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Introduction

Quantum mechanically, the state |ψ〉 of a physical system can be repre-
sented by an element of a Hilbert spaceH, modulo the equivalence relation

|ψ〉 ∼ eiθ |ψ〉

In this project we explored some interesting consequences of this equiva-
lence relation.

The Berry Phase

Suppose that we have a Hamiltonian H(R) which depends on an adi-
abatically varying family of parameters R(t), and that this Hamiltonian has
an instantaneous basis of nondegenerate eigenfunctions |n(R(t))〉, with en-
ergies En(t). A state |ψ〉 prepared in the state |n(R(0))〉 will evolve to

|ψ(t)〉 = exp

{
−i
∫ t

0

En(t
′)dt′

}
exp(iγnt) |n(R(t))〉 (1)

where the factor exp(iγnt) is called[1] the Berry phase, or geometric phase.
Substituting this expression for |ψ〉 into the Schrodinger equation we obtain
an equation for γn:

dγn
dt

= i 〈n(R)|∇R n(R(t))〉 · dR
dt

(2)

If the changing parameters R(t) trace out a closed loop C in parameter
space, then the total geometric phase change will be given by

γn(C) = i

∮
C

〈n(R)|∇R n(R(t))〉 · dR (3)

Figure 1: Holonomy on a sphere[2]

This is an interesting result because al-
though the system has returned to exactly
the same place in parameter space the
wave function has not returned to its orig-
inal value, but rather picked up an addi-
tional phase factor exp(iγnt) (as well as the
standard dynamical phase factor). Mathe-
matically, this is an example of holonomy.
A picture demonstrating the SO(2) holon-
omy of the sphere is shown; a vector par-
allel transported around a sphere is rotated when it is returned to its original
position. Although its origin is very different (coming from the Schrodinger
equation instead of the geometry of the sphere), Berry’s phase is also an ex-
ample of SO(2) holnomy. We now explore several consequences of Berry’s
result.

The Aharonov-Bohm effect

The Aharonov-Bohm effect is an interesting quantum mechanical effect
with no classical explanation: it shows that particles can experience mag-
netic effects in a region where the magnetic field is zero. This effect can
be seen to be a consequence of particles picking up geometric phases. The
physical situation is depicted in the below diagram. On the left, a particle is
transported in a box centred at R(t) around a current carrying wire:

Figure 2: A schematic representation of the Aharonov-Bohm effect[3]

For a particle transported all the way around the solenoid n times we obtain

γ = q

∮
C

A(R) · dR = nqΦ (4)

where Φ is the magnetic flux, q is the charge of the particle and A is the
vector potential. This is where the diagram on the right of figure 2 comes

into play: particles which travel around opposite sides of the solenoid will
pick up different phase factors, leading to an interference effect, despite the
fact that the particles never entered the solenoid, which is the only region
where the magnetic field is nonzero. The appearance of the winding number
n shows that this effect reflects the topology of the path of the electron.

2π twist in the Kitaev Model

The Kitaev model[4] consists of a chain of sites, each of which can either
be empty or filled by an electron, sitting on a superconducting surface. A
general Hamiltonian describing such a system is given by

H =
∑
j

(
−w(a†jaj+1 +a†j+1aj)−µ(a†jaj− 1

2) + ∆ajaj+1 + ∆∗a†j+1a
†
j

)
. (5)

where w is a “hopping amplitude” describing the tendency of electrons to
move from site to site, µ a chemical potential term describing whether it
is energetically favourable for sites to be occupied, and ∆ is the induced
superconducting gap, which encapsulates the freedom of pairs of electrons
to transfer back and forth between the wire and the superconducting sur-
face. There are two special cases which are of particular interest, a) where
w = ∆ = 0, and b) where µ = 0, w = |∆| > 0. The two cases are shown
below using the Majorana fermion representation. This involves introducing
the operators

c2j−1 = aj + a†j, c2j = −i
(
aj − a†j

)
(6)

So there are two Majorana operators corresponding to each electron site. A
pictorial representation of the two cases is:

Figure 3: The two topologically distinct phases of the model[4]

We say that two surfaces are topologically distinct if one cannot be con-
tinuously deformed into the other (without ripping or gluing). Analogously,
the two phases of the model are topologically distinct as their Hamiltonians
cannot be deformed into one other (without closing the bulk energy gap).
The bulk energy is the energy required to excite the system from its ground
state.

Figure 4: Topologically distinct surfaces

Topologically distinct surfaces can be characterised by topological invari-
ants. For example, the two tori shown are distinguished by their Euler char-
acteristics χ. We can look for an analogous quantity which distinguishes
the two phases of the model. Suppose that we introduce periodic boundary
conditions and a twist into the model:

aj → aj exp(iθj/L), aL+1 = a1 exp(iθ) (7)

We can calculate the Berry phase as θ varies from 0 to 2π. In case a)

we calculate γa = 0, while in b) (at least for small values of L) we obtain
γb = π/2. We hypothesise that the Berry phase is a topological invariant
which distinguishes the two phases of the model.

Thanks to Thomas Quella for his time and many helpful explanations
throughout the project.
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