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Abstract. This paper describes a general algorithm for finding the commen-
surator of a non-arithmetic hyperbolic manifold with cusps, and for deciding
when two such manifolds are commensurable. The method is based on some
elementary observations regarding horosphere packings and canonical cell de-
compositions. For example, we use this to find the commensurators of all
non-arithmetic hyperbolic once-punctured torus bundles over the circle.

For hyperbolic 3-manifolds, the algorithm has been implemented using
Goodman’s computer program Snap. We use this to determine the commensu-
rability classes of all cusped hyperbolic 3-manifolds triangulated using at most
7 ideal tetrahedra, and for the complements of hyperbolic knots and links with
up to 12 crossings.

1. Introduction

Two manifolds or orbifolds M and M ′ are commensurable if they admit a com-
mon finite sheeted covering. For hyperbolic n-orbifolds, we can suppose that
M = Hn/Γ and M ′ = Hn/Γ′, with Γ and Γ′ discrete subgroups of Isom(Hn).
In this paper, we assume that M and M ′ are of finite volume and of dimension at
least 3. Then, by Mostow-Prasad Rigidity, commensurability means that we can
conjugate Γ by an isometry g such that gΓg−1 and Γ′ intersect in a subgroup of
finite index in both groups.

Given that the classification of finite volume hyperbolic manifolds up to homeo-
morphism appears to be hard, it seems sensible to attempt to subdivide the problem
and start with a classification up to commensurability. Looked at in this way, we
see a remarkable dichotomy between the arithmetic and non-arithmetic cases. (See
[23] for the definition of arithmetic hyperbolic manifolds.)

Define the commensurator of Γ to be the group

Comm(Γ) = {g ∈ Isom(Hn) | [Γ : Γ ∩ gΓg−1] < ∞}.
Then Γ and Γ′ are commensurable if and only if Comm(Γ) and Comm(Γ′) are con-
jugate. Geometrically, an element of the normalizer of Γ in Isom(Hn) represents a
symmetry (i.e. isometry) of M = Hn/Γ. Similarly, an element of the commensura-
tor represents an isometry between finite sheeted covers of M ; this gives a hidden
symmetry of M if it is not the lift of an isometry of M (see [27]).

It follows from deep work of Margulis [24] (see also [35]), that in dimension
≥ 3, the commensurator Comm(Γ) is discrete if and only if Γ is not arithmetic.
This means that the commensurability class of a non-arithmetic, cofinite volume,
discrete group Γ is particularly simple, consisting only of conjugates of the finite
index subgroups of Comm(Γ). In terms of orbifolds, it means that M and M ′ are
commensurable if and only if they cover a common quotient orbifold.

On the other hand, commensurability classes of arithmetic groups are “big”: we
may well have commensurable Γ and Γ′ such that the group generated by gΓg−1

and Γ′ is not discrete for any g.
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A hyperbolic n-orbifold is cusped if it is non-compact of finite volume. This
paper describes a practical algorithm for determining when two cusped hyperbolic
n-manifolds cover a common quotient, and for finding a smallest quotient. For
non-arithmetic finite volume cusped hyperbolic n-manifolds of dimension n ≥ 3,
this solves the commensurability problem.

Section 2 begins with some elementary observations about horoball packings
and canonical cell decompositions of a cusped hyperbolic manifold. This leads
to a characterization of the commensurator of a non-arithmetic cusped hyperbolic
manifold M as the maximal symmetry group of the tilings of Hn obtained by lifting
canonical cell decompositions of M . In Section 3, we use this to determine the
commensurators of non-arithmetic hyperbolic once-punctured torus bundles over
the circle.

Section 4 gives an algorithm for finding the isometry group of a tiling of Hn

arising from a cell decomposition of a hyperbolic manifold, and Sections 5 and 6
describe methods for finding all possible canonical cell decompositions for a cusped
hyperbolic manifold. Section 7 contains some observations on commensurability of
cusps in hyperbolic 3-manifolds which can simplify the search for all canonical cell
decompositions.

In 3-dimensions, each orientable hyperbolic orbifold has the form M = H3/Γ,
where Γ is a discrete subgroup of PSL(2, C) = Isom+(H3). The invariant trace field
k(Γ) ⊂ C is the field generated by the traces of the elements of Γ(2) = {γ2 | γ ∈ Γ}
lifted to SL(2, C). This is a number field if M has finite volume (see [27], [29],
[22]). The invariant quaternion algebra is the k(Γ) subalgebra of M2(C) generated
by Γ(2). These are useful and computable commensurability invariants (see [10],
[23]).

For the arithmetic subgroups of Isom(H3), the invariant quaternion algebra is a
complete commensurability invariant. In fact for cusped arithmetic hyperbolic 3-
orbifolds, the invariant trace field is an imaginary quadratic field and the quaternion
algebra is just the algebra of all 2×2 matrices with entries in the invariant trace field
(see [23, Theorem 3.3.8]); so the invariant trace field is a complete commensurability
invariant. However most cusped hyperbolic 3-manifolds are non-arithmetic (cf. [6])
so other methods are needed to determine commensurability.

Damian Heard and Oliver Goodman have implemented the algorithms described
in this paper for non-arithmetic hyperbolic 3-manifolds; these are incorporated in
the computer program Snap [16]. Using this we have determined the commensura-
bility classes for all manifolds occurring in the Callahan-Hildebrand-Weeks census
([19], [9]) of cusped hyperbolic manifolds with up to 7 tetrahedra, and for com-
plements of hyperbolic knots and links up to 12 crossings, supplied by Morwen
Thistlethwaite (see [20]). These results are discussed in Section 8, while Section 9
outlines the Dowker-Thistlethwaite notation used to describe links.

This work has uncovered interesting new examples of commensurable knot and
link complements (see Examples 2.1 and 2.2), and a new example of a knot with
shape field properly contained in the invariant trace field (see Example 7.1). The
results have also been used by Button [8] to study fibred and virtually fibred cusped
hyperbolic 3-manifolds.

For 1-cusped manifolds we note that “cusp density” (see Section 2) is a very
good invariant. We have found only a few examples of incommensurable 1-cusped
manifolds which are not distinguished by cusp density (see Example 2.3).

There is also a “dumb” algorithm, based on volume bounds for hyperbolic orb-
ifolds, which works for any (possibly closed) non-arithmetic hyperbolic 3-orbifold,
but appears to be quite impractical. If M and M ′ cover Q with Vol(Q) > C
then the degrees d, d′ of the coverings are bounded by D = ⌊Vol(M)/C⌋ and
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D′ = ⌊Vol(M ′)/C⌋, respectively. Then if M and M ′ are commensurable, they
admit a common covering N of degree at most D′ over M and at most D over
M ′. The best current estimate for C for orientable non-arithmetic 3-orbifolds is
0.041 . . . from recent work of Marshall-Martin [25]. Since Vol(M) ≈ 2 is typical,
we would have to find all coverings of M ′ of degree d′ ≤ 50. This means finding
all conjugacy classes of transitive representations of π1(M

′) into S50, a group with
around 1064 elements!

Acknowledgements: We thank Ian Agol for pointing out a simplification to our
method of determining the commensurability of Euclidean tori, Gaven Martin for
information on current volume bounds, and Walter Neumann for several interesting
discussions on this work. We also thank Alan Reid, Genevieve Walsh, and the
referee for their helpful comments on the paper.

2. The Commensurability Criterion

We use the following terminology throughout this paper. A set of disjoint
horoballs in Hn is called a horoball packing, and a cusp neighbourhood in a hy-
perbolic n-orbifold is one which lifts to such a horoball packing.

Lemma 2.1. The symmetry group of a horoball packing in Hn is discrete whenever
the totally geodesic subspace spanned by their ideal points has dimension at least
n − 1.

Proof. Let {gi} be a sequence of symmetries of the packing converging to the iden-
tity. Choose horoballs B1, . . . , Bn whose ideal points span a totally geodesic sub-
space H of dimension n−1. For i sufficiently large, we can assume that gi(Bk) = Bk

for k = 1, . . . , n. But this implies that these gi fix H pointwise. Since the only such
isometries are the identity, and reflection in H , the sequence must be eventually
constant. �

Lemma 2.2. Let M = Hn/Γ be a finite volume cusped hyperbolic orbifold. The set
of parabolic fixed points of Γ spans Hn.

Proof. The set of parabolic fixed points is dense in the limit set of Γ which equals
the whole of the sphere at infinity. �

Lemma 2.3. Let M , M ′ be finite volume cusped hyperbolic orbifolds. Then M and
M ′ cover a common orbifold Q if and only if they admit choices of cusp neighbour-
hoods lifting to isometric horoball packings.

Proof. If M and M ′ cover Q, choose cusp neighbourhoods in Q and lift to M and
M ′. These all lift to the same horoball packing in Hn, namely the horoball packing
determined by our choice of cusp neighbourhoods in Q. Conversely, both M and
M ′ cover the quotient of Hn by the group of symmetries of their common horoball
packing which, by Lemmas 2.1 and 2.2, is discrete. �

We can define the cusp density of a 1-cusped hyperbolic orbifold M as follows.
Since M has only one cusp it has a unique maximal (embedded) cusp neighbourhood
U . The cusp density of M is Vol(U)/Vol(M). Since the cusp density of any orbifold
covered by M is the same, it is a commensurability invariant of orbifolds with
discrete commensurator.

Choosing a full set of disjoint cusp neighbourhoods in a non-compact finite vol-
ume hyperbolic n-manifold M determines a “Ford spine.” This is the cell complex
given by the set of points in M equidistant from the cusp neighbourhoods in two
or more directions. Cells of dimension n − k contain points equidistant from the
cusp neighbourhoods in k+1 independent directions (k = 1, . . . , n). This spine can
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also be seen intuitively as the “bumping locus” of the cusp neighbourhoods: blow
up the cusp neighbourhoods until they press against each other and flatten.

Dual to the Ford spine is a decomposition of M into ideal polytopes, generically
simplices. The ideal cell dual to a given 0-cell of the Ford spine lifts to the con-
vex hull in Hn of the set of ideal points determined by the equidistant directions.
We call the cell decompositions that arise in this way canonical.1 For a 1-cusped
manifold the canonical cell decomposition is unique. It is shown in [4] that a finite
volume hyperbolic manifold with multiple cusps admits finitely many canonical cell
decompositions.

Theorem 2.4. Cusped hyperbolic n-manifolds M and M ′ cover a common orbifold
if and only if they admit canonical ideal cell decompositions lifting to isometric
tilings of Hn.

Proof. If M and M ′ cover Q, choose cusp neighbourhoods in Q and lift them to
M , M ′ and Hn. Constructing the Ford spine and cell decomposition in Hn clearly
yields the lifts of those entities from both M and M ′ corresponding to our choice
of cusp neighbourhoods.

Conversely, observe that the symmetry group of the common tiling gives an
orbifold which is a quotient of both manifolds. �

Remark 2.5. We can omit the word ‘canonical’ in the above theorem. The proof
is unchanged.

The previous theorem gives the following characterization of the commensurator.

Theorem 2.6. Let M = Hn/Γ be a finite volume cusped hyperbolic n-manifold
with discrete commensurator. Then Comm(Γ) is the maximal symmetry group of
the tilings of Hn obtained by lifting canonical cell decompositions of M ; it contains
all such symmetry groups.

For manifolds with discrete commensurator, we can now define a truly canon-
ical ideal cell decomposition as follows. Find Comm(Γ) as in the above theorem.
Choose equal volume cusp neighbourhoods in Hn/Comm(Γ). Lift them to M and
take the resulting canonical cell decomposition of M . Two such manifolds are com-
mensurable if and only if their truly canonical cell decompositions give isometric
tilings of Hn.

Choosing maximal cusp neighbourhoods in Hn/Comm(Γ) also gives a canonical
version of cusp density for multi-cusped manifolds.

Theorem 2.6 is the basis for the algorithms described in this paper. Canoni-
cal cell decompositions can be computed by the algorithms of Weeks described in
[33] and implemented in SnapPea [34]. In Section 4 below we give an algorithm
for finding the isometry groups of the corresponding tilings of Hn. Combining
this with Theorem 2.6 gives an algorithm for finding commensurators of 1-cusped
non-arithmetic hyperbolic n-manifolds. In Sections 5 and 6 we extend this algo-
rithm to multi-cusped manifolds, by describing methods for finding all canonical
cell decompositions.

For hyperbolic 3-manifolds, these algorithms have been implemented by Heard
and Goodman. (These are incorporated in “find commensurator” and related
commands in the program Snap [16]). We conclude this section with some examples
discovered during this work.

1The term is not really ideal since, for manifolds with multiple cusps, there are generally
multiple canonical cell decompositions depending on the choice of cusp neighbourhoods.
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2.1. Example: a 5-link chain and friends. The following five links have com-
mensurable complements, as shown using our computer program. In the first three
cases at least it is possible to ‘see’ this commensurability.

The first of these is the 5-link chain C5. Thurston [32, Chapter 6] explains how to
obtain a fundamental region for the hyperbolic k-link chain complements: we span
each link of the chain by a disk in the obvious manner. The complement of the
union of these five disks is then a solid torus. Once the link is deleted, the disks and
their arcs of intersection divide the boundary of the solid torus into ideal squares
A, B, C, D, E as shown, with cusps labelled a, b, c, d, e.

A

A

B

B

C

C

D

D

E

E
C D E A B C D

A B C D E A B
E A

D E

a b c d e a

e a b c d e

d e a b c d

A hyperbolic structure is given by taking two regular pentagonal drums with
ideal vertices and adjusting their heights to obtain (ideal) square faces. Glue two
drums together as shown, identify the top with the bottom via a 4π

5 rotation, and
glue faces as indicated. Edges are then identified in 4’s, two horizontal with two
vertical. It is easy to check that the sum of dihedral angles around each edge is 2π
so this gives a hyperbolic structure, since the angle sum is π at each ideal vertex of
a drum.

CD

A
B

E

E
A

BC

D

a
b

c

d

e e
a

b

c

d d
e

a

b

c
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It is clear from the symmetry of the picture that the drums are cells in the canon-
ical cell decomposition obtained by choosing equal area cusp cross sections. We
remark that Neumann-Reid show that this link complement is non-arithmetic in
[27, Section 5].

Now change the 5-link chain by cutting along the shown disk, applying a half
twist, and re-gluing to obtain our second link. In the complement, this surgery
introduces a half turn into the gluing between the A-faces. Edges are still identified
in 4’s, two horizontal with two vertical, but there are now only four cusps.

CD

A
B

E

E A

BC

D

a
b

c

d

b b
a

b

c

d d
b

a

b

c

If we repeat the process on the second disk shown we obtain the third link. Again
this corresponds to changing the gluing pattern on our two drums.

Since these link complements are non-arithmetic, the tiling of H3 by pentagonal
drums covers some canonical cell decomposition of each one. Since their volumes
are the same, each one decomposes into two pentagonal drums. It should therefore
be possible, in each case, to find 5 ideal squares meeting at order 4 edges, cutting
the complement into one or two solid tori. We leave this as a challenge for the
reader.

2.2. Example: commensurable knot complements. Commensurable knot com-
plements seem to be rather rare. Previously known examples include the Rubinstein-
Aitchison dodecahedral knots [3] and examples due to a construction of Gonzáles-
Acuña and Whitten [13] giving knot complements covering other knot complements.
For example, the −2, 3, 7 pretzel knot has 18/1 and 19/1 surgeries giving lens spaces.
Taking the universal covers of these lens spaces gives new hyperbolic knots in S3

whose complements are 18- and 19-fold cylic covers of the (−2, 3, 7)–pretzel com-
plement.

Our program finds a pair of knots “9n6” and “12n642”, having 9 and 12 crossings
respectively, whose complements are commensurable with volumes in the ratio 3 : 4.
Walter Neumann has pointed out that these knots belong to a very pretty family
of knots: take a band of k repeats of a trefoil with the ends given m half twists
before putting them together. E.g. (k, m) = (3, 2):
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The half-twists are put in so as to undo some of the crossings of the trefoils (allowing
the above projection to be rearranged so as to have 9 crossings). The pair of knots
found by our program correspond to (k, m) = (3, 2) and (4, 1).

To see that these knots have commensurable complements we find a common
quotient orbifold. In each case this is the quotient of the knot complement by its
symmetry group; these are dihedral groups of order 12 and order 16 respectively.

The picture of 9n6 above shows an obvious axis of 2-fold symmetry; below left is
the quotient, which is the complement of a knot in the orbifold S3 with singular set
an unknot labelled 2. By pulling the knot straight, we see that this is an orbifold
whose underlying space is a solid torus with knotted singular locus.

2 2

If we arrange the singular locus on a torus parallel to the boundary of the solid
torus we see 3 clasps, 3 strands in the (vertical) core direction, and a strand with
slope 2/1. The view from inside the solid torus looking towards the boundary is
shown below. (For the knot (4, 1) we would see 4 clasps, 4 strands in the core
direction and a strand with slope 1/1.)

*

*

*

*

*

*

*

* *

*

*

*

**

*

*

*

The solid torus with its singular set has three 2-fold symmetries whose axes intersect
the solid torus in 6 arcs, each passing perpendicularly through the core like a skewer,
with symmetry group dihedral of order 6. The ends of the arcs are shown as stars
above.

The quotient orbifold is obtained by taking a slice of the solid torus between
two axes and folding closed the top and bottom disks like books. The result is a
ball with the axes giving two unknotted arcs of order 2 in the singular set, running
out to the boundary (which is now a (2, 2, 2, 2)–pillowcase orbifold). The original
singular set gives an arc linking the other two, so that the whole singular locus is
an ‘H’ graph labelled with 2’s.

The last three pictures show what happens to the singular locus in one slice of
the solid torus as we fold. We begin with the annulus in the bottom 1/6th of the
previous figure, redrawn after twisting the bottom. This bounds a solid cylinder
with the singular locus as shown in the middle figure. Folding along the top and
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bottom (and expanding the region slightly) gives the final result.

*

* *

* *

*

We leave it to the reader to draw similar pictures for the knot with (k, m) = (4, 1)
and verify that the result is indeed the same orbifold. Alternatively, Orb [18] or
SnapPea [34] can be used to verify that the appropriate dihedral covers of the final
orbifold give the complements of the knots with (k, m) = (3, 2) and (4, 1).

We remark that Walter Neumann has found an infinite family of new examples
of pairs of commensurable knot complements in the 3-sphere; this example is the
simplest case.

2.3. Example: cusp horoball pictures. Figure 1 shows the horoball packings of
two 1-cusped census manifolds m137 and m138 as seen from the cusp. Using Snap
[16], we find that the commensurability classes of these two equal-volume mani-
folds are indistinguishable by cusp density or invariant trace field. Their maximal
horoball packings and canonical cell decompositions are however different. (For
example, the edges joining degree 4 vertices in the following cusp diagrams are all
parallel for m137, but not for m138.)

Figure 1. The maximal horoball packing and canonical cell de-
composition as seen from the cusps of manifolds m137 and m138.
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3. Example: punctured torus bundles

The bundles over S1 with a once-punctured torus as fibre provide an interesting
family of 1-cusped hyperbolic 3-manifolds with known canonical triangulations.
By analysing how symmetries of the lifted triangulations of the universal cover
appear when viewed from the cusp we obtain (in all the non-arithmetic cases)
strong constraints on what symmetries may be possible. We then show that they
all come from symmetries of the manifold. This leads to the following:

Theorem 3.1. Let M = H3/G be an orientable non-arithmetic hyperbolic 3-
manifold which is a once-punctured torus bundle over S1. Then M has no “hidden
symmetries”, i.e. the commensurator of G is the normalizer of G in Isom(H3).

Let F denote a once-punctured torus, and let ϕ : F → F be an orientation
preserving homeomorphism. Let

M = Mϕ = F ×ϕ S1 =
F × [0, 1]

(x, 0) ∼ (ϕ(x), 1)

be the mapping torus of ϕ. Identifying F with (R2 − Z2)/Z2, we have that ϕ is
isotopic to an element of SL(2, Z); since M depends only on the isotopy class of
ϕ we assume ϕ ∈ SL(2, Z). Then M is hyperbolic whenever ϕ is hyperbolic, i.e.
when ϕ has distinct real eigenvalues; Mϕ and Mϕ′ are homeomorphic if and only
if ϕ and ϕ′ are conjugate.

Define matrices

L =

(

1 0
1 1

)

, R =

(

1 1
0 1

)

.

For each word w in the symbols L, R define ϕw ∈ SL(2, Z) as the corresponding
matrix product.

Lemma 3.2. Each ϕ ∈ SL(2, Z) is conjugate to ±ϕw for some word w in the
symbols L, R. The sign is unique and w is determined up to cyclic permutations of
its letters.

Let M = Mϕ where ϕ = ±ϕw is hyperbolic. The so-called monodromy trian-
gulation T of M has one tetrahedron for each letter in w and gluings determined
by w and the sign. It is nicely described in [12] and [14]. It follows from work of
Lackenby [21] that T is the canonical ideal cell decomposition of M . Other proofs of
this result have recently been given by Guéritaud ([14], [15]) and Akiyoshi, Sakuma,
Wada and Yamashita (see [5]).

The intersection of T with a (small) torus cross section of the cusp of M , lifted to
its universal cover R2, gives the (lifted) cusp triangulation T0 of M . Note that edges
and vertices of T0 correspond to edges of T seen transversely or end-on respectively.
SnapPea [34] provides pictures of these cusp triangulations: see Figure 3 for an
example.

We need two things: the first is a combinatorial description of T0 in terms of w;
the second is an understanding of which edges and vertices of T0 correspond to the
same edges of T in M . Both are outlined briefly here: for detailed explanations we
refer the reader to the Appendix of [12] and Sections 3 and 4 of [14].

3.1. The monodromy triangulation T . The triangulation T is built up in layers
by gluing tetrahedra according to the letters of w. We begin with an almost flat
ideal tetrahedron projecting onto a punctured torus; the tetrahedron has edges
a, b, c, c− identified as shown below.
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a

b b

a

cc-

For each successive letter L or R in the word w, we attach a tetrahedron to the
top of the previous tetrahedron, as shown below in the cover (R2 − Z2) × R.

L

R

a′
b′

a

b c

c′

a′

b′

c

c′

After using all the letters of w, the final triangulation of the fibre F differs from
the initial triangulation by the monodromy ϕ, and we can glue the top and bottom
together to obtain an ideal triangulation T of M .

3.2. Combinatorial description of T0. Now consider the induced triangulation
of a cusp linking torus (i.e. cusp cross section) in M . Each tetrahedron contributes
a chain of 4 triangles going once around the cusp as shown in Figure 2.

a

b c

a

b c

a

b c

a

b c

a a

b

b

a

a

b

b

c

a

b

c

b

c

a

b

c

a

b

b

b

a

a

c-

c-

c-

c-

c- c-

c-

c-

c

c-

Figure 2. The chain of triangles around a cusp coming from one tetrahedron.

In the triangulation T0 of R2 this lifts to an infinite chain of triangles forming a
(vertical) saw-tooth pattern.
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Each chain is glued to the next in one of two ways depending on whether the
letter is an L or an R.

RL

Before gluing we adjust slightly the “front” triangles of the first chain and the
“back” triangles of the second, so as to create two horizontal edges. After stacking
these chains of triangles together we have a decomposition of T0 into horizontal
strips which can be described combinatorially as follows.

Make a horizontal strip out of triangles corresponding to the letters of w: for
each L add a triangle with a side on the bottom edge of the strip and a vertex
at the top; vice-versa for R; repeat infinitely in both directions. For example, for
LRRLR we have:

. . . . . .

Fill the plane by reflecting repeatedly in the top and bottom edges of the strip.
Then the cusp linking torus is the quotient of the plane by the group G0 generated
by vertical translation by four strips, and horizontal translation by one period of
the strip (composed with an extra vertical translation by two strips if ϕ = −ϕw).
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Figure 3. The cusp triangulation of M = Mϕw
where w =

LRRLR. The triangulation of M has five edges, labelled 0-4, which
appear as both edges and vertices of the cusp triangulation.
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3.3. Edge/vertex correspondence in T0. To understand which edges of T0 are
identified in T , we define a “direction” on each horizontal strip: right to left on the
first strip, left to right on the strips below and above it, and so on, so that adjacent
strips have opposite directions. Then we have:

Lemma 3.3. Each edge e of T0 which crosses a strip bounds two triangles, one of
which, δ say, lies on the side of e given by the direction on the strip. Then e and
the opposite vertex of δ give the same edge of T . Horizontal edges of T0 correspond
with the edges at the opposite vertices of both adjacent triangles.

This result is illustrated in Figure 4 and will be important in the arguments
below.

initial strip

reflected stripc

a

b

b

b
initial strip

reflected stripc

c

a

a

a

c
b′

c′

a′

a′

a′

b′ c′

Figure 4. Edge identifications in strips of T0.

Proof. The boundary between two tetrahedra in T is a punctured torus consisting
of two ideal triangles, homotopic to a fibre of M . In T0 the boundaries give edge
cycles, lifts of a cycle of 6 edges going once around the cusp in the vertical direction
as in Figure 2. Here are two cycles:

Cycles meeting a given strip form either “L’s and Γ’s” or “backwards L’s and Γ’s.”
This gives the directions: L’s and Γ’s read left to right!

We see from Figure 2 that the edges of a cycle are homotopic to three edges
of T , a, b, c say, cyclically repeated. The vertices are the same three edges of T
arranged so that if an edge is a, its vertices are b and c and so on (as in Figure
4). Thus for any (forwards or backwards) L or Γ: the edge at the down-stroke (a
strip-crossing edge) equals the edge seen at the other end of its horizontal stroke.
Further, the edge seen at any horizontal stroke equals the edge at the other end of
the down-stroke. This proves the lemma. �

3.4. Reduction to T0. Let G be the image of the holonomy representation of
π1(M) in Isom(H3) so that M = H3/G as usual. Let x be a fixed point of some
maximal parabolic subgroup of G which we identify with the group of translations
G0 defined above. We regard symmetries and hidden symmetries as isometries of
H3. Since M is 1-cusped we can compose any symmetry or hidden symmetry with
an element of G to obtain an isometry which fixes x. Thus if M has a symmetry,
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it is represented by a symmetry of T0; if it has a non-trivial hidden symmetry, it is
represented by a symmetry of T0 which does not come from a symmetry of M .

Since our combinatorial picture of T0 is not metrically exact, we only know that
symmetries and hidden symmetries act as simplicial homeomorphisms (S.H.) of T0.

Lemma 3.4. Simplicial homeomorphisms of T0 preserve horizontal strips whenever
w 6= (LR)m or (LLRR)m as a cyclic word, for any m > 0.

Since vertex orders in T0 are all even we can define a straight line to be a path
in the 1-skeleton which enters and leaves each vertex along opposite edges. A strip
consists of a part of T0 between two (infinite, disjoint) straight lines such that every
interior edge crosses from one side of the strip to the other.

Proof. If an edge of T0 lies on the edge of a strip, not necessarily horizontal, the
opposite vertex of the triangle which crosses that strip must have order at least 6:
the straight line going through this vertex has at least the two edges of the triangle
on one side.

If there exists an S.H. which is not horizontal strip preserving, every vertex of T0

will lie on a non-horizontal edge which is an edge of some strip (namely the image
of a previously horizontal strip edge).

Suppose there is a vertex of order 10 or more, corresponding to 3 or more adjacent
L’s or R’s in w:

. . .

Here none of the non-horizontal edges shown can lie on a strip edge because they are
all opposite vertices of order 4. So in this case all S.H.’s must preserve horizontal
strips.

Suppose there is a vertex of order 8, corresponding to LL or RR in w:

Now the only non-horizontal edges shown which can be strip edges are the vertical
ones. Vertex orders on this vertical edge alternate 4, 8, 4, 8. So if an S.H. maps a
horizontal strip edge to this vertical one, vertex orders along some horizontal edge
must be 4, 8, 4, 8, . . .. This determines T0 and hence w as (LLRR)m. (The reader
can verify that this particular T0 admits a π/2 rotation.)

Finally suppose there is no vertex of order > 6. It follows immediately that w is
(LR)m and T0 is the tiling of the plane by equilateral triangles. (Again, this admits
S.H.’s which are not horizontal strip preserving.) �

Lemma 3.5. Simplicial homeomorphisms of T0 coming from symmetries of T pre-
serve the horizontal strip directions whenever w 6= (LR)m or (LLRR)m.

Proof. An S.H. of T0 which comes from a symmetry of T obviously preserves the
order of every edge of T . Thus if we label each edge of T0 with the order of the
corresponding edge of T , the labels must be preserved.

The order of an edge of T corresponding to a vertex of T0 is simply its order
as a vertex of T0. By Lemma 3.3 we can use the strip directions to label the
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corresponding edges of T0. Given a vertex of order 10 or more we have:

4 . . .
4 ?

6+

? 4
6+ 4

The direction on a horizontal strip cannot be reversed because this would swap an
edge of order 4 with one of order 6 or more.

Suppose now the maximum vertex order is 8. For each order 8 vertex we have:

4

4

If there is an S.H. which reverses strip direction then the other two sides of this
diamond figure, wherever it appears, must also be labelled with 4’s.

44

The 4 on the upper right edge implies that the right hand vertex of the diamond
has order ≥ 8, hence 8. This gives another diamond figure adjacent to the first one.
The argument can be repeated giving the pattern associated with w = (LLRR)m.

If there are no vertices of order > 6, w = (LR)m. �

Proof of Theorem 3.1. It is shown in [7] that the only arithmetic orientable hy-
perbolic punctured torus bundles are those for which w = LR, LLR (or LRR)
or LLRR, or powers of these, having invariant trace fields Q(

√
−3), Q(

√
−7) and

Q(
√
−1) respectively. Thus, in the non-arithmetic cases, Lemmas 3.4 and 3.5 show

that all symmetries of T0 which come from hidden symmetries of M are represented
by simplicial homeomorphism which preserve the strips and strip-directions.

Note that there are two “sister” manifolds for each w depending on whether
the monodromy is ϕw or −ϕw; the triangulations of H3 however are the same,
depending only on w.

It is now easy to see that the possible symmetries of T0, modulo the translations
in G0, are restricted to the types listed below. We show that each, if it occurs at
all, comes from an actual symmetry of M .

(1) Shifting up or down by two strips. This is realized by the symmetry
(

−1 0
0 −1

)

× 1 from F ×±ϕw
S1 to itself. (Note that

(

−1 0
0 −1

)

is central in SL(2, Z).)

ϕw

(

−1 0
0 −1

) × 1

ϕw
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(2) If w is a power, w = um, then T0 admits a horizontal translation by ℓ(u)
triangles, where ℓ(u) is the length of the word u. In this case

ϕu

ϕu

ϕu

M =

and 1 × r2π/m gives a symmetry of order m (where rθ denotes rotation of

the unit circle S1 by θ). For the −ϕw case we replace one of the ϕu’s by
−ϕu. After rotating we also have to apply −1 × 1 to F × [0, 1/m].

(3) If w is palindromic, i.e. w and its reverse w′ are the same as cyclic words,
then T0 admits a rotation by π about a point on one of the strip edges. This

is realized by

(

1 0
0 −1

)

× refl(S1), where refl(S1) denotes a reflection of

S1.
ϕw

1 × refl(S1)

ϕ−1
w

(

1 0
0 −1

) × 1

ϕw′

Note that conjugation by

(

1 0
0 −1

)

takes L to L−1 and R to R−1.

(4) If ℓ(w) is even and rotating w by a half turn swaps L’s and R’s, T0 has a
glide reflection mapping a strip to itself, exchanging the top and bottom

of the strip. This is realized by

(

0 1
1 0

)

× 1 since conjugation by this

matrix swaps L and R. More explicitly, let w = uv where v is u with L’s
and R’s interchanged. The symmetry is

ϕu

ϕv

(

0 1
1 0

) × 1

ϕv

ϕu

followed by rπ on the S1 factor. This symmetry is orientation reversing.
(5) If ℓ(w) is even and reversing w swaps L’s and R’s (we might say that w

is anti-palindromic) then T0 admits a glide reflection with vertical axis,

shifting everything up by one strip. This is realized by

(

0 1
−1 0

)

×

refl(S1) since conjugation by

(

0 1
−1 0

)

takes L to R−1 and R to L−1.

This symmetry is orientation reversing. We leave the picture as an exercise
for the reader.

�

Clearly if M admits any two of the symmetries 3–5 it admits the third which is
a product of the other two. Thus if w is not a power, M may have one of 5 possible
symmetry groups.
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4. Algorithm for finding isometries of tilings

To apply our commensurability criterion, Theorem 2.4, we need a way to deter-
mine when tilings of Hn, arising from ideal cell decompositions, are isometric. We
pursue this question in a slightly more general setting.

Let M and M ′ be geometric n-manifolds with universal cover Xn = En or
Hn, each with a given finite decomposition into convex polyhedra. We wish to
determine whether the tilings T and T ′ which cover these two cell decompositions
are isometric. (The elements of T (resp. T ′) are convex polyhedra in Xn which
project to polyhedra in the decomposition of M (resp. M ′).)

Necessary and sufficient conditions for the tilings to be isometric are as follows.

(1) There is an isometry i of Xn which maps an element of T isometrically
onto an element of T ′.

(2) Whenever i maps P ∈ T isometrically onto P ′ ∈ T ′, and F is a (codimen-
sion 1) face of P , i maps the neighbour of P at F isometrically onto the
neighbour of P ′ at i(F ).

Sufficiency follows from the fact that we can proceed from any tile in T to any other
by a finite sequence of steps between neighbouring tiles.

Let S and S′ denote the polyhedra decomposing M and M ′ respectively.
Let Θ denote the set of all triples (j, p, p′), where p ∈ S, p′ ∈ S′, and j is an

isometry carrying p onto p′. We can find Θ in a finite number of steps. Condition 1
above is equivalent to Θ being non-empty.

We say that (j, p, p′) ∈ Θ is induced by an isometry i of Xn if there exist P ∈ T
projecting to p and P ′ ∈ T ′ projecting to p′ such that i carries P isometrically
onto P ′ and the restriction induces j. Let f be a face of p and let q and q′ be the
neighbours of p and p′ at f and j(f) respectively. The restriction of j to f induces
an isometry between certain faces of q and q′. If this extends to (jq, q, q

′) we say
that (j, p, p′) extends across f to (jq , q, q

′). If (j, p, p′) is induced by i then (jq, q, q
′)

will be also.
Condition 2 is equivalent to the following: whenever (j, p, p′) is induced by i,

and f is a face of p, then (j, p, p′) extends across f .

Theorem 4.1. With the above notation, the tilings T and T ′ are isometric if and
only if there exists a non-empty subset I of Θ such that every element of I extends
across each of its faces to yield another element of I.

Proof. If T and T ′ are isometric with isometry i, simply let I be the set of elements
of Θ induced by i.

Conversely, suppose we have I ⊆ Θ having the stated properties. Choose any
element (j, p, p′) ∈ I and any isometry i of Xn which induces it. Clearly condition 1
above is satisfied. For condition 2 note that if i maps P onto P ′ and this induces
(j, p, p′) ∈ I then, because this extends across all of its faces, i maps neighbours of
P isometrically onto neighbours of P ′ and these too induce elements of I. Therefore
condition 2 is satisfied with all the induced triples belonging to I. �

An algorithm for finding such a subset I ⊆ Θ or establishing that none exists
is straightforward. If Θ is empty, stop; there is no such subset. Otherwise choose
any element of Θ and put it in I. For each element of I check if we can extend
across all faces. If we can’t, remove all elements of I from Θ and start again. If
we can, and every element we reach is already in I, stop and output I. If we can
extend across faces of all elements of I, and we obtain new elements not yet in I,
add those new elements to I and check again.

Each set I found by the algorithm represents an equivalence class of isometries
carrying T onto T ′: choose an isometry i inducing any element of I; then isometries
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i, i′ are equivalent if i′ = g′ig where g is a covering transformation of M and g′ is
a covering transformation of M ′.

To find the symmetry group of a tiling T we apply the algorithm with T = T ′,
M = M ′ etc. Let Γ denote the group of covering transformations of M . Repeating
the algorithm until Θ is exhausted we obtain finitely many equivalence classes of
symmetries. These represent the double cosets of Γ in Symm(T ). Together with Γ
they generate Symm(T ).

Remark 4.2. Each set I found by this algorithm also represents a common covering
N of M and M ′ constructed as follows: For each element r = (j, p, p′) ∈ I let pr

denote a copy of p. Let N be the disjoint union of the polyhedra pr as r varies over
I, with the following face identifications. Each face f of p appears as a face fr of
pr. Whenever r extends across f to s = (jq, q, q

′), identify face fr of pr with face
fs of qs.

4.1. Example. Let M be the Euclidean torus obtained by gluing a 1 by 3 rectangle
along opposite pairs of edges. Let M ′ be another such torus obtained by gluing
a 2 by 1 rectangle. Subdivide each into unit squares as shown, so that S, the
subdivision of M , equals {A, B, C} while S′ = {P, Q}. Both S and S′ lift to tilings
of the plane by unit squares.

A B C

A B C

Q

P

Q

P

Θ consists of 48 elements since there are 8 ways of isometrically mapping one
unit square onto another and 6 combinations of squares to be mapped. Suppose
we start with (tAP , A, P ) where tAP denotes the translation carrying A onto P
in the picture. We can extend (tAP , A, P ) across the marked edge (whose image
in M ′ is also shown) to obtain (tBP , B, P ). Continuing until we have extended
across every available edge we obtain 6 elements of Θ which we can abbreviate to
{tAP , tBP , tCP , tAQ, tBQ, tCQ}. These give rise to the following common covering
of M and M ′.

AP
t t t

t t t

BP CP

AQ BQ CQ

Suppose instead we begin with a clockwise rotation rAP through 90◦ carrying A
onto P . Then we obtain a different common cover.

BQ BP
r
AP

r r
CP

r
AQ

r r
CQ
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Suppose finally we subdivide one of the squares in S′ into two triangles. Now the
tilings are clearly not isometric.

A B C

A B C

R
Q

P

P

R
Q

The algorithm might start with tAP but when it tries to extend this across the
marked edge it will find that the induced mapping from an edge of A to an edge of
Q does not extend to any isometry from A to Q.

4.2. Combinatorial construction of coverings. Mostow-Prasad rigidity often
allows us to work in a purely combinatorial setting; this motivates the follow-
ing. The algorithm described above can be viewed as a method for constructing
a common cover of two manifolds which admit suitable subdivisions into polyhe-
dra. The algorithm works equally well for topological spaces M and M ′ admitting
n-dimensional polyhedral decompositions (i.e. obtained by gluing n-dimensional,
Euclidean or finite volume hyperbolic, convex polyhedra pairwise along their (n−1)-
dimensional faces, such that open faces of dimension q ≤ n embed). We then let
each element (j, p, p′) ∈ Θ represent a combinatorial isomorphism between p and
p′. (We can barycentrically subdivide the decompositions of M and M ′ in order
to realize the j’s as piecewise linear homeomorphisms in a canonical way.) Now, if
the algorithm is successful it constructs, in general, a branched covering of M and
M ′, branched over the codimension 2 skeleta of M and M ′.

When M and M ′ are PL-manifolds, we would like to construct an unbranched
cover which is also a manifold. It is sufficient to check that the cover we construct
does not branch over any codimension 2 cell of M or M ′. For if this is the case
we proceed by induction on q to show that our cover is not branched over any
codimension q cell of M (or M ′). By construction, there is no branching over
cells of codimension 0 and 1, and we assume that there is no branching over cells of
codimension 2. So suppose q ≥ 3 and there is no branching over cells of codimension
≤ q−1. Then the link of a codimension q cell in the cover is a connected unbranched
covering of the link of a codimension q cell of M . But since the latter is a (q − 1)-
sphere, hence simply connected since q ≥ 3, the covering is a homeomorphism.

In the case of most interest to us, namely when M and M ′ are cusped hyperbolic
3-manifolds, Mostow-Prasad rigidity ensures that if N topologically covers both M
and M ′ then the induced hyperbolic structures on N are isometric.

Frequently, an ideal cell decomposition of a hyperbolic 3-manifold consists en-
tirely of ideal tetrahedra. If this is the case for M and M ′, then our algorithm
will always find a common cover, branching over the edge sets of the two mani-
folds (elements of Θ will always extend over their faces because all tetrahedra are
combinatorially equivalent). This will indicate that the two manifolds are commen-
surable only if the covering is in fact unbranched. When an element of Θ induces a
mapping of an edge e of (the ideal cell decomposition of) M onto an edge e′ of M ′,
the resulting cover will be unbranched if and only if the order of e (the number of
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tetrahedra to which glue around it) is equal to the order of e′. For example, this
has the following corollary.

Theorem 4.3. If a finite volume hyperbolic 3-manifold M admits a decomposition
into ideal tetrahedra such that the order of every edge is 6, then M is commensurable
with the complement of the figure-8 knot.

5. Enumerating canonical cell decompositions I

For 1-cusped hyperbolic manifolds with discrete commensurator we now have
all the ingredients of an effective method for testing commensurability. For multi-
cusped manifolds we need a way to search through the (finite) set of all canonical
ideal cell decompositions. In this section and the next we describe two alternative
approaches to this problem, while in Section 7 we show how the search can be
restricted for greater efficiency.

The first approach is very simple minded: if we can bound the degree with which
M covers its commensurator quotient, we can enumerate all cusp cross sections
which could possibly cover equal area cross sections in the quotient. Such degree
bounds can be obtained from estimates on the the minimum volume of cusped
non-arithmetic hyperbolic 3-manifolds ([26], [1], [28]).

The second approach is geometric and may be of more theoretical interest since
it truly finds all the canonical cell decompositions. In fact it associates with a given
c-cusped M , a convex polytope in Rc whose k-dimensional faces, for 0 ≤ k < c, are
in 1-1 correspondence with canonical cell decompositions of M .

Let M be a hyperbolic orbifold with (horoball) cusp neighbourhoods C1, . . . , Cm

and let N be a degree d quotient of M with corresponding cusp neighbourhoods
c1, . . . , cn. Let π : M → N be the covering projection and let cj(i) = π(Ci). If we
choose horospherical cross sections in N with “area” (i.e. codimension 1 volume)
equal to 1, the area of ∂Ci is equal to the degree with which Ci covers cj(i). The
sum of the areas of the Ci covering cj will be d for each cj .

Thus, in order to find a possible degree d quotient of M via the canonical cell
decomposition, we can enumerate the possible integer area vectors as follows. For
each n, 1 ≤ n ≤ m, and each partition of {1, . . . , m} into n non-empty subsets
I1, . . . , In, enumerate all area vectors (a1, . . . , am) such that each ai is a positive
integer and

∑

i∈Ij
ai = d for j = 1, . . . , n.

Example: if m = 3 we have partitions {{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}},
{{1}, {2, 3}} and {{1}, {2}, {3}}. The first partition admits 1

2 (d − 1)(d − 2) area
vectors, the next three admit d − 1 each, and the last, just one.

We can enumerate area vectors corresponding to possible quotients of degree d
as follows. Any quotient of M of degree d has n ≤ m cusps and has a corresponding
area vector (a1, . . . , am) with sum

∑m
i=1 ai = nd. So if we fix an integer D ≥ m

and enumerate all positive integer area vectors summing to at most D, we will
find all quotients of degree d with n ≤ m cusps such that nd ≤ D. In particular
this will include all quotients with at most m − 1 cusps provided d ≤ D/(m − 1).
Since the canonical cell decomposition is determined by the ratio of the areas, any
m cusped quotient is found using the area vector (1, . . . , 1) with

∑

i ai = m ≤ D.
So we will find all canonical cell decompositions arising from quotients of degree
d ≤ D/(m − 1).

6. Enumerating canonical cell decompositions II

Let M be a hyperbolic n-manifold with c > 0 cusps. Then the set of possible
choices of (not necessarily disjoint) horospherical cross sections dual to the cusps of
M is parametrized by the vector of their areas (i.e. (n − 1)-dimensional volumes)
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in Rc
>0 = {(v1, . . . , vc) ∈ Rc | v1 > 0, . . . , vc > 0}. In fact it turns out to be more

convenient to parametrize by the (n− 1)th root of area, a quantity we will refer to
as size. Multiplying a size vector v ∈ Rc

>0 by a constant λ > 0 has the effect of
shifting the corresponding horospherical cross sections a distance log(λ) down (i.e.
away from) the cusps.

For each v ∈ Rc
>0 we obtain a Ford spine. It is clear from the definition that if

we choose a set of disjoint horospherical cross sections and then shift them all up
or down by the same amount we get the same Ford spine. Thus the set of possible
Ford spines is parametrized by the set of rays in Rc

>0, or equivalently, by points in
the open (c − 1)-dimensional simplex S = {(v1, . . . , vc) ∈ Rc

>0 | v1 + · · · + vc = 1}.
For a 1-cusped manifold the Ford spine is unique.

Dual to each Ford spine is a canonical cell decomposition D(v). As we vary
v ∈ S the decomposition changes only when the combinatorics of the spine changes.
To better understand this dependence we now review an alternative approach to
defining D(v), namely the original one of Epstein-Penner in [11].

We work in Minkowski space En,1 with the inner product ∗ defined by

x ∗ y = x1y1 + . . . + xnyn − xn+1yn+1

for x = (x1, . . . , xn+1), y = (y1, . . . , yn+1) in Rn+1. Then hyperbolic space Hn is
the upper sheet of the hyperboloid x ∗ x = −1, and the horospheres in Hn are
represented by the intersections of hyperplanes, having light-like normal vectors,
with Hn. Each such hyperplane H has a unique Minkowski normal n such that
x ∈ H if and only if x ∗ n = −1.

Let Γ denote the group of covering transformations of Hn over M . Each size
vector v gives rise to a Γ-invariant set of horospheres in Hn. The resulting set
of normals in Minkowski space is invariant under the action of the group Γ. The
convex hull of this set of points, which we shall refer to as the Epstein-Penner
convex hull, intersects every ray based at the origin passing through a point in the
upper sheet of the hyperboloid. The boundary of this convex set is a union of
closed convex n-dimensional polytopes having coplanar light-like vertices. Epstein
and Penner [11] show that these project to a locally finite, Γ-invariant set of ideal
polyhedra in Hn, which in turn project to a finite set D(v) of ideal hyperbolic
polyhedra in M .

Starting with a given ideal hyperbolic cell decomposition D of M and a size
vector v, we proceed next to describe necessary and sufficient conditions for D to
be the canonical cell decomposition D(v), as in [33] and [30].

Let C be a cell of D. Then v determines a horospherical cross section to each
ideal vertex of C. We lift C and this choice of horospheres to Hn. In Minkowski
space, this gives a convex (Euclidean) n-dimensional polytope whose vertices are
the hyperplane normals for these horospheres. Whenever C is not a simplex, it is
necessary to add the condition that these vertices are coplanar. If this is satisfied
for all the non-simplicial cells of D, we can lift each cell to an n-dimensional poly-
tope in Minkowski space with vertices corresponding to the choice of horospheres
determined by the size vector v. If C and C′ are neighbouring cells in D it is nec-
essary that the angle between neighbouring lifts into Minkowski space be convex
upwards. Together these conditions are also sufficient to imply D = D(v).

These conditions can be expressed as a set of linear equations and linear inequal-
ities on the entries of the size vector v.

Proposition 6.1. Let D be an ideal hyperbolic cell decomposition of a cusped hy-
perbolic n-manifold M with c cusps. Then there exist matrices LD and FD with c
columns such that, for v ∈ Rc

>0, D(v) = D if and only if LDv = 0 and FDv > 0.
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Note: here v is written as a column vector, and the condition FDv > 0 means that
each entry of the vector FDv is positive.

Proof. Let vi denote the entry of v corresponding to the ith cusp of M . Let nj be
the vertex representative for the jth vertex of C lifted to Minkowski space for the
choice of horospheres given by v = (1, . . . , 1). Then for an arbitrary size vector v
the corresponding representative is nj/vc(j), where c(j) is the cusp of the jth vertex
of C.

The coplanarity condition on a non-simplicial cell C gives a set of linear equa-
tions satisfied by v, one for each vertex of C in excess of n + 1, as follows. Let
Nv be a Euclidean normal to the hyperplane containing {n0/vc(0), . . . ,nn/vc(n)}
such that (nj/vc(j)) · Nv = 1 for j = 0, . . . , n, where · denotes the Euclidean
dot product. Writing MC for the inverse of the matrix with rows nj we obtain
Nv = MC(vc(0), . . . , vc(n))

t, which is a linear function of v. For j > n, nj/vc(j)

belongs to this hyperplane if and only if nj · Nv − vc(j) = 0, which is linear in v.
The full set of constraints for C gives a matrix equation LCv = 0.

The convexity condition at an (n − 1)-cell f of D, being the common face of
n-cells C and C′, can be expressed as follows. Let Nv, as above, be the defining
normal for the hyperplane containing the lift of C determined by v. Let n′

k/vc(k)

be a vertex of an adjacent lift of C′, not in the lift of f . This vertex lies above the
hyperplane if and only if (n′

k/vc(k)) · Nv > 1, or equivalently n′
k · Nv − vc(k) > 0.

We refer to the left-hand side of this inequality as the tilt at f of v and express the
condition as Ffv > 0, where Ff is a suitable row-vector. (Note that the sign of our
tilt function is opposite to that of [33] and [31].)

Finally, concatenate the matrices LC into a matrix LD and the rows Ff into a
matrix FD. �

Let PD denote the set of v ∈ Rc
>0 such that LDv = 0 and FDv > 0. We call

this the parameter cell of D since it contains all cusp size parameters v such that
D(v) = D. Each v ∈ Rc

>0 belongs to a parameter cell, namely P(v) = PD(v). The
parameter cell PD is non-empty if and only if D is a canonical cell decomposition.

It is shown in [4] that the number of canonical cell decompositions is finite.
Therefore Rc

>0 is a union of finitely many parameter cells.

Proposition 6.2. Each v ∈ Rc
>0 can be perturbed to obtain a nearby vector v′ such

that P(v′) has dimension c and P(v) is a face of P(v′) (or equals P(v) if this has
dimension c).

Proof. Let D = D(v). If LD is zero (or empty) then P(v) is an open subset, hence
a c-dimensional cell and we just set v′ = v.

Otherwise, perturb v such that it leaves the linear subspace determined by LDv =
0. For a small perturbation the Epstein-Penner convex hull changes as follows: no
dihedral angle between adjacent n-faces goes to π but some non-simplicial n-faces
may be subdivided if their vertices become non-coplanar. It follows that LD may
lose rows and FD may gain rows. Let D′ be the new decomposition. Then LD′ 6= LD

because LD′v′ = 0 while LDv′ 6= 0. Repeat until LD′ is zero (or empty). Then
P(v′) has dimension c.

Now v belongs to a face of PD′ since it satisfies Ffv > 0 for each face f common
to D and D′, and Ff ′v = 0 for each face f ′ of D′ not in D. The former condition
amounts to FDv > 0. We have to show that the latter is equivalent to LDv = 0.
But that is equivalent to the coplanarity of the lifted vertices of each n-cell of D.
Such a cell may be subdivided by new faces f ′ in D′. Then the vertices will be
coplanar at v if and only if the tilt at each subdividing face is zero, i.e. if and only
if Ff ′v = 0 for the subdividing faces. �
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The above proposition implies that each face of a parameter cell is another
parameter cell; the decomposition corresponding to a parameter cell is a refinement
of the decompositions corresponding to its faces.

Remark 6.3. It is tempting to suppose that the canonical cell decomposition of
M corresponding to a c dimensional parameter cell must consist entirely of ideal
simplices but this need not be the case. In general we can have cell decompositions
with non-simplicial cells such that LD is a zero matrix. (For example, this occurs
for the Borromean rings complement — see Section 6.1 below.)

We now have the following algorithm for finding all canonical cell decompositions.
First we find all the c-dimensional parameter cells.

(1) Choose an arbitrary v ∈ Rc
>0.

(2) Perturb v if necessary, as in the proof of Proposition 6.2, so that P(v) has
dimension c, and add it to our list of cells.

(3) If the closure of the cells we have found so far does not contain the whole of
Rc

>0, choose a new v not in the closure of any cell found so far and repeat
step 2.

By the finiteness result quoted above, this algorithm eventually terminates. We
can then enumerate all canonical cell decompositions by enumerating the faces of
all dimensions of the cells P(v).

While the computational geometry involved in implementing the above algorithm
is certainly possible, it is not particularly nice. We explain a refinement which gives
a little more insight and an algorithm which is easier to implement.

For a decomposition D of M , let ΣD denote the row vector obtained by adding
together the rows of FD. We define the tilt polytope of M to be the set of v ∈ Rc

>0

such that ΣD · v < 1 for all canonical cell decompositions D of M .

Proposition 6.4. The tilt polytope T of M is bounded. The parameter cells PD

of M are the cones over the origin of those faces of T which are not contained in
∂Rc

>0.

Proof. We show that the closure of a c-dimensional parameter cell PD has bounded
intersection with T . Let v be a unit vector in PD. Then since v is not contained
in every face of PD, ΣD · v > 0. The length of any multiple of v contained in T
is bounded by 1/(ΣD · v). Since this is continuous in v, and the set of such v is
compact, PD ∩ T is bounded. Since T is a union of finitely many such sets it is
bounded.

Let us write HD for the half-space {x ∈ Rc | ΣD · x < 1}. Then T is the
intersection of all the HD’s with Rc

>0. We will show that: if v belongs to a c-
dimensional parameter cell PD, and PD′ is any other parameter cell, then the ray
generated by v leaves HD before it leaves HD′ .

It will then follow that a ray in PD penetrates the (non-empty) face of T gener-
ated by HD. Since a ray not in PD belongs to the closure of some other parameter
cell, it does not leave HD first and therefore does not pass through the same face
of T . Since cones on the lower dimensional faces of a (c − 1)-dimensional face
of T are the faces of a c-dimensional parameter cell, the result then follows from
Proposition 6.2.

It remains to show that HD cuts off any ray in PD closer to the origin than HD′ ,
for all parameter cells PD′ 6= PD. Equivalently, for v ∈ PD, ΣD · v > ΣD′ · v.

Firstly, let PD and PD′ be any two parameter cells such that PD′ is a face of
PD, and let v belong to PD. The rows of FD′ are a proper subset of the rows of
FD, and since Ff · v > 0 for each row, ΣD · v > ΣD′ · v. If instead PD is a face
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of PD′ , then the rows of FD′ omitted from FD are precisely those for which Ff · v
vanishes. Therefore in that case ΣD · v = ΣD′ · v.

Next, let PD be a c-dimensional parameter cell, and let PD′ be arbitrary, with
D′ 6= D. Choose v ∈ PD and v′ ∈ PD′ . Let PD1

, . . . ,PDm
be the parameter cells

through which the straight line vt := (1 − t)v + tv′ passes for 0 ≤ t ≤ 1 (so that
D1 = D and Dm = D′). For vt in PDi

, ΣDi
· vt ≥ ΣDi+1

· vt while for vt ∈ PDi+1
,

ΣDi
· vt ≤ ΣDi+1

· vt. Since the difference between these terms is (affine) linear in t,
the former inequality must hold for all lesser values of t, in particular, when vt = v.
Note also that the first such inequality is strict, namely, ΣD1

·v > ΣD2
·v. It follows

that ΣD · v > ΣD′ · v for arbitrary D′. �

Let T0 be a polytope resulting from the intersection of Rc
>0 with some of the

half-spaces HD defined in the above proof. If T0 ) T , some face A = T 0 ∩ ∂HD

of T0 will contain a point v ∈ Rc
>0 not in T , and thus not in T ∩ ∂HD, nor in the

cone on this, PD. Therefore LDv 6= 0 or Ffv < 0 for some row Ff of FD. This
gives a test for when T0 properly contains T ; when satisfied, it yields a new half-
space HD(v) whose intersection with T0 is strictly smaller. After a finite number of
intersections we arrive at T0 = T . See Figure 5.

v

PD

w

T

T0

Figure 5. T0 is a partially computed tilt polytope. The face of
T0 containing v ∈ PD has a vertex w not in PD. Therefore D(w)
gives another face of T .

The computational geometry involved in the above is relatively straightforward.
By using homogeneous coordinates we can treat an unbounded region, such as Rc

>0,
as a polytope with some vertices “at infinity”. The face A of T0, as defined above,
is the convex hull of those vertices v of T0 satisfying ΣD · v = 1. If any of these
satisfy LDv 6= 0 or Ffv < 0 for some row Ff of FD we conclude that T0 6= T . If
such v lies in ∂Rc

>0 we perturb it a little to bring it inside Rc
>0 before determining

a new half-space HD(v).

6.1. Example: The Borromean rings complement. Let M be the comple-
ment of the Borromean rings in S3:
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Then M is an arithmetic hyperbolic 3-manifold with 3 cusps. It may be realized
by gluing two regular ideal hyperbolic octahedra in the following pattern (see [32]).

H
E

A
D B

FCG

H
E

A
D B

FCG

0

2 1

1 2

0

2

1 0

0 1

2

Letters indicate face identifications; cusps are numbered 0, 1, 2. Equal area cusp
cross sections give rise to symmetrically placed ideal vertex cross sections in the
two octahedra. It follows that the corresponding ideal cell decomposition consists
of precisely these two octahedra. We will first compute its parameter cell.

Let us position the tiling of H3 by ideal octahedra such that one of them, call it
C, has a lift with vertices at {(±1, 0, 0), (0,±1, 0), (0, 0,±1)} in the projective ball
model. When the cusp cross sections all have equal area and contain the centre of
the octahedron, their Minkowski normals are n0 =(1, 0, 0, 1), n1 =(0, 1, 0, 1), n2 =
(0, 0, 1, 1), n3 =(−1, 0, 0, 1), n4 =(0,−1, 0, 1), n5 =(0, 0,−1, 1). A neighbouring lift
of the other octahedron, call it C′, has vertex representatives {n0,n1,n2,n

′
3,n

′
4,n

′
5}

where n′
i is the Minkowski metric reflection of ni in the hyperplane spanned by

{n0,n1,n2}. Then n′
3 = (1, 2, 2, 3), n′

4 = (2, 1, 2, 3), n′
5 = (2, 2, 1, 3). (See the left

hand side of Figure 6.)

n2

n0

n5

n4

n3

n1

n3

n5

n4′

′
′

[1:0:0]

[0:1:0] [0:0:1]

Figure 6. Initial cell decomposition of M into ideal octahedra
and the corresponding projective parameter cell.

For size vector v = (v0, v1, v2)
t the resulting ideal vertex representatives become

ni/vi, ni+3/vi and n′
i+3/vi for i = 0, 1, 2. The hyperplane containing n0/v0, n1/v1,

n2/v2 and n3/v0 is {x | x · Nv = 1} where Nv is calculated as in the proof of
Proposition 6.1 giving

Nv =
1

2









1 0 0 −1
−1 2 0 −1
−1 0 2 −1

1 0 0 1

















v0

v1

v2

v0
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0 0 0
−1 1 0
−1 0 1

1 0 0









v.

Then n4/v1 and n5/v2 lie in this hyperplane if and only if n4 · Nv − v1 = 0 =

(2,−2, 0)v and n5 · Nv − v2 = 0 = (2, 0,−2)v. Hence LC =

(

2 −2 0
2 0 −2

)

. By

symmetry, LC′ is the same. Next we compute the tilt of f0, the face between C
and C′. This will be positive if n′

3/v0 lies above the hyperplane defined by Nv, i.e.
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if n′
3 · Nv − v0 = (−2, 2, 2)v > 0. Thus Ff0

= (−2, 2, 2), and the tilt is positive at
v = (1, 1, 1)t. By symmetry, the other faces of the octahedra also have positive tilt.
The parameter cell of this decomposition {v | v0 = v1 = v2} is, projectively, a point
(as shown in the right half of Figure 6).

Suppose next we increase v0 slightly. The faces of C still have positive tilt. We
claim that C is subdivided into 4 tetrahedra containing the edge n0,n3 as shown
in the left of Figure 7 below.

n0

n5

n4

n3

n1

n2

Figure 7. Decomposition into ideal tetrahedra and corresponding
parameter cell.

Let f1 be the triangle with vertices {n0,n2,n3}. Then f1 has positive tilt if
and only if n4 · Nv − v1 = (2,−2, 0)v = Ff1

v > 0. Letting f2 be the triangle with
vertices {n0,n1,n3}, we obtain Ff2

= (2, 0,−2). By symmetry, the tilts of the
other two faces shown above are the same. Four more triangles, having the same
tilts, subdivide C′. Therefore M is subdivided into 8 simplices in the parameter
cell shown in the right of Figure 7.

Increasing v0, eventually Ff0
v = 0, so that the faces of C and C′ vanish from

the decomposition. The four simplices around the edge n1,n2 become an octahe-
dron. Further increasing v0 so Ff0

v < 0, we claim that this octahedron splits at
the square dual to the edge n1,n2 into two square-based pyramids with vertices
{n0,n

′
0,n

′
3,n3,n1} and {n0,n

′
0,n

′
3,n3,n2} as shown in the left of Figure 8.

n2

n0

n5

n4

n3
n3′

n0′

n1

Figure 8. Decomposition into square-based pyramids and corre-
sponding parameter cell.

Let N ′
v define the hyperplane containing {n0/v0,n1/v1,n3/v0,n

′
3/v0}. Then

N ′
v =









0 0 0
−1 1 0

0 −1 0
1 0 0









v.

Let C1 be the square-based pyramid with vertices {n0,n1,n3,n
′
3,n

′
0}, where n′

0 =
(−1, 2, 2, 3) is the Minkowski reflection of n′

3 in the plane containing n1,n2,n4,n5.
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We find that LC1
= (0, 0, 0). Let f3 be the triangle with vertices {n0,n3,n

′
3}.

Then Ff3
= (1,−1,−1) and Ff3

v > 0. Therefore M is divided into 4 square-based
pyramids in the parameter cell shown in the right of Figure 8, as mentioned in
Remark 6.3.

Figure 9. All parameter cells for canonical decompositions of the
Borromean rings complement

By symmetry, the full set of parameter cells is projectively as shown in Figure
9. On the three line segments containing the centre point, each of the original
octahedra is subdivided into two square based pyramids.

7. Commensurability of cusps

The number of canonical cell decompositions that can arise for a multi-cusped
manifold can be quite large, placing practical limits on the usefulness of our meth-
ods. We show next how it is often possible to greatly reduce the complexity of
computing the commensurator of a manifold.

A horospherical cross section of a cusp in an orientable hyperbolic 3-manifold
is a Euclidean torus, well defined up to similarity. We can position and scale a
fundamental parallelogram in C such that one vertex lies at the origin and the
two adjacent edges end at 1 and a point z in the upper half-plane. Such a z is
called a cusp shape parameter. Alternative choices of fundamental parallelogram
yield parameters differing by the action of SL2Z by Möbius transformations. By
choosing a suitable fundamental domain for the action of SL2Z on the upper half-
plane, we can make a canonical choice of shape parameter for each cusp.

If one cusp covers another, there is an induced covering of Euclidean tori. It
follows that their cusp shape parameters are related by the action of an element of
GL2Q. Let us call cusp shapes commensurable if they are so related. As we shall
see shortly, it is not hard to determine when two cusp shapes are commensurable.

Suppose we are trying to determine the (discrete) commensurator quotient Q
of M . If M has cusps of incommensurable shape, these necessarily cover distinct
cusps of Q. Therefore any assignment of cusp neighbourhoods in Q will yield a Ford
spine and tiling whose symmetry group is the whole commensurator (the group of
covering transformations of Q). It follows that we can start by choosing arbitrary
horospheres in each of a set of representatives for the commensurability classes of
cusps of M . Then as we vary our choices of horosphere in the remaining cusps we
will be sure to find a tiling whose symmetry group is the commensurator of M .
The easiest case is when no two cusps of M are commensurable. Then any choice
of horospheres at all will do.

The harder case is when M has multiple commensurable cusps. If the symmetry
group of M is non-trivial, it may act by non-trivially permuting some of these
cusps. Conceptually we should first divide M by its symmetry group and then find
the commensurator of this quotient. For practical purposes it is hard to work with
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non-manifold quotients. Instead, whenever two cusps are related by a symmetry
of M , we choose symmetrically equivalent cusp neighbourhoods. Let c be the
number of orbits under the action of Symm(M) on the cusps. Let d be the number
of distinct commensurability classes of cusp shape. Then the parameter space of
relative horosphere positions we need to search, in order to find a tiling whose
symmetry group equals the commensurator, has dimension c − d.

Our algorithm is really only a slight modification of the algorithm of Weeks [33]
for finding the symmetries of a cusped hyperbolic manifold M = H3/Γ. In order to
find the symmetries we need only consider the canonical cell decomposition arising
from a choice of cusp neighbourhoods such that all boundary tori have equal area.
Then the symmetries of M are the symmetries of the lifted tiling that normalize Γ.
Equivalently, they are the symmetries of the tiling for which the covering described
in Remark 4.2 has degree one.

Returning to the question of when two cusp shapes are commensurable, we note
first that cusp shapes of M belong to the invariant trace field of M . But if k is any
number field, and α, α′ are irrational elements of k, they are related by an element
of GL2Q if and only if

(1) (cα + d)α′ = aα + b

is soluble for a, b, c, d ∈ Q such that

(2) ad − bc 6= 0.

We can replace (2) with the condition that a, b, c, d are not all zero, since for
α, α′ /∈ Q, (2) follows automatically from (1) and the fact that {1, α} are lin-
early independent over Q. Regarding k as a finite dimensional vector space over
Q we see that (1) has non trivial solutions if and only if {1, α, α′, αα′} are linearly
dependent over Q. In particular, if [k : Q] < 4 all irrationals are commensurable in
this sense. We thank Ian Agol for pointing out this condition.

7.1. Example: a knot with cusp field not equal to invariant trace field.
An interesting example uncovered during this work is the complement of the knot
12n706 shown below. This has one torus cusp with shape parameter z = 6i generat-
ing a cusp field Q(i) which is strictly contained in its invariant trace field Q(i,

√
3).

This answers a question of Neumann-Reid in [27], who asked whether the figure
eight knot and the two dodecahedral knots of Aitchison-Rubinstein [3] were the
only such examples2.

8. Experimental Results

We have implemented the algorithms described here and used them to com-
pute the commensurability classes of all 4929 manifolds in the Hildebrand-Weeks
census of cusped hyperbolic 3-manifolds [9] and all 7969 complements of the 8614

2Alan Reid informs us that Nathan Dunfield has found another example: the 15 crossing knot
15n132539.
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hyperbolic knots and links up to 12 crossings. After replacing non-orientable man-
ifolds (in the 5-census) by their double covers and removing duplicates we obtained
a total of 12783 orientable manifolds. Tables of all the results are available at
http://www.ms.unimelb.edu.au/~snap/.

In the process it was necessary to identify the arithmetic manifolds and arrange
them into their own separate commensurability classes. Criteria for arithmeticity
and for commensurability of arithmetic manifolds are given in [10] and [23]. In fact,
a cusped manifold is arithmetic if and only if its invariant trace field is imaginary
quadratic and it has integer traces. Cusped arithmetic manifolds are commensu-
rable if and only if they have the same invariant trace field. They are therefore
classified by the discriminant d of the invariant trace field Q(

√
d).

There were 142 arithmetic manifolds in six commensurability classes. Table 1
lists some of the arithmetic manifolds found with discriminant −3,−4 or −7, and
all with discriminant −8,−11 or −15.

d manifolds

-3
m000, m002, m003, m004=4a1, m025, m203=6a5=11n318, s118,
s961, 8a39, 10a280, 10n130, 10n143, 10n155, 11n539, 12a3285, . . .

-4
m001, m124=8n10=10n139, m125, m126, m127, m128, m129, s859,
v1858, 8n8=9n34=10n112, 9n36, 10a242, 10n74, 11n545, . . .

-7
m009, m010, s772, s773, s774, s775, s776=6a8=8n7, 8a25, 8a37,
10n73=12n968, 10n113, 11n498, 12n3068, 12n3078, 12n3093, . . .

-8
v2787, v2788, v2789, 9a73, 9a74, 12a3292, 12a3296, 12n2625=
12n2630, 12n2972, 12n3088, 12n3098=12n3099.

-11 12a2126, 12a2961, 12a3039, 12a3230, 12a3295.

-15 12a3169, 12a3273, 12a3284, 12a3300, 12a3307, 12a3308.
Table 1. Selected arithmetic manifolds.

The naming of manifolds in the tables is as follows. Manifolds whose names
begin with m, s or v belong to the 5, 6 or 7 tetrahedra census of cusped manifolds
respectively. The rest are knot and link complements in the form <number of
crossings> <alternating or non-alternating> <index in table>. The link tables
were provided by Morwen Thistlethwaite and are included with current versions of
Snap [16] and Tube [17].

The remaining 12641 manifolds were non-arithmetic, falling into 11709 commen-
surability classes. A few of them are shown in Table 2.

Column headings are as follows: s.g. is the order of the symmetry group; c.d.
is the degree of the manifold over its commensurator quotient; c.vol is the volume
of the commensurator quotient, optionally followed by c.cl, commensurability class
numbered from 0, when incommensurable manifolds are listed with the same com-
mensurator volume. Thus manifolds are commensurable if and only if they have
the same entry in this column. The invariant trace field is described by its degree,
discriminant and a number specifying which root of the minimum polynomial gen-
erates it (with sign corresponding to choice of complex conjugate); nc,cnc gives the
number of cusps in the manifold and the number of cusps in the commensurator
quotient; cusp density is computed using equal area cusps in the commensurator
quotient.

The first group of manifolds have the smallest commensurator volume found
(among non-arithmetic manifolds) and are the link complements which appeared
in Section 2.1. They all have ‘hidden symmetries,’ i.e. commensurabilities not aris-
ing from the symmetry group of the manifold. The total number of non-arithmetic
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manifold s.g. c.d. c.vol,c.cl field nc,cnc cusp density
10a297 20 40 0.365076519 4,1025(2) 5,1 0.642619992
10a291 4 40 0.365076519 4,1025(2) 4,1 0.642619992
10a277 4 40 0.365076519 4,1025(2) 3,1 0.642619992
12n2492 4 40 0.365076519 4,1025(2) 3,1 0.642619992
12n2899 4 40 0.365076519 4,1025(2) 4,1 0.642619992
12n1189 2 2 7.175483613,0 7,-76154488(-2) 2,2 0.589830477
12n1190 2 2 7.175483613,1 7,-76154488(-2) 2,2 0.589830477
12n1481 2 2 7.175483613,2 7,-76154488(-2) 2,2 0.589830477
12n2348 2 2 7.175483613,3 7,-76154488(-2) 3,3 0.644747497
12n2580 2 2 7.175483613,4 7,-76154488(-2) 3,3 0.631898787
m045 4 4 0.818967911 3,-107(-2) 1,1 0.608307263
m046 4 4 0.818967911 3,-107(-2) 1,1 0.608307263
v3379 8 8 0.818967911 3,-107(-2) 2,1 0.608307263
v3383 4 8 0.818967911 3,-107(-2) 3,1 0.608307263
v3384 8 8 0.818967911 3,-107(-2) 2,1 0.608307263
12a1743 8 16 0.818967911 3,-107(-2) 2,1 0.608307263
v3376 4 4 1.637935822,0 3,-107(-2) 2,1 0.690189995
v3377 4 4 1.637935822,0 3,-107(2) 1,1 0.690189995
v3378 4 4 1.637935822,0 3,-107(2) 1,1 0.690189995
12a2937 8 8 1.637935822,1 6,-1225043(1) 3,2 0.608307263
9a94 4 24 0.575553268 4,144(1) 3,2 0.844133714

Table 2. Selected non-arithmetic manifolds.

manifolds having hidden symmetries was 148. The next group of manifolds shows
that incommensurable manifolds are not always distinguished by cusp density. The
third group of manifolds includes manifolds whose classes are distinguished by in-
variant trace field but not by cusp density, and manifolds with the same commen-
surator quotient volume but different invariant trace fields. One should not get the
impression that cusp density is a poor invariant: in fact, among the 11278 cusp
densities found, only 417 grouped together incommensurable manifolds. The final
line gives data for the non-arithmetic manifold with highest cusp density found.
(The maximum possible cusp density is 0.853276 . . ., which occurs for the figure
eight knot complement.)

More details of the fields occurring above are listed in the Table 3.

degree discriminant signature minimum polynomial
4 1025 0, 2 x4 − x3 + 3x2 − 2x + 4
7 -76154488 1, 3 x7 − 2x6 + 3x5 − 5x4 + x3 − 8x2 − 2x − 4
3 -107 1, 1 x3 − x2 + 3x − 2
6 -1225043 0, 3 x6 − 2x5 − 2x3 + 30x2 − 52x + 29
4 144 0, 2 x4 − x2 + 1

Table 3. Fields in previous table.

9. Appendix

The indexing system used for knots and links, here and in snap, may still be
subject to change. This is due to the difficulty of determining whether two non-
hyperbolic links are equivalent and the consequent possibility that duplicates will
later be discovered and removed from the tables.
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For this reason we provide Table 4, giving the Dowker-Thistlethwaite codes of
all the knots and links that we refer to. Since, for links, this code is not well known,
we describe here how this works.

Firstly there is the trivial matter of passing between the alphabetic codes used by
snap, and their numerical forms. The Dowker code for a link with n crossings and
k components is a permutation of the even integers 2, . . . , 2n, with possible sign
changes, bracketed into k subsequences: e.g. (6,−8) (−10, 14,−12,−16,−2, 4).
To express this alphabetically we encode n and k as the first two letters using a =
1, b = 2, etc. Then follow k letters giving the lengths of the bracketed subsequences.
Finally there are n letters giving the sequence of even integers using a = 2, b = 4,
etc. and A = −2, B = −4, etc. The alphabetic code for the above example is thus
hbbfcDEgFHAb.

To go from a link diagram to its Dowker code, proceed as follows. Traverse each
component, numbering the crossings, starting with 1 on an overcrossing. When the
first component is done, continue with consecutive numbers on the next component.
Each crossing will receive two numbers. We can number the crossings in such a way
that every crossing gets one even and one odd number. (This follows easily from
the fact that we can two-colour the plane containing a link diagram.) Negate any
even number which labels an over-crossing (for an alternating link there will not
be any). For each odd number 1, 3, . . . , , 2n− 1 write down the corresponding even
number: this gives a sequence of n even numbers. A component with 2j crossings
will have j odd numbers on it, so there will be j corresponding numbers for it in the
code; bracket together the numbers for each component. See for example Figure 10.

−25 1

6

Figure 10. Complete the numbering indicated on the above
two-component link to obtain the Dowker-Thistlethwaite code
(6,−8) (−10, 14,−12,−16,−2, 4).

The reverse procedure, going from a code to a link diagram is a little bit more
tricky, but essentially the same as the procedure for knots, described in [2]. We
draw the first component as a knot, with extra as-yet-unconnected crossings on
it. When adding further components we will encounter crossings with other link
components.
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name Dowker code name Dowker code
4a1 dadbcda 12a2937 lcbeechjklaiefgbd
6a5 fbccdefacb 12a2961 lcbfdcfahibekdlgj
6a8 fcbbbceafbd 12a3039 lcbhbcfaikbjelgdh
8a25 hbbfcfegahdb 12a3169 lccfcdfhcjakblieg
8a37 hcbcccfghadeb 12a3230 ldbccdcfagiebkdlhj
8a39 hdbbbbceagbhdf 12a3273 ldbddbceagbidkflhj
8n7 hcbcccDFgHEaB 12a3284 ldbfbbceaibkjldgfh
8n8 hcbcccdFgHEab 12a3285 ldbfbbcfaikbjlehdg
8n10 hdbbbbcEaGBHDF 12a3292 ldccccdegjhkflacib
9a73 ibcfdfhagbice 12a3295 ldccccdgjakhbflice
9a74 ibcfdfhaibecg 12a3296 ldccccdgjhkbelcfia
9a94 icbebcdhfiabeg 12a3300 lebbbdbceagbidkflhj
9n34 icbdcceaGbHDIF 12a3307 lebccbbcfaikbljdheg
9n36 icbebcdHfiabeG 12a3308 lfbbbbbbceagbidkflhj
10a242 jbeefghjiaecbd 12n706 lalceFhGjIKlBaD
10a277 jcbfbceagbidjfh 12n968 lbbjcDFhIJLAbKEG
10a280 jcccddeghjibcfa 12n1189 lbbjceaHbKiDjgLF
10a291 jdbbdbceagbidjfh 12n1190 lbbjceaHbkIDJGlf
10a297 jebbbbbceagbidjfh 12n1481 lbbjchaEGJDbkFli
10n73 jbbhcEFihGJAdb 12n1848 lbcidfIaglceKBHJ
10n74 jbbhcfaHGIbDJE 12n2348 lcbbhcEaHBKiDjgLF
10n112 jcbcecdFgIHabJE 12n2492 lcbdfceaGbiDJKfLH
10n113 jcbcecFaHJIBDGE 12n2580 lcbeecHaEGJDBkFli
10n130 jcbfbceaGbIDJFH 12n2625 lcbfdcfaIJbKLEDHG
10n139 jdbbcccEaHBijDgf 12n2630 lcbfdcfaIJbKLHDEG
10n143 jdbbdbcEaGBiDjfh 12n2899 ldbbbfcEaGBIDjkFlh
10n155 jebbbbbcEaGBIDjFh 12n2972 ldbccdcfaIJbKLEDHG
11n318 kbchdEfcHiJKaBG 12n3068 ldbddbceaGbIDKFLHJ
11n498 kcbcfcfaHJbIKEGD 12n3078 ldbfbbceaIbKJLDGFH
11n539 kcbedceaHbIJDGKF 12n3088 ldccccdeGacJBklFih
11n545 kcbfccdIfJabKGEH 12n3093 ldccccdEGHiJKlAFBc
12a1743 lbbjchfjialkedbg 12n3098 ldccccdEGhIJKLaFBC
12a2126 lbcidgjclhafkbie 12n3099 ldccccdEGhIJKlAFBc
Table 4. Dowker-Thistlethwaite codes of all knots and links men-
tioned in this paper.
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[14] F. Guéritaud (with an appendix by D. Futer), On canonical triangulations of once-punctured
torus bundles and two-bridge link complements, Geometry and Topology 10 (2006), pp.
1239-1284.
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