (B, (p(a))),
x € G, defines a bijection from V(I') to Arc(I's) which is compatible with B. In
fact, if a® = ¥ for some z,y € G, then 2y~ € G, (< Gp), and hence B =
B and (p(a))®™ " = p(a®') = p(a). Therefore, we have p(a®) = p(a¥) and
thus p is well-defined. Secondly, if p(a®) = p(a¥) for two vertices a”,a¥, then
ry~! € Gp since B® = BY. This, together with (p(a))® = (p(«))?, implies that
p(a) = (p(a))* " = p(a*"). Note that zy~' € Gp implies a*¥"' € B, and that p
is a bijection from B to I'g(B). So we have ™" = q, implying o® = a¥ and hence
( is injective. Since G is transitive on arcs of I'g, u is in fact a bijection from V(I') to
Arc(I'p). Since B and p(«) are adjacent blocks and B* = (B(a))* = B(a®), B* and
(p(c))* are adjacent blocks and hence p is compatible with B. It follows from the
definition that the actions of G on V/(I') and Arc(I'g) are permutationally equivalent
with respect to u. Moreover, the definition of 1 does not depend on the choice of
a € B. In fact, for another vertex § € B and any vertex of I', say v = o* = ¥
for some z,y € G, we have B* = B(a®) = B(Y) = BY and hence zy~! € Gp.
So (p(@)™™" = pla™™) = p(g), mplying (B, p(a))* = (B, p(3))* and indeed the
definition of u is independent of the choice of o € B.

Now suppose conversely that the actions of G on V(I") and Arc(I's) are permuta-
tionally equivalent with respect to a bijection u : V/(I') — Arc(I'g) which is compat-
ible with B. Then (B, p(«)) = p(«), for a € B, defines a bijection p : B — I'(B).
It is easily checked that the actions of Gp on B and I's(B) are permutationally
equivalent with respect to p.

Finally, if [P] holds, then b = |I's(B)| = |B| = v > 2 and G| = G(p) for each
B € B. So if G is faithful on V(I") then it is faithful on B as well. O

Lemma 11.2.1 implies that, under the assumption [P], each vertex a of I' can
be uniquely labelled by an ordered pair “BC” of adjacent blocks of 'z, where
(B,C) = p(a). In the following we will identify o with the label “BC”, so we have
Gepe» = Gpc. Since (p())* = u(a®), it follows that

“BOWT — «RBTOEY (1]_]_)

for z € G and “BC” € V(I'). One can see that the block B is precisely the set of
those vertices of I" whose labels have the first coordinate B, that is, B = {“BC” :
(B,C) € Arc(I's)}. Note that each vertex o = “BC” of I' has a unique mate
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o = “CB”, and that z : @ — ' defines an involution on V(I'). Also, z centralises
G since “BC7* = “CB"* = “C*B*" = “B*(C*"* = “BC”"* for any x € (G. Since
G preserves B invariant whilst it is easy to see that B* = {o/ : « € B} ¢ B, we
have z ¢ G. Clearly, {{a,d'} : « € V(I)} is a (G x (z))-invariant partition of
V(T'), and the graph I with vertex set V(I') and arc set {(a, ') : a € V(I')} is
G-symmetric. We record these basic results in the following theorem, which will be
used repeatedly in our later discussion. The validity of these results for the graphs

in Example 11.1.1 has been established in Section 5.1.

Theorem 11.2.1 Suppose that T' is a G-symmetric graph admitting a nontrivial
G-invariant partition B such that the actions of Gg on B and I's(B) are permu-
tationally equivalent, for some B € B. Let u : V(I') — Arc(I'g) be the bijection
guaranteed by Lemma 11.2.1. Then the following (a)-(d) hold.

(a) Fach vertex o of T' can be labelled uniquely by an ordered pair “BC” of
adjacent blocks of I'p, where (B, C) = pu(a). Moreover, we have G«pe» = Gpc and
“BC”* = “B*C*” for “BC” € V(I') and x € G.

(b) Each vertex « = “BC” has a unique mate o := “C'B”, the mapping z : a +—
o' defines an involution such that z ¢ G and z centralises G, P = {{a,d'} : a €
V(I)} is a (G x (z))-invariant partition of V(I'), and the graph I with vertezr set
V(T') and arc set {(a, ) : a € V(I')} is G-symmetric.

(¢) B* := {B* : B € B} (where B* := B?) is a G-invariant partition of V (I'),
Gp = Gp~, and the actions of Gg on B and B* are transitive and permutationally
equivalent with respect to the restriction of z on B.

(d) There is no edge of I' joining vertices of B and B*. In particular, for each
arc (“BC”,“DE") of I, (C,B, D, E) is a 3-arc of I'g.

Proof The truth of (a) and (b) has been shown above, and from this we get (c) by
a routine argument. To prove (d), we assume B, C' are two adjacent blocks of I's.
If “C'B” is adjacent to “BC”, then, since val(I') > 1, “CB” is adjacent to a vertex
“B,Cy” distinct from “BC”. By the G-symmetry of I', there exists © € G such that
(“CB”,“BC")* = (“CB”, “B1CY”), which implies C' = C* = (1, B = B* = Bj.
This is a contradiction and hence each vertex “CB” of V(I') is not adjacent to
its mate “BC”. Similarly, if “CB” is adjacent to a vertex “BD” € B\ {“BC"},

then we can take a vertex “B;D;” which is distinct from “BD” and is adjacent
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to “CB”. By the G-symmetry of I', we have (“CB”, “BD”)* = (“CB”, “B1D1”)
for some x € G, and hence B = B* = B;. On the other hand, there exists
y € G such that (“CB”,“BD”)Y = (“B1D,”,“CB”). This implies C = BY = Dy,

and hence “ByD;” = “BC”. Again, this is a contradiction and hence there is no
edge of T between B and B*. In particular, if (“BC”, “DE") is an arc of I', then
C # D, B # E and hence (C, B, D, E) is a 3-arc of I's. O

The following theorem is a counterpart of Theorem 5.1.2(a)(b).

Theorem 11.2.2 Suppose that T is a G-symmetric graph admitting a nontrivial
G-invariant partition B such that the actions of G on B and I's(B) are permuta-
tionally equivalent, for some B € B. Then one, and only one, of the following (a),
(b) occurs.

(a) Any two adjacent vertices have labels involving four distinct blocks. In this
case, each block of B* is an independent set of I.

(b) Any two adjacent vertices of I share the same second coordinate. In this case,
I’ is disconnected with each block of B* consisting of connected components of T,
and moreover we have girth(I'g) = 3, T'[B,C] 2 k- Ky and val(T') = |D%5.¢|, where
B,C, D € B such that “CB”,“DB” are adjacent in T. In particular, T[B*| =2 K, if
and only if U'g is (G, 2)-arc transitive, and in this case we have I' = n(v + 1) - K,,
[[B,C] = (v—1)- Ky and T'g = n - K,y for an integer n, and the group induced

on the vertex set of a connected component of I's is 3-transitive.

Proof If there exist two adjacent vertices of I', say “C'B”, “DB”, which share
the same second coordinate. Then, since I' is G-symmetric, by Theorem 11.2.1(a)
any arc of I' has the form (“C*B*”, “D*B*”), for some x € (G, and hence any
two adjacent vertices of I' share the same second coordinate. Thus, either (a) or
(b) occurs. It is easy to see that (a) occurs if and only if each block of B* is an
independent set of T'.

In the following we suppose that (b) occurs, and let “CB”, “DB” be adjacent
vertices. Then any two adjacent vertices of I' lie in the same block of B*. Hence
the subgraph T'[E*] induced by each E* € B* consists of connected components
of I'. Clearly, we have girth(I's) = 3 since (B,C, D, B) is a triangle of I'z. By

our assumption, “C'B” is the unique vertex in C' adjacent to “DB”. So we have
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['[C, D] = k- K,. Moreover, a vertex “D;B” € B* is adjacent to “CB” in I' < there
exists g € G such that (“CB”,“DB")9 = (“CB”, “D1B”) < there exists g € Gp¢
such that DY = Dy. Thus, we have val(I') = |[D%2.¢|. In particular, I'|B*] & K, &
Gpc is transitive on I'g(B) \ {C} < Gp is 2-transitive on I'p(B) < I'z is (G, 2)-
arc transitive. In this case, the argument above shows that (i) I' = |B*| - K, (ii)
{B} UTI's(B) induces the complete graph K, which is a connected component of
I's (note that b = v by Lemma 11.2.1), and (iii) G induces a 3-transitive group
on {B} UTI'g(B). Therefore, we have I's = n - K, and I' = n(v + 1) - K, for an
integer n. Counting the number of edges of I' in two ways, we get (n(v+1)v/2)k =
n(v+1)(v(v —1)/2), which implies k = v — 1 and hence I'[C, D] = (v —1) - K3. O

Note that case (a) in Theorem 11.2.2 occurs when girth(I'g) > 4. If girth(I'z) >
5, then we get the following generalizations of Theorem 5.1.3 and Corollary 5.1.2 —

the proofs are very much similar and hence ommitted.

Theorem 11.2.3 Suppose that I s a G-symmetric graph admitting a nontrivial
G-invariant partition B such that the actions of Gg on B and I's(B) are permuta-
tionally equivalent, for some B € B. Suppose further that girth(I'y) > 5. Then the
following (a)-(c) hold.

(a) T[{a, &'}, {B, B'}] =2 Ky for adjacent blocks {c, o’} and {3, 5’} of P.

(b) I'[B*,C"] is a matching for adjacent blocks B*,C* of B*; in particular we
have I'|B*, C*] =2 K, if girth(I'g) > 7.

(¢) The involution z : o — o' (a € V(")) defines a graph monomorphism from
I" to the complement T'. Moreover, z induces graph monomorphisms from I'z to I -,

and from I'g- to T'n, defined by B — B*, and B* — B, respectively.

Corollary 11.2.1 With the same assumptions as in Theorem 11.2.3, we have val(I")
< (V)] —2)/4 and val(T'g<) < (|[V(I")|/v) — v — 1. If in addition girth(I's) > 7,
then val(T') < (|V(T)|/v*) — (1/v) — 1.

Remark 11.2.1 Let k* denote the block size of the 1-design D(B*). If k* = 1,
then val(I'g+) = v -val(I') > v = |B*| and hence the actions of G+ on B* and
I'p+(B*) cannot be permutationally equivalent. From Theorem 11.2.3(b), this is the

case in particular when girth(I'gz) > 7. Thus the G-invariant partition B* may not
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satisfy [P]. Moreover, in the case where k* = 1, the construction given in Section 8.3

applies, and so I' is isomorphic to a certain G-flag graph of the 1-design D(I", B¥).

11.3 The 1-design D(B)

Part (d) of Theorem 11.2.1 is equivalent to saying that, if (“BC”, D) is a flag of
D(B), then C' # D and hence (C, B, D) is a 2-arc of I's. Denote by arcy(I'g) the

set of all such 2-arcs of I'g, that is,
arcy(I'g) :={(C, B, D) : “BC”1D}.

As before, denote by D*(B) the dual 1-design of D(B). Then we have the following

theorem which conveys more information about the 1-design D(B).

Theorem 11.3.1 Suppose that I s a G-symmetric graph admitting a nontrivial
G-invariant partition B such that the actions of Gg on B and I's(B) are permuta-
tionally equivalent, for some B € B. Then the following (a)-(d) hold.

(a) Both D(B) and D*(B) are 1-(v, k, k) designs.

(b) arcy(T'5) is a G-orbit on Arcy(T's), k = |CY2P|, and k +m < v, where
(C, B, D) € arcy(I'g) and m is the multiplicity of D(B).

(¢) The following conditions (1)-(iv) are equivalent:

(i) I is (G, 2)-arc transitive;

(i) arcy(I'p) = Arcy(I'p);

(i) k =v —1;

(iv) k =v —1 and D(B) contains no repeated blocks.

(d) T'[B,C] = Ky if and only if G c.p is transitive on I'(B)ND for (C, B, D) €
arce(I'g). In particular, I'|B,C| = K,_1,1 if and only if T'g is (G, 3)-arc transitive.

Proof (a) That D(B) is a 1-design implies vr = bk. Since b = v (Lemma 11.2.1),
we have r = k and hence both D(B) and D*(B) are 1-(v, k, k) designs.

(b) Let (C, B, D), (Cy, By, D;) € arca(I'g). Then “BC” is adjacent to a vertex
6 € D and “B;(C4” is adjacent to a vertex 5, € D;. So “B*C*” is adjacent to
g% € D* for any © € G. Thus (C®, B*, D”) € arce(I'5) and hence arcy(I'p) is G-
invariant. On the other hand, since I' is G-symmetric, there exists y € G such that
(“BC”,3)Y = (“B,CY”, $1), which implies (C, B, D)* = (C4, By, D) and hence G
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is transitive on arcy(I's). Therefore, arco(I's) is a G-orbit on Arcy(I'g). From this
we have: “BE” € B is adjacent to a vertex in D < (F, B, D) € arcy(I'g) < there
exists x € G such that (C, B, D)* = (E, B, D) < there exists * € Gp p such that
C® = E. So we have k = |C92.2|. Now suppose D, ..., D,, € I's(B) are repeated
blocks of D(B), so we have I'(D;) N B = --- = I'(D,;,) N B. Then by Theorem
11.2.1(d), none of the m distinct vertices “BD,”,..., “BD,,” of B is in I'(Dy) N B,
and hence k& + m < v follows.

(c) Clearly, (i) and (ii) are equivalent since arce(I'g) is a G-orbit on Arcy(I'g).
Note that k = v — 1 implies k = v — 1 > 2 for otherwise we would have val(I") = 1,
contradicting our assumption on the valency of I'. From the argument in the proof
of (b), we have: k=v—-1< k=v—12>2<« Gpp is transitive on I'g(B) \ {D}
& (g is 2-transitive on I'g(B) < I's is (G, 2)-arc transitive. So (i) and (iii) are
equivalent. Clearly, (iv) implies (iii). Conversely, since k+m < v as we have shown
above, k = v — 1 implies m = 1 and hence D(B) has no repeated blocks. The
equivalence of (i)-(iv) is then established.

(d) Let (C, B, D) € arcy(I'g). Then by the G-symmetry of I', Gspe» p = Gpeop
is transitive on I'(“BC”) N D # . Clearly, we have: I'[B, D] = K, < I'(“BC”)N
D =T(B)ND < Guperp is transitive on I'(B) N D < Gpep is transitive on
I'(B)N D. In particular, from (c) above and Theorem 11.2.1(d) we have: I'[B, D] =
Ky 1p-1 < k=v—1and Ggep is transitive on D\ {“DB"} < I'g is (G, 2)-arc
transitive and Gp ¢ p is transitive on I's(D) \ { B} < I's is (G, 3)-arc transitive. O

Remark 11.3.1 (a) Applying Theorem 11.3.1(c) to the graphs I" in Example 11.1.1,
we recover the result (Theorem 5.1.2) that, if £ = v —1 > 2 and D(B) contains no
repeated blocks, then I's is (G, 2)-arc transitive. Furthermore, Theorem 11.3.1(c)
shows that, under the assumption [P], this is the only case where 'z is (G, 2)-arc
transitive. Part (d) of Theorem 11.3.1 implies that in such a case 'z is (G, 3)-arc
transitive if and only if I'[B,C] & K,_;,-1 (Theorem 5.3.1), and that this is the
only case where I's is (G, 3)-arc transitive.

(b) In Theorem 11.2.2(b) we have proved that, if adjacent vertices of I share the
same second coordinate, then I'[B*] = K, if and only if T's is (G, 2)-arc transitive.

By Theorem 11.3.1(c), this in turn is true if and only if £ = v —1 > 2 and D(B)

contains no repeated blocks. So the assertions in the last sentence of Theorem
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11.2.2(b) concerning I', T'[B, C|], I's and the group induced on a component of I'g
can be derived from Theorem 5.1.2(b).

11.4 The case where p is incidence-preserving

In this section, we study the case where the bijection p in [P] is incidence-preserving,
that is, it satisfies
alD < p~Y(D)Ip(a) (11.2)

for « € B and D € I'g(B). Using labels for the vertices of I', this condition can be

restated as
“BC”1D & “BD”1C (11.3)

for distinct C, D € I'g(B), which in turn is equivalent to saying that
(C,B,D) € arcy(I'p) < (D, B,C) € arco(I's). (11.4)

Thus, in view of Theorem 11.3.1(b), one of the above holds if and only if arce(I's) is
a self-paired G-orbit on Arcy(I'g). By Theorem 11.3.1(c) this is the case in particular
when I' is as in Example 11.1.1. However, there are other cases for which (11.3) is
satisfied. This happens for the graph I' in Example 11.1.2, where (11.3) is satisfied
(see the last sentence in that example) but I'g is not (G, 2)-arc transitive by Theorem
11.3.1(c) and the fact that 4 =k <v —1=5.

The additional requirement above implies immediately that D(B) is a self-dual

1-design, as stated below.

Proposition 11.4.1 Suppose that T is a G-symmetric graph admitting a nontriv-
tal G-invariant partition B such that, for some B € B, the actions of Gg on B
and U'g(B) are permutationally equivalent with respect to an incidence-preserving
bijection p. Then D(B) is a self-dual 1-(v, k, k) design and p induces a polarity of
D(B).

Proof Let ¢ be the bijection from BUI's(B) to ['g(B)UB defined by ¢ (a) = p(a),
P(C) = p~1(C) for « € B and C € T'z(B). Then (B) = I's(B), ¥(I's(B)) = B,
and (11.2) implies that oIC' < ¥(C)IyY(a) & Y(a)I*(C). Thus, ¢ is an isomor-
phism from D(B) to D*(B) and hence D(B) is self-dual. Clearly, we have ¢? = 1
and hence 9 is a polarity of D(B). O
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For brevity we call a chordless 6-cycle in a given graph a hezagon. Recall that
in Section 11.2 we defined I" to be the graph with vertex set V(I') and edge set
{{a,a'} : a € V(I')}. In the case where (b) in Theorem 11.2.2 occurs, we have the

following result which is interesting from a combinatorial point of view.

Theorem 11.4.1 Suppose that I" is a G-symmetric graph admitting a nontrivial G-
invariant partition B such that, for some B € B, the actions of Gg on B and I'z(B)
are permutationally equivalent with respect to an incidence-preserving bijection p.
Suppose further that adjacent vertices of I' have the same second coordinate. Then
there exists a G-invariant set H of hexagons of the graph I' UT" such that

(a) the edges of each hexagon of H lie in T' and T alternatively;

(b) each edge of T belongs to a unique hexagon of H, and each edge of I" belongs
to exactly k hexagons of H; and

(¢) any two hexagons of H have at most one common edge.

Proof Let {“BC”, “DC”} be an edge of I'. Then “BC”1D and “DC”IB. From
(11.3) and our assumption on labels of adjacent vertices, it follows that “BD” is adja-
cent to “CD” and “DB” is adjacent to “CB”. It is easy to see that h{“BC”, “DC” }
= (“BC”,“DC”,“CD”,“BD”,“DB”,“C'B”, “BC”) is a hexagon, and that its
edges belong to I and I alternatively. (See Figure 9, where the dashed lines repre-
sent edges of I”.) Set

H:={h{“BC”,“DC”} : (“BC”,“DC”) € Arc(I')}.
Since both I and I" are G-symmetric, H is G-invariant. One can see that
h{ “BC??, “DC??} — h{ “CD??, L(BD??} — h{ L(DB??, (CCB?? }’

and that this is the unique hexagon in H containing the edge {“BC”, “DC”} of T.
By Theorem 11.2.2(b), we have I'[B, D] = k - K. When {“BC”, “DC” } runs over
all the edges of I'[B, D], we get k hexagons h{“BC”, “DC”} and these are the only
members of H containing the edge {“BD”, “DB”} of I''. So both (a) and (b) are
true. The validity of (c) follows immediately from the definition of the hexagons of

H. O
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The case where two adjacent vertices of I' have labels involving four distinct
blocks seems to be much more complicated, even under our additional assumption
that p is incidence-preserving. So in the following we concentrate on the extreme
case where I'| B, C] = k - K, is a matching. In this case, we show that there exists a
G-orbit on n-cycles of I'g, for some even integer n > 4, which determines completely

the adjacency of T'.

Theorem 11.4.2 Suppose that I" is a G-symmetric graph admitting a nontrivial G-
invariant partition B such that, for some B € B, the actions of Gg on B and I'g(B)
are permutationally equivalent with respect to an incidence-preserving bijection p.
Suppose further that adjacent vertices of I' have labels involving four distinct blocks
and that T'[B,C] = k - Ky for adjacent blocks B,C of B. Then there exist an even
integer n > 4 and a G-orbit £ on n-cycles of I'g such that the following (a)-(c) hold:

(a) each 2-arc of I'p is contained in at most one n-cycle of &;

(b) a 2-arc of I'g is contained in an n-cycle of £ if and only if it lies in arco(I'p);
and

(c) two vertices “BC”, “DE” of T are adjacent if and only if (C,B,D,FE) is a

3-arc of I'g contained in an n-cycle of £.
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Proof Let (By, B, By) € arcy(I'g), that is, “ByBy"1B,. Then, since I'[By, Bs] &
k- K5 by our assumption, there exists a unique block B € I's(Bs) such that “B,Bj3”
is the unique vertex in By adjacent to “B;By”. This implies (B3, By, By) € arce(I's)
and hence (B, By, B3) € arcy(I'g) by (11.4). Thus “ByB;”"1Bs and hence there
exists a unique block By € T'g(Bs) such that “B3B,” is the unique vertex in Bj
adjacent to “ByB;”. This in turn implies that (Bjy, B3, By) € arce(I's) and hence
(Bs, Bs, By) € arcy(I's). Inductively, suppose that By, By, Bs, ..., B; have been de-
termined for some ¢ > 3 such that (B;_i, Bj, Bj11), (Bj+1, Bj, Bj—1) € arcy(I'p)
for j = 1,2,...,4 — 1, and that “B;B;_,” is adjacent to “Bj;;1B;2” for j =
1,2,...,7 — 2. Then in particular “B;_1B;_»"1B; and hence there exists a unique
block B;i1 € I'p(B;) such that “B;B;;1” is the unique vertex in B; adjacent to
“B;i_1B;_3”. Thus we have (B;1, B;, Bi_1) € arcy(I'g) and hence (B;_1, B;, Biy1) €
arcy(I'g). Continuing this process, we see that each 2-arc (By, B1, Bz) in arce(I's)
determines a unique sequence By, By, Bs, ..., B;, B;11, ... of blocks of B such that
(Bi—1, Bi, Bis1), (Biy1, Bi, Bi_1) € arcy(I'p) and “B;B;_1” is adjacent to “B;1B;12”
for each ¢ > 1. Our assumption on labels of adjacent vertices of I" implies that
any four consecutive blocks in this sequence are pairwise distinct. Since we have
only a finite number of blocks in B, this sequence must contain repeated terms.
Let B, be the first block in the sequence which coincides with one of the pre-
ceding blocks. Then n > 4 and we claim that B, must coincide with By. Sup-
pose to the contrary that B, = B, for some integer ¢ with ¢ > 1. Then, since
arcy(I'g) is a G-orbit on Arcy(I'g) (Theorem 11.3.1(b)), there exists z € G such
that (Bf, By, Bf,,) = (Bo,Bi1,B2). By the construction above, one can see
that the sequence determined by (B}, By, |, B} .,) is By, Bf, , B} 5, ...,Bj .- ..
So by the uniqueness of the sequence determined by (By, By, B2) we must have
By, = B; for each ¢ > 0. In particular, we have By = B, ,_, = Bn. On
the other hand, B,, = B, implies that B = Bj = B,. Thus we have B, _, =
By, which contradicts the minimality of n. So B, must coincide with By and
we get an n-cycle C(By, By, By) = (Bo, B1, B2, ..., Bn_1,Bp) of I's. Note that
(Bs, By, By) € arcy(I'g) implies that there exists a unique block C' € I'g(By) such
that “ByC” is the unique vertex in By adjacent to “ByBy”. So we have (C, By, By) €
arcy(I'g) and, by the construction above, the sequence determined by (C, By, By) is
C, By, By,Bs,...,B;,.... Since the first repeated block in this sequence is C', as
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shown above, we must have C' = B,,_; and hence (B,,_1, By, B1), (B, By, B,—1) €
arco(I's) and “ByB,_;” is adjacent to “B;By”. In a similar way, one can show
that (B,_2, Bn_1, Bo), (Bo, Bn_1, Bn—2) € arca(I'g) and “B,_1B, 2" is adjacent to
“BoB;”. Therefore, reading the subscripts modulo n (here and in the remainder
of the proof), we have (B;_1, B;, Bi11), (Bit1, Bi, Bi_1) € arcy(I'g) and “B;B;_1”
is adjacent to “B;;1B;s” for each ¢« > 1. Hence n must be an even integer and,
by definition, all these 2-arcs contained in C(By, By, B2) determine the same n-
cycle, namely C(By, By, B2). By Theorem 11.3.1(b) any 2-arc in arcy(I's) has the
form (B§, B}, B3) for some x € G, and by definition we have C(B¥, Bf,Bj) =
(By,BY,B3,...,B:_|,BY) = (C(Bo, By, By))*. This implies that £ := {C(E, D, B) :
(E,D, B) € arcy(I'g)} is a G-orbit on n-cycles of I's. Note that, for a given 2-arc
(E,D, B) of arcs(I's), C(E, D, B) is the unique n-cycle in £ containing (E, D, B).
So (a) and (b) are true. If “DE” “BC” are adjacent in I, then (F, D, B) € arcy(I'5)
and by the argument above (F, D, B, (') is a 3-arc contained in C(E, D, B). Con-
versely, from the definition of the n-cycles in &, for each 3-arc (E, D, B, C') contained
in an n-cycle of £, “DE”, “BC” are adjacent in I' and hence (c) follows. a

Remark 11.4.1 Suppose I', GG, B and p are as in Example 11.1.1. Suppose further
that I almost covers I'z. Then p is incidence-preserving, as mentioned at the begin-
ning of this section, and arce(I's) = Arca(I's) by Theorem 11.3.1(c). So in this case
Theorem 11.4.2 implies that I'g is a near n-gonal graph with respect to £. Thus,
Theorem 11.4.2 can be taken as a generalization of the first assertion of Theorem
7.0.2(b), and the proof is similar in spirit to that of the “only if” part of Theorem
7.3.1.

11.5 Reconstruction of [', and 3-arc graphs again

By using the labelling technique established in Section 11.2, we now prove that any
G-symmetric graph T satisfying [P] can be reconstructed from the quotient graph I's
and the action of G on B, namely I' is isomorphic to a 3-arc graph of I'sz with respect
to a certain self-paired G-orbit on 3-arcs of I'z. Conversely, we prove that, for any
G-symmetric graph ¥ and any self-paired G-orbit A on Arcz(X), the 3-arc graph
=(X, A) satisfies the condition [P]. The proof of the following theorem is essentially
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the same as the proofs of Theorems 5.2.1 and 5.2.2.

Theorem 11.5.1 Suppose that T is a G-symmetric graph admitting a nontrivial
G-invariant partition B such that the actions of Gg on B and I's(B) are permu-
tationally equivalent, so the vertices of I' are labelled by ordered pairs of adjacent
blocks of 'g. Then I' =2 =Z(I'g, A) holds for A the (self-paired) G-orbit on Arcs(I'p)
containing the 3-arc (C, B, D, E), where (“BC”, “DE”) is an arc of I.

Conversely, for any G-symmetric graph % and any self-paired G-orbit A on
Arc3(X), the graph T' := Z(3,A), group G and partition B := B(X) satisfy all

the conditions above. Moreover, we have I'g = 3.

Proof Let I',;G and B be as in the first part of the theorem. Let (“BC”, “DE”)
be a fixed arc of I'. Then by Theorem 11.2.1(d), (C, B, D, E) is a 3-arc of I'g. Let
A be the G-orbit on Arcs(I's) containing (C, B, D, E). Since I' is G-symmetric,
there exists € G such that (“BC”, “DE")* = (“DE”,“BC”). So (E,D,B,C) =
(C,B,D,E)” € A by (11.1), and hence A is self-paired. Again by the G-symmetry
of I" and (11.1), we have: (Cy, By, D1, E;) € A < there exists * € G such that
(C4, By, D1, Ey) = (C, B, D, E)* < there exists x € G such that (“B,Cy”, “D1Ey”) =
(“BC”,“DE”)* < (“B,Cy”, “D1E,”) € Arc(I"). Therefore, the mapping “B,C,”
(B1,Ch), for “B1Cy” € V(I'), establishes a graph isomorphism from I" to Z(I'z, A).

Now suppose ¥ is a G-symmetric graph and A is a self-paired G-orbit on Arcz(2),
and let (1,0,0’,7") € A. Then from Lemma 5.2.1, [' := Z(3, A) is a G-symmetric
graph with B := B(X) a nontrivial G-invariant partition of V(I'), where B(X) :=
{B(a) : a € V(X)} is as defined in Section 5.2. If B(«) and B(a') are adjacent blocks
of B, then there exist (a, ) € B(a) and («/, ') € B(«/) such that (a, 3), (¢, 3')
are adjacent in I, and hence (5,a,d/,") € A. In particular, we have (a,a’) €
Arc(X). Conversely, suppose (a, ') € Arc(X). Then since ¥ is G-symmetric there
exists ¢ € G such that (0,0")9 = (a,a’). Setting 79 = ( and (7')Y = ', then
(B,a,a, () = (1,0,0",7)7 € A. So (a, ) € B(a) is adjacent to (¢, ') € B(d)
in I' and hence B(a) and B(a') are adjacent blocks of B. Thus, o — B(«) defines
an isomorphism from 3 to I's. From Lemma 5.2.1(d), the actions of G'p(,) on B(0)
and Y(o) are permutationally equivalent with respect to the bijection (o,0’) — o’.
So the actions of Gp(s) on B(o) and I'y(B(0)) are permutationally equivalent with
respect to the bijection p : (0,0") — B(d’), for (0,0') € B(o). O
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Remark 11.5.1 (a) Theorem 11.5.1 is a counterpart of the second part of Theorem
5.2.3, where I'g and ¥ are assumed to be (G, 2)-arc transitive.

(b) From Theorem 11.4.2(c) and the proof above one can see that, under the
assumptions of Theorem 11.4.2; the self-paired G-orbit A on Arcs(I's) such that
=(I'p, A) = T is precisely the set of all 3-arcs of 'z contained in some n-cycle of £.

Conversely, if, for a G-symmetric graph X, there exist an even integer n > 4
and a G-orbit £ on n-cycles of ¥ such that each 2-arc of ¥ is contained in at most
one n-cycle of £, and that the set of 2-arcs of > contained in some n-cycle of £ is a

G-orbit on Arce(X), then one can check that the following (i)-(iii) hold:

(i) the set A of 3-arcs of ¥ contained in some n-cycle of £ is a self-paired G-orbit
on Arcg(X), and thus I' := Z(X, A) is well-defined;

(ii) for B := B(X), the bijection p from B(c) to I'z(B(c)) defined at the end of

the proof of Theorem 11.5.1 is incidence-preserving; and
(iii) T'[B(o), B(o")] 2 k - K3 for adjacent blocks B(c), B(o’) of B.

These results together give the inverse of Theorem 11.4.2 and generalize the second

assertion in Theorem 7.0.2(b).
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Appendix A

The Chinese originals of the
quotes

The quotes used in the thesis are translated from some Chinese classics !. Listed
below are the Chinese originals and the chapters of the thesis where these quotes

are used.

'We referenced the translations of these classics in the following books: 1. A Source Book
in Chinese Philosophy, translated and compiled by Wing-Tsit Chan, Princeton University Press,
Princeton, NJ, 1963; 2. The Analects of Confucius, translated and annotated by Arthur Waley,
George Allen & Unwin Ltd, London, 1938; 3. Confucius: The Great Digest and the Unwobbling
Pivot, translated and commented by Ezra Pound, Peter Owen, London, 1952.



