
Notes on Feynman Quantum Circuits for Seminar, Fifth Draft

April 6, 2019

Chapter 6: Quantum Mechanical Computers from ”Feynman Lectures on Computation”

Aim: The aim of this talk is to discuss whether it is feasible to perform computation using a quantum

system.

These sorts of discussions initially arose because Feynman and others (Bennett, Fredkin, Toffoli) were ana-

lyzing whether there were physical limitations to computation, such as whether there was a minimum free

energy dissipation associated with performing a ”unit” of computation. Bennett found that, provided a re-

versbile computation is run slowly enough, there is essentially no energy dissipation (if the reading or clearing

of output is not counted as part of the computation). It suggested that the only theoretical limitations for

completing computation were those of the system performing the computation, i.e. those due to quantum

mechanics.

What we will be considering in this talk then, is if we can perform, and how we could go about performing,

a classical computation on a quantum system. I want to emphasize ”classical” here because we will not

really be going into any of the specific attributes of quantum computing. We will also essentially disregard

any aspects related to how one would input an initial state or measure an output state and any aspects

surrounding efficiency or practicality of implementation. We also do not discuss any errors that may be

occur; we are assuming a simplified and idealized system.

Let’s make a few comments about what system we will be considering. Throughout this talk our bits are

going to be atoms, where an atom is in the |0〉 state if there is no associated electron, and is in the |1〉 state

if there is. I say ”bits” to further emphasise that we are considering classical computation. Of course, there

are many other systems that can be used to implement such computation, but this system obeys Fermi-Dirac

statistics which simplifies the discussion somewhat.

We know from last week that a quantum system evolves according to the Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉

1

which has solution

|ψ(t)〉 = U(t, t0)|ψ(t0)〉

U(t, t0) = e−
i
~ (t− t0)H

where H is the Hamiltonian (i.e. Hermitian/self-adjoint operator) and U is unitary.

Our aim then is write down a Hamiltonian H that is polynomial in some fundamental operators (to be

defined shortly) that describes the evolution from an input state to our desired output state that defines our

desired computation. In particular, we want our Hamiltonian to include operators that describe ”nearest

neighbour” interactions, so as to be most appropriate to our physical system.

The fundamental operations that will provide the building blocks for our Hamiltonian are:

a =

[
0 1

0 0

]
and

a∗ =

[
0 0

1 0

]

It is important to note the behaviour of these operators acting on the states |0〉 and |1〉

a

[
1

0

]
=

[
0

0

]

a

[
0

1

]
=

[
1

0

]

a∗

[
1

0

]
=

[
0

1

]

a∗

[
0

1

]
=

[
0

0

]

We will also take a second to note a couple of other properties to be referred back to

a∗a =

[
1 0

0 0

]

aa∗ =

[
0 0

0 1

]
and so

a∗a+ aa∗ = I

where I denotes the 2× 2 identity matrix. The last line defines part of the anticommutation relations that

are satisfied by our fermionic system.

Now we recall the content of Will’s talk two weeks ago, specifically regarding reversible computation and

complete (or universal) gate sets. Will introduced the NOT, CNOT and CCNOT gates, the last of which is

2

a universal single gate set. We now show that each of these gates can be written in terms of the operators

defined above.

The case for NOT is easy

NOT =

[
0 1

1 0

]
= a+ a∗

The CNOTA;B gate where A is the control and B is the target, has truth table

Input A: Input B: Output A: Output B:

|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

To show that CNOT can be written in terms of a and a∗, we note that from the truth table (or from the

matrix representation) that when the input on A is in the |0〉 state, the gate acts like the identity on the

input of B. When the input of A is in the |1〉 state, then the gate acts like NOT on the input of B. We

can write down products of a and a∗ that ”select” for each of these two cases. For example a∗AaA, where

the subscript denotes the operator acting on the atom A, selects the cases when A is in the |1〉 state since

a takes |1〉 to |0〉 and then a∗ takes to |0〉 back to |1〉. As we have already seen a takes |0〉 to 0, so a∗AaA

nullifies the |0〉 state. Similarly, aAa
∗
A selects the |0〉 state. Thus we can write the CNOT gate as

CNOTA;B = a∗AaA ⊗ (NOTB) + aAa
∗
A ⊗ IB

= a∗AaA ⊗ (aB + a∗B) + aAa
∗
A ⊗ (a∗BaB + aBa

∗
B)

where ’⊗’ denotes the tensor product.

Finally, the truth table for the CCNOTA,B;C where A,B are the controls and C the target is

Input A: Input B: Input C: Output A: Output B: Output C:

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉
|0〉 |0〉 |1〉 |0〉 |0〉 |1〉
|0〉 |1〉 |0〉 |0〉 |1〉 |0〉
|0〉 |1〉 |1〉 |0〉 |1〉 |1〉
|1〉 |0〉 |0〉 |1〉 |0〉 |0〉
|1〉 |0〉 |1〉 |1〉 |0〉 |1〉
|1〉 |1〉 |0〉 |1〉 |1〉 |1〉
|1〉 |1〉 |1〉 |1〉 |1〉 |0〉

We will use a similar ”selection” method to the treatment of CNOT above. It is only the last two lines of

the truth table where the output of C is different to the input. Thus, for all the cases where at most one of

3

A or B is in state |1〉, then the gate acts as the identity on C, and when A and B are both in the |1〉 state,

the gate acts as NOT on C. Thus we can write

CCNOTA,B;C = aAa
∗
AaBa

∗
B + aAa

∗
Aa
∗
BaB + a∗AaAaBa

∗
B + a∗AaAa

∗
BaB(NOTC)

= aAa
∗
AaBa

∗
B + aAa

∗
Aa
∗
BaB + a∗AaAaBa

∗
B + a∗AaAa

∗
BaB(aC + a∗C)

At this point things are looking good; we’ve been able to write a complete gate set for reversible computation

in terms of these fundamental operators. But that is not the same as being able to write down a Hamiltonian

that describes an evolution of our system corresponding to each of these gates. Let us try and do that for a

system of 3 atoms and a computation that is simply a CCNOT.

Let us take H = CCNOT = aAa
∗
AaBa

∗
B + aAa

∗
Aa
∗
BaB + a∗AaAaBa

∗
B + a∗AaAa

∗
BaB(aC + a∗C) (will write it as

CCNOT for short) and see what happens. Let |ψIN 〉 be our input state. Then

|ψ(t)〉 = e−
i
~ (t−t0)H |ψIN 〉

=

∞∑
n−0

1

n!
(
−it
~

)nHn|ψIN 〉

=
∑
m=0

1

(2m)!
(
−it
~

)2m(CCNOT)2m|ψIN 〉+
∑
m=0

1

(2m+ 1)!
(
−it
~

)2m+1(CCNOT)2m+1|ψIN 〉

=
∑
m=0

1

(2m)!
(
−it
~

)2mI|ψIN 〉+
∑
m=0

1

(2m+ 1)!
(
−it
~

)2m+1 CCNOT |ψIN 〉

= cos(
t

~
)|ψIN + i sin(

t

~
) CCNOT |ψIN 〉

Again, things are looking pretty good. The second term contains the output we desire: CCNOT |ψIN 〉. But

it occurs in superposition with |ψIN 〉, and only occurs with probability |i sin(t
~)|2. We only know which

state we are in by measuring our computational register, which then breaks the superposition, possibly by

projecting into the wrong output. Since the output depends on t, we could try optimising the time at which

we measure the system to improve our chance of measuring the correct ouput, but perhaps that is a tough

problem to do for a more complicated Hamiltonian. For a more complicated computation, we also encounter

the issue of not being sure if the output we measure is the correct one or not. For the simple case above, we

can already compute what the output should be, so when we measure the system, we will know if we got the

correct output or not. Generally this will not be the case, otherwise we don’t need to do the computation

in the first place.

We thus introduce, as Feynman does, the program counter and cursor. The program counter will be another

set of atoms that we append to our computational register, all but one of which will be in the |0〉 state. The

atom that is in the |1〉 state represents the cursor, which will move along the atoms of the program counter

to keep track of where in the computation the system is.

How do we use this new set of atoms? Suppose we have a computation U = UkUk−1...U1 where the Ui

represent gates from the universal gate set being used. The program counter in this case consists of k + 1

4

atoms, with k of them in the |1〉 state and one atom acting as the cursor at any given time (we see why we

want only one cursor shortly).

To see how the program counter and cursor are used, let us return to our example above. We denote our

new input as

|ψ̃IN 〉 = |ψIN 〉 ⊗ |0〉 ⊗ |1〉

Since U = CCNOT we have 2 additional atoms in the program counter, and the cursor starts in the 0th spot

(again we will see why later). We now write our Hamiltonian as

H = a∗1a0 CCNOT +a∗0a1 CCNOT∗

A couple of things to note. Firstly, I have dropped the tensor product notation, as this will get exponentially

annoying to write out. Secondly, the subscripts on the a denote the which atom of the program counter they

act upon. Thirdly, our new Hamiltonian now has two terms in it rather than just the one, since H needs to

be self-adjoint (CCNOT is already self-adjoint so CCNOT∗ = CCNOT).

We will consider Hn|ψ̂IN 〉 for a few values of n to get an idea of what is happening. Start with n = 1:

H|ψ̂IN 〉 = (a∗1a0 CCNOT +a∗0a1 CCNOT)|ψIN 〉 ⊗ |0〉 ⊗ |1〉

= CCNOT |ψIN 〉 ⊗ a∗1|0〉 ⊗ a0|1〉

= CCNOT |ψIN 〉 ⊗ |1〉 ⊗ |0〉

What has happened here? Well, the CCNOT gate is applied to our original input |ψIN 〉 and the cursor has

moved from the 0th spot of the program counter to the 1st spot. Let’s look at H2:

H2|ψ̂IN 〉 = H(CCNOT |ψIN 〉 ⊗ |1〉 ⊗ |0〉)

= (a∗1a0 CCNOT +a∗0a1 CCNOT)(CCNOT |ψIN 〉 ⊗ |1〉 ⊗ |0〉)

= (CCNOT)(CCNOT)|ψIN 〉 ⊗ a1|1〉 ⊗ a∗0|0〉

= |ψIN 〉 ⊗ |0〉 ⊗ |1〉

This case describes the reversibility of the computation/system. The initial input state has effectively had

the identity operating on it, and the cursor has moved from the 0th spot to the first spot and back to the

0th spot.

Following the same process as earlier, we get

|ψOUT 〉 = cos(
t

~
)|ψIN 〉 ⊗ |0〉 ⊗ |1〉+ i sin(

t

~
) CCNOT |ψIN 〉 ⊗ |1〉 ⊗ |0〉

This looks essentially the same as before, but now we have some extra utility in being able to measure the

atoms on the program counter to determine whether the computational register, once measured, will give

the desired output.

5

So the Hamiltonian for an arbitrary computation U = UkUk−1...U1 will be

H =

k−1∑
i=0

a∗i+1aiUi+1 +

k−1∑
i=0

a∗i ai+1U
∗
i+1

Another example may be useful here to illustrate some of what will occur when we look at the general U

above. Let us consider U ′ = U3U2U1, input state |ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 and Hamiltonian

H ′ = a∗1a0U1 + a∗2a1U2 + a∗3a2U3 + a∗0a1U
∗
1 + a∗1a2U

∗
2 + a∗2a3U

∗
3 .

Consider the following calculations:

H ′|ψ̂IN 〉 = (a∗1a0U1 + a∗2a1U2 + a∗3a2U3 + a∗0a1U
∗
1 + a∗1a2U

∗
2 + a∗2a3U

∗
3)|ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉

= U1|ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉

H ′2|ψ̂IN 〉 = H ′(U1|ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉)

= U2U1|ψIN 〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉+ U∗1U1|ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉

= U2U1|ψIN 〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉+ I|ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉

= U2U1|ψIN 〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉+ |ψ̂IN 〉

H ′3|ψ̂IN 〉 = H ′(U2U1|ψIN 〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉+ U∗1U1|ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉)

= U3U2U1|ψIN 〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉+ U∗2U2U1|ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉

+ U1U
∗
1U1|ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉

= U ′|ψIN 〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉+ 2U1|ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉

We see that in this example, our desired output state U ′|ψIN 〉 only occurs when the cursor is in the leftmost

spot of the program counter. This will be discussed further shortly.

We take a moment here to discuss why we need exactly one cursor. If there was no cursor, then none of

the a∗i+1ai or a∗i ai+1 would be non-zero, and the program counter adds no extra utility. If there was more

than one cursor, then it could occur that the cursor is in the leftmost spot of the program counter, but not

all the Ui have operated on our computational system. For example, if our Hamiltonian above acted on

|ψIN 〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉, the result would be a superposition:

H ′|ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 =U1|ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉+ U3|ψIN 〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉

+ U∗2 |ψIN 〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉

where one of the terms has a cursor in the ”terminating spot”, but the correct computation hasn’t occurred.

Thus, we ensure our program counter contains only one cursor, and we define our input to include the cursor

in the rightmost (0th) spot of the program counter, i.e. |ψIN 〉 ⊗ |0〉 ⊗ ...⊗ |0〉 ⊗ |1〉.

6

Back to U = Uk...U1, input state |ψ̂IN 〉 = |ψIN 〉 ⊗ |0〉⊗k ⊗ |1〉 and Hamiltonian

H =

k−1∑
i=0

a∗i+1aiUi+1 +

k−1∑
i=0

a∗i ai+1U
∗
i+1

Passing to the exponential, we get

e−
it
~ H |ψ̂IN 〉 =

∞∑
n=0

1

n!
(
−it
~

)nHn|ψ̂IN 〉

=

∞∑
n=0

1

n!
(
−it
~

)n[Cn
k (UkUk−1...U1|ψIN 〉 ⊗ |1〉 ⊗ |0〉⊗k) + Cn

k−1(Uk−1...U1|ψIN 〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉⊗k−1)+

...+ Cn
0 (|ψIN 〉 ⊗ |0〉⊗k ⊗ |1〉)]

=
[∞∑
n=0

1

n!
intnCn

k

]
U |ψIN 〉 ⊗ |1〉 ⊗ |0〉⊗k +

[∞∑
n=0

1

n!
intnCn

k−1
]
Uk−1...U1|ψIN 〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉⊗k−1+

...+
[∞∑
n=0

1

n!
intnCn

0

]
|ψIN 〉 ⊗ |0〉⊗k ⊗ |1〉

= Dk(t)U |ψIN 〉 ⊗ |1〉 ⊗ |0〉⊗k +Dk−1(t)Uk−1...U1|ψIN 〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉⊗k−1 + ...+D0(t)|ψIN 〉 ⊗ |0〉⊗k ⊗ |1〉

where the Cn
i count the number of states that end up as Ui...U1|ψIN 〉 ⊗ |0〉 ⊗ ...⊗ |1〉 ⊗ ...|0〉 for a given n,

with the cursor in the ith spot. The sums in the second last line all converge, and we represent their limits

as the Di(t). For a given t, these determine the probability of measuring each of the constituent states of

the superposition. By measuring the kth spot of the program counter, we project onto either the state that

represents the solution on our computational atoms when (when we measure the kth spot in the |1〉 state),

or some other state that is not the full computation on our computational atoms (when we measure the |0〉
state). This is useful since, we either collapse the wave function into the state we want, or do not collapse

the superposition when we don’t measure a |1〉, meaning we can keep measuring until we do get a |1〉.

Note that if the kth spot has been measured to be in the |1〉 state, then removing the cursor will ensure that

the computational register atoms remain in our desired output state, and can be measured at any stage.

Also note that we could change our program counter and computation slightly, so that we are considering

U = Uk+mUk+m−1...Uk...U1 where all the Uk+1, ..., Uk+m are the identity. This means we have a program

counter with k + m + 1 additional atoms, and if we measure the cursor in any of the m positions k + 1 to

k+m+ 1, then the computation the output is what we want. It may also be possible to place our quantum

system, or more specifically the program counter, into some field such that the movement of the cursor

is heavily bisaed to the forward direction, again increasing the likelihood that we measure the cursor in a

terminating position.

Now some final, more broad comments to finish off. Firstly, the universal gate set for reversible classical

computation is not a universal gate set for quantum computation. Because we are considering a quantum

system, the state of a particle can be any superposition α|0〉+β|1〉, i.e. can be any vector lying on the 2-sphere.

7

That means there is greater variety with the operations we can perform, such as rotations. Furthermore, we

saw earlier that we obtained the desired output by measuring the cursor in a certain state, which projected

the quantum system into that output state, in essence throwing away a lot of information. This again

suggests that quantum computation is more powerful than classical computation since it is possible to

perform computation using the superposition of all the states produced in the evolution of the system.

8

