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Brief Revision of Classical Linear Codes

The following definitions have been lifted verbatim from James Clift’s talk two weeks ago. We recall them

now to motivate, and allow us to draw comparisons to, the initial theory regarding quantum error correcting

codes.

Definition 0.1. A linear code C of length n and rank k is a k-dimensional subspace of Fn2 .

Definition 0.2. The code generator matrix G is an n × k matrix such that if v ∈ Fk2 is an unencoded

word, then Gv ∈ Fn2 is the corresponding encoded word.

Definition 0.3. A parity-check matrix H is an (n− k)× n matrix with kerH = C.

Definition 0.4. Let x ∈ Fn2 . The Hamming weight of x is the number of non-zero entries; we denote this

by ||x||. If x, y ∈ Fn2 , we define the Hamming distance between x and y as ||x− y||.

1 General Theory of Quantum Error-Correcting Codes and Quan-

tum Operations

These notes are based heavily on ”Quantum Computing and Quantum Information” by M. A. Nielsen and

I. L. Chuang (see references).

Definition 1.1. A quantum error correcting code is a subspace C of the Hilbert space (state space) H
of the quantum system.

It is often useful to consider a code C along with a projector PC onto the code space.

Encoding in the setting of quantum error correcting codes also parallels that of classical linear codes: a state

|ψ〉 ∈ H is encoded as a state |ψ′〉 ∈ C via a unitary transformation U . This encoding unitary is typically
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written as a quantum circuit rather than an explicit matrix, since even simple codes are encoded by large

matrices.

The nature of quantum mechanics is such that quantum error correcting codes are required to deal with

more complicated types of errors than classical codes. There are many different error models related to

quantum systems, often called error channels (we’ll discuss some examples later), so we would like to

develop a general theory of quantum error-correction that makes as few assumptions regarding the specific

error models as possible. To do this, we first need the following definition.

Definition 1.2. A quantum operation is a map E from the input space H1 to the output space H2 such

that for all |ψ〉 ∈ H1

E(|ψ〉) =
∑
i

Ei|ψ〉

for some set of operators Ei, called operation elements, that map H1 to H2 and satisfy∑
i

E†iEi ≤ I

Definition 1.3. A quantum operation is trace-preserving if
∑
iE
†
iEi = I.

Theorem 1.1. (Unitary freedom of quantum operations) Suppose {E1, ..., Em} and {F1, ..., Fn}
are operation elements defining quantum operations E and F respectively. We can assume that m = n

(otherwise append some 0 operators to the smaller of the two sets). Then E = F if and only if there exist

complex numbers uij such that Ei =
∑
j uijFj and (uij) is an m×m unitary matrix.

Before we prove the theorem, we need the following lemma.

Lemma 1.2. The set |ψi〉 and |φi〉 generate the same density matrix if and only if

|ψi〉 =
∑
j

uij |φj〉

where (uij) is a unitary matrix over C, and the sizes of the two sets can be taken to be equal by appending 0

vectors to the smaller of the two sets.

Proof. Suppose |ψi〉 =
∑
j uij |φj〉 for some unitary uij . Then∑

i

|ψi〉〈ψi| =
∑
ijk

uiju
∗
ik|φj〉〈φk|

=
∑
jk

(∑
i

u†kjuij
)
|φj〉〈φk|

=
∑
jk

δkj |φj〉〈φk|

=
∑
j

|φj〉〈φj |
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which proves one direction. For the other direction, suppose that

A =
∑
i

|ψi〉〈ψi| =
∑
j

|φj〉〈φj |

Let A =
∑
k λk|k〉〈k| where the |k〉 are othronormal and the λk are strictly positive (that is, consider

the spectral decomposition for the density operator A). Define |k′〉 =
√
λk|k〉 and let |ψ′〉 be any vector

orthonormal to the space spanned by the |k′〉. This means that 〈ψ′|k′〉〈k′|ψ′〉 = 0 and moreover

0 = 〈ψ′|A|ψ′〉 =
∑
i

〈ψ′|ψi〉〈ψi|ψ′〉 =
∑
i

|〈ψ′|ψi〉|2

Therefore, 〈ψ′|ψi〉 = 0 for all i and all |ψ′〉, meaning that for each i we can write |ψi〉 =
∑
k cik|k′〉. Therefore

A =
∑
k

|k′〉〈k′| =
∑
kl

(∑
i

cikc
∗
il

)
|k′〉〈l′|

The operators |k′〉〈l′| are linearly independent and so∑
i

cikc
∗
il = δkl

We then can append columns to the matrix c to obtain a unitary matrix v such that |ψi〉 =
∑
k vik|k′〉,

where some 0 vectors may have been appended to the list of |k′〉. The same process can be repeated for |φj〉
to find a unitary matrix w such that |φj〉 =

∑
k wjk|k′〉. Taking u = vw† gives the desired result.

Now to prove the theorem.

Proof. Suppose E and F act on H and are generated by {E1, ..., En} and {F1, ..., Fm} respectively. Without

loss of generality, we can assume n = m.

Suppose E = F , that is, ∑
i

Ei|ψ〉 =
∑
j

Fj |ψ〉

for all |ψ〉 ∈ H. Let us denote the basis for H by |i〉. Define the following state in H

|φ〉 = N
∑
i

|i〉

where N is a normalisation constant. Let us also define the following

|ek〉 =
∑
i

Ek(|i〉)

|fl〉 =
∑
i

Fl(|i〉)
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Since E(|φ〉) = F(|φ〉), get that
∑
k |ek〉〈ek| =

∑
l |fl〉〈fk| and let us denote this operator by σ. By 1.2, the

two sets of vectors {|ek〉} and {|fl〉} generate the same operator if and only if |ek〉 =
∑
l ukl|fl〉 for some

unitary (ukl). Since these two sets generate σ, such a unitary exists. Now, we can write an arbitrary |ψ〉 ∈ H
as follows

|ψ〉 =
∑
i

αi|i〉

and let us define |ψ′〉 by

|ψ′〉 =
∑
i

α∗i |i〉

Then we get

Ei|ψ〉 = 〈ψ′|ei〉

=
∑
j

uij〈ψ′|fj〉

=
∑
j

uijFj |ψ〉

for all |ψ〉 and for all i. Thus, we get Ei =
∑
j uijFj as required.

Now suppose that Ei =
∑
j uijFj for some unitary (uij). Then for any |ψ〉, we have

E(|ψ〉) =
∑
i

Ei|ψ〉

=
∑
i

∑
j

uijFj |ψ〉

=
∑
j

Fj
(∑

i

uij
)
|ψ〉

=
∑
j

Fj(e
iθ)|ψ〉

=
∑
j

Fj |ψ〉 up to a global phase

= F(|ψ〉)

Thus E = F .

Proposition 1.3. Let E and F be quantum operations from H1 to H2 and from H2 to H3 respectively. Then

F ◦ E is a quantum operation from H1 to H3.
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Proof. Let E and F be quantum operations defined by {Ei} and {Fj} respectively. Thus, we can write

F(E(|ψ〉)) = F(
∑
i

Ei|ψ〉)

=
∑
i

F(Ei|ψ〉)

=
∑
i

∑
j

Fj(Ei|ψ〉)

where the second equality follows by the linearity of quantum operations. So, F ◦ E can be described by the

set of operators {FjEi}i,j that map H1 to H3. We also note that∑
i,j

(FjEi)
†FjEi =

∑
i,j

E†iF
†
j FjEi

≤
∑
i

E†i IEi

≤ I

Therefore F ◦ E is a quantum operation.

Proposition 1.4. Measurement is a quantum operation.

Proof. This proposition follows directly by definition. The third postulate of quantum mechanics defines

quantum measurements to be described by a collection of operators {Mm} that act on the state space being

measured, with the subscript m referring to the measurement outcome [?]. The measurement operation on

|ψ〉 is given by

E(|ψ〉) =
∑
m

Mm|ψ〉√
〈ψ|M†mMm|ψ〉

and the operators Mm satisfy ∑
m

M†mMm = I

Thus quantum measurement is a quantum operation.

We are now in a position to describe our minimal set of assumptions on which to base our general theory of

quantum error correction.

Definition 1.4. For a given error channel effected by a quantum operation E , an error-correction pro-

cedure is a trace-preserving quantum operation R such that

(R ◦ E)(|ψ〉) ∝ |ψ〉 (1)
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Remark. We say that error-correction can occur for a given error channel E if an error-correction procedure

exists for E . The usual two-stage error detection then error correction procees is all bundled up inside the

definition given above. The above equation does not contain equality since we haven’t made any assumptions

preventing the error channel including measurement of the system. Equality would occur if the error channel

is also trace-preserving. The requirement that the error-correction procedure R is trace-preserving amounts

to requiring that the process R succeeds with certainty since the trace is closely related to probability.

The following theorem provides criteria for an error channel to be correctable.

Theorem 1.5. (Quantum error-correcting conditions) Let C be a quantum code and let PC be the

projector onto C. Suppose E is a quantum operation with elements {Ei}. There exists an error-correction

procedure R that satisfies (1) if and only if

PCE
†
iEjPC = αijPC

where (αij) is a Hermitian matrix over C.

The proof of the theorem makes use of the following

Lemma 1.6. (Polar decomposition of a linear operator) Let A be a linear operator on a vector space

V . Then there exists a unitary U and positive operators J and K such that

A = UJ = KU

where the unique operators J and K satisfying the above equation are defined by J =
√
A†A and K =

√
AA†.

Proof. J is a positive operator so, by taking its spectral decomposition, we can write J =
∑
i λi|i〉〈i| with

all λi non-negative. Define |ψi〉 = A|i〉 for all i. Consider the set of |ψi〉 such that λi 6= 0. For each of these

i, define |ei〉 = |ψi〉/λi. The set of these |ei〉 are orthonormal. This set can be extended to an orthonormal

basis via the Gram-Schmidt procedure. Also label this set |ei〉. If we define U =
∑
i |ei〉〈i|, we see that for

λi 6= 0, UJ |i〉 = λi|ei〉 = |ψi〉 = A|i〉, and for λi = 0, UJ |i〉 = 0 = |ψi〉. Thus A and UJ agree on the basis

|i〉 which proves equality.

Suppose J ′ 6= J is another positive operator that satisfies A = UJ ′. But then, we have

A†A = J ′U†UJ ′

= J ′2

so either J ′ = −
√
A†A which contradicts the assumption that J ′ is positive, or J ′ =

√
A†A = J which

contradicts the other assumption. Thus J =
√
A†A is the unique positve operator satisfying A = UJ . The

proof for K follows by defining K = UJU†.

Now to the proof of 1.5.
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Proof. Suppose {Ei} is a set of operation elements for a quantum operation E satisfying

PE†iEjP = αijP

for some Hermitian matrix α = (α)ij . It follows that α can be diagonalised to some diagonal matrix with

real entries d = u†αu, with u unitary. Moreover, we can diagonalise α to a positive diagonal matrix d′ which

is related to d via the following

d = d′c

where c is the diagonal matrix consisting of −1 and +1 entries such that dii = d′iicii and d′ii ≥ 0 for all i.

Thus, we can diagonalise α to d′ via

d′ = u†αuc†

Let Fk =
∑
i uikEi. By 1.1, the set {Fk} also describes E . We can then write

PF †kFlP =
∑
ij

u†kiujlPE
†
iEjP

=
∑
ij

u†kiαijujlP

= dklP

= d′klcklP

= d′klP

where the last equality uses the fact that Peiθ|ψ〉 = P |ψ〉 for all |ψ〉 in the state space and any phase factor

eiθ.

Now let us consider the polar decomposition of the operator FkP . By 1.6 we can write

FkP = Uk

√
PF †kFkP

=
√
d′kkUkP

for some unitary Uk. We then define the projectors (for all k such that d′kk 6= 0)

Pk = UkPU
†
k

=
FkPU

†
k√

d′kk
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and note that these projectors define orthogonal subspaces, that is, for l 6= k, we see that

PlPk = P †l Pk

=
UlPF

†
l FkPU

†
k√

d′ll
√
d′kk

=
Uld
′
lkPU

†
k√

d′lld
′
kk

= 0 since d′lk = 0 for l 6= k

Defining the correction procedure R by the set of operators {U†kPk}, we see that, for any |ψ〉 in the codespace

R(E(|ψ〉)) =
∑
kl

U†kPkFl|ψ〉

=
∑
kl

U†kP
†
kFlP |ψ〉 since |ψ〉 is in the codespace

=
∑
kl

U†kUkPF
†
kFlP |ψ〉√
d′kk

=
∑
kl

δkl

√
d′kk|ψ〉

=
∑
k

√
d′kk|ψ〉

∝ |ψ〉

This finishes the first half of the proof, once we note that we can append additional projectors to the set

{Pk}, in order to have a set of operation elements {U†kPk} that satisfies∑
k

PkUkU
†
kPk =

∑
k

Pk = I

Now, for the other direction, suppsoe {Ei} is a set of errors (describing a quantum operation E) that is

correctable by a trace-preserving error-correction operation R described by operation elements {Rj}. Define

a quantum operation EC such that

EC(|ψ〉) = E(P |ψ〉)

Since P |ψ〉 is in the codespace for any |ψ〉, we get that

R(EC(|ψ〉)) ∝ P |ψ〉

In fact, we can show that the proportionality is constant and indpendent of |ψ〉 via the following argument.

Let |ψ〉 and |φ〉 be arbitrary. Then consider

R(EC(a|ψ〉+ b|φ〉)) = α(a|ψ〉+ b|φ〉)P (a|ψ〉+ b|φ〉)

= aα(a|ψ〉+ b|φ〉)P |ψ〉+ bα(a|ψ〉+ b|φ〉)P |φ〉
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where α(·) denotes the proportionality as a function of vectors. But quantum operations are linear, so

R(EC(a|ψ〉+ b|φ〉)) = aR(EC(|ψ〉)) + bR(EC(|φ〉))

= aα(|ψ〉)P |ψ〉+ bα(|φ〉)P |φ〉

Thus

aα(a|ψ〉+ b|φ〉)P |ψ〉+ bα(a|ψ〉+ b|φ〉)P |φ〉 = aα(|ψ〉)P |ψ〉+ bα(|φ〉)P |φ〉

which implies that α is constant.

It follows from 1.1 that the operation elements {RjEi} are equivalent to the quantum operation with the

operation elements αP . Thus we have

RjEiP = βjiP

for βji ∈ C. We then get

PE†iR
†
kRkE

†
jP = β∗kiβkjP

=⇒
∑
k

PE†iR
†
kRkE

†
jP =

∑
k

β∗kiβkjP

=⇒ PE†i (
∑
k

R†kRk)E†jP =
∑
k

β∗kiβkjP

=⇒ PE†iEjP = γijP since
∑
k

R†kRk = I by trace-preservation

where γij =
∑
k β
∗
kiβkj which is Hermitian.

We often refer to the set of operation elements for an error channel E as errors and if an operation R exists

that satisfies (1), then we refer to them as correctable errors.

We have the following important theorem.

Theorem 1.7. (Discretisation of Errors) Let C be a quantum code and R be the error-correction proce-

dure that corrects the set of errors {Ei} describing the error operation E. Suppose F is a quantum operation

with operation elements {Fj} such that Fj =
∑
imjiEi for some matrix (mji) over C. Then R also corrects

F on C.

Proof. Similar to the proof of 1.5, we can assume without loss of generality that the set of errors {Ei} is

such that

PE†jEiP = dijP
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where dij is diagonal, with non-negative real entries. We again take the operation elements of the error-

correction procedure R to be U†kPk, defined as before, such that

U†kPkEi|ψ〉 = δik
√
dkk|ψ〉

for all |ψ〉 in the codespace. Now, we get that

U†kPkFj |ψ〉 =
∑
i

mjiδki
√
dkk|ψ〉

= mjk

√
dkk|ψ〉

which shows that R corrects the set of errors {Fj} since

R(F(|ψ〉)) =
∑
j

R(Fj |ψ〉)

=
∑
jk

U†kPkFj |ψ〉

=
(∑
kj

mjk

√
dkk
)
|ψ〉

∝ |ψ〉

1.1 Examples of Error Channels and Quantum Error-Correcting Codes

Let us now see some examples of different error channels written in the quantum operation formalism, and

codes that correct these channels.

Example 1.1. (Bit-flip channel and bit-flip code) We can specify the bit-flip error channel Ebit by

writing down it’s operation elements {E0, E1}:

E0 =
√
p

[
1 0

0 1

]

E1 =
√

1− p

[
0 1

1 0

]

where 1 − p is the probability that a bit flip occurs when a state |ψ〉 is transmitted through the channel

Ebit. Now let us consider the three-qubit bit flip error-correcting code C3,bit. This code is the subspace of

the 23-dimensional state space H spanned by {|000〉, |111〉}. A state of a single qubit |ψ〉 = a|0〉 + b|1〉 is

encoded into the state |ψ′〉 = a|000〉+ b|111〉 via the following circuit (unitary transformation)

10



⊕

⊕
|0〉

|0〉

|ψ〉

Let us consider the error channel E which is actually three independent bit-flip error channels (the indepen-

dence of error channels is crucial for error correction to work), one for each qubit, that is

E(|ψ′〉) = (E3,bit ◦ E2,bit ◦ E1,bit)(|ψ′〉)

= (E3,bit ◦ E2,bit)(
√
p1|ψ′〉+

√
1− p1X1|ψ′〉)

= E3,bit(
√
p1E2,bit(|ψ′〉) +

√
1− p1E2,bit(X1|ψ′〉))

= ...

We will take p1 = p2 = p3 to make things simpler. This gives

E(|ψ′〉) = p3/2|ψ′〉+ p
√

1− p(X3|ψ′〉+X2|ψ′〉+X1|ψ′〉) + (1− p)√p(X3X2|ψ′〉+X3X1|ψ′〉+X2X1|ψ′〉)

+ (1− p)3/2X3X2X1|ψ′〉

Let us use the machinery developed in 1.5 to see whether this error channel is correctable. The projector for

the bit-flip code is P = |000〉〈000|+ |111〉〈111|, so let us consider PE†jEiP for all Ei in the set

{I,X1, X2, X3, X1X2, X1X3, X2X3, X1X2X3}

(where we have ommitted the probabilities). If we attempt to write out the matrix α, with the Ei along the

row and E†j along each column, we get the following

1 0 0 0 0 0 0 ?

0 1 0 0 0 0 ? 0

0 0 1 0 0 ? 0 0

0 0 0 1 ? 0 0 0

0 0 0 ? 1 0 0 0

0 0 ? 0 0 1 0 0

0 ? 0 0 0 0 1 0

? 0 0 0 0 0 0 1


The ? signify the entries E†jEi for which there is no complex number αij that satisfies PE†jEiP = αijP .

These occur when the combination of error Ei and error correction E†j take a state a|000〉 + b|111〉 in the
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code space to the state b|000〉 + a|111〉. There is no phase factor that relates these two states for all a, b.

So, we cannot correct for the channel E . However, if we consider only the top right hand 4× 4 corner of the

above matrix 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


this is Hermitian, so if we consider the error channel E ′ defined by elements {(1 − p)I, p3X1,

p
3X2,

p
3X3},

then by 1.5, we can correct this channel. The error correction can proceed by defining the error-correction

elements as per the proof of the theorem:

P0 = P = |000〉〈000|+ |111〉〈111|

P1 = |100〉〈100|+ |011〉〈011|

P2 = |010〉〈010|+ |101〉〈101|

P3 = |001〉〈001|+ |110〉〈110|

and define R as the quantum operation described by the elements {P0, X1P1, X2P2, X3P3}. If we let |ψ′′〉
denote E(|ψ′〉) and if we assume that at most one error has occurred, then we get

R(|ψ′′〉) = |ψ′〉

since it is easy to see that the +1-eigenstates of each of the four projectors correspond to no error, a single

error on first qubit, a single error on the second qubit and a single error on the third qubit respectively. So

if, say, |ψ′′〉 = a|010〉+ b|101〉, we get

R(a|010〉+ b|101〉) = P0(a|010〉+ b|101〉) +X1P1(a|010〉+ b|101〉) +X2P2(a|010〉+ b|101〉) +X3P3(a|010〉+ b|101〉)

= 0 + 0 +X2(a|010〉+ b|101〉) + 0

= a|000〉+ b|111〉

= |ψ′〉

So if at most one error occurs, then this procedure works with certainty.

Example 1.2. (Phase-flip channel and phase flip code) The phase-flip channel and phase-flip code

are very similar to the bit-flip channel and bit-flip code, so the details in this example are similar to above.

The phase-flip channel Ephase can be described by {E′0, E′1} where

E′0 = E0 =
√
pI

E′1 =
√

1− p

[
1 0

0 −1

]
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The phase-flip code, just like the bit-flip code above, can correct against single errors. A state |ψ〉 is encoded

via the following unitary transformation

⊕

⊕

H

H

H|0〉

|0〉

|ψ〉

which encodes a|0〉+ b|1〉 as a|+ ++〉+ b| − −−〉. Error detection and correction occurs via a very similar

process to that outlined above. In fact, these bit-flip and phase-flip error channels (and corresponding the

bit-flip and phase-flip codes) are unitarily equivalent (recall ??).
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