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Abstract

These are lecture notes for the subject Advanced Probability which I
taught at University of Melbourne over the past years. They appear to be
substantially longer than what typically constitute a one-semester course
for the reason that the subject went through a phase transition in 2021.
Before that, the syllabus covered weak convergence of probability measures,
sequences and sums of independent random variables, the characteristic
function, central limit theorems and Stein’s method for Gaussian approxi-
mations. After that, the syllabus changed to cover product measure spaces,
sequences and sums of independent random variables and discrete-time mar-
tingales. These notes combine the aforementioned two versions of the sub-
ject and form a self-contained integrated text.

As a Melbourne University tradition, the first two chapters are not in-
cluded in the Advanced Probability syllabus; instead they are taught in the
third-year subject Probability for Inference. We have included these two
chapters just for self-containedness. In addition, we have also omitted two
important topics that are typical for such a subject: Markov chains and
infinitely divisible distributions. The former is covered in the third-year
undergraduate course Stochastic Modelling and the latter is covered in the
graduate course Random Processes.

In many ways, the present notes are largely influenced by [Wil91] and
also by [Bil86, Chu01, Dur19] among others. These classics have always been
great sources of inspiration and enjoyment for learning modern probability
theory.
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1 Probability spaces
Probability theory is primarily concerned with the study of quantitative be-
haviours of random variables and their distributional properties. Before attempt-
ing to investigate these questions, we shall begin with the very first building block
of the theory: probability spaces.

In this chapter, we give precise mathematical meanings to various concepts
one has seen in elementary probability from a measure-theoretic perspective. The
main motivating questions of this chapter are described as follows.

(i) What is a proper mathematical way of describing events?
(ii) What are the natural principles of assigning probabilities to events?
(iii) How can one construct a “probability function” on all events given the knowl-
edge of probabilities on “simple” events?

The study of these three questions occupies the first three sections respectively.
For one who has no prior exposure to measures on σ-algebras, this chapter may
not be as entertaining as those fun combinatorial arguments in elementary proba-
bility. Nonetheless, since the development of Kolmogorov’s axiomatic approach to
probability in the 1930s, measure theory has become the basic language of modern
probability that every probabilist speaks and uses nowadays. The essential goal
of this and the next chapters is to get acquainted with this language so that one
can start working on the real probabilistic problems in a precise mathematical
way.

1.1 Set classes, events and Dynkin’s π-λ theorem

Before introducing probabilities, one first encounters the notions of sample spaces
and events. In elementary probability, a sample space is the collection of all
possible outcomes of a random experiment. As a mathematical object on its own,
a sample space is merely a given abstract set. The first concept that requires care
is the notion of events. Heuristically, an event should clearly be considered as a
subset of the sample space consisting of certain outcomes (because the relation
between outcomes and events is the relation of belongingness : an outcome ω
triggers an event A iff ω ∈ A). In typical situations when the sample space is
infinite, for subtle theoretical reasons it is inappropriate to consider every subset
of the sample space as a legal event. How to understand events mathematically is
the aim of this section. This is the first step to take before assigning probabilities
to events, which will be the goal of the next section.
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Let Ω be a given fixed non-empty set (the sample space). As subsets of Ω,
the key axiom on events is that they should be stable / closed under natural set
operations. For instance, if A,B are two legal events, then Ac, A ∪B and A ∩B
should all be considered as legal events. In addition, for practical reasons it is
necessary to form new events from infinitely many given ones (e.g. ∪∞

n=1An). It
turns out that, as the minimal requirement the collection of “legal events” should
be closed under any applications of the set operations (·)c,∪,∩ for countably many
times. This leads to the following basic definition.

Definition 1.1. A collection F of subsets of Ω is called a σ-algebra over Ω, if it
satisfies the following three properties:

(i) Ω ∈ F ;
(ii) if A ∈ F , then Ac ∈ F ;
(iii) if An ∈ F (n ⩾ 1), then ∪∞

n=1An ∈ F .

Given a σ-algebra F over Ω, the pair (Ω,F) is called a measurable space.

Members of F are called F -measurable sets. We interpret them as events. In
other words, a σ-algebra over Ω defines a family of events.

Example 1.1. There are two obvious σ-algebras over Ω: the trivial σ-algebra
F0 ≜ {∅,Ω} and the power set P(Ω) (the collection of all subsets of Ω).

Example 1.2. Let Ω = Z (the set of integers). Then

F = {∅,Ω, {even numbers}, {odd numbers}}

is a σ-algebra over Ω.

Let F be a σ-algebra over Ω. Any combinations of finite or countable unions,
intersections, complements of events in F again belong to F . For instance, ∅ =
Ωc ∈ F as a consequence of Property (i) and (ii). If A,B ∈ F , then

A ∪B = A ∪B ∪B ∪B · · · ∈ F

by Property (iii). Given {An : n ⩾ 1} ⊆ F , one has

∞⋂
n=1

An =
( ∞⋃
n=1

Ac
n

)c ∈ F .

When Ω is an infinite set, σ-algebras over Ω are in general difficult to describe
explicitly. Nonetheless, there are several types of set classes that are often easier
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to describe and work with. A common idea in probability theory is that, once one
is comfortable with properties over a simple set class, one extends them to “the
σ-algebra generated by this class”, the latter which being the real stuff of interest.
These simpler set classes are defined by weakening the stability properties (i)–(iii)
to different extents in the definition of σ-algebras.

Definition 1.2. Let C be a set class on Ω (i.e. a collection of subsets of Ω).

(i) C is called a π-system, if it is closed under finite intersections:

A,B ∈ C =⇒ A ∩B ∈ C;

(ii) C is called a semiring, if C is a π-system containing ∅ and additionally for any
A,B ∈ C, one can write A\B as a disjoint union of finitely many members of C.
(iii) C is called an algebra, if C is a π-system containing Ω and additionally one
has

A ∈ C =⇒ Ac ∈ C.
(iv) C is called a λ-system (or a Dynkin system), if

Ω ∈ C; A,B ∈ C, A ⊆ B =⇒ B\A ∈ C; An ∈ C, An ↑ A =⇒ A ∈ C.

Notation. It is a common convention to use small letters ω, x, y etc. to denote
elements in an event, capital letters A,C,E etc. to denote events and calligraphy
letters A, C,F etc. to denote set classes.

From Definition 1.2, it is clear that

σ-algebra =⇒

{
algebra =⇒ semiring =⇒ π-system;

λ-system,

but none of the reverse implication is true in general. π-systems, semirings and al-
gebras are concerned with stability under finitely many steps of set operations. For
instance, it is not hard to check that an algebra is closed under finite combinations
of taking unions / intersections / complementations. λ-systems and σ-algebras
are concerned with stability under countably many steps of set operations.

The real line is an important example to demonstrate the above concepts.

Example 1.3. Let Ω = R. Define the following set classes

C1 ≜ {(−∞, b] : b ∈ R},
C2 ≜ {(a, b] : −∞ < a ⩽ b <∞},
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respectively. Then C1 is a π-system and C2 is a semiring (for instance, (0, 3]\(1, 2]
is the disjoint union of two members (0, 1] and (2, 3] in C2). Define C3 to be the
collection of finite disjoint unions of intervals of the form (−∞, b], (a, b] or (a,∞)
with a ⩽ b. Then C3 is an algebra.

In Example 1.3 over R, it is often necessary to work with subsets that are more
general than intervals. In particular, we are also interested in subsets formed by
countably many steps of set operations on intervals. This leads one to the impor-
tant notion of generated σ-algebras as well as other types of generated classes.

Definition 1.3. Let C be a set class over Ω. The σ-algebra generated by C, de-
noted as σ(C), is the smallest σ-algebra that contains C. Equivalently, it is the
intersection of all σ-algebras over Ω having C as a subclass:

σ(C) =
⋂

F :F is σ-alg.
C⊆F

F .

In a similar way, one can define the notions of generated algebras, generated λ-
systems etc. The algebra (respectively, the λ-system) generated by C, denoted as
A(C) (respectively, λ(C)), is the smallest algebra (respectively, smallest λ-system)
containing C as a subclass.

Describing a generated algebra is easy. We illustrate this in the example of R.

Example 1.4. Using the same notation in Example 1.3, one can show that C3 =
A(C1∪C2). Indeed, it is plain to check by definition that C3 is an algebra containing
C1 ∪ C2. This implies that C3 ⊇ A(C1 ∪ C2). For the reverse direction, one only
needs to observe that (a,∞) ∈ A(C1 ∪ C2). But this is obvious: one has

(a,∞) = (−∞, a]c ∈ A(C1 ∪ C2)

since (−∞, a] ∈ C1 ⊆ A(C1 ∪ C2).

Unfortunately, except for some special situations (e.g. σ({A}) = {∅, A,Ac,Ω}),
it is usually impossible to describe a generated σ-algebra explicitly (cf. Appendix
B for the more serious reader!). It is true though

C1 ⊆ C2 =⇒ σ(C1) ⊆ σ(C2),

which is seen by the fact that σ(C2) is a σ-algebra containing C1. In the example
of R, one has the following property.
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Proposition 1.1. We continue using the notation C1, C2, C3 in Example 1.3. Let
C4 be the collection of all open subsets of R. Then

σ(C1) = σ(C2) = σ(C3) = σ(C4).

Proof. We argue in the order of σ(C1) ⊆ σ(C2) ⊆ σ(C3) ⊆ σ(C4) ⊆ σ(C1).
(i) σ(C1) ⊆ σ(C2). It is sufficient to show that C1 ⊆ σ(C2). But any set in C1 has
the form (−∞, b] which can be written as

(−∞, b] =
∞⋃
n=1

(−n, b]. (1.1)

Since (−n, b] ∈ C2 for each n and σ(C2) is a σ-algebra, one concludes that the
right hand side of (1.1) and thus (−∞, b] ∈ σ(C2). Therefore, C1 ⊆ σ(C2).
(ii) σ(C2) ⊆ σ(C3). This is obvious since C2 ⊆ C3.
(iii) σ(C3) ⊆ σ(C4). Since C3 consists of finite disjoint unions of intervals of the
form (−∞, b], (a, b] or (a,∞), it is sufficient to see that these intervals are all
contained in σ(C4). Let us only check this for (a, b]. One writes

(a, b] =
∞⋂
n=1

(
a, b+

1

n

)
.

Since open intervals are open subsets, one knows that the right hand side and
thus (a, b] ∈ σ(C4).
(iv) σ(C4) ⊆ σ(C1). Let U be an open subset of R and we want to show that U ∈
σ(C1). The key observation is that U can be written as a countable union of open
intervals. Indeed, given x ∈ U, there exists n ⩾ 1 such that (x−2/n, x+2/n) ⊆ U .
But x can always be approximated by rational numbers. In particular, there exists
r ∈ U ∩Q, such that |x−r| < 1/n, which implies that x ∈ (r−1/n, r+1/n) ⊆ U .
This shows that

U =
⋃

r∈U∩Q,n⩾1:
(r−1/n,r+1/n)⊆U

(
r − 1

n
, r +

1

n

)
.

Therefore, U is a countable union of open intervals. It is now enough to show
that any open interval (a, b) ∈ σ(C1). But this follows from the fact that

(a, b) = (−∞, b)\(−∞, a] =
( ∞⋃
n=1

(
−∞, b− 1

n

])
\(−∞, a] ∈ σ(C1).
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Remark 1.1. In Proposition 1.1, by using essentially the same type of argument,
one can show that σ(C1) also coincides with the σ-algebras generated by open
intervals, or closed intervals, or intervals of the form [a, b), respectively.

Definition 1.4. The σ-algebra generated by open subsets of R is called the Borel
σ-algebra on R. It is denoted as B(R). Members of B(R) are called Borel measur-
able sets.

Let C be a given set class over Ω. The following type of questions is quite
typical. Suppose one knows that certain property holds true for members of C.
How can one prove that the same property also holds for all members of σ(C)?
The challenge here is that σ(C) is in general hard to describe. A powerful approach
to address this question (without knowing what σ(C) looks like) is the so-called
Dynkin’s π-λ theorem.

Theorem 1.1. Let C be a π-system. Then the λ-system generated by C coincides
with the σ-algebra generated by C. In other words, λ(C) = σ(C).

Proof. We first prove a general fact: if a set class L is a π-system and also a
λ-system, then L is a σ-algebra. To see that, by the definition of a λ-system,
one has Ω ∈ L, and if A ∈ L then Ac = Ω\A ∈ L. It remains to show that L
is stable under countable union. Let An ∈ L and A ≜ ∪nAn. For each n we set
Bn ≜ A1 ∪ · · · ∪ An. Since Bn = (Ac

1 ∩ · · · ∩ Ac
n)

c and L is a π-system, one sees
that Bn ∈ L. In addition, since Bn ↑ A and L is a λ-system, one concludes that
A ∈ L. Therefore, L is a σ-algebra.

Now suppose that C is a given π-system. Since any σ-algebra is a λ-system,
one has λ(C) ⊆ σ(C). To demonstrate the other direction, it suffices to show that
λ(C) is a σ-algebra. According to the previous fact, it is enough to show that λ(C)
is a π-system, i.e.

A,B ∈ λ(C) =⇒ A ∩B ∈ λ(C). (1.2)

To this end, we introduce an intermediate step: we first prove (1.2) for A ∈ λ(C)
and B ∈ C. Let B ∈ C be given fixed and define the set class

HB ≜ {A ⊆ Ω : A ∩B ∈ λ(C)}.

Since C is a π-system, one has C ⊆ HB. We now check that HB is a λ-system:

(L1) Since Ω ∩B = B ∈ C ⊆ λ(C) by assumption, one has Ω ∈ HB.
(L2) Let A1, A2 ∈ HB with A1 ⊆ A2. Then A1 ∩ B,A2 ∩ B ∈ λ(C). Since λ(C) is
a λ-system, one has

(A2\A1) ∩B = (A2 ∩B)\(A1 ∩B) ∈ λ(C).
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Therefore, A2\A1 ∈ HB.
(L3) Let An ∈ HB and An ↑ A. Then An ∩ B ∈ λ(C) and An ∩ B ↑ A ∩ B.
Therefore, A ∩B ∈ λ(C) and thus A ∈ HB.

As a consequence, HB is a λ-system and one thus has λ(C) ⊆ HB. In other words,
for any A ∈ λ(C) with B ∈ C, one has A ∩ B ∈ λ(C). To prove the general
statement (1.2), one can now fix A ∈ λ(C) and argue in the same way to conclude
that A ∩B ∈ λ(C) for all B ∈ λ(C).

We conclude this section by describing the general procedure of applying
Dynkin’s π-λ theorem. We will see concrete examples when we have richer prob-
abilistic contexts (cf. e.g. Proposition 1.4 in the Section 1.3 below).

Suppose that one wants to prove certain property P for all events in the σ-
algebra σ(C) generated by some π-system C. One can then argue in the following
steps:

Step 1. Define H to be the collection of subsets satisfying property P, and show
that C ⊆ H (i.e. members of C satisfy the desired property).
Step 2. Show that H is a λ-system.

Once these two steps are established, it follows that λ(C) ⊆ H and Dynkin’s π-λ
theorem yields σ(C) ⊆ H. In other words, all events in σ(C) satisfy property P.

1.2 Probability measures and their basic properties

After developing the mathematical notion of events, one can now talk about as-
signing probabilities to them. Essentially, this is a set function P : F → [0, 1]
(A 7→ P(A)) defined on a given σ-algebra F (collection of events) and taking val-
ues in [0, 1] (probabilities), which should obey some “natural axioms”. Such a set
function will be called a probability measure. At this point, the fact that P(A) ⩽ 1
is not so important yet; it is beneficial to put aside “probability” (until we need
it!) and work with the more general notion of measures.

Let (Ω,F) be a given measurable space. A measure should be a set function
µ defined on F , so that whenever one is given a set A ∈ F , µ(A) produces a
reasonable notion of its “size”. In particular, µ should take values in [0,∞] (A can
have infinite size in principle so that one should include ∞ as a possible value for
µ). A fundamental property of a measure is countable additivity : the size of a
countable disjoint union of sets in F should be the sum of their individual sizes.
This is the “natural axiom” in the definition of (probability) measures.
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Definition 1.5. Let (Ω,F) be a measurable space. A set function µ : F → [0,∞]
is called a measure on (Ω,F), if it satisfies µ(∅) = 0 and whenever {An : n ⩾ 1}
is a sequence of disjoint sets in F one has

µ
( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An) (countably additivity).

The triple (Ω,F , µ) is called a measure space.

As a consequence of the countable additivity axiom, one can derive the follow-
ing basic properties of a measure.

Proposition 1.2. Let µ be a measure on (Ω,F). Then µ satisfies:

(i) Finite additivity: for disjoint subsets A1, · · · , An ∈ F , one has

µ
(
A1 ∪ · · · ∪ An

)
= µ(A1) + · · ·+ µ(An).

(ii) Monotonicity: if A,B ∈ F and A ⊆ B, then µ(A) ⩽ µ(B). If in addition
µ(A) <∞, then

µ(B\A) = µ(B)− µ(A).

(iii) Continuity from below:

An ∈ F , An ↑ A =⇒ lim
n→∞

µ(An) = µ(A).

(iv) Continuity from above:

An ∈ F , An ↓ A, µ(A1) <∞ =⇒ lim
n→∞

µ(An) = µ(A).

In particular, the case when A = ∅ is called continuity at ∅.
(v) Countable subadditivity: for any sequence {An : n ⩾ 1} ⊆ F , one has

µ
( ∞⋃
n=1

An

)
⩽

∞∑
n=1

µ(An).

Proof. (i) Apply the countable additivity property to the sequence

A1, A2, · · · , An, ∅, ∅, ∅, · · · .

(ii) By applying the finite additivity property to the disjoint union B = A∪B\A,
one gets

µ(B) = µ(A) + µ(B\A) ⩾ µ(A).
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If in addition µ(A) <∞, one can subtract µ(A) on both sides of the above equality
to get

µ(B\A) = µ(B)− µ(A).

(iii) Let {An} be an increasing sequence of subsets in F such that An ↑ A. If
µ(An) = ∞ for some n, by monotonicity one trivially has

∞ = µ(An) ⩽ µ(An+1) ⩽ · · · ⩽ µ(A) = ∞.

Therefore, one may assume that µ(An) <∞ for each n. In this case, if one defines
Bn ≜ An\An−1 (n ⩾ 1 and A0 ≜ ∅), from Part (ii) one knows that

µ(Bn) = µ(An)− µ(An−1).

Since {Bn} is a disjoint sequence and ∪∞
n=1Bn = A, one has

µ(A) =
∞∑
n=1

µ(Bn) = lim
n→∞

n∑
k=1

(µ(Ak)− µ(Ak−1)) = lim
n→∞

µ(An).

(iv) This follows from applying Part (iii) to the sequence Bn ≜ (A1\An) which
now increases to A1\A.

(v) The proof of this property involves a useful technique of writing a union as a
disjoint union. Let {An : n ⩾ 1} ⊆ F . Define

Bn ≜ An\
(
A1 ∪ A2 ∪ · · · ∪ An−1

)
= An ∩ Ac

1 ∩ Ac
2 ∩ · · · ∩ Ac

n−1.

Then {Bn} is a disjoint sequence of subsets and

∞⋃
n=1

Bn =
∞⋃
n=1

An.

To see the latter relation, let ω ∈ ∪nAn so that it belongs at least one of these
events. Choose m to be the smallest index n such that ω ∈ An. Then ω ∈ Bm.
It is obvious that Bn ∩Bm = ∅ for n ̸= m and Bn ⊆ An. Therefore, by countable
additivity and monotonicity one has

µ
( ∞⋃
n=1

An

)
= µ

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn) ⩽
∞∑
n=1

µ(An).

13



The main useful measures one will encounter are those with certain finiteness
properties. In particular, probability measures are simply measures µ that have
total mass one (i.e. µ(Ω) = 1), so that µ(A) can be interpreted as “the probability
of the event A” (the monotonicity property shows that µ(A) ⩽ µ(Ω) = 1).

Definition 1.6. A measure µ defined on a given measurable space (Ω,F) is called:

(i) a finite measure if µ(Ω) <∞;
(ii) a σ-finite measure if there exists a partition {An : n ⩾ 1} of Ω (i.e. a sequence
of events satisfying An ∩ Am = ∅ whenever n ̸= m and Ω = ∪nAn), such that
µ(An) <∞ for each n ⩾ 1;
(iii) a probability measure if µ(Ω) = 1.

A probability measure is often denoted as P. In this case, the triple (Ω,F ,P) is
called a probability space.

One can equivalently define a probability measure under Kolmogorov’s three
axioms : (i) P(A) ⩾ 0 for all A ∈ F , (ii) P(Ω) = 1 and (iii) P satisfies the countable
additivity property. It should be pointed out that these axioms only provide the
natural properties that every probability measure should obey. However, they do
not construct any specific probability measure on (Ω,F).

Example 1.5. Consider a random experiment that produces finitely many pos-
sible outcomes equally likely (for instance, tossing a fair coin or rolling a fair die).
In this case, Ω is a finite set consisting of the possible outcomes of the experi-
ment. F can be taken to be the collection of all subsets of Ω (the power set). The
underlying probability measure P : F → [0, 1] is defined by

P(A) ≜
#(A)

#(Ω)
, A ∈ F ,

where #(A) denotes the number of elements in A. The probability space (Ω,F ,P)
is known as a classical probability model. One can define other legal proba-
bility measures on (Ω,F) as long as they satisfy Kolmogorov’s three axioms.
For instance, in the example of tossing a coin, one has Ω = {H,T} and F =
{∅,Ω, {H}, {T}}. Given α ∈ (0, 1), there is an associated probability measure P
on (Ω,F) defined by

P({H}) = α, P({T}) = 1− α, P(∅) = 0, P(Ω) = 1.

This model corresponds to tossing a biased coin with “head probability” given by
α.
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Kolmogorov’s axiomatic approach (1930s) was a milestone in the development
of probability theory. Before Kolmogorov’s time, it was not easy to recognise
the significance of the countable additivity property. For quite a long period,
probabilists were satisfied by working with the finite additivity property on an
algebra (only finitely many steps of event operations were concerned). This was
fine as long as the sample space Ω is finite. It was when one came across questions
related to infinitely repeated experiments, sequences of independent random vari-
ables, construction of stochastic processes etc. that the notions of σ-algebras and
countable additivity became essential. It is natural to ask: with finite additivity
at hand what extra condition(s) are needed to ensure countable additivity? An
answer to this question is contained in the following result.

Proposition 1.3. Let A be an algebra over Ω. Let µ : A → [0,∞) be a set
function such that µ(∅) = 0 and it satisfies finite additivity on A. Then the
following statements are all equivalent:

(i) µ is countably additive on A: whenever {An : n ⩾ 1} is a disjoint sequence in
A such that ∪∞

n=1An ∈ A, one has

µ
( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An);

(ii) µ is continuous from below;
(iii) µ is continuous from above;
(iv) µ is continuous at ∅;
(v) whenever A ∈ A and {An : n ⩾ 1} ⊆ A satisfy A ⊆ ∪∞

n=1An, one has

µ(A) ⩽
∞∑
n=1

µ(An).

Proof. The argument of (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) and (i) =⇒ (v) is identical
to the proof of Proposition 1.2. It remains to consider the following two directions.
Let {An : n ⩾ 1} be a sequences of disjoint sets in A and A ≜ ∪∞

n=1An ∈ A.
(iv) =⇒ (i). Since A is an algebra, Bn ≜ ∪n

k=1An ∈ A. It is obvious that
Bn ⊆ A and finite additivity implies

µ(A\Bn) = µ(A)− µ(Bn) = µ(A)−
n∑

k=1

µ(Ak).
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Since (A\Bn) ↓ ∅, by assumption one concludes that

0 = lim
n→∞

µ(A\Bn) = µ(A)−
∞∑
n=1

µ(An),

yielding the desired countable additivity property.
(v) =⇒ (i). Define Bn as above. Observe that µ satisfies monotonicity as a

consequence of finite additivity. Together with the assumption of (v), one sees
that

n∑
k=1

µ(Ak) = µ(Bn) ⩽ µ(A) ⩽
∞∑

m=1

µ(Am)

for all n. By taking n→ ∞, one obtains the countable additivity property.

1.3 The core of the matter: construction of probability
measures

In elementary probability, one has encountered the concept of distribution func-
tion F for a random variable X (as a function on R, F (x) ≜ P(X ⩽ x)). From
a mathematical perspective, there is a basic question one must address: given a
distribution function F, how can one construct a probability space as well as a
random variable defined on it whose distribution is F? For instance, how can one
construct a standard normal random variable mathematically?

Although we have not yet make precise the definition of a random variable,
we can still outline the key idea of approaching this question. Let us take Ω = R
and F = B(R) (cf. Definition 1.4) as the candidate measurable space. There
is an obvious random variable X : Ω → R defined by X(ω) ≜ ω (the identity
map). The missing piece is a probability measure P on (R,B(R)), under which
the random variable X has distribution function given by F . To put it in another
way, one needs to ensure the property P(X ⩽ x) = F (x), or more generally,

P(a < X ⩽ b) = F (b)− F (a), for all a ⩽ b. (1.3)

Let us introduce the semiring

C ≜ {(a, b] : a ⩽ b}

on R. The right hand side of (1.3) clearly defines a set function on C. Now the
essential point of the question becomes the following: given a “measure” on a
semiring C (the right hand side of (1.3) in the current situation), how can one
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extend it to a measure on σ(C)? The solution to this question is contained in a
deep measure-theoretic result known as Carathéodory’s extension theorem.

We do not want to delve too much into general measure theory. Therefore, we
only state this powerful theorem and leave its complete proof to Appendix A.

Theorem 1.2 (Carathéodory’s extension theorem). Let C be a semiring over a
sample space Ω. Suppose that µ : C → [0,∞] is a set function which satisfies
µ(∅) = 0 and the countable additivity property. Then there exists an extension
of µ to a measure on σ(C) (i.e. a measure µ̄ on σ(C) such that µ̄ = µ on C).
In addition, if µ is σ-finite on C, then the extension is unique and the extended
measure on σ(C) is also σ-finite.

Here we give the proof for the uniqueness part in the context of finite measures.
The argument is a good illustration on the use of Dynkin’s π-λ theorem (cf.
Theorem 1.1 and the paragraphs following its proof).

Proposition 1.4. Let C be a π-system and Ω ∈ C. Suppose that µ1 and µ2 are
two finite measures on (Ω, σ(C)). If µ1 = µ2 on C, then µ1 = µ2 on σ(C).

Proof. Define
H ≜ {A ⊆ σ(C) : µ1(A) = µ2(A)} ⊆ σ(C)

to be the collection of subsets satisfying the desired property. We want to show
that H = σ(C). First of all, by assumption one knows that C ⊆ H. Next, one
checks that H is a λ-sysetem:

(L1) By assumption Ω ∈ C ⊆ H.
(L2) Let A,B ∈ H and A ⊆ B. From finite additivity, one has

µ1(B\A) = µ1(B)− µ1(A) = µ2(B)− µ2(A) = µ2(B\A),

showing that B\A ∈ H.
(L3) Let H ∋ An ↑ A. Since probability measures are continuous from below, one
has

µ1(A) = lim
n→∞

µ1(An) = lim
n→∞

µ2(An) = µ2(A),

showing that A ∈ H.
Therefore, H is a λ-system and thus H ⊇ λ(C). According to Dynkin’s π-λ theo-
rem, one concludes that σ(C) = λ(C) ⊆ H.
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Remark 1.2. Proposition 1.4 may fail if C is not a π-sytem. For example, consider
Ω = {1, 2, 3, 4}, and C = {∅, {1, 2}, {1, 3},Ω}. σ(C) consists of all subsets of Ω.
The following two probability measures

µ1({1}) = µ1({2}) = µ1({3}) = µ1({4}) =
1

4
,

µ2({1}) = µ2({4}) =
1

3
, µ2({2}) = µ2({3}) =

1

6
,

are different but they coincide on C.

An important application of Carathéodory’s extension theorem is the construc-
tion of probability measures from distribution functions on R. Let us relax the
finiteness property for now and consider a more general situation. Throughout
the rest of the notes, an increasing (respectively, decreasing) function f means
x < y =⇒ f(x) ⩽ f(y) (respectively, =⇒ f(x) ⩾ y).

Let F : R → R be a given increasing, right continuous function. Consider the
measurable space (R,B(R)). Let C be the semiring consisting of finite intervals
(a, b] (a ⩽ b). Using the function F one can define a set function µ on C by

µ((a, b]) ≜ F (b)− F (a), (a, b] ∈ C. (1.4)

We wish to use Carathéodory’s extension theorem to obtain a unique extension of
µ to B(R). Before delving into the mathematical details, there are two important
examples one should keep in mind.

(i) F (x) = x. In this case, µ((a, b]) = b − a measures the length of the interval
(a, b]. Therefore, the extended measure µ̄ gives a way of measuring the size of a
general set in B(R) extending the classical notion of length. This was the original
motivation of Lebesgue’s measure theory in the 1900s.
(ii) F (x) is the distribution function of a random variable X. In this case, the ex-
tended measure µ̄ is a probability measure that interprets µ̄(A) as the probability
of event {X ∈ A} for any A ∈ B(R).

Let us return to verifying the conditions in Carathéodory’s extension theorem
for the set function µ defined by (1.4) on C. It is clear that µ(∅) = µ((a, a]) =
F (a) − F (a) = 0. In addition, using the partition {(n, n + 1] : n ∈ Z} it is
apparent that µ is σ-finite. Now it remains to verify that µ is countably additive
on C. Before proving this, one first observes that µ is finitely additive on C; for if

(a, b] = (a1, a2] ∪ (a2, a3] ∪ · · · ∪ (an−1, an]
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with a = a1 < · · · < an = b, then one has

µ((a, b]) = F (b)− F (a) =
n∑

i=1

(F (ai)− F (ai−1)) =
n∑

i=1

µ((ai−1, ai]).

To show countable additivity, note that if C were an algebra, according to Propo-
sition 1.3 (v), it is equivalent to proving that

A,An ∈ C (n ⩾ 1) with A ⊆
∞⋃
n=1

An =⇒ µ(A) ⩽
∞∑
n=1

µ(An). (1.5)

Here we make two comments before proceeding further.
Remark 1.3. (i) The equivalence between countable additivity and (1.5) remains
true for finitely additive measures on semirings rather than just on algebras.
(ii) A finitely additive measure µ on a semiring C satisfies a finite version of the
subadditivity property (1.5):

A,A1, · · · , An ∈ C with A ⊆
n⋃

i=1

Ai =⇒ µ(A) ⩽
n∑

i=1

µ(Ai). (1.6)

The proofs of these two facts in the semiring context are technical and not en-
lightening. We refer the reader to Lemma 1.1 in Appendix A for the details.

Now we can proceed to prove the countable additivity of µ using (1.5).

Theorem 1.3. The set function µ is countably additive on C. According to
Carathéodory’s extension theorem, there exists a unique measure µ̄ on B(R) such
that µ̄ = µ on C, and µ̄ is also σ-finite.

Proof. Since µ is finitely additive, according to Remark 1.3 (i), it is enough to
check (1.5). Let (a, b] ⊆ ∪∞

n=1(an, bn]. Since F is right continuous, for any ε > 0,
one can find a′ ∈ (a, b] such that

µ((a, b]) = F (b)− F (a) ⩽ F (b)− F (a′) + ε = µ((a′, b]) + ε.

Similarly, for each n, one can find b′n > bn such that

µ((an, bn]) ⩾ µ((an, b
′
n])−

ε

2n
.

From the constructions, it is clear that

[a′, b] ⊆ (a, b] ⊆
∞⋃
n=1

(an, bn] ⊆
∞⋃
n=1

(an, b
′
n).
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Since [a′, b] is compact, by the Heine-Borel theorem there exists N ⩾ 1, such that

(a′, b] ⊆ [a′, b] ⊆
N⋃

n=1

(an, b
′
n) ⩽

N⋃
n=1

(an, b
′
n].

It follows that

µ((a, b])− ε ⩽ µ((a′, b]) ⩽
N∑

n=1

µ((an, b
′
n])

⩽
N∑

n=1

(
µ((an, bn]) +

ε

2n
)
⩽

∞∑
n=1

µ((an, bn]) + ε, (1.7)

where in the second inequality we used the finite subadditivity property (1.6) that
was mentioned in Remark 1.3 (ii) as a consequence of finite additivity. Since ε is
arbitrary, by letting ε ↓ 0 on both ends of (1.7) one obtains the desired property
(1.5).

Definition 1.7. Let F : R → R a right continuous and increasing function. The
unique measure on (R,B(R)) obtained in Theorem 1.3 is called the Lebesgue-
Stieltjes measure induced by the function F . It is denoted as µF .

The case when F (x) = x is of fundamental importance in real analysis. The
resulting measure on (R,B(R)) is called the Lebesgue measure and it is denoted
as dx. The Lebesgue measure extends the notion of length to arbitrary Borel
measurable sets.

Example 1.6. In elementary probability, one has seen the random experiment
of “picking a point in the unit interval [0, 1] uniformly at random”. We are now
able to make the construction mathematically precise: the sample space is [0, 1],
the family of events is B([0, 1]) ≜ [0, 1]∩B(R), and the probability measure is the
restriction of the Lebesgue measure on Borel measurable subsets of [0, 1].

In the probabilistic context, another important class of examples come from
the case when F is a distribution function. We first recall the following definition.

Definition 1.8. A distribution function on R is a right continuous, increasing
function F : R → R such that

F (−∞) ≜ lim
x→−∞

F (x) = 0, F (∞) ≜ lim
x→∞

F (x) = 1.

20



As a consequence of Theorem 1.3, distribution functions on R and probability
measures on B(R) are in one-to-one correspondence (hence they are essentially
the same thing).

Corollary 1.1. There is a one-to-one correspondence between distribution func-
tions on R and probability measures on B(R). More precisely, given a distribution
function F , the induced probability measure is the Lebesgue-Stieltjes measure µF .
Conversely, given a probability measure µ, the corresponding distribution function
is defined by F (x) ≜ µ((−∞, x]).

Proof. The fact that µF is a probability measure follows from its continuity from
below as a measure:

µF (R) = lim
n→∞

µF ((−n, n]) = lim
n→∞

(F (n)− F (−n)) = 1,

since F is a distribution function. In addition, by letting a→ −∞ in the relation

µF ((a, x]) = F (x)− F (a)

one recovers the distribution function F . Finally, given a probability measure
µ, the function F (x) ≜ µ((−∞, x]) is easily seen to be a distribution function
(right continuity is a consequence of the continuity of µ applied to (−∞, x] =
∩∞

n=1(−∞, x + 1/n]). These properties show that the map F 7→ µF defines a
bijection from the space of distribution functions to the space of probability mea-
sures.

There are natural generalisations of the aforementioned constructions to the
case of Rn, which we only outline without proofs. In multidimensions, the use of
“distribution functions” becomes less natural but the idea of constructing measures
is similar to the one-dimensional case.

First of all, one introduces the semiring

C ≜ {(a, b] : a, b ∈ Rn, a ⩽ b}.

Here for a = (a1, · · · , an) and b = (b1, · · · , bn), the notation a ⩽ b means ai ⩽ bi
for each i and the “interval” (a, b] refers to the rectangle

(a, b] ≜ {x = (x1, · · · , xn) : ai < xi ⩽ bi for each i}.

The Borel σ-algebra on Rn, denoted as B(Rn), is the σ-algebra generated by C. It
can be shown that B(Rn) coincides with the σ-algebra generated by open subsets
of Rn.
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To construct the Lebesgue measure on (Rn,B(Rn)), one starts with the obvious
notion of volume for members of C. Precisely, one defines a set function

µ((a, b]) ≜
n∏

i=1

(bi − ai)

on the semiring C. After verifying the required conditions, Carathéodory’s ex-
tension theorem yields a unique extension µ̄ of µ to B(Rn). This measure µ̄, also
denoted as dx, is called the Lebesgue measure on Rn. It extends the notion of
volume to Borel measurable sets in a natural way. The Lebesgue measure plays a
fundamental role in real analysis.

The idea of constructing a probability measure (a Lebesgue-Stieltjes measure)
from a given joint distribution function of an Rn-valued random variable is similar.
As usual, the first step is to write down the correct definition of µ on C (which
is the easier part) and then to apply the extension theorem (which is the harder
part). We will not provide the technical details here. We remark that, if the
joint probability density function f(x1, · · · , xn) of the given distribution exists,
the induced probability measure is simply defined by

µ(A) =

∫
A

f(x1, · · · , xn)dx1 · · · dxn, A ∈ B(R).

The above integral needs to be understood in the more general sense of Lebesgue
(cf. Section 2.2).

1.4 Almost sure properties

In probability theory, one often deals with properties that hold outside a set of
zero probability. To make this precise, we give the following definition.

Definition 1.9. Let (Ω,F , µ) be a measure space. A µ-null set is a set N ∈ F
such that µ(N) = 0. A property P (depending on ω ∈ Ω) is said to hold (µ-
)almost everywhere, denoted as (µ-)a.e. if it holds outside a µ-null set. In other
words, there exists a µ-null set N such that

N c ⊆ {ω : P holds} or equivalently {ω : P does not hold} ⊆ N.

In the probabilistic context (i.e. when µ is a probability measure), one uses the
term almost surely and the notation a.s. in replacement.
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Proposition 1.5. A countable union of µ-null sets is again a µ-null set. In
addition, on a probability space (Ω,F ,P), if {Ωn : n ⩾ 1} is a sequence of certain
events (i.e. P(Ωn) = 1), then ∩∞

n=1Ωn is also a certain event.

Proof. The first assertion is a simple consequence of the countable subadditivity
property:

µ
( ∞⋃
n=1

Nn

)
⩽

∞∑
n=1

µ(Nn) = 0.

In the case of probability measures, the second assertion follows from taking com-
plements.

Consider the random experiment of choosing a point uniformly on [0, 1] (cf.
Example 1.6). Then for almost surely the chosen point is an irrational number.

We look at an example which to some extent reflects the need of working with
properties that hold a.s. instead of deterministically. Consider the random ex-
periment of tossing a fair coin repeatedly in a sequence. If one defines Sn to be
the total number of “heads” among the first n-tosses, it is heuristically convincing
that Sn

n
≈ 1

2
when n is large. However, making the phenomenon that “relative fre-

quency eventually stabilises at the theoretical probability” mathematically precise
had cost mathematicians decades of effort.

Mathematically, the underlying sample space is given by

Ω = {ω = (ω1, ω2, · · · ) : ωn = H or T for each n}. (1.8)

In other words, each outcome is an infinite sequence where the n-th entry records
the result of the n-th toss. A natural σ-algebra on Ω (the family of events) should
be the one generated by those experiments at finite steps. More precisely, for each
n ⩾ 1 define

An ≜ {ω : ωn = H}, Bn ≜ {ω : ωn = T}.

An and Bn are the events corresponding a specific result (“head” or “tail”) at the
n-th toss (of course one has Bn = Ac

n). The underlying σ-algebra is defined to be
the one generated by all these events An, Bn, namely:

F ≜ σ ({A1, B1, A2, B2, A3, B3, · · · }) . (1.9)

In addition, by using Carathéodory’s extension theorem, one can show that there
is a unique probability measure P defined on F such that

P(C1 ∩ · · · ∩ Cn) =
1

2n
(1.10)
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for all n ⩾ 1 and Ci = Ai or Bi (1 ⩽ i ⩽ n). The construction of the proba-
bility space (Ω,F ,P) is best understood using the method of product spaces (cf.
Example 3.6 in Section 3.3 below).

Under such a probability model, one can talk about properties that holds a.s.
but not for every ω. For instance, the event E ≜ {ω : ωn = H for some n} has
probability one but it is not true that every outcome belongs to E (apparently
ω = {T, T, T, · · · } is an outcome which does not trigger E). Now let us try to
rephrase the aforementioned phenomenon that “relative ’head’ frequency eventu-
ally stabilises at the theoretical probability” in a more precise way. Consider the
event

Λ ≜
{
ω :

#{i ⩽ n : ωi = H}
n

→ 1

2
as n→ ∞

}
,

where #(·) counts the number of elements in a set. One can show that Λ ∈ F and
it is a consequence of the strong law of large numbers that P(Λ) = 1. Therefore,
one can comfortably say that:

“For almost surely (With probability one), the relative ’head’ frequency will even-
tually converge to the theoretical probability 1/2.”

Apparently, Λ ̸= Ω; indeed, the almost sure conclusion is the best one to hope for.
We make one further observation. Let α : α(1) < α(2) < α(3) < · · · be an

arbitrary subsequence of positive integers. Consider the event

Λα ≜
{
ω :

#{i ⩽ n : ωα(i) = H}
n

→ 1

2
as n→ ∞

}
.

Note that Λα is concerned with the same property but restricted on a given sub-
sequence of tosses (the α(1)-th, α(2)-th, · · · tosses). From the probabilistic view-
point, there is no essential difference between Λα and Λ. In particular, one also
has P(Λα) = P(Λ) = 1 for each fixed subsequence α. Things can go very wrong
if one looks for a deterministic description of these properties. For instance, one
without any prior exposure to probability theory might expect that ∩αΛα (inter-
section taken over all possible subsequences α) is a reasonable event capturing
the underlying phenomenon, since the property should “apparently” be invariant
when restricting on any subsequence of tosses. However, ∩αΛα = ∅! Indeed, for
any ω ∈ Ω, if there are at most finitely many “heads” in ω then ω cannot belong
to any Λα. If there are infinitely many “heads” in ω, one can choose a subsequence
α along which ωα(i) = H for all i. In this way ω cannot belong to Λα since the
relative “head” frequency along this subsequence α is identically one. This shows
that no outcomes ω can belong to ∩αΛα. Note that there is no contradiction
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with Proposition 1.5 since the family of all possible subsequences α is uncountable
(why?).

Appendix A. Carathéodory’s extension theorem

In this appendix, we give a complete proof of Carathéodory’s extension theorem
in the semiring context. In vague terms, the underlying idea of extending a set
function µ : C → [0,∞] to a measure on σ(C) can be summarised as follows. First
of all, one uses µ to induce a set function µ∗ (the outer measure), which is not
yet as good as a measure but has the advantage of being well-defined for every
subsets of Ω and µ∗ = µ on C. Next, one identifies a class M of subsets which
happens to be a σ-algebra and the restriction of µ∗ on M is indeed a measure
(this is the most non-trivial part of the argument). Finally, one proves C ⊆ M so
that σ(C) ⊆ M. The restriction of µ∗ on σ(C) is the desired extension of µ.

Outer measures

To implement the above idea mathematically, we start with the definition of an
outer measure. Let Ω be a given fixed non-empty set. Recall that P(Ω) is the
power set of Ω (the collection of all subsets of Ω).

Definition 1.10. An outer measure is a set function ν : P(Ω) → [0,∞] which
satisfies the following properties:

(i) ν(∅) = 0;
(ii) whenever A ⊆ B , one has ν(A) ⩽ ν(B);
(iii) for any sequence {An : n ⩾ 1} of subsets, one has

ν
( ∞⋃
n=1

An

)
⩽

∞∑
n=1

ν(An).

In general, an outer measure needs not be a measure. However, there is a
canonical σ-algebra associated with an outer measure, such that the outer measure
restricts to an actual measure on it.

Definition 1.11. Let ν be a given outer measure. The class of ν-measurable sets
is defined by

M = {A ⊆ Ω : ∀D ⊆ Ω, ν(D) = ν(A ∩D) + ν(Ac ∩D)}.
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In other words, a subset A ⊆ Ω is ν-measurable if for any testing set D, ν is
additive with respect to the decomposition D = (A ∩D) ∪ (Ac ∩D). Note that
the defining property for ν-measurable sets is equivalent to that

ν(D) ⩾ ν(A ∩D) + ν(Ac ∩D) for all D ⊆ Ω, (1.11)

since the reverse inequality is obvious from Property (iii) of the definition of an
outer measure.

The heart of the argument is contained in the following result.

Proposition 1.6. The set class M is a σ-algebra over Ω. In addition, the re-
striction of ν on M is a measure.

Proof. The facts that Ω ∈ M and A ∈ M =⇒ Ac ∈ M are trivial. Now let
An ∈ M (n ⩾ 1) and A ≜ ∪∞

n=1An. Given a testing subset D ⊆ Ω, one has

ν(D) = ν(A1 ∩D) + ν(Ac
1 ∩D) (since A1 ∈ M)

= ν(A1 ∩D) + ν(A2 ∩ Ac
1 ∩D) + ν(Ac

1 ∩ Ac
2 ∩D) (since A2 ∈ M)

· · ·

=
n∑

k=1

ν
(
(Ak\(A1 ∪ · · · ∪ Ak−1)) ∩D

)
+ ν(Ac

1 ∩ · · · ∩ Ac
n ∩D)

⩾
n∑

k=1

ν
(
(Ak\(A1 ∪ · · · ∪ Ak−1)) ∩D

)
+ ν(Ac ∩D).

Since this is true for all n, by taking n→ ∞ (denote Bn ≜ An\(A1 ∪ · · · ∪An−1))
one obtains that

ν(D) ⩾
∞∑
n=1

ν(Bn ∩D) + ν(Ac ∩D) ⩾ ν(A ∩D) + ν(Ac ∩D). (1.12)

The last inequality follows from the fact that A∩D = ∪∞
n=1(Bn∩D). Therefore, A

satisfies the condition (1.11) and thus A ∈ M. This proves that M is a σ-algebra.
To see that ν|M is a measure, let {An} be a given sequence of disjoint subsets

in M. By applying (1.12) to the case of D = ∪∞
n=1An, then one has Bn = An due

to disjointness and (1.12) becomes

ν
( ∞⋃
n=1

An

)
⩾

∞∑
n=1

ν(An) + 0 ⩾ ν
( ∞⋃
n=1

An

)
+ 0,

yielding the desired countable additivity property.
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The notion of an outer measure provides a general way of obtaining a measure
if one restricts the outer measure to an appropriate class of measurable sets.
Another nice thing about outer measures is that they are easy (and natural) to
construct, as seen from the following result.

Proposition 1.7. Let C be a set class containing ∅. Suppose that µ : C → [0,∞]
satisfies µ(∅) = 0 and

A,An ∈ C (n ⩾ 1) with A ⊆
∞⋃
n=1

An =⇒ µ(A) ⩽
∞∑
n=1

µ(An). (1.13)

Define the set function

µ∗(A) ≜ inf

{
∞∑
n=1

µ(An) : An ∈ C, A ⊆
∞⋃
n=1

An

}
(1.14)

for A ⊆ Ω (with the convention inf ∅ ≜ ∞). Then µ∗ is an outer measure. In
addition, one has µ∗ = µ on C.

Proof. We only verify Property (iii) in Definition 1.10 (the first two properties are
trivial). Let {An : n ⩾ 1} be a sequence of subsets of Ω. One may assume that
µ∗(An) <∞ for each n, for otherwise the desired property is again trivial. In this
case, let ε > 0 be given fixed. For each n ⩾ 1, by the definition of µ∗(An) there
exists {Bn,m : m ⩾ 1} ⊆ C such that An ⊆ ∪∞

m=1Bn,m and
∞∑

m=1

µ(Bn,m) ⩽ µ∗(An) +
ε

2n
.

It follows that

µ∗( ∞⋃
n=1

An

)
⩽

∞∑
n,m=1

µ(Bn,m) ⩽
∞∑
n=1

µ∗(An) + ε,

where the first inequality holds because ∪nAn ⊆ ∪n,mBn,m. Since ε is arbitrary,
one obtains the desired countable subadditivity property.

For the last assertion, let A ∈ C. Using the obvious covering A ⊆ A∪∅∪∅∪· · ·
one sees that µ∗(A) ⩽ µ(A). Conversely, for any sequence {An} ⊆ C with A ⊆
∪∞

n=1An, by the assumption on µ one has

µ(A) ⩽
∞∑
n=1

µ(An).

Therefore, µ(A) ⩽ µ∗(A). It follows that µ∗(A) = µ(A).
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Proof of Carathéodory’s extension theorem

Now we come back to the discussion of Carathéodory’s extension theorem. For
convenience, we recall the statement of the theorem below.

Theorem 1.4. Let C be a semiring on Ω. Suppose that µ is a set function on
C taking values in [0,∞] which satisfies µ(∅) = 0 and the countable additivity
property. Then there exists an extension of µ to a measure on σ(C) (i.e. a
measure µ̄ on σ(C) such that µ̄ = µ on C). In addition, if µ is σ-finite on C, then
the extension is unique and the extended measure on σ(C) is also σ-finite.

Recall that the strategy of obtaining the extended measure consists of the
following three steps: (i) obtain an outer measure µ∗ from µ, (ii) restrict this
outer measure to its class M of measurable sets, (iii) M contains the original
semiring C.

For the first step, in order to apply Proposition 1.7 one needs to show (1.13)
from countable additivity. This is done in the following lemma. We remark that
this lemma generalises Proposition 1.3 (the equivalence between (i) and (v)) to
the semiring case. Such a result was implicitly used when we proved Theorem 1.3.

Lemma 1.1. Let µ : C → [0,∞] be a set function defined on a semiring C with
µ(∅) = 0. Then µ is countably additive if and only if it is finitely additive and
satisfies the subadditivity property (1.13).

Proof. Necessity. Finite additivity is obvious since µ(∅) = 0. To prove (1.13), let
{An : n ⩾ 1} ⊆ C and A ∈ C satisfy A ⊆ ∪∞

n=1An. As a standard trick one can
write the union as a disjoint union

∞⋃
n=1

An =
∞⋃
n=1

Bn

where Bn ≜ An\(A1∪· · ·∪An−1). Next, we claim that Bn is a finite disjoint union
of members of C. Indeed, by the definition of a semiring, this is true for An\A1,
and so is for (An\A1)\A2, and inductively also for Bn = ((An\A1)\A2) · · · \An−1.
In particular, A ∩Bn is also a finite disjoint union of members of C, say

A ∩Bn =
kn⋃

m=1

Cn,m

with some Cn,m ∈ C (1 ⩽ m ⩽ kn) all being disjoint. It follows that {Cn,m : n ⩾
1, 1 ⩽ m ⩽ kn} is a countable disjoint family whose union is A. By countable
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additivity, one has

µ(A) =
∞∑
n=1

kn∑
m=1

µ(Cn,m). (1.15)

On the other hand, since
kn⋃

m=1

Cn,m ⊆ An,

similar reason shows that An\(∪kn
m=1Cn,m) is a finite disjoint union of members of

C. It then follows from finite additivity that

kn∑
m=1

µ(Cn,m) ⩽ µ(An). (1.16)

The relations (1.15) and (1.16) yield the desired property

µ(A) ⩽
∞∑
n=1

µ(An).

Sufficiency. Let {An : n ⩾ 1} ⊆ C be a disjoint sequence and A ≜ ∪∞
n=1An ∈ C.

By assumption, one has

µ(A) ⩽
∞∑
n=1

µ(An).

For the reverse inequality, since A\(A1 ∪ · · · ∪ An) is a finite disjoint union of
members of C, one knows from finite additivity that

µ(A) ⩾
n∑

k=1

µ(Ak).

The desired result follows by taking n→ ∞.

As a consequence, if µ : C → [0,∞] is countably additive and µ(∅) = 0, it
satisfies (1.13) and thus one can use equation (1.14) to induce an outer measure
µ∗ that agrees with µ on C. Let M denote the set of µ∗-measurable sets. It follows
from Proposition 1.6 that the restriction of µ∗ on M is a measure. To further
restrict µ∗ to σ(C), one must show that C ⊆ M. The following lemma provides a
simple way of checking the measurability condition (1.11).
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Lemma 1.2. Under the same notation as above, given any subset A ⊆ Ω one has
A ∈ M if and only if

µ(C) ⩾ µ∗(A ∩ C) + µ∗(Ac ∩ C), ∀A ∈ C. (1.17)

Proof. Let A ⊆ Ω be a given subset satisfying the property (1.17). We want to
verify the condition (1.11) for any D ⊆ Ω. One may assume µ∗(D) < ∞ for
otherwise the claim is trivial. Given ε > 0, by the definition (1.14) of µ∗, there
exists {Cn : n ⩾ 1} ⊆ C such that D ⊆ ∪∞

n=1Cn and

∞∑
n=1

µ(Cn) ⩽ µ∗(D) + ε.

Since Cn ∈ C, one knows that

µ(Cn) ⩾ µ∗(A ∩ Cn) + µ∗(Ac ∩ Cn).

As a result,

µ∗(D) + ε ⩾
∞∑
n=1

µ∗(A ∩ Cn) +
∞∑
n=1

µ∗(Ac ∩ Cn)

⩾ µ∗(A ∩D) + µ∗(Ac ∩D),

where the last inequality follows from the fact that

A ∩D ⊆
∞⋃
n=1

(A ∩ Cn), A
c ∩D ⊆

∞⋃
n=1

(Ac ∩ Cn)

as well as the countable subadditivity property of µ∗. The desired property follows
by letting ε ↓ 0.

We are now able to complete the proof of Carathéodory’s extension theorem.

Completing the proof of Theorem 1.4. For the existence of extension, it remains
to show that C ⊆ M. Let A ∈ C. For any C ∈ C, since C is a semiring one knows
that C\A is a finite disjoint union of members of C, say

Ac ∩ C =
k⋃

i=1

Bi,
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where Bi ∈ C and Bi ∩ Bj = ∅ (i ̸= j). It follows from the finite additivity of µ
that

µ(C) = µ(A ∩ C) +
k∑

i=1

µ(Bi) ⩾ µ(A ∩ C) + µ∗(Ac ∩ C),

where the last inequality is a trivial consequence of the definition of µ∗. According
to Lemma 1.2, one concludes that A ∈ M. This finishes the proof of the existence
of a measure extension to σ(C).

Finally, we prove uniqueness under the assumption that µ is σ-finite on C
(namely, there exists a partition {An : n ⩾ 1} ⊆ C of Ω such that µ(An) <∞ for
every n). Suppose that µ1 and µ2 are two measures on σ(C) satisfying µ1 = µ2 = µ
on C. For each fixed n, if one regards µ1, µ2 as measures on (An, An ∩ σ(C)) (one
now views An as the sample space), then they are finite measures which coincide
on the π-system An ∩ C on An. Note that An = An ∩ An ∈ An ∩ C. It follows
from Proposition 1.4 that µ1 = µ2 on An ∩ σ(C). As this is true for every n, from
countable additivity one concludes that

µ1(A) =
∞∑
n=1

µ1(An ∩ A) =
∞∑
n=1

µ2(An ∩ A) = µ2(A) ∀A ∈ σ(C).

Remark 1.4. The careful reader may notice that in the argument of the uniqueness
part, we implicitly used the fact that the σ-algebra generated by An ∩ C on An

coincides with An ∩ σ(C). The justification of this fact is left as an exercise.

The completion of a measure space

In general, the class M (µ∗-measurable sets) is strictly larger than σ(C). There
is an important relationship between the two measure spaces (Ω,M, µ∗) and
(Ω, σ(C), µ∗) (in the σ-finite case): the former is the completion of the latter.
To explain this, we first introduce the notion of complete measure spaces.

Definition 1.12. Let (Ω,F , µ) be a measure space. Define the collection of µ-null
sets as

N ≜ {N ∈ F : µ(N) = 0}. (1.18)

The measure space (Ω,F , µ) is said to be complete, if subsets of members of N
are always F -measurable:

N ∈ N , A ⊆ N =⇒ A ∈ F .
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Remark 1.5. For the complete measure space (Ω,F , µ), it is immediate that
µ(A) = 0 if A ⊆ N ∈ N . A simple reason of introducing the notion of com-
pleteness is that one does not want to border with subsets of null sets and one
should simply make them all measurable with zero measure.

A measure space (Ω,F2, µ2) is called an extension of (Ω,F1, µ1) if F1 ⊆ F2

and µ1 = µ2 on F1. Among all complete extensions of a given measure space,
there is always a unique smallest one.

Theorem 1.5. Let (Ω,F , µ) be a measure space. There exists a unique complete
measure space (Ω, F̄ , µ̄), such that the following two properties hold true.

(i) (Ω, F̄ , µ̄) is an extension of (Ω,F , µ).
(ii) For any complete measure space (Ω,F ′, µ′) that extends (Ω,F , µ), it is also
an extension of (Ω, F̄ , µ̄).

Proof. Uniqueness is obvious from Property (ii). To prove uniqueness, one con-
structs (Ω, F̄ , µ̄) explicitly as follows. Recall that N is the class of µ-null sets
defined by (1.18). Set

F̄ ≜ {A ∪ E : A ∈ F , E ⊆ N with some N ∈ N},

and define µ̄ on F̄ by

µ̄(A ∪ E) ≜ µ(A), A ∪ E ∈ F̄ .

First of all, F̄ is a σ-algebra. Indeed, Ω = Ω∩ ∅ ∈ F̄ . In addition, A∪E ∈ F̄
with E ⊆ N ∈ N , then

(A ∪ E)c = Ac ∩ Ec =
(
Ac ∩N c

)
∪
(
Ac ∩ (Ec\N c)

)
.

Since
Ac ∩ (Ec\N c) = Ac ∩ Ec ∩N ⊆ N,

one sees that (A ∪E)c ∈ F̄ . Finally, if An ∪En ⊆ F̄ with En ⊆ Nn ∈ N (n ⩾ 1),
then

∞⋃
n=1

(An ∪ En) =
( ∞⋃
n=1

An

)
∪
( ∞⋃
n=1

En

)
∈ F̄ ,

since ∪∞
n=1En ⊆ ∪∞

n=1Nn ∈ N .
Next, µ̄ is well-defined. Indeed, suppose that A1 ∪ E1 = A2 ∪ E2 for some

Ai ∈ F , Ei ⊆ Ni ∈ N (i = 1, 2). Then A1 ⊆ A2 ∪N2 and thus

µ(A1) ⩽ µ(A2) + µ(N2) = µ(A2).
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In the same way, the reverse inequality µ(A1) ⩾ µ(A2) also holds.
It is obvious that (Ω, F̄ , µ̄) is an extension of (Ω,F , µ). To see its completeness,

let A∪E ∈ F̄ be a µ̄-null set. By definition one has E ⊆ N for some N ∈ N and
µ(A) = 0. Therefore, A ∪N ∈ N . Now for any subset B ⊆ A ∪ E, one can write
B as B = ∅ ∪ (A ∪ E) to see that B ∈ F̄ .

It remains to check Property (ii) of the theorem. Suppose that (Ω,F ′, µ′)
is another complete measure space which extends (Ω,F , µ). Given A ∪ E ∈ F̄
with E ⊆ N ∈ N , by the completeness of F ′ one knows that E ∈ F ′. Since
A ∈ F ⊆ F ′, one has A ∪ E ∈ F ′. Therefore, F̄ ⊆ F ′. One also has µ′ = µ̄ on F̄
since

µ(A) ⩽ µ′(A ∪ E) ⩽ µ(A) + µ′(E) = µ(A)

whenever A ∪ E ∈ F̄ .

We can now establish the relationship between the spaces (Ω,M, µ∗) and
(Ω, σ(C), µ∗) arising from the proof of Carathéodory’s extension theorem. Note
that (Ω,M, µ∗) is a complete measure space. Indeed, if A ⊆ Ω has zero outer
measure, then for any D ⊆ Ω, one has

µ∗(D) ⩾ µ∗(Ac ∩D) = µ∗(A ∩D) + µ∗(Ac ∩D),

showing that A ∈ M. The interesting fact is, in the σ-finite case, (Ω,M, µ∗) turns
out to be the completion of (Ω, σ(C), µ∗).

Proposition 1.8. Let C be a semiring and let µ : C → [0,∞] be a σ-finite,
countably additive set function with µ(∅) = 0. The measure space (Ω,M, µ∗) is
the completion of (Ω, σ(C), µ∗).

Proof. We only consider the case when µ∗(Ω) < ∞, leaving the σ-finite case as
an exercise. It is enough to prove that M ⊆ σ(C) (the completion of σ(C)).
Let A ∈ M. We first claim that, there exists B ∈ σ(C), such that B ⊇ A and
µ∗(B) = µ∗(A). Indeed, by the definition of µ∗ (cf. equation (1.14)), for each
n ⩾ 1 there exists a sequence {Bn,m : m ⩾ 1} ⊆ C such that A ⊆ ∪∞

m=1Bn,m and

∞∑
m=1

µ(Bn,m) < µ∗(A) +
1

n
.

Set Bn ≜ ∪∞
m=1Bn,m ∈ σ(C) and B ≜ ∩∞

n=1Bn ∈ σ(C). It follows that

µ∗(B) ⩽ µ∗(Bn) ⩽ µ∗(A) +
1

n
.

33



Letting n → ∞ one obtains that µ∗(B) ⩽ µ∗(A). One also has the reverse in-
equality since A ⊆ B. Therefore, the claim holds. By applying the claim to the
set Ac, one can find another set C ∈ σ(C) such that C ⊆ A and µ∗(C) = µ∗(A).
To summarise, one has

B,C ∈ σ(C), C ⊆ A ⊆ B, µ∗(A) = µ∗(C) = µ∗(B).

It follows that A\C ⊆ B\C and B\C is a σ(C)-measurable set with zero measure.
Since A = C ∪ (A\C) and C ∈ σ(C), one concludes that A ∈ σ(C).

Example 1.7. An important example is the Lebesgue measure on Rn. This is
obtained by extending the usual notion of volume for rectangles:

µ((a, b]) =
n∏

i=1

(bi − ai)

where a = (a1, · · · , an), b = (b1, · · · , bn) with ai ⩽ bi. We denote µ∗ as the outer
measure induced by µ. Members of M (the class of µ∗-measurable sets) are called
Lebesgue measurable sets and the resulting measure is called the n-dimensional
Lebesgue measure. It is interesting to point out that, there are Lebesgue measur-
able sets that do not belong to B(Rn), and there are subsets of Rn which are not
Lebesgue measurable. However, the construction of any of these examples is not
a simple exercise.

Appendix B. Construction of generated σ-algebras

In this appendix, we give a “constructive description” of the σ-algebra σ(E) gen-
erated by a set class E and discuss some of its implications. The main result is
stated in Theorem 1.7 below.

Heuristically, one may expect that σ(E) is obtained by performing a series of
basic set operations (intersection, union, complementation) inductively to mem-
bers in E in a countable manner. However, this description turns out to problem-
atic if one is not careful enough about the underlying induction procedure. To
give a more precise formulation, since

A ∩B = (Ac ∪Bc)c,

one can only consider unions and complementations without loss of generality. We
first make precise the definition of “performing basic set operations for countably
many times”. Throughout the rest, X will denote a given sample space (i.e. a
non-empty set).
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Definition 1.13. For any set class H over X containing ∅, we define H∗ to be
the collection of finite or countable unions ∪nHn, where each Hn has the form
Hn = H or Hc with H ∈ H.

Let E be a set class over X containing ∅. As a natural idea, one may start
with E0 ≜ E and define inductively En ≜ E∗

n−1 for n ⩾ 1. By definition, members
of the set class H ≜ ∪n⩾0En are subsets that can be obtained by performing basic
set operations to members in E in a countable manner. Apparently H ⊆ σ(E).
One may naively expect that H = σ(E). However, it is a rather deep fact that
this intuition is simply not true.

Proposition 1.9 (Cf. [Bil86], pp.26-28). Let E be the set class of intervals (a, b]
over X = (0, 1]. Define En and H as above. Then H is strictly smaller than
B((0, 1]).

Of course, the main issue here is that H is not even a σ-algebra, although why
it fails to be closed under countable union is far from being obvious. The idea
of “inductively” constructing σ(E) by countable set operations is not problematic.
The crucial point is that the induction procedure here should be performed in a
transfinite (rather than countable!) manner in order to obtain a true σ-algebra.
Our main goal in this appendix is to give the transfinite construction of σ(E) in a
precise mathematical way. Our discussion follows the main lines of [Bil86, Hal60,
HS75].

Ordinal numbers and transfinite induction

Since the construction of σ(E) relies critically on the notion of ordinal numbers and
transfinite induction, we begin by discussing relevant concepts in a relatively self-
contained way. The reader is referred to Halmos [Hal60] and Hewitt-Stromberg
[HS75] for more details.

Cardinality

The concept of cardinality is familiar to us. It is a way of measuring the size
of a set in terms of the “number” of its elements. To summarise, every set A is
associated with a symbol called cardinality (or cardinal number), which is denoted
as card(A). For example, a finite set with n elements has cardinality n. The set
of integers has cardinality denoted as ℵ0 (the countable cardinality). The set of
real numbers has cardinality denoted as ℵ (the continuum cardinality).
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Different cardinalities can be compared in the following natural manner. Given
two sets A,B, we say that

card(A) ⩽ card(B)

if there exists an injective map from A to B. The two sets A,B have the same
cardinality if

card(A) ⩽ card(B) and card(B) ⩽ card(A),

or equivalently, if there is a bijection between A and B. We say that

card(A) < card(B)

if card(A) ⩽ card(B) but card(A) ̸= card(B).
Cardinalities can also be added and multiplied. Let α, β be the cardinality

of A,B respectively. Then α + β (respectively, α × β) is the cardinality of the
disjoint union of A and B (respectively, the Cartesian product of A and B). It is
easy to see that this definition is independent of the representatives A,B for the
cardinalities α, β.

We mention some basic properties of cardinality. For instance, one has

n < ℵ0 < ℵ ∀n ∈ N.

In addition,
ℵ0 + ℵ0 = ℵ0 × ℵ0 = ℵ0, ℵ+ ℵ = ℵ × ℵ = ℵ.

For any set A, one has
card(A) < card(P(A)),

where P(A) is the power set of A, which by definition is the set of all subsets of
A. The set of infinite {0, 1}-sequences has cardinality continuum. This can be
shown by representing real numbers as binary sequences. Another useful fact is
that a continuum union of continuum is again continuum. More precisely, let I
be a set with cardinality ℵ and for each i ∈ I let Ai be a set with cardinality ℵ.
Then one has

card
(⋃
i∈I

Ai

)
= ℵ.

This can be seen by defining an injective map T from ∪i∈IAi into R × R in the
following way: ⋃

i∈I

Ai ∋ z 7→ (i, z) ∈ I × Ai,

where one picks an i such that z ∈ Ai and identifies I × Ai with R× R.
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The continuum hypothesis (CH) asserts that there does not exist a set whose
cardinality is strictly between ℵ0 and ℵ. In other words, the “next” cardinality
after countability is continuum. In Zermelo–Fraenkel set theory with the axiom
of choice (ZFC), it was proved by Paul Cohen in 1963 that CH is independent
of ZFC, i.e. CH cannot be proven or disproved by the ZFC axioms. Cohen was
awarded the Fields Medal in 1966 for his proof.

Ordinal numbers

The notion of cardinality has nothing to do with ordering. If one takes into
account orders, one is led to an important concept of ordinal numbers as well
as a powerful technique of transfinite induction which generalises the classical
mathematical induction.

Recall that, a partially ordered set is a set equipped with a partial order.
A totally ordered set is a partially ordered set in which any two elements are
comparable. A crucial concept is a well ordered set, which by definition is a
totally ordered set such that every non-empty subset has a least element in the
given ordering (a least element of a subset S is an element of S which is smaller
than every other element in S). For example, R with the usual ordering is totally
ordered but not well ordered, while N is a well ordered set.

Every totally ordered set A is associated with a symbol called the order type
of A. This is the content of the following definition.

Definition 1.14. Let A,B be totally ordered sets. An order isomorphism from
A to B is a bijection f : A→ B such that x ⩽ y implies that f(x) ⩽ f(y). If such
an isomorphism exists, we say that A and B have the same order type. We use
the symbol ord(A) to denote the order type of A. If in addition A is well ordered,
we call ord(A) an ordinal number.

Under the usual ordering of real numbers, one has ord({1, 2, · · · , n}) = n.
Symbolically, one writes ord(N) = ω, ord(Q) = η. Note that ω is an ordinal
number since N is well ordered, while η is not an ordinal number since Q is not
well ordered.

Just like cardinality, two ordinal numbers can be compared. More precisely,
if A is well ordered set and x ∈ A, we define Ax ≜ {y ∈ A : y < x} to be the
initial segment of A determined by x. Given two ordinal numbers α = ord(A)
and β = ord(B), we say that α < β if A is order isomorphic to Bx for some x ∈ B.
We say that α ⩽ β if either α < β or α = β. It is easy to see that this definition
is independent of the representatives A and B. Furthermore, it can be shown
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that for any two ordinal numbers α and β, precisely one of the following three
alternatives occurs: α < β, α = β or α > β. It follows that any set of ordinal
numbers is totally ordered.

Below is a fundamental result about ordinal numbers. For each ordinal number
α, let us define

Pα ≜ {β : β is an ordinal number and 0 ⩽ β < α}

to be the set of ordinal numbers that are strictly smaller than α.

Theorem 1.6. There is a smallest ordinal number, denoted as Ω, such that PΩ is
uncountable (in other words, if α is any ordinal number with Pα being uncountable,
then Ω ⩽ α). In addition, the set PΩ satisfies the following properties:

(i) PΩ is well ordered;
(ii) PΩ is uncountable and under the continuum hypothesis one has card(PΩ) = ℵ;
(iii) for each α ∈ PΩ, the set Pα is countable;
(iv) for any countable subset C ⊆ PΩ, there exists β ∈ PΩ such that α < β for all
α ∈ C.

Transfinite induction

Finally, we discuss the method of transfinite induction for well ordered sets, which
is a natural generalisation of the classical mathematical induction.

The Principle of Transfinite Induction. LetW be a well ordered set. Suppose
that one wants to prove certain property P that depends on w ∈ W . The principle
consists of the following two steps:
(i) Initial Step. Show that P holds when w is the least element of W .
(ii) Induction Step. Let α ∈ W and assume that P holds for all β ∈ W that are
strictly smaller than α. Show that P holds for α.
Then one is able to conclude that the property P holds for all α ∈ W .

Proof of the principle of transfinite induction. The proof is indeed rather straight
forward. Let S ⊆ W be the subset of elements for which the property P holds.
If S ̸= W, by the well-orderedness assumption one knows that W\S has a least
element, say α. This means that every β ∈ W\S is greater than or equal to α.
Equivalently, if β < α then β ∈ S. By the induction step, one concludes that
α ∈ S, which is a contradiction. Therefore, S = W and thus P holds for all
w ∈ W .
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Construction of σ(E)

LetX be the underlying sample space. Let E be a given set class overX containing
∅. Our goal is to give an “explicit” construction of σ(E). Heuristically, the main
idea is that σ(E) should be the class of subsets that can be obtained from E by
performing series of basic set operations in a suitably inductive manner.

Let Ω denote the smallest uncountable ordinal number given by Theorem 1.6.
For each ordinal number 0 ⩽ α < Ω, we define a set class Eα over X as follows.
E0 is defined to be E . Given 0 < α < Ω, if Eβ is already defined for all ordinal
numbers 0 ⩽ β < α, we then set (cf. Definition 1.13 for the notation (·)∗)

Eα ≜
( ⋃
0⩽β<α

Eβ
)∗
,

Finally, we define
F ≜

⋃
0⩽α<Ω

Eα. (1.19)

The main theorem about the construction of σ(E) is stated as follows.

Theorem 1.7. Let E be a class of subsets of X containing ∅. Define F as above.
Then F = σ(E).

Proof. Firstly, we apply transfinite induction to the well ordered set

PΩ ≜ {0 ⩽ α < Ω : α is an ordinal number} (1.20)

to show that F ⊆ σ(E) (equivalently, Eα ⊆ σ(E) for all α ∈ PΩ). As the initial
step, it is obvious that E0 ⊆ σ(E). Now let α ∈ PΩ and assume that Eβ ⊆ σ(E)
for all β < α. Note that any element in Eα has the form ∪nAn, where An = A
or Ac with A ∈ Eβ for some β < α. By the transfinite induction hypothesis, one
knows that An ∈ σ(E). Therefore, ∪nAn ∈ σ(E). This shows that Eα ⊆ σ(E). By
transfinite induction, one concludes that F ⊆ σ(E).

For the other inclusion σ(E) ⊆ F , since E = E0 ⊆ F it suffices to show that F
is a σ-algebra. To this end, one first observes that

X = ∅c = ∅c ∪ ∅ ∪ ∅ ∪ · · · ∈ E1 ⊆ F .

In addition, if A ∈ F , then A ∈ Eα for some α < Ω. Pick some β with α < β < Ω.
Then one has

Ac = Ac ∪ Ac ∪ Ac ∪ · · · ∈ E∗
α ⊆ Eβ ⊆ F .
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Finally, if An ∈ F , then An ∈ Eαn for some αn < Ω. According to Theorem 1.6
(iv), there exists β < Ω such that αn < β for all n. It follows that

∞⋃
n=1

An ∈
( ∞⋃
n=1

Eαn

)∗ ⊆ Eβ ⊆ F .

Therefore, F is a σ-algebra.

The following corollary of Theorem 1.7 provides some information about the
“size” of σ(E).

Corollary 1.2. Let E be a class of subsets of X containing ∅. Suppose that E has
cardinality at most continuum. Then σ(E) also has cardinality at most continuum.

Proof. According to Theorem 1.7, it suffices to show that the σ-algebra F defined
by (1.19) has cardinality at most continuum. To this end, one first notes that the
set PΩ defined by (1.20) has continuum cardinality (cf. Theorem 1.6 (ii)). Since
a continuum union of continuum is a continuum (cf. the discussion on cardinality
below), it remains to show that card(Eα) ⩽ ℵ for each ordinal number α < Ω.
We again use transfinite induction to prove this. By assumption, one knows that
E0 = E has cardinality at most continuum. Now suppose that 0 < α < Ω is an
ordinal number and the claim is true for Eβ with any β < α. Since

Pα ≜ {0 ⩽ β < α : β is an ordinal number}

is a subset of PΩ, one knows that card(Pα) ⩽ ℵ. In particular, by induction
hypothesis one has

card
( ⋃
0⩽β<α

Eβ
)
⩽ ℵ,

since the union is viewed as a continuum union of continuum. Since Eα =
(∪β<αEβ)∗, the induction step will be completed by using the following general
property.

Claim. If a class H has cardinality at most continuum, so does H∗.

To prove the above claim, let H̃ ≜ H ∪ Hc where Hc is the class obtained by
taking complements of members in H. Observe that H̃ has the same cardinality
as H (i.e. at most continuum). In addition, H∗ is easily identified as a subset of
H̃N through

H∗ ∋ H =
∞⋃
n=1

Hn 7→ {Hn : n ⩾ 1} ∈ H̃N,
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where the notation AB means the set of maps from B to A. The claim then follows
from the standard fact that RN has continuum cardinality; indeed, one has

RN ≈ ({0, 1}N)N ≈ {0, 1}N×N ≈ {0, 1}N ≈ R,

where ≈ means equal in cardinality.

Remark 1.6. If E is finite, it is obvious that σ(E) is also finite. If E is countably
infinite, then σ(E) must be a continuum. Indeed, Theorem 1.7 shows that the
cardinality of σ(E) is at most continuum. One thus only needs to show that it
is at least continuum. This is a consequence of the more general fact that any
infinite σ-algebra F must have cardinality at least continuum. To see this, assume
on the contrary that F = {A0, A1, A2, · · · }, where all the An’s are distinct subsets.
For each {±1}-sequence α = (α0, α1, α2, · · · ) ∈ {0, 1}N, we define the subset

Bα =
⋃
n∈N

Aαn
n ∈ F ,

where Aαn
n = An or Ac

n depending on whether ωn = 1 or 0. It is apparent that

α ̸= β ∈ {0, 1}N =⇒ Bα ∩Bβ = ∅.

The next observation is that B ≜ {Bα : α ∈ {0, 1}N} contains at least countably
many elements. Indeed, if there were only finitely many elements in B, according
to the simple relation

An =
⋃

α:αn=1

Bα

it is impossible that the An’s are all distinct. Now pick a sequence B0, B1, B2, · · ·
of distinct non-empty members in B. Define a map T from {0, 1}N to F by

α = (α0, α1, · · · ) 7→ T (α) ≜
⋃

n:αn=1

Bn.

One checks that T is injective. Since {0, 1}N = ℵ, it follows that F has cardinality
at least continuum.

Example 1.8. One knows from the previous remark that B(R) has continuum
cardinality. As a result, in terms of cardinality B(R) is much smaller that P(R)
and thus there are plenty of subsets of R that are not Borel measurable.
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An application: product σ-algebras over topological spaces

As an application of Theorem 1.7 (indeed of Corollary 1.2), we discuss another
peculiar fact about generated σ-algebras: the product σ-algebra may not be equal
to the topological σ-algebra for the product of topological spaces.

Definition 1.15. Let X is a topological space. The Borel σ-algebra over X,
denoted as B(X), is the σ-algebra generated by open subsets of X.

Suppose that X, Y are topological spaces with Borel σ-algebras B(X),B(Y )
respectively. There are two apparent notions of σ-algebras over the product space
X × Y . On the one hand, from a measure-theoretic perspective one can form the
product σ-algebra B(X) ⊗ B(Y ). This is the σ-algebra generated by measurable
rectangles:

B(X)⊗ B(Y ) = σ({A×B : A ∈ B(X), B ∈ B(Y )}).

On the other hand, since X×Y is a topological space under the product topology
(i.e. the coarsest topology under which the projections X × Y → X, X × Y → Y
are both continuous), it also carries a Borel σ-algebra B(X×Y ) generated by the
open subsets of X × Y .

In general, it is obvious that

B(X)⊗ B(Y ) ⊆ B(X × Y );

for if A ⊆ X and B ⊆ Y are open subsets respectively, then A × B is open in
X×Y . On the other hand, if X and Y are both separable metric spaces equipped
with the metric topology, the reversed inclusion is also valid. This is because any
open subset G of X × Y is a countable union of open rectangles, i.e.

G =
∞⋃
n=1

Un × Vn

for suitable open subsets Un ⊆ X, Vn ⊆ Y . The same conclusion holds for
topological spaces with countable base.

The peculiar situation is that, even in the context of metric spaces, the reversed
inclusion may fail in general if the spaces are not separable. Indeed, one has the
following result.

Theorem 1.8. Let X be a metric space whose cardinality is strictly larger than
continuum. Then B(X) ⊗ B(X) is a proper subset of B(X × X). In particular,
X is not separable.

42



Remark 1.7. An interesting corollary of Theorem 1.8 is that every separable metric
space has cardinality at most continuum. This fact can also be proved directly as
follows. Let X be a separable metric space with a countable dense subset {xn :
n ⩾ 1}. The trick is to view the continuum as the power set of N (the collection
of all subsets of natural numbers, denoted as P(N)). Since X is separable, for
each y ∈ X, one can select a subsequence {xkn} such that xkn → y. Viewing {kn}
as a subset of natural numbers, one then constructs a map from X to P(N) by
sending y to {kn}. It is apparent that this map is injective, for if y ̸= z ∈ X, the
two associated subsequences of {xn} must be different.

The proof of Theorem 1.8 is an application of Corollary 1.2 along with the aid
of the following lemma.

Lemma 1.3. Let E be a set class over a sample space X. Then for any E ∈ σ(E),
there exists a countable subclass E0 of E (possibly depending on E), such that
E ∈ σ(E0).

Proof. Let H be the family of subsets E ∈ σ(E) satisfying the desired property. If
E ∈ E , one has E ∈ σ(E0) with E0 ≜ {E}. Therefore, E ⊆ H. It remains to show
that H is a σ-algebra. Apparently, X ∈ H and H is closed under complementation.
In addition, let En ∈ H (n ⩾ 1) with associated countable subclass En ⊆ E so that
En ∈ σ(En). Then ∪nEn ∈ H with associated countable subclass E0 ≜ ∪nEn.

Now we give the proof of Theorem 1.8.

Proof of Theorem 1.8. Consider the diagonal subset

D = {(x, y) : x = y} ⊆ X ×X.

Since X is Hausdorff, one knows that D is closed and hence it belongs to B(X)×
B(X). We claim that D does not belong to B(X) ⊗ B(X). Suppose on the con-
trary that D ∈ B(X)⊗ B(X). According to Lemma 1.3, there exists a countable
collection of measurable rectangles

E = {An ×Bn : An, Bn ∈ B(X)},

such that D ∈ σ(E). Let us define

A ≜
{
Ai, Bj : i, j ⩾ 1

}
.

Then one has
D ∈ σ(E) ⊆ σ(A)⊗ σ(A).
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It is standard that for each y ∈ X, the section

Dy ≜ {x ∈ X : (x, y) ∈ D} = {y} ∈ σ(A).

As a result, X has cardinality at most of σ(A).
On the other hand, since A is countable, one knows from Corollary 1.2 that

σ(A) has cardinality at most continuum. Therefore, X has cardinality at most
continuum, which contradicts the assumption on the cardinality of X.

Example 1.9. A “trivial” example of a metric space whose cardinality is strictly
larger than continuum is the following: take X to be the power set of R and define
a metric on X by

d(A,B) ≜

{
1, if A ̸= B;

0, if A = B.
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2 The mathematical expectation
In this chapter, we study random variables and construct their mathematical
expectations (integration). We begin with the more general notion of integration
with respect to measures and then specialise in the probabilistic context. We also
study the important concept of conditional expectation. This chapter provides
the necessary analytic tools for the study of various topics in the subject.

2.1 Measurable functions and random variables

In elementary probability, one has seen the notion of random variables in a semi-
rigorous way. Roughly speaking, a random variable is a function X defined on
the sample space Ω for which one can talk about probabilities of events like {ω :
X(ω) ∈ A} whenever A ⊆ R. However, it is unreasonable to allow {X ∈ A} to be
legal events for all subsets A of R. Measurability properties need to be introduced
and the legal events are precisely those {X ∈ A}’s with A being Borel measurable
subsets of R.

For many purposes, it will be convenient to allow random variables to take
±∞-values. For instance, let us consider the random experiment of tossing a fair
coin repeatedly until forever. The random variable defined by the first time a
“head” appears (cf. Example 2.1 below) takes value +∞ at the outcome given
by all tails, even though with probability one a “head” appears in finite time.
There are also natural random variables which admit +∞-value with positive
probability. For instance, suppose that a frog is jumping among integer points on
the real line. It starts at the origin x = 0, and at each step it jumps one unit to the
left with probability 2/3 and one unit to the right with probability 1/3. Let X be
the first time the frog reaches x = 1. It can be shown that P(X = +∞) > 0. From
an analytic viewpoint, it is often needed to consider the supremum or infimum of
a sequence of finitely valued functions, which could fail to be finite in general.

We make some standard conventions when working with ±∞-values. Let
R̄ ≜ R ∪ {±∞} denote the extended real line. Define B(R̄) to be the σ-algebra
generated by B(R) along with {−∞} and {+∞}. Proposition 1.1 generalises to
R̄ in the obvious way. For instance, B(R̄) is the σ-algebra generated by the class
of subsets of the form {x : −∞ ⩽ x ⩽ a} (a ∈ R). Through the rest, we always
adopt obvious conventions like

∞− (−∞) = ∞, (−2)×∞ = −∞, 0 · ±∞ = 0,
3

−∞
= 0, 4− (−∞) = +∞,
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etc. when one performs arithmetic operations on R̄. Expressions like

+∞− (+∞),
0

0
,
2

0
,
±∞
±∞

will be considered not well-defined.
For conventional reason, we save the term random variables for R-valued func-

tions and use measurable functions for the R̄-valued case.

Definition 2.1. Let (Ω,F) be a measurable space. A measurable function on Ω
is a map X : Ω → R̄ such that X−1(A) ∈ F for all A ∈ B(R̄). A random variable
on Ω is a R-valued measurable function.

By definition, for a measurable function X, subsets like {ω ∈ Ω : a < X(ω) <
b} or {ω ∈ Ω : X(ω) = c} are events in F . The result below gives a simple way
of checking the required measurability property. To ease notation, for any A ⊆ R̄
we will use {X ∈ A} to denote the subset {ω ∈ Ω : X(ω) ∈ A}.

Lemma 2.1. The following statements are equivalent:

(i) X : Ω → R̄ is a measurable function;
(ii) for any a ∈ R, {X < a} ∈ F ;
(iii) for any a ∈ R, {X ⩽ a} ∈ F ;
(iv) for any a ∈ R, {X > a} ∈ F ;
(v) for any a ∈ R, {X ⩾ a} ∈ F .

Proof. Denote C̄ ≜ {[−∞, a) : a ∈ R}. Then B(R̄) = σ(C̄). The equivalence
between (i) and (ii) is a consequence of the fact that

X−1(B(R̄)) = X−1(σ(C̄)) = σ
(
X−1(C̄)

)
⊆ F .

Their equivalence to (iii)–(v) follows from a similar reason.

It is useful to express a measurable function as the difference of two non-
negative measurable functions. In this way, one can often reduce the study to the
non-negative case.

Definition 2.2. Let X be a measurable function on Ω. The functions

X+ ≜ max{X, 0}, X− ≜ max{−X, 0}

are called the positive and negative parts of X respectively.
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From the definition, it is clear that

X = X+ −X−, |X| = X+ +X−.

The relation {X+ > a} = {X > a} ∈ F (a ⩾ 0) implies that X+ is a measurable
function. Similarly, X− is also a measurable function.

One can form new measurable functions from given ones by elementary oper-
ations.

Proposition 2.1. Let X, Y,Xn (n ⩾ 1) be measurable functions on Ω. Whenever
the following objects are well-defined, they are all measurable functions:

X ± Y, XY,
X

Y
, inf

n⩾1
Xn, sup

n⩾1
Xn, lim

n→∞
Xn, lim

n→∞
Xn.

Proof. For simplicity we only consider the case when X, Y are random variables
(i.e. R-valued).

(i) X + Y is a random variable:

{X + Y < a} =
⋃
r∈Q

(
{X < r} ∩ {Y < a− r}

)
∈ F .

A similar argument shows that X − Y is also a random variable.

(ii) For the XY case, we first assume that X, Y are both non-negative. In this
case,

{XY < a} = {X = 0} ∪ {Y = 0}

∪
( ⋃
r∈Q+

(
{0 < X < r} ∩ {0 < Y <

a

r
}
))

∈ F .

The general case follows from the decomposition

XY = (X+ −X−)(Y + − Y −) = X+Y + −X+Y − −X−Y + +X−Y −,

which is a measurable function as a consequence of Part (i) and the non-negative
case.

(iii) For the X
Y

case, from Part (ii) it is enough to consider 1
Y

. If a > 0, one has

{ 1

Y
< a

}
= {Y < 0} ∪

{
Y >

1

a

}
∈ F .
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The case when a < 0 is treated similarly.

(iv) The following relations

{
inf
n⩾1

Xn < a
}
=

∞⋃
n=1

{Xn < a},
{
sup
n⩾1

Xn ⩽ a
}
=

∞⋂
n=1

{Xn ⩽ a}

imply that infnXn and supnXn are both measurable functions. It follows that

lim
n→∞

Xn = sup
n⩾1

inf
m⩾n

Xn, lim
n→∞

Xn = inf
n⩾1

sup
m⩾n

Xn

are also measurable functions.

Example 2.1. Consider the example of tossing a fair coin repeatedly in a se-
quence. Recall that the sample space Ω and the σ-algebra F are defined by (1.8)
and (1.9) respectively. Let X be the first time that a “head” appears. Mathemat-
ically,

X(ω) ≜ inf{n ⩾ 1 : ωn = H}, ω = (ω1, ω2, · · · ) ∈ Ω.

Then X is a measurable function on Ω. Indeed, note that X takes values in
Z ∪ {+∞}. Moreover, for any n ⩾ 1 one has

{ω : X(ω) = n} = {ω : ω1 = · · · = ωn−1 = T, ωn = H} ∈ F .

From this fact it is not hard to verify any of the conditions in Lemma 2.1.

2.2 Integration with respect to measures

A basic numerical feature of a random variable is its expectation with respect to
a probability measure. This is essentially the notion of integration. At this point,
the probabilistic structure is of no significance yet and it is advantageous to begin
with general measures as well as measurable functions.

Let (Ω,F , µ) be a given measure space. Let X be a measurable function on
Ω. We want to define the notion of “the integral of X with respect to the measure
µ”. The idea of constructing this integral

∫
Ω
Xdµ is very natural. In the situation

when X is the indicator function associated with some event A ∈ F , i.e. if

X(ω) = 1A(ω) ≜

{
1, ω ∈ A;

0, ω /∈ A,

the integral
∫
Ω
Xdµ should just be defined as µ(A). In the probabilistic context

when µ is a probability measure, this X is a Bernoulli random variable and its
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expectation is just the probability of A. Since the integration map X 7→
∫
Ω
Xdµ

should be linear, one knows immediately how the integral of a linear combina-
tion of indicator functions (simple functions) should be defined. To extend the
construction to general measurable functions, one needs a key lemma for approxi-
mating measurable functions by simple functions as well as a procedure of passing
to the limit. It is convenient to first treat the case of non-negative functions, since
the general case can be dealt with using the decomposition X = X+ −X−.

We start with the following definition.

Definition 2.3. A non-negative, simple, measurable function on Ω is a linear
combination of indicator functions, i.e.

X(ω) =
n∑

i=1

ai1Ai
(ω) (2.1)

for some n ⩾ 1, ai ∈ [0,+∞) and Ai ∈ F (1 ⩽ i ⩽ n). The space of non-negative,
simple, measurable functions is denoted as S+.

It is not hard to see that a non-negative measurable function X is simple if
and only if it takes finitely many values in [0,+∞). This observation immediately
tells us that

X, Y ∈ S+ =⇒ X + Y, XY, max(X, Y ), min(X, Y ), αX (α > 0) ∈ S+.

In addition, if X ⩾ Y then X − Y ∈ S+.
Note that the representation (1.6) of X ∈ S+ may not be unique. For instance,

on Ω = [0, 1],
X = 1[0,2/3] = 1[0,1/3] + 1(1/3,2/3]

are two different representations of the same function. Among all representations,
there is one in which the events Ai’s form a finite partition of Ω. Such kind of
representations is more convenient to work with.

Lemma 2.2. Let X ∈ S+ be a non-negative simple measurable function. Then
X can be written as X =

∑m
j=1 bj1Bj

where Bj ∈ F (1 ⩽ j ⩽ m) form a partition
of Ω.

Proof. Suppose that X =
∑n

i=1 ai1Ai
∈ S+. For each 0 ⩽ i ⩽ n, we set C(i)

0 ≜ Ac
i

and C(i)
1 ≜ Ai. Let

J = {(j1, · · · , jn) : ji = 0 or 1}
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denote the set of 0-1 sequences of length n. Given J = (j1, · · · , jn) ∈ J , define

BJ = C
(1)
j1

∩ C(2)
j2

∩ · · · ∩ C(n)
jn

and
bJ ≜

∑
1⩽i⩽n:ji=1

ai (bJ ≜ 0 if J = {0, 0, · · · , 0}).

Apparently, {BJ : J ∈ J } is a (finite) partition of Ω and one has

X =
∑
J∈J

bJBJ . (2.2)

Remark 2.1. Despite of the above seemingly complicated notation, the underlying
idea is quite simple. In the case when n = 2, one has

X = a11A1 + a21A2

= 0 · 1Ac
1∩Ac

2
+ a1 · 1A1∩Ac

2
+ a2 · 1Ac

1∩A2 + (a1 + a2) · 1A1∩A2 .

The definition of integration for non-negative simple functions is obvious.

Definition 2.4. For X ∈ S+ with given representation (2.1), the integral of X
with respect to the measure µ is defined by∫

Ω

Xdµ ≜
n∑

i=1

aiµ(Ai) ∈ [0,+∞].

Before studying basic properties of this integral, one must first show that it
is well-defined, namely it is independent of the representation of X. The proof is
quite technical and one should not bother with the not-so-inspiring details if one
is convinced by drawing simple pictures.

Proposition 2.2. The integral
∫
Ω
Xdµ is well-defined for X ∈ S+.

Proof. Suppose that X =
∑n

i=1 ai1Ai
. We first claim that, the quantity

∫
Ω
Xdµ

remains the same if one uses the representation of X given by (2.2) over a finite
partition of Ω. Indeed, under the same notation as in the proof of Lemma 2.2, for
each 1 ⩽ i ⩽ n, Ai admits the following disjoint decomposition:

Ai =
⋃

J=(j1,··· ,jn)∈J :ji=1

BJ .
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According to the finite additivity of µ, one has
n∑

i=1

aiµ(Ai) =
n∑

i=1

ai
∑

J=(j1,··· ,jn)∈J :ji=1

µ(BJ)

=
∑

J=(j1,··· ,jn)∈J

∑
1⩽i⩽n:ji=1

aiµ(BJ)

=
∑
J∈J

bJµ(BJ).

Therefore, the claim holds.
Since any representation of X can always be reduced to one over a finite

partition, it remains to show that the quantity
∫
Ω
Xdµ is invariant when X admits

two representations

X =
n∑

i=1

ai1Ai
=

m∑
j=1

bj1Bj

with {A1, · · · , An} and {B1, · · · , Bm} being two partitions of Ω. But this fact is
straight forward to see:

n∑
i=1

aiµ(Ai) =
n∑

i=1

aiµ
(
Ai ∩

( m⋃
j=1

Bj

))
=

n∑
i=1

m∑
j=1

aiµ(Ai ∩Bj)

=
m∑
j=1

n∑
i=1

bjµ(Ai ∩Bj) =
m∑
j=1

bjµ(Bj),

since ai = bj on Ai ∩Bj.

The definition of
∫
Ω
Xdµ (X ∈ S+) automatically ensures its linearity : if

X, Y ∈ S+ and α ⩾ 0, then∫
Ω

(X + Y )dµ =

∫
Ω

Xdµ+

∫
Ω

Y dµ,

∫
Ω

αXdµ = α

∫
Ω

Xdµ. (2.3)

Another basic property which is less obvious is monotonicity : if X, Y ∈ S+ and
X ⩽ Y, then ∫

Ω

Xdµ ⩽
∫
Ω

Y dµ. (2.4)

Indeed, if one expresses X, Y by

X =
n∑

i=1

ai1Ai
, Y =

m∑
j=1

bj1Bj
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where {A1, · · · , An} and {B1, · · · , Bm} are two partitions of Ω respectively, then

X =
∑
i,j

ai1Ai∩Bj
, Y =

∑
i,j

bj1Ai∩Bj

with ai ⩽ bj on Ai ∩Bj (since X ⩽ Y ). Therefore,∫
Ω

Xdµ =
∑
i,j

aiµ(Ai ∩Bj) ⩽
∑
i,j

biµ(Ai ∩Bj) ⩽
∫
Ω

Y dµ.

Next, we establish a property of the integral
∫
Ω
Xdµ (X ∈ S+) which is

crucial for extending the construction to general measurable functions. This is
also the preliminary version of the more general monotone convergence theorem
(cf. Theorem 2.2 below). We use the notation Xn ↑ X to mean that Xn(ω)
increases to X(ω) as n→ ∞ for every ω ∈ Ω.

Proposition 2.3. Let Xn, X ∈ S+ (n ⩾ 1) and Xn ↑ X. Then
∫
Ω
Xndµ ↑∫

Ω
Xdµ.

Proof. We first consider the case when X = 1A. Suppose that Xn ↑ 1A. Since∫
Ω

Xndµ ⩽
∫
Ω

1Adµ = µ(A),

one has
lim
n→∞

∫
Ω

Xndµ ⩽ µ(A). (2.5)

To obtain the matching lower estimate, let ε > 0 and define

An ≜ {ω ∈ A : Xn ⩾ 1− ε}.

Since Xn ↑ 1A, on has An ↑ A and thus µ(An) ↑ µ(A). But from the definition of
An one also knows that

Xn ⩾ (1− ε) · 1An .

Therefore, ∫
Ω

Xndµ ⩾ (1− ε) · µ(An),

which implies that

lim
n→∞

∫
Ω

Xndµ ⩾ (1− ε) · µ(A). (2.6)
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Since ε is arbitrary, by letting ε ↓ 0 in (2.6) and together with (2.5) one concludes
that the limit of

∫
Ω
Xndµ is equal to µ(A).

For the general case, suppose that Xn ↑ X where X =
∑m

i=1 ai1Ai
with ai ⩾

0 and the Ai’s form a partition of Ω. For those i’s such that ai > 0, by the
convergence assumption Xn ↑ X one has

S+ ∋ Y (i)
n ≜

1

ai
1Ai

·Xn ↑ 1Ai
.

It follows from the case we have just treated that

lim
n→∞

∫
Ω

Y (i)
n dµ = µ(Ai).

As a result,

lim
n→∞

∫
Ω

Xn1Ai
dµ = lim

n→∞

∫
Ω

aiY
(i)
n dµ = aiµ(Ai).

Note that the above relation remains valid if ai = 0 (since 0 ⩽ Xn ⩽ X, if ai = 0
then X = 0 on Ai and so is Xn, which shows that Xn1Ai

= 0 in this case). Since
{A1, · · · , Am} is a partition of Ω, one knows that

1A1 + · · ·+ 1Am = 1.

Therefore, one has∫
Ω

Xndµ =

∫
Ω

Xn

( m∑
i=1

1Ai

)
dµ

n→∞−→
m∑
i=1

aiµ(Ai) =

∫
Ω

Xdµ.

Finally, we move to the real stuff: extending the construction to general mea-
surable functions. We first consider the case of non-negative measurable functions;
the general case follows easily from the decomposition X = X+−X−. The idea is
to approximate a non-negative measurable function by a sequence of non-negative
simple functions and show that the result sequence of integrals converges accord-
ingly. The following result is the key lemma to implement this idea. It is also
useful in many other situations.

Lemma 2.3. Let X be a non-negative measurable function on Ω. Then there exists
a sequence {Xn : n ⩾ 1} of non-negative simple measurable functions such that
Xn ↑ X.
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Proof. Given n ⩾ 1, define Xn : Ω → [0,∞) by

Xn(ω) ≜

{
n, if X(ω) ⩾ n;
k
2n
, if k

2n
⩽ X(ω) < k+1

2n
for some 0 ⩽ k ⩽ n2n − 1,

or in more compact form,

Xn(ω) ≜
n2n−1∑
k=0

k

2n
1{k/2n⩽X<(k+1)/2n} + n1{X⩾n}.

It is obvious that Xn ∈ S+ and we let the reader check that Xn ↑ X.

Remark 2.2. If X is bounded, then Xn converges to X uniformly. Indeed, suppose
that 0 ⩽ X ⩽M for some constant M > 0. From the above proof, one sees that

0 ⩽ X(ω)−Xn(ω) ⩽
1

2n
∀ω,

provided n > M since in this case one always has X(ω) < n.

With the aid of Lemma 2.3, one can now define the integral of a non-negative
measurable function.

Definition 2.5. Let X : Ω → [0,∞] be a non-negative measurable function. The
integral of X with respect to the measure µ is defined by∫

Ω

Xdµ ≜ lim
n→∞

∫
Ω

Xndµ,

where Xn ∈ S+ is any sequence such that Xn ↑ X.

Just like the case for simple functions, one must show that
∫
Ω
Xdµ is well-

defined.

Proposition 2.4. For any non-negative measurable function X, the integral
∫
Ω
Xdµ

is well-defined and it is non-negative.

Proof. If S+ ∋ Xn ↑ X, one knows from the monotonicity property (2.4) that∫
Ω
Xndµ is increasing. Therefore, its limit exists in [0,∞]. Suppose that Xn, Yn ∈

S+ are two sequences both satisfying Xn ↑ X and Yn ↑ X. We want to show that

lim
n→∞

∫
Ω

Xndµ = lim
n→∞

∫
Ω

Yndµ. (2.7)
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To this end, let us fix m ⩾ 1 for now and consider the sequence Zn ≜ min{Xn, Ym}
(n ⩾ 1). It is clear that Zn ∈ S+ and Zn ↑ min{X, Ym} = Ym. According to
Proposition 2.3 (the monotone convergence theorem for simple functions), one
knows that ∫

Ω

Ymdµ = lim
n→∞

∫
Ω

Zndµ ⩽ lim
n→∞

∫
Ω

Xndµ,

where the inequality follows from Zn ⩽ Xn. By taking m → ∞ on the left hand
side, one concludes that

lim
m→∞

∫
Ω

Ymdµ ⩽ lim
n→∞

∫
Ω

Xndµ.

By symmetry the reverse inequality also holds. Therefore, the relation (2.7) fol-
lows.

Finally, we are able to give the construction of integration in full generality.
Let X : Ω → R̄ be a measurable function on Ω. Recall that one can always express
X as the difference between its positive and negative parts:

X = X+ −X−, X+ ≜ max{X, 0}, X− ≜ max{−X, 0}.

Definition 2.6. We say that the integral of X with respect to µ exists, if at least
one of

∫
Ω
X+dµ and

∫
Ω
X−dµ is finite. In this case, one defines∫

Ω

Xdµ ≜
∫
Ω

X+dµ−
∫
Ω

X−dµ.

If both of
∫
Ω
X+dµ and

∫
Ω
X−dµ are finite, we say that X is integrable and simply

write X ∈ L1.

Remark 2.3. Since |X| = X+ + X−, from definition X is integrable if and only
if |X| is integrable. Regardless of integrability it is always true that

∫
Ω
|X|dµ =∫

Ω
X+dµ+

∫
Ω
X−dµ.

Remark 2.4. It is also common to write the integral as
∫
Ω
X(ω)µ(dω) to indicate

the hidden variable ω.
An important property of integration is linearity. Indeed, it has guided us in

the construction of the integral.

Theorem 2.1. Let X, Y ∈ L1 and α ∈ R. Then X + Y, αX ∈ L1 and∫
Ω

(X + Y )dµ =

∫
Ω

Xdµ+

∫
Ω

Y dµ,

∫
Ω

αXdµ = α

∫
Ω

Xdµ.
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Proof. First of all, note that

(X+ −X−) + (Y + − Y −) = X + Y = (X + Y )+ − (X + Y )−,

or equivalently

X− + Y − + (X + Y )+ = X+ + Y + + (X + Y )−. (2.8)

Next, in the non-negative case, the linearity property of the integral is a conse-
quence of approximation by functions in S+ as well as the linearity property (2.3)
in the case of simple functions. Therefore, by integrating (2.8) one obtains that∫

Ω

X−dµ+

∫
Ω

Y −dµ+

∫
Ω

(X + Y )+dµ

=

∫
Ω

X+dµ+

∫
Ω

Y +dµ+

∫
Ω

(X + Y )−dµ.

Now the first assertion follows from rearrangement of the terms and Definition 2.6
of the integral. The second assertion is proved in a similar way by decomposition
into positive and negative parts.

Sometimes one needs to consider the integral of X over a measurable subset
A ∈ F instead of the whole space Ω. Let X be an integrable function. Then for
any A ∈ F , the function X1A is integrable (since |X1A| ⩽ |X|). The integral∫
Ω
X1Adµ is called the integral of X over A and it is denoted as

∫
A
Xdµ. By

linearity, it is easily seen that∫
A∪B

Xdµ =

∫
Ω

X1A∪Bdµ =

∫
Ω

X(1A + 1B)dµ =

∫
A

Xdµ+

∫
B

Xdµ (2.9)

for any A,B ∈ F with A ∩ B = ∅. This property is known as the additivity of
integration.

Before stating other properties of the integral, we make a note that the integral∫
Ω
Xdµ is invariant under changing the values of X on a µ-null set.

Proposition 2.5. Let X be a given integrable function. Then
∫
N
Xdµ = 0 for any

µ-null set N . As a consequence, suppose that Y is another measurable function
such that X = Y a.e. Then Y is also integrable and

∫
Ω
Xdµ =

∫
Ω
Y dµ.

Proof. For the first assertion, it is enough to consider the case when X ⩾ 0.
Let N be a given µ-null set. Choose a sequence of simple functions Xn ∈ S+
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such that Xn ↑ X. Then S+ ∋ Xn1N ↑ X1N . Since Xn has a general form of
Xn =

∑m
i=1 ai1Ai

and µ(N) = 0, it is clear that∫
Ω

Xn1Ndµ =
m∑
i=1

aiµ(Ai ∩N) = 0.

By the definition of the integral, one has∫
Ω

X1Ndµ = lim
n→∞

∫
Ω

Xn1Ndµ = 0.

For the second assertion, let N be a µ-null set such that X(ω) = Y (ω) when
ω ∈ N c. Then one has X1Nc = Y 1Nc on Ω . It follows that∫

Nc

Xdµ =

∫
Ω

X1Ncdµ =

∫
Ω

Y 1Ncdµ =

∫
Nc

Y dµ.

According to the additivity property (2.9) and the first assertion, one has∫
Ω

Xdµ =

∫
N

Xdµ+

∫
Nc

Xdµ =

∫
Ω

X1Ncdµ =

∫
Ω

Y 1Ncdµ =

∫
Ω

Y dµ.

Proposition 2.6. Let X, Y be integrable functions. Then one has the following
properties.

(i) Triangle inequality:
∣∣∫

Ω
Xdµ

∣∣ ⩽ ∫
Ω
|X|dµ.

(ii) Monotonicity: if X ⩽ Y a.e. then
∫
Ω
Xdµ ⩽

∫
Ω
Y dµ.

Proof. (i) This follows from the trivial inequality

−
∫
Ω

X+dµ−
∫
Ω

X−dµ ⩽
∫
Ω

X+dµ−
∫
Ω

X−dµ ⩽
∫
Ω

X+dµ+

∫
Ω

X−dµ.

(ii) Because of Proposition 2.5, one may assume that X ⩽ Y on Ω. By the
definition of the positive and negative parts, it is not hard to see that

X+ ⩽ Y +, Y − ⩽ X−. (2.10)

If one can prove monotonicity of the integral for non-negative functions, the result
will follow from integrating (2.10) as well as the definition of the integral. To treat
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the non-negative case, suppose that 0 ⩽ X ⩽ Y and choose Xn, Yn ∈ S+ so that
Xn ↑ X, Yn ↑ Y . Then

S+ ∋ Zn ≜ max{Xn, Yn} ↑ max{X, Y } = Y.

It follows that ∫
Ω

Xdµ = lim
n→∞

∫
Ω

Xndµ ⩽ lim
n→∞

∫
Ω

Zndµ =

∫
Ω

Y dµ.

In some cases, one can deduce properties of the integrand from the knowledge
of the integral.

Proposition 2.7. (i) Let X ⩾ 0 a.e. Then∫
Ω

Xdµ = 0 ⇐⇒ X = 0 a.e. (2.11)

and ∫
Ω

Xdµ <∞ =⇒ X <∞ a.e.

(ii) Let X, Y ∈ L1. If ∫
A

Xdµ ⩽
∫
A

Y dµ for all A ∈ F ,

then X ⩽ Y a.e.

Proof. (i) For the first assertion, the sufficiency part is trivial. For the necessity
part, for each n ⩾ 1 consider Xn ≜ n−1 · 1{X⩾n−1}. It is obvious that Xn ⩽ X. As
a result,

n−1µ(X ⩾ n−1) =

∫
Ω

Xndµ ⩽
∫
Ω

Xdµ = 0.

It follows that
µ(X > 0) = lim

n→∞
µ(X ⩾ n−1) = 0.

The second assertion is proved by a similar argument. For each n ⩾ 1, one has
1{X⩾n} ⩽ X/n and thus

µ(X ⩾ n) =

∫
Ω

1{X⩾n}dµ ⩽
1

n

∫
Ω

Xdµ.
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Therefore,
µ(X = ∞) = lim

n→∞
µ(X ⩾ n) = 0.

(ii) Choose A ≜ {X > Y }. From the assumption and linearity, one knows that∫
Ω
(X−Y )1{X>Y }dµ ⩽ 0. On the other hand, it is apparent that (X−Y )1{X>Y } ⩾

0. Hence
∫
Ω
(X − Y )1{X>Y }dµ ⩾ 0. It follows that∫

Ω

(X − Y )1{X>Y }dµ = 0.

According to (2.11), one concludes that

Z ≜ (X − Y )1{X>Y } = 0 a.e.

or equivalently, µ(Z ̸= 0) = 0. But {X > Y } ⊆ {Z ̸= 0}. Therefore, µ(X >
Y ) = 0.

Remark 2.5. As a consequence of Proposition 2.7 (ii), if
∫
A
Xdµ =

∫
A
Y dµ for

all A ∈ F , then X = Y a.e. This is useful e.g. when establishing uniqueness
properties for densities or conditional expectations as we will see later on.

2.3 Taking limit under the integral sign

It is often useful to know under what conditions one can interchange the limit and
integral signs:

Xn → X
?

=⇒
∫
Ω

Xndµ→
∫
Ω

Xdµ.

There are three basic results of this kind, which may apply in different situations.
The first one is known as the monotone convergence theorem. It is concerned with
non-negative sequences.

Theorem 2.2. Let Xn, X ⩾ 0 a.e. and Xn ↑ X a.e. Then one has
∫
Ω
Xndµ ↑∫

Ω
Xdµ.

Proof. First of all, since the integrals will not change under modification of Xn

and X on µ-null sets, one may assume without loss of generality that the given
a.e. properties hold for every ω ∈ Ω. Next, for each fixed n, let Yn,m (m ⩾ 1) be
a sequence in S+ such that Yn,m ↑ Xn as m→ ∞. Define

Zm ≜ max{Y1,m, Y2,m, · · · , Ym,m} ∈ S+, m ⩾ 1.
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It is obvious that Zm ⩽ Zm+1. We claim that Zm ↑ X. Indeed, for fixed n, when
m > n one has Zm ⩾ Yn,m. Letting m→ ∞ yields

lim
m→∞

Zm ⩾ lim
m→∞

Yn,m = Xn.

Since this is true for all n, by taking n→ ∞ one obtains that

lim
m→∞

Zm ⩾ lim
n→∞

Xn = X.

The reverse inequality is trivial as Zm ⩽ X for all m. Therefore, Zm ↑ X. It
follows from the definition of

∫
Ω
Xdµ in the non-negative case that

lim
m→∞

∫
Ω

Zmdµ =

∫
Ω

Xdµ.

On the other hand, since Yn,m ⩽ Xn ⩽ Xm whenever n ⩽ m, it is clear that
Zm ⩽ Xm. Consequently, one has

lim
m→∞

∫
Ω

Xmdµ ⩾ lim
m→∞

∫
Ω

Zmdµ =

∫
Ω

Xdµ.

The reverse inequality is trivial, thus finishing the proof of the theorem.

Corollary 2.1. Let {Xn : n ⩾ 1} be a sequence of measurable functions such that
Xn ⩾ 0 a.e. for each n. Then one has∫

Ω

( ∞∑
n=1

Xn

)
dµ =

∞∑
n=1

∫
Ω

Xndµ.

In particular, if
∑∞

n=1

∫
Ω
Xndµ <∞, then

∑∞
n=1Xn <∞ a.e. and Xn → 0 a.e.

Proof. Define Sn ≜
∑n

k=1Xk. Then Sn ⩾ 0 and Sn ↑
∑∞

n=1Xn. The result follows
from the monotone convergence theorem.

The second result is known as Fatou’s lemma. It is also concerned with non-
negative sequences and is more flexible to use.

Theorem 2.3. Let {Xn : n ⩾ 1} be a sequence of measurable functions such that
Xn ⩾ 0 a.e. Then ∫

Ω

lim
n→∞

Xndµ ⩽ lim
n→∞

∫
Ω

Xndµ.
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Proof. Define Yn ≜ infm⩾nXm. It is clear that Yn ⩾ 0 a.e. and from the definition
of “ lim” one also knows that

Yn ↑ X ≜ lim
n→∞

Xn.

According to the monotone convergence theorem, one concludes that∫
Ω

Xdµ = lim
n→∞

∫
Ω

Yndµ ⩽ lim
n→∞

∫
Ω

Xndµ,

where the last inequality follows from the fact that Yn ⩽ Xn for each n.

Corollary 2.2. Let Xn, X, Y be measurable functions. Suppose that 0 ⩽ Xn ⩽ Y ,
Xn → X a.e. and Y ∈ L1. Then X ∈ L1 and one has

lim
n→∞

∫
Ω

Xndµ =

∫
Ω

Xdµ. (2.12)

Proof. Since Xn ⩾ 0 a.e. for all n, so is X. According to Fatou’s lemma, one has

0 ⩽
∫
Ω

Xdµ =

∫
Ω

lim
n→∞

Xndµ ⩽ lim
n→∞

∫
Ω

Xndµ ⩽
∫
Ω

Y dµ <∞. (2.13)

In particular, X is integrable. To prove the convergence result, one applies Fatou’s
lemma to the a.e. non-negative sequence Y −Xn:∫

Ω

(Y −X)dµ =

∫
Ω

lim
n→∞

(Y −Xn)dµ ⩽ lim
n→∞

∫
Ω

(Y −Xn)dµ.

Equivalently, one has ∫
Ω

Xdµ ⩾ lim
n→∞

∫
Ω

Xndµ.

Together with the middle inequality in (2.13), one obtains the convergence prop-
erty (2.12).

The last result is known as the dominated convergence theorem. It does not
require Xn ⩾ 0 but one needs a uniform control on their magnitudes.

Theorem 2.4. Let Xn, X, Y be measurable functions. Suppose that |Xn| ⩽ Y
a.e. for all n, Xn → X a.e. and Y ∈ L1. Then X ∈ L1 and

lim
n→∞

∫
Ω

Xndµ =

∫
Ω

Xdµ.
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Proof. By assumption, one has

X±
n ⩽ |Xn| = X+

n +X−
n ⩽ Y a.e.

for all n. In addition, since the functions x 7→ max{x, 0} and x 7→ {−x, 0} are
continuous, one knows that X±

n → X± a.e. According to Corollary 2.2, one has∫
Ω
X±dµ <∞ (thus X ∈ L1) and

lim
n→∞

∫
Ω

X±
n dµ =

∫
Ω

X±dµ.

Now the result follows from linearity of integration.

Example 2.2. An important example is the case when (Ω,F) = (Rn,B(Rn)) and
µ = dx is the Lebesgue measure. The integral

∫
Rn X(x)dx is called the Lebesgue

integral of X. When Ω = [a, b] ⊆ R1 and X : [a, b] → R is a continuous function,
the Lebesgue integral

∫
[a,b]

X(x)dx coincides with the Riemann integral.

Before specialising in the probabilistic case, we present a useful continuity
property of integration.

Proposition 2.8. Let X be an integrable function on (Ω,F , µ). Then for any
ε > 0, there exists δ > 0 such that

F ∈ F , µ(F ) < δ =⇒
∫
F

|X|dµ < ε.

Proof. Let Xn ≜ |X|1{|X|>n}. According to the dominated convergence theorem,
one has ∫

Ω

Xndµ =

∫
{|X|>n}

|X|dµ→ 0

as n→ ∞. As a result, given any ε > 0, there exists n > 0 such that∫
{|X|>n}

|X|dµ < ε

2
.

For the above n and any F ∈ F , one has∫
F

|X|dµ =

∫
F∩{|X|⩽n}

|X|dµ+

∫
F∩{|X|>n}

|X|dµ

⩽ nµ(F ) +

∫
{|X|>n}

|X|dµ < nµ(F ) +
ε

2
.

Take δ ≜ ε/2n. It follows that
∫
F
|X|dµ < ε whenever µ(F ) < δ. This gives the

desired continuity property of the integral.
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2.4 The mathematical expectation of a random variable

The probabilistic case (i.e. when µ is a probability measure) is of central impor-
tance to us. All the previous discussions on integration carry through and we give
the integral a specific name in this case: the mathematical expectation.

Definition 2.7. Let (Ω,F ,P) be a probability space and let X be a random vari-
able on Ω. If the integral

∫
Ω
XdP exists, we call it the (mathematical) expectation

of X and denote it as E[X]. As usual, we say that X is integrable and write
X ∈ L1 if E[X] exists finitely.

There is a special feature of the expectation that does not have its counterpart
for general measures. Namely, one has E[1] = 1 and thus E[c] = c for any constant
c ∈ R. This is a trivial consequence of that fact that P(Ω) = 1 but it has several
nice implications (cf. Corollary 2.3 as one such example).

Notation. Given A ∈ F and random variable X, we sometimes write E[X;A] ≜∫
A
XdP (integral of X over A).

2.4.1 The law of a random variable and the change of variable formula

In elementary probability, one defines the expectation of a random variable using
the formulae:

E[X] =

{∑
x∈SX

xP(X = x), X discrete;∫∞
−∞ xfX(x)dx, X continuous with density function fX

(2.14)

We now illustrate how these two formulae are unified and connected to the general
Definition 2.7.

Let (Ω,F ,P) be a probability space and let X : Ω → R be a random variable
on Ω. X induces a probability measure µX on (R,B(R)) in a natural way through

µX(A) ≜ P(X ∈ A), A ∈ B(R).

Definition 2.8. The above probability measure µX on (R,B(R)) induced by X
is called the law of the random variable X.

The relation between the law µX and the distribution function of X is straight
forward:

FX(x) = P(X ⩽ x) = µX((−∞, x]).

From this relation, one sees that µX is the Lebesgue-Stieltjes measure induced by
FX .
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The connection between the two viewpoints of the expectation (Definition 2.7
and the equation (2.14)) is contained in the following change of variable formula.

Theorem 2.5. Let X be a random variable on a given probability space (Ω,F ,P)
and let g : R → R be an R-valued B(R)-measurable function. Suppose that g(X)
is integrable with respect to P. Then g is integrable with respect to µX (the law of
X) and one has

E[g(X)] =

∫
R
g(x)µX(dx).

Proof. The argument is nothing deeper than the definition of µX and construction
of the integrals. By writing g = g+ − g− it is enough to consider the case when
g ⩾ 0, which by approximation further reduces to the case when g is non-negative
simple, and eventually to the case when g = 1A (A ∈ B(R)). But in this case, by
the definition of µX one trivially has

E[1A(X)] = P(X ∈ A) = µX(A) =

∫
R
1AdµX .

In the context of Theorem 2.5, by choosing g(x) = x one immediately recovers
(2.14). In fact, Theorem 2.5 shows that

E[X] =

∫
R
xµ(dx).

IfX is a discrete random variable whose set of possible values is SX = {x1, x2, · · · },
then ∫

R
xPX(dx) =

∞∑
n=1

xnµX({xn}) =
∞∑
n=1

xnP(X = xn). (2.15)

If X is continuous with density function fX , then

P(X ∈ A) = µX(A) =

∫
A

fX(x)dx ∀A ∈ B(R),

and thus ∫
R
xµX(dx) =

∫
R
xfX(x)dx. (2.16)

Therefore, the relation (2.14) holds. As a good exercise we let the reader think
about why (2.15) and (2.16) hold.
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2.4.2 Some basic inequalities for the expectation

We conclude by discussing a few basic integral inequalities that will be used fre-
quently in probability theory. Since we are motivated from the probabilistic side,
we will always work on a given probability space (Ω,F ,P) and integration thus
becomes expectation. But we should point out that most of the inequalities (only
except for Corollary 2.3) have their obvious extensions to general measures.

The first inequality is Markov’s inequality. The proof is nearly trivial but it
has a broad range of applications in tail probability estimates, convergence of
random variables, large deviation principles, error estimates etc.

Theorem 2.6. Let X be a random variable on a given probability space (Ω,F ,P).
Then for any α, λ > 0, one has

P(|X| ⩾ λ) ⩽
E[|X|α]
λα

.

Proof. The result follows from taking expectation on both sides of the following
obvious inequality:

1{|X|⩾λ} ⩽
|X|α

λα
.

Remark 2.6. The case when α = 2 (sometimes with X replaced by X − E[X]
provided that X ∈ L1), i.e.

P(|X − E[X]| ⩾ λ) ⩽
E[(X − E[X])2]

λ2
,

is known as Chebyshev’s inequality.

Example 2.3. Let X be a standard normal random variable. According to
Markov’s inequality, for any x > 0 one has

P(X ⩾ x) = P(eX ⩾ ex) ⩽ e−txE[etX ] = e−tx+t2/2 ∀t > 0. (2.17)

Here we used the formula E[etX ] = et
2/2 for the moment generating function of

X. By optimising the right hand side of (2.17) over t > 0, one has

P(X ⩾ x) ⩽ inf
t>0

e−tx+t2/2 = e−x2/2.

In other words, one obtains the useful analytic inequality

1√
2π

∫ ∞

x

e−u2/2du ⩽ e−x2/2 ∀x > 0.
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The next two inequalities are called Hölder’s inequality and Minkowski’s in-
equality. They have significant applications in several areas of mathematics apart
from probability theory. We first recall two elementary inequalities for real num-
bers.

Lemma 2.4. Let a, b ∈ R, r > 0 and 1 < p, q <∞ with 1/p+ 1/q = 1. Then the
following inequalities hold true:

(i) |a+ b|r ⩽ max{1, 2r−1} · (|a|r + |b|r).
(ii) [Young’s inequality] |ab| ⩽ |a|p/p+ |b|q/q.

Proof. (i) Without loss of generality, let us assume that a, b > 0 and r ̸= 1 (for
otherwise the inequality is trivial). Consider the function

f(t) ≜ tr + (1− t)r, t ∈ [0, 1].

Then
f ′(t) = r(tr−1 − (1− t)r−1).

If r > 1, f(t) attains minimum at t = 1/2, yielding the inequality

tr + (1− t)r ⩾
1

2r−1
.

If 0 < r < 1, f(t) attains minimum at the end points t = 0, 1, yielding the
inequality

tr + (1− t)r ⩾ 1.

The result follows by replacing t with a
a+b

.

(ii) Since log x is a concave function, for any x, y > 0 and α, β ⩾ 1 with α+β = 1,
one has

α log x+ β log y ⩽ log(αx+ βy),

or equivalently,
xαyβ ⩽ αx+ βy.

The result follows by substituting |a| = xα, |b| = yβ, p = 1/α, q = 1/β.

Before stating Hölder’s inequality and Minkowski’s inequality, it is convenient
to introduce the following notation. Let p ⩾ 1. Given a random variable X on
(Ω,F ,P), we set

∥X∥p ≜
(
E[|X|p]

)1/p
,

and we say that X ∈ Lp if ∥X∥p is finite (i.e. X has finite p-th moment).
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Remark 2.7. The functional ∥·∥p defines a notion of length on the space of random
variables with finite p-th moments. For one who is familiar with the language of
functional analysis, this space becomes a Banach space when it is equipped with
the norm ∥ · ∥p and two random variables are identified whenever they are equal
a.s.

Theorem 2.7. (i) [Hölder’s inequality] Let 1 < p, q <∞ be such that 1/p+1/q =
1. Suppose that X ∈ Lp and Y ∈ Lq. Then XY ∈ L1 and one has

|E[XY ]| ⩽ E[|XY |] ⩽ ∥X∥p · ∥Y ∥q. (2.18)

(ii) [Minkowski’s inequality] Let 1 ⩽ p < ∞. Then for any X, Y ∈ Lp, one has
X + Y ∈ Lp and

∥X + Y ∥p ⩽ ∥X∥p + ∥Y ∥p.

Proof. (i) We only need to prove the second part of (2.18). Define U ≜ X
∥X∥p and

V ≜ Y
∥Y ∥q . By Young’s inequality (cf. Lemma 2.4 (ii)), one has

|UV | ⩽ Up

p
+
V q

q
.

The result follows by taking expectation on both sides and expressing U, V in
terms of X, Y.

(ii) The case when p = 1 is a simple consequence of the usual triangle inequality.
We therefore assume that p > 1. Firstly, note from Lemma 2.4 (i) that |X+Y |p ⩽
2p−1(|X|p + |Y |p), which implies X + Y ∈ Lp. Next, one has

E[|X + Y |p] = E[|X + Y | · |X + Y |p−1]

⩽ E[|X| · |X + Y |p−1] + E[|Y | · |X + Y |p−1]. (2.19)

By using Hölder’s inequality (with q ≜ p
p−1

so that 1/p+ 1/q = 1), one sees that

E[|X| · |X + Y |p−1]

⩽
(
E[|X|p]

)1/p · (E[|X + Y |(p−1)q]
)1/q

= ∥X∥p ·
(
E[|X + Y |p]

)1/q
(note that p = (p− 1)q),

and similarly for the second term on the right hand side of (2.19). By substituting
them into (2.19), one arrives at

E[|X + Y |p] ⩽
(
∥X∥p + ∥Y ∥p

)
·
(
E[|X + Y |p]

)1/q
.
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Now the result follows by dividing
(
E[|X+Y |p]

)1/q to the left hand side and using
the relation 1/p+ 1/q = 1.

Remark 2.8. In Hölder’s inequality, the case when p = q = 2 is of special impor-
tance and is known as the Cauchy-Schwarz inequality. The Minkowski inequality
is essentially a triangle inequality if one interprets ∥ · ∥p as a notion of length on
the space of random variables with finite p-th moment.

The power of these two inequalities (in particular of Hölder’s inequality) will
be seen in the study of martingales, diffusion processes, Gaussian analysis etc.
We give one simple application here.

Corollary 2.3. Suppose that 1 ⩽ p < q < ∞ and X ∈ Lq. Then X ∈ Lp and
∥X∥p ⩽ ∥X∥q.
Proof. Let r ≜ q/p > 1 and choose the corresponding exponent s > 1 so that
1/r + 1/s = 1. According to Hölder’s inequality, one has

E[|X|p] = E[|X|p · 1] ⩽
(
E[|X|pr]

)1/r · (E[1s])1/s = (
E[|X|q]

)p/q
.

The result follows from taking p-th root on both sides.

The last inequality we shall present is Jensen’s inequality. It is related to the
notion of convexity. Recall that a function φ : R → R is said to be convex, if

φ(αx+ βy) ⩽ αφ(x) + βφ(y)

for any x, y ∈ R and α, β ⩾ 0 with α + β = 1. A convex function on R is
necessarily continuous. In addition, given any x ∈ R the right derivative

φ′
+(x) ≜ lim

h↓0

φ(x+ h)− φ(x)

h

of φ at x exists finitely and it satisfies

φ′
+(x) · (y − x) ⩽ φ(y)− φ(x) ∀x, y ∈ R. (2.20)

Theorem 2.8. [Jensen’s inequality] Suppose that X is an integrable random vari-
able on (Ω,F ,P). Let φ : R → R be a convex function. Then E[φ(X)] exists
(which may not necessarily be finite) and

φ(E[X]) ⩽ E[φ(X)].

Proof. In (2.20), by taking x = E[X] and y = X one has

φ′
+(E[X]) · (X − E[X]) ⩽ φ(X)− φ(E[X]).

The result follows from taking expectation on both sides.
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2.5 The conditional expectation

Another essential technique in probability theory is conditioning. This is a very
natural concept as one often wants to know how a priori knowledge of partial
information affects the original distribution. Since different σ-algebras represent
different amounts of information, it is natural to consider conditional probabil-
ities / distributions given a σ-algebra. This leads one to the general notion of
conditional expectation.

2.5.1 The general idea

Let X be a given integrable random variable on some probability space (Ω,F ,P).
Let G ⊆ F be a sub-σ-algebra of F . Heuristically, G contains a subcollection of
information from F . We want to define the conditional expectation of X given G
(denoted as E[X|G]).

Let us first make two extreme observations. If G = {∅,Ω} (the trivial σ-
algebra), the information contained in G is trivial. In this case, the most effective
prediction of X given the information in G should merely be its mean value, i.e.
E[X|{∅,Ω}] = E[X]. Next, suppose that G = F (the total information). Since X
is F -measurable, heuristically the information in F allows one to determine the
value of X at each random experiment. As a result, the prediction of X given
F should just be the random variable X itself, i.e. E[X|F ] = X. For those
intermediate situations where G is a non-trivial proper sub-σ-algebra of F , it is
thus reasonable to expect that E[X|G] should be defined as a suitable random
variable.

To motivate its definition, we consider an elementary situation. Suppose that
A is a given event. The conditional probability of an arbitrary event B given A is
defined as

P(B|A) = P(B ∩ A)
P(A)

.

When viewed as a set function, P(·|A) is the conditional probability measure given
A. The integral of X with respect to this conditional probability measure gives
the average value of X given the occurrence of A:

E[X|A] =
∫
Ω

XdP(·|A) = E[X1A]

P(A)
. (2.21)

Now suppose that the given sub-σ-algebra G is generated by a partition of Ω, say

G = σ(A1, A2, · · · , An)
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where Ai ∩ Aj = ∅ and Ω = ∪n
i=1Ai. To define the random variable E[X|G], the

main idea is that on each event Ai the value of E[X|G] should simply be the
average value of X given that Ai occurs. Mathematically, one has

E[X|G](ω) =
n∑

i=1

ci1Ai
(ω),

where
ci ≜ E[X|Ai] =

E[X1Ai
]

P(Ai)
, i = 1, 2, · · · , n.

From this definition, it is clear that E[X|G] is a G-measurable random variable.
In addition, a key observation is that the integral of E[X|G] on each event Ai

coincides with the integral of X on the same event:∫
Ai

E[X|G]dP =

∫
Ai

n∑
j=1

cj1Aj
(ω)dP = ciP(Ai) = E[X1Ai

] =

∫
Ai

XdP.

The above integral property motivates the following general definition of the con-
ditional expectation.

Definition 2.9. Let X be an integrable random variable on (Ω,F ,P) and let
G ⊆ F be a sub-σ-algebra. The conditional expectation of X given G is an
integrable, G-measurable random variable Y such that∫

A

Y dP =

∫
A

XdP ∀A ∈ G. (2.22)

This random variable is denoted as E[X|G].

It is not clear at all whether the conditional expectation E[X|G] exists uniquely.
A standard measure-theoretic way of proving its existence and uniqueness is
through the so-called Radon-Nikodym theorem. Instead of elaborating this more
general method, we will give an alternative geometric construction of the condi-
tional expectation which appears to be more enlightening.

2.5.2 Geometric construction of the conditional expectation

Our construction relies on some basic notions from Hilbert space which we shall
first recall. The reader is referred to [Lan93] for a systematic introduction.
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In Euclidean geometry, elements in R2 or R3 are viewed as vectors. There
is a notion of inner product ⟨v, w⟩ between two vectors v, w which satisfies the
following basic properties:

(i) symmetry : ⟨v, w⟩ = ⟨w, v⟩;
(ii) bilinearity : ⟨cv1 + v2, w⟩ = c⟨v1, w⟩+ ⟨v2, w⟩ where c ∈ R is a scalar;
(iii) positive definiteness : ⟨v, v⟩ ⩾ 0 and equality holds iff v = 0.

The inner product can be used to measure all sorts of geometric properties e.g.
length (|v| =

√
⟨v, v⟩), angle (∠v,w = ⟨v,w⟩

|v|·|w|), orthogonality (v ⊥ w ⇐⇒ ⟨v, w⟩ =
0) etc. Given a vector v and a subspace E ⊆ R3, one can naturally talk about
the orthogonal projection of v onto E.

The concept of Hilbert space generalises the above considerations to an ab-
stract setting.

Definition 2.10. Let H be a vector space over R. An inner product over H is a
function ⟨·, ·⟩ : H×H → R which satisfies the above Properties (i)–(iii). A vector
space equipped with an inner product is called an inner product space.

Two elements v, w are said to be orthogonal (denoted as v ⊥ w) if ⟨v, w⟩ = 0.
By using the inner product, one can define the notion of length (more commonly
known as a norm) by

∥v∥ ≜
√

⟨v, v⟩, v ∈ H.

With this norm structure one can talk about convergence just like in Euclidean
spaces: we say that vn converges to v if ∥vn − v∥ → 0 as n → ∞. A sequence
{vn : n ⩾ 1} in H is said to be a Cauchy sequence in H if for any ε > 0, there
exists N ⩾ 1 such that

m,n > N =⇒ ∥vm − vn∥ < ε.

Definition 2.11. A Hilbert space is a complete inner product space, i.e. an inner
product space in which every Cauchy sequence converges.

Example 2.4. Rd is a Hilbert space when equipped with the Euclidean inner
product:

⟨x, y⟩ ≜ x1y1 + · · ·+ xdyd.

The following example is of our main interest.

Example 2.5. Let (Ω,F ,P) be a probability space. Let H ≜ L2(Ω,F ,P) be the
space of square integrable random variables. To be more precise, we shall identify

71



two random variables X, Y if X = Y a.s. As a result, H is indeed the space of
equivalence classes of square integrable random variables. Define an inner product
over H by

⟨X, Y ⟩L2 ≜ E[XY ], X, Y ∈ H.

Then (H, ⟨·, ·⟩L2) is a Hilbert space.

In finite dimensions there is no need to emphasise completeness as every finite
dimensional inner product space is complete. The completeness property is essen-
tial when one considers infinite dimensional spaces such as a space of functions. In
infinite dimensions it is also important to emphasise closedness when one comes
to the study of subspaces: a subspace E is closed if vn ∈ E, vn → v =⇒ v ∈ E.
This notion is again not needed in finite dimensions as every subspace is closed
in that case.

Example 2.6. Under the same notation as in Example 2.5, let G be a sub-σ-
algebra of F . Let E ≜ L2(Ω,G,P) denote the subspace of H consisting of square
integrable random variables that are G-measurable. More precisely, an equivalence
class [X] ∈ H belongs to E iff [X] admits a G-measurable representative. Then
E is a closed subspace of H.

A basic property of closed subspaces in Hilbert spaces that is relevant to us is
the existence of orthogonal projections. Given any subset E ⊆ H, we use E⊥ to
denote the collection of elements v ∈ H such that v ⊥ w for all w ∈ E.

Proposition 2.9. Let E be a closed subspace of a Hilbert space H. For any
v ∈ H, there exists a unique decomposition v = w + z where w ∈ E and z ∈ E⊥.
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The vector w is the unique element in E that has minimal distance to v:

∥v − w∥ = min
w′∈E

∥v − w′∥.

Definition 2.12. The element w in Proposition 2.9 is called the orthogonal pro-
jection of v onto the closed subspace E.

Having the above preparations, we can now give the geometric construction of
the conditional expectation.

Theorem 2.9. Let X be an integrable random variable on a probability space
(Ω,F ,P) and let G ⊆ F be a sub-σ-algebra. There exists an integrable, G-
measurable random variable Y , such that∫

A

XdP =

∫
A

Y dP ∀A ∈ G. (2.23)

Such Y is unique in the sense that if Y1, Y2 are two integrable, G-measurable
random variables satisfying (2.23), then Y1 = Y2 a.s.

Proof. Uniqueness follows from Remark 2.5. To prove existence, we first consider
the case when X is square integrable. Recall from Examples 2.5 and 2.6 that
E ≜ L2(Ω,G,P) is a closed subspace of the Hilbert space H ≜ L2(Ω,F ,P).
Let Y be the orthogonal projection of X onto H0 whose existence is ensured
by Proposition 2.9. According to the same proposition, one knows that

X − Y ⊥ Z ∀Z ∈ E.

Taking Z = 1A with A ∈ G, one finds that

⟨X − Y,1A⟩L2 = E
[
(X − Y )1A

]
= 0,

which is exactly the property (2.23).
We now consider the case when X is integrable. We first assume that X ⩾ 0.

For each n ⩾ 1, define Xn ≜ min{X,n}. Then Xn ∈ H and thus there exists
Yn ∈ H0 such that ∫

A

XndP =

∫
A

YndP ∀A ∈ G. (2.24)

Since Xn ⩾ 0, from the relation (2.24) one sees that∫
A

YndP ⩾ 0 ∀A ∈ G,
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which implies by Proposition 2.7 (ii) that Yn ⩾ 0 a.s. In addition, since Xn+1 ⩾
Xn, the same relation (2.24) yields that∫

A

Yn+1dP ⩾
∫
A

YndP ( ⇐⇒
∫
A

(Yn+1 − Yn)dP ⩾ 0) ∀A ∈ G.

As a result, Yn is increasing a.s. Set Y ≜ lim
n→∞

Yn. It is then clear that Y ⩾ 0

a.s. and Y is G-measurable. By using the monotone convergence theorem, after
sending n→ ∞ in (2.24) one obtains the desired relation (2.23). The integrability
of Y follows by taking A = Ω. Finally, for the general case, one considers X =
X+ −X− and use linearity.

2.5.3 Basic properties of the conditional expectation

By taking A = Ω in (2.22), it is clear that E[X] = E[E[X|G]]. This is known
as the law of total expectation. We list a few basic properties of the conditional
expectation that are useful later on.

Theorem 2.10. The conditional expectation satisfies the following properties. We
always assume that the underlying random variables are integrable.

(i) The map X 7→ E[X|G] is linear.
(ii) If X ⩽ Y, then E[X|G] ⩽ E[Y |G]. In particular,

|E[X|G]| ⩽ E[|X||G].

(iii) If Z is G-measurable, then

E[ZX|G] = ZE[X|G].

(iv) [The tower rule] If G1 ⊆ G2 are sub-σ-algebras of F , then

E[E[X|G2]|G1] = E[X|G1].

(v) If X and G are independent, then

E[X|G] = E[X].

(vi) [Jensen’s inequality] Let φ be a convex function on R. Then

φ(E[X|G]) ⩽ E[φ(X)|G]. (2.25)
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Proof. (i) Let X1, X2 be integrable random variables and c ∈ R. Define Yi ≜
E[Xi|G] (i = 1, 2). By using (2.23) and linearity of integration, one has∫

A

(cX1 +X2)dP =

∫
A

(cY1 + Y2)dP ∀A ∈ G.

Since cY1 + Y2 is G-measurable, it follows from Theorem 2.9 (which gives a char-
acterisation of the conditional expectation) that

cY1 + Y2 = E[cX1 +X2|G].

(ii) The result follows from the fact that∫
A

E[X|G]dP =

∫
A

XdP ⩽
∫
A

Y dP =

∫
A

E[Y |G]dP ∀A ∈ G.

(iii) Suppose that Z = 1G for some G ∈ G. Then for any A ∈ G, one has∫
A

ZXdP =

∫
A∩G

XdP =

∫
A∩G

E[X|G]dP =

∫
A

ZE[X|G]dP.

Since ZE[X|G] is G-measurable, one concludes by the characterising property
(2.23) that ZE[X|G] = E[ZX|G]. The general case follows by the standard argu-
ment (simple function approximation).

(iv) Since E[E[X|G2]|G1] is G1-measurable, one only needs to check the character-
ising property; indeed,∫

A

E[E[X|G2]|G1]dP =

∫
A

E[X|G2]dP =

∫
A

XdP ∀A ∈ G1,

where the last equality follows from the assumption that G1 ⊆ G2.

(v) Left as an exercise (consider simple function approximation).

(vi) The proof is similar to the unconditional case (cf. Theorem 2.8). Setting
x = E[X|G] and y = X in (2.20), one finds that

φ′
+(E[X|G])(X − E[X|G]) ⩽ φ(X)− φ(E[X|G]).

By taking conditional expectation on both sides and using Property (iii), it follows
that

E
[
φ(X)|G

]
− φ(E[X|G]) ⩾ φ′

+(E[X|G]) · E
[
(X − E[X|G])

∣∣G] = 0.

This proves Jensen’s inequality (2.25) for the conditional expectation.
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The intuition behind some of these properties is clear. For instance, for Prop-
erty (iii), given the information in G the value of Z is known. In other words,
conditional on G the random variable is frozen (treated as a constant) and can
thus be moved outside the conditional expectation. In Property (v), by indepen-
dence the knowledge of G provides no meaningful information for predicting X.
As a result, the most effective prediction of X is its unconditional mean.

One can easily write down parallel versions of monotone convergence, Fatou’s
lemma and dominated convergence for the conditional expectation. We will not
give the details here.
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3 Product measure spaces
In Chapter 1, one knows how to construct a random variable with given distri-
bution (construction of the Lebesgue-Stieltjes measure). The next question is:
how can one construct independent random variables with given marginal dis-
tributions? This is an important question since a substantial part of classical
probability theory is related to understanding the asymptotic behaviour of inde-
pendent sequences. The path from the construction of a single to independent
random variables is through the notion of product spaces.

In this chapter, we introduce the notion of product measure spaces and use
them to construct independent random variables. We begin by discussing the
product measurable structure in Section 3.1. This is a technical prerequisite for
proving Fubini’s theorem for bounded, measurable functions, the latter of which
easily yields the construction of the product measure and thus a canonical way
of constructing (finitely many) independent random variables. The general Fu-
bini’s theorem follows from the bounded case by a standard argument. These
results are discussed in Section 3.2. The case of countable products and indepen-
dent sequences is more delicate and requires deeper considerations (Kolmogorov’s
extension theorem). We deal with it in Section 3.3.

3.1 Product measurable structure

Our first goal is to define the “product” of two measure spaces as a new measure
space. Before working with measures, we first try to understand the underlying
measurable structure. Let (Ω1,F1) and (Ω2,F2) be given measurable spaces. To
form their product as a new measurable space, it is clear that the sample space
should just be the Cartesian product Ω1 × Ω2. However, for the σ-algebra one
cannot simply take the Cartesian product

F1 ×F2 ≜ {A1 × A2 : A1 ∈ F1, A2 ∈ F2},

due to the obvious reason that this is not a σ-algebra! Instead, one should consider
the σ-algebra generated by F1 ×F1. This leads to the following definition.

Definition 3.1. The product measurable space (Ω,F) of (Ω1,F1) and (Ω2,F2) is
defined by

Ω = Ω1 × Ω2, F = F1 ⊗F2 ≜ σ(F1 ×F2)

Next, we discuss a basic property of bounded, measurable functions on (Ω,F).
This is a necessary (technical) ingredient for proving Fubini’s theorem and the
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construction of product measures later on. For convenience, we use the notation
bF to denote the space of bounded, measurable functions on (Ω,F).

Lemma 3.1. Let f ∈ bF . Then the following statements hold true:

(i) for each fixed ω1 ∈ Ω1, the function ω2 7→ f(ω1, ω2) is bounded, F2-measurable;
(ii) for each fixed ω2 ∈ Ω2, the function ω1 7→ f(ω1, ω2) is bounded, F1-measurable.

Proof. We again use the standard argument, i.e. using Dynkin’s π-λ theorem
and approximating general measurable functions by simple ones. First of all, f
can be uniformly approximated by a sequence fn of simple functions (cf. Lemma
2.3 and Remark 2.2). Since measurability is preserved under pointwise limit (cf.
Proposition 2.1), it suffices to prove the desired properties when f = 1A (A ∈ F).

To this end, we define

H ≜ {A ∈ F : 1A satisfies properties (i) and (ii)}.

It is obvious that the Cartesian product F1 ×F2 is a π-system and F1 ×F2 ⊆ H.
Next, we check that H is a λ-system:

(L1) Ω ∈ H is obvious.
(L2) Suppose that A,B ∈ H with A ⊆ B. Then 1B\A = 1B − 1A. In particular,
the measurability properties (i), (ii) satisfied by 1A and 1B are inherited by 1B\A
due to linearity. Therefore, B\A ∈ H.
(L3) Suppose that An ∈ H, An ↑ A. Then 1An ↑ 1A for every (ω1, ω2) ∈ Ω. Since
the measurability properties (i), (ii) satisfied by 1An are preserved under pointwise
limit, one concludes that A ∈ H.

It follows from Dynkin’s π-λ theorem that λ(F1 ×F2) = F = H. In other words,
all members of F satisfy the desired properties.

Remark 3.1. If S is a topological space, one can define its Borel σ-algebra B(S)
to be the σ-algebra generated by all open subsets of S. Given topological spaces
S, T , it is apparent that

B(S)⊗ B(T ) ⊆ B(S × T ),

where B(S×T ) denotes the Borel σ-algebra with respect to the product topology.
However, it is a deep fact that B(S)⊗B(T ) may be strictly smaller than B(S×T )
in general (cf. Chapter 1, Appendix B, Theorem 1.8).
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3.2 Product measures and Fubini’s theorem

Suppose that µi is a finite measure on (Ωi,Fi) (i = 1, 2). Our goal is to construct
the “product measure” µ1 ⊗ µ2 on (Ω,F) = (Ω1 × Ω2,F1 ⊗F2). We will take the
route of first proving Fubini’s theorem (for bounded, measurable functions) and
then using it to construct µ1 ⊗ µ2.

3.2.1 Fubini’s theorem for the bounded case and construction of the
product measure

Let f ∈ bF be given fixed. Fubini’s theorem asserts that when performing the
double integral of f , the order of integration does not matter. We now make this
mathematically precise. First of all, according to Lemma 3.1, one knows that
f(ω1, ·) ∈ bF2 for each fixed ω1 ∈ Ω1. In particular, one can define the marginal
integral (as a function of ω1)

If1 : Ω1 → R, ω1 7→ If1 (ω1) ≜
∫
Ω2

f(ω1, ω2)µ2(dω2).

Similarly, one also defines

If2 : Ω2 → R, ω2 7→ If2 (ω2) ≜
∫
Ω1

f(ω1, ω2)µ1(dω1).

Proposition 3.1 (Fubini’s theorem for bounded, measurable functions). For each
f ∈ bΣ, one has If1 ∈ bF1, If2 ∈ bF2 and∫

Ω1

If1 (ω1)µ1(dω1) =

∫
Ω2

If2 (ω2)µ2(dω2).

Proof. The argument is almost identical to the proof of Lemma 3.1 (Dynkin’s π-λ
theorem and simple function approximation). We leave it as an exercise.

One can now use Proposition 3.1 to define the product measure. More pre-
cisely, for each given F ∈ F , with f = 1F one defines

µ(F ) ≜
∫
Ω1

If1 (ω1)µ1(dω1) =

∫
Ω2

If2 (ω2)µ2(dω2).

It is clear that µ ⩾ 0 and µ(∅) = 0. In addition, since 1F ⩽ 1 one has

µ(F ) ⩽
∫
Ω1

( ∫
Ω2

1 · µ2(dω2)
)
µ1(dω1) = µ1(Ω1)µ2(Ω2) <∞.
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Theorem 3.1. The set function µ is a well-defined, finite measure on the product
measurable space (Ω,F). It is the unique measure on (Ω,F) such that

µ(A1 × A2) = µ1(A1) · µ2(A2) ∀Ai ∈ Fi (i = 1, 2). (3.1)

Proof. For the first part, it remains to verify countable additivity. Let Fn be a
disjoint sequence in F . Define

F ≜
∞⋃
n=1

Fn, Gn ≜
n⋃

k=1

Fk.

Since 1Gn = 1F1 + · · ·+ 1Fn , by the linearity of integration one has

µ(Gn) =

∫
Ω1

I
1Gn
1 (ω1)µ1(dω1) =

n∑
k=1

∫
Ω1

I
1Fk
1 (ω1)µ1(dω1) =

n∑
k=1

µ(Fk). (3.2)

In addition, since 1Gn ↑ 1F , by applying monotone convergence (twice!) one
obtains that

µ(F ) =

∫
Ω1

I1F
1 (ω1)µ1(dω1) = lim

n→∞

∫
Ω1

I
1Gn
1 (ω1)µ1(dω1) = lim

n→∞
µ(Gn).

By taking n→ ∞ in (3.2), it follows that

µ(F ) =
∞∑
k=1

µ(Fk)

which gives the countable additivity.
For the second part of the theorem, the relation (3.1) is obvious:

µ(A1 × A2) =

∫
Ω1

( ∫
Ω2

1A1×A2(ω1, ω2)µ2(dω2)
)
µ1(dω1)

=

∫
Ω1

1A1(ω1)
( ∫

Ω2

1A2(ω2)µ2(dω2)
)
µ1(dω1) = µ1(A1)µ2(A2).

Uniqueness of µ is a direct consequence of Proposition 1.4 (note that F1 × F2 is
a π-system and Ω ∈ F1 ×F2).

Definition 3.2. The measure µ, also denoted as µ1 ⊗ µ2, is called the product
measure of µ1 and µ2 on (Ω,F). The measure space (Ω,F , µ) is called the product
measure space of (Ω1,F1, µ1) and (Ω2,F2, µ2). One often writes

(Ω,F , µ) = (Ω1,F1, µ1)⊗ (Ω2,F2, µ2).
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3.2.2 Fubini’s theorem for the general case

Once the product measure µ is constructed, extension of Fubini’s theorem from the
bounded to general case is routine. Recall that (Ω,F , µ) is the product measure
space constructed before.

Theorem 3.2 (Fubini’s theorem for general measurable functions). Suppose that
f is a non-negative, measurable function on (Ω,F). Then one has∫

Ω

fdµ =

∫
Ω1

If1 (ω1)µ1(dω1) =

∫
Ω2

If2 (ω2)µ2(dω2) ∈ [0,+∞]. (3.3)

If f is a general measurable function which is integrable with respect to µ, then
(3.3) remains valid with value in R.

Proof. For the first part, take a sequence of non-negative, simple functions 0 ⩽
fn ↑ f . The relation (3.3) holds for each fn as a consequence of Proposition
3.1. The claim follows from the monotone convergence theorem. For the second
part, write f = f+− f−. The relation (3.3) is valid for f± with values in R (since∫
Ω
f±dµ <∞ by assumption). The claim follows from linearity of integration.

Example 3.1. Consider the following bivariate function defined on [0, 1]× [0, 1]:

f(x, y) =

{
x2−y2

(x2+y2)2
, x2 + y2 ̸= 0;

0, x = y = 0.

By explicit integration, one finds that∫ 1

0

( ∫ 1

0

f(x, y)dy
)
dx =

π

4
,

∫ 1

0

( ∫ 1

0

f(x, y)dx
)
dy = −π

4
.

In particular, Fubini’s theorem fails for this example. The issue here is that f is
not integrable with respect to the Lebesgue measure on [0, 1]× [0, 1]. Indeed, one
has

f+(x, y) =

{
x2−y2

(x2+y2)2
, 0 ⩽ y < x ⩽ 1;

0, otherwise.

Direct calculation shows that∫ 1

0

f+(x, y)dy =
1

x

∫ 1

0

1− t2

(1 + t2)2
dt.
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Since 1/x is not integrable on [0, 1], one has∫ 1

0

( ∫ 1

0

f+(x, y)dy
)
dx = ∞.

Similarly, one also has ∫ 1

0

( ∫ 1

0

f−(x, y)dy
)
dx = ∞.

As a result, the two-dimensional integral of f over [0, 1]× [0, 1] does not exist.

Remark 3.2. The construction of product measures and Fubini’s theorem extend
naturally to the σ-finite case. Suppose that µi is a σ-finite measure on (Ωi,Fi)

(i = 1, 2). By definition, there is a partition {A(i)
n } ⊆ Fi of Ωi such that µi(A

(i)
n ) <

∞ for all n (i = 1, 2). Define

µ(F ) ≜
∞∑

m,n=1

µ
(
F ∩ (A(1)

m × A(2)
n )

)
, F ∈ F1 ⊗F2.

Note that µ(· ∩ (A
(1)
m ×A

(2)
n )) is just the product of the finite measures µ1

∣∣
A

(1)
m

and
µ2

∣∣
A

(2)
n

. The σ-finite measure µ is the product measure of µ1 and µ2. Theorem 3.2
remains valid in this case.

Example 3.2. The σ-finite assumption in Remark 3.2 cannot be removed. In-
deed, consider Ω1 = Ω2 = [0, 1], F1 = F2 = B([0, 1]) (the σ-algebra generated by
{[a, b] : a ⩽ b ∈ [0, 1]}). Let µ1 be the Lebesgue measure on [0, 1] and let µ2 be
the counting measure, i.e.

µ2(A) ≜

{
# of elements in A, if A ∈ B([0, 1])is a finite set;
∞, otherwise.

Define f ≜ 1F with F = {(x, y) ∈ [0, 1]2 : x = y} (why does F ∈ B([0, 1]) ⊗
B([0, 1])?) Then one has

If1 (·) ≡ 1, If2 (·) ≡ 0.

In particular, ∫
Ω1

If1 (ω1)µ1(dω1) ̸=
∫
Ω2

If2 (ω2)µ2(dω2).
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Example 3.3 (The Dirichlet integral). We use Fubini’s theorem to derive an
important identity in analysis:∫ ∞

0

sinx

x
dx ≜ lim

t→∞

∫ t

0

sinx

x
dx =

π

2
.

This identity will be used in Section 6.2 for proving the inversion formula for the
characteristic function. below The key observation is that

1

x
=

∫ ∞

0

e−uxdu ∀x > 0.

By using this formula, one can write∫ t

0

sinx

x
dx =

∫ t

0

sinx
( ∫ ∞

0

e−uxdu
)
dx.

According to Fubini’s theorem, the last expression is equal to
∫∞
0

( ∫ t

0
e−ux sinxdx

)
du.

The calculation of the inner integral is straight forward. Indeed, using integration
by parts twice one has∫ t

0

e−ux sinxdx =
(
− e−ux cosx

)t
0
−
∫ t

0

ue−ux cosxdx

= −e−ut cos t+ 1−
(
ue−ux sinx

∣∣t
0
+

∫ t

0

u2e−ux sinxdx
)

= 1− e−ut cos t− ue−ut sin t− u2
∫ t

0

e−ux sinxdx.

By rearrangement, one finds that∫ t

0

e−ux sinxdx =
1

1 + u2
(
1− e−ut cos t− ue−ut sin t

)
.

It follows that∫ t

0

sinx

x
dx =

∫ ∞

0

1

1 + u2
(
1− e−ut cos t− ue−ut sin t

)
du.

Letting t→ ∞ and applying dominated convergence, one arrives at∫ ∞

0

sinx

x
dx =

∫ ∞

0

1

1 + u2
du =

π

2
.

We let the reader justify the uses of Fubini’s theorem and dominated convergence
here.
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Example 3.4 (Volume of unit n-ball). Let ωn(r) denote the volume of a ball in
Rn with radius r. We simply write ωn ≜ ωn(1). It is clear that

ωn(r) = rnωn. (3.4)

We are going to use Fubini’s theorem to compute ωn. Let

A ≜ {(x1, · · · , xn) : x21 + · · ·+ x2n ⩽ 1}

denote the unit ball in Rn. Then

ωn =

∫
A

dx1 · · · dxn.

The trick is to divide the variables (x1, · · · , xn) into two parts (x1, x2), (x3, · · · , xn)
and integrate out the latter part first (Fubini’s theorem). One gets that

ωn =

∫
{x2

1+x2
2⩽1}

dx1dx2

∫
{x2

3+···+x2
n⩽1−x2

1−x2
2}
dx3 · · · dxn

=

∫
{x2

1+x2
2⩽1}

√
1− x21 − x22

n−2

dx1dx2 × ωn−2, (3.5)

where the last equality follows from the scaling property (3.4) applied to dimension
n − 2 with r =

√
1− x21 − x22. The integral in (3.5) can be easily evaluated by a

change of variables into polar coordinates. This gives the recursive relation

ωn =
2π

n
ωn−2. (3.6)

By taking ω0 ≜ 1 and noting that ω1 = 2, one can solve the relation (3.6) to
conclude that

ω2n−1 =
2(2π)n−1

1 · 3 · 5 · · · (2n− 1)
, ω2n =

(2π)n

2 · 4 · · · (2n)
, n ⩾ 1. (3.7)

What if one first integrates over the (x2, · · · , xn) part? This gives the relation

ωn =

∫ 1

−1

dx1

∫
{x2

2+···+x2
n⩽1−x2

1}
dx2 · · · dxn

=

∫ 1

−1

√
1− x21

n−1

dx1 × ωn−1

= 2

∫ π/2

0

(cos t)ndt× ωn−1. (3.8)
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Let us denote In ≜
∫ π/2

0
(cos t)ndt. By substituting the formulae (3.7) into (3.8),

one easily finds that

I2n =
π

2
× 1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
, I2n+1 =

2 · 4 · 6 · · · (2n)
1 · 3 · 5 · · · (2n+ 1)

, n ⩾ 1

and of course I0 = π/2, I1 = 1. Explicit calculation shows that the relation
I2n−1 > I2n > I2n+1 (In is obviously decreasing in n) is equivalent to the relation
that

π

2
· 2n

2n+ 1
<

2

1
· 2
3
· 4
3
· 4
5
· 6
5
· · · 2n

2n− 1
· 2n

2n+ 1
<
π

2
.

After taking n→ ∞, one arrives at the so-called Wallis formula for π:

π = 2×
(2
1
· 2
3

)
·
(4
3
· 4
5

)
·
(6
5
· 6
7

)
· · · .

The following formula is a useful application of Fubini’s theorem. It provides
a way of computing expectation through integrating tail probabilities.

Proposition 3.2. Let X be a non-negative random variable defined on a given
probability space (Ω,F ,P). Define µ to be the product measure of P and the
Lebesgue measure on F ⊗ B([0,∞)). Let

F ≜ {(ω, x) : 0 ⩽ x < X(ω)}.

Then
µ(F ) = E[X] =

∫ ∞

0

P(X > x)dx. (3.9)

Proof. The measurability of F follows from the fact that

F =
⋃

r∈Q∩[0,∞)

(
{ω : X(ω) > r} × [0, r)

)
.

The relation (3.9) is obtained by taking f = 1F in (3.3).

Remark 3.3. This formula also indicates that E[X] is the “µ-area under the graph
of X”.

Another useful application of Fubini’s theorem is the integration by parts
formula for distribution functions.
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Proposition 3.3. Let F,G be two distribution functions on R and let µF , µG be
the associated Lebesgue-Stieltjes measures respectively. For any a < b, one has∫

(a,b]

F (x)µG(dx) = F (b)G(b)− F (a)G(a)−
∫
(a,b]

G(x−)µF (dx), (3.10)

where G(x−) ≜ lim
y↑x
G(y).

Proof. One first writes∫
(a,b]

F (x)µG(dx) =

∫
(a,b]

(
F (x)− F (a) + F (a)

)
µG(dx)

= F (a)
(
G(b)−G(a)

)
+

∫
(a,b]

( ∫
(a,x]

µF (dy)
)
µG(dx). (3.11)

By using Fubini’s theorem, one has∫
(a,b]

( ∫
(a,x]

µF (dy)
)
µG(dx)

=

∫
{(x,y):a<y⩽x⩽b}

µG ⊗ µF (dx⊗ dy) =

∫
(a,b]

( ∫
[y,b]

µG(dx)
)
µF (dy)

=

∫
(a,b]

(
G(b)−G(y−)

)
µF (dy) = G(b)

(
F (b)− F (a)

)
−
∫
(a,b]

G(y−)µF (dy).

The result follows by substituting the last expression into (3.11).

The extension from two-fold to n-fold products is straight forward. As an
immediate application, one obtains another (equivalent) way of defining the n-
dimensional Lebesgue measure on

B(Rn) = B(R)⊗ · · · ⊗ B(R)︸ ︷︷ ︸
n

as the n-fold product of the Lebesgue measure on B(R).

3.2.3 Construction of pairs of independent random variables

With the notion of product measure spaces, we can now give the mathematical
construction of (pairs of) independent random variables. We first recall some
basic definitions.

86



Definition 3.3. Let X, Y be two random variables on (Ω,F ,P). Their joint
distribution function is the function FX,Y : R2 → R defined by

FX,Y (x, y) ≜ P(X ⩽ x, Y ⩽ y), (x, y) ∈ R2.

Their joint law is the probability measure on B(R2) defined by

µX,Y (F ) ≜ P((X, Y ) ∈ F ), F ∈ B(R2).

We say that X, Y are independent, if

FX,Y (x, y) = FX(x)FY (y)

for all (x, y) ∈ R2.

The following equivalent characterisations of independence are particularly
useful.

Proposition 3.4. Let X, Y be random variables on some probability space (Ω,F ,P).
The following three statements are equivalent.

(i) X, Y are independent.
(ii) For any A,B ∈ B(R), one has

P(X ∈ A, Y ∈ B) = P(X ∈ A) · P(Y ∈ B). (3.12)

(iii) For any bounded, Borel measurable functions f, g : R → R, one has

E[f(X)g(Y )] = E[f(X)]E[g(Y )]. (3.13)

Proof. (i) =⇒ (ii). We first consider the case when B = (−∞, y] is given fixed
while A is arbitrary. Recall that

C ≜ {(−∞, x] : x ∈ R}

s a π-system over R. Define H to be the collection of A ∈ B(R) that satisfies

P(X ∈ A, Y ⩽ y) = P(X ∈ A) · P(Y ⩽ y). (3.14)

It is immediate from the definition of independence that C ⊆ H. Next, we check
that H is a λ-system. It is clear that R ∈ H. In addition, let A,B ∈ H with
A ⊆ B. Then one has

P(X ∈ A, Y ⩽ y) = P(X ∈ A) · P(Y ⩽ y)

P(X ∈ B, Y ⩽ y) = P(X ∈ B) · P(Y ⩽ y).
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It follows that

P(X ∈ B\A, Y ⩽ y) = P(X ∈ B, Y ⩽ y)− P(X ∈ A, Y ⩽ y)

= P(X ∈ B) · P(Y ⩽ y)− P(X ∈ A) · P(Y ⩽ y)

= P(X ∈ B\A) · P(Y ⩽ y).

Therefore, B\A ∈ H. The third property for being a λ-system is also easy to
check. According to Dynkin’s π-λ theorem, one concludes that B(R) = σ(C) ⊆ H.
In other words, all members of B(R) satisfy the property (3.14).

To prove the full relation (3.12), we now fix A ∈ B(R) and define E to be
the collection of B ∈ B(R) such that (3.12) holds. The same argument as before
shows that E = B(R), i.e. all members of B(R) satisfy (3.12).

(ii) =⇒ (iii). By the linearity of expectation, the property (3.12) implies
that (3.13) is true whenever f, g are simple functions. To prove the claim for
general bounded, B(R)-measurable functions, recall that such functions can be
approximated uniformly by simple functions (cf. Lemma 2.3 and Remark 2.2).
The result then follows from dominated convergence.

(iii) =⇒ (i). Take f = 1(−∞,x] and g = 1(−∞,y].

Note that the relation (3.14) means that µX,Y = µX ⊗µY (i.e. joint law equals
the product of marginal laws). This fact motivates the following canonical way of
constructing independent random variables.

Suppose that F,G are given distribution functions on R. From Chapter 1, one
knows how to construct random variables with distribution functions F and G
respectively. To ensure the additional independence property, let us consider the
product space

Ω = R2, F = B(R2), P ≜ µF ⊗ µG,

where µF , µG are the Lebesgue-Stieltjes measures induced by F,G respectively.
Define two random variables X, Y on (Ω,F ,P) simply by taking coordinate pro-
jections:

X(x, y) ≜ x, Y (x, y) = y.

It is clear that the law of X (respectively, of Y ) under P is µF (respectively, µG);
indeed,

P(X ∈ A) = (µF ⊗ µG)(A× R) = µF (A)µG(R) = µF (A) ∀A ∈ B(R).
In addition, denoting their joint distribution function as FX,Y one has

FX,Y (x, y) = P(X ⩽ x, Y ⩽ y) = (µF ⊗ µG)((−∞, x]× (−∞, y]) = F (x)G(y).

As a result, X and Y are independent. The construction apparently extends to
the case of finitely many random variables.
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3.3 Countable product spaces and Kolmogorov’s extension
theorem

In order to construct sequences of independent random variables, one needs to
extend the notion of finite product measures to the countable case. Such an
extension requires extra effort, as Fubini’s theorem does not work in the first
place (one cannot perform iterated integrals for infinitely many times). The main
idea is to use Carathéodory’s extension theorem.

We begin with the construction of probability measures on R∞ (Kolmogorov’s
extension theorem), which yields a canonical construction of random sequences
with given finite dimensional distributions. Then we discuss the special case of
countable product measures (sequences of independent random variables). For
simplicity without losing the essential picture, we restrict ourselves to the count-
able product of (R,B(R)) instead of general measurable spaces. We give some
comments on possible generalisations at the end of this section.

3.3.1 The measurable space (R∞,B(R∞))

To fix notation, we set R∞ ≜
∏∞

n=1R (countably many copies of R). Elements in
R∞ are of the form

x = (x1, x2, x3, · · · ), xi ∈ R.
For each n ⩾ 1, one can view R∞ = Rn × R>n where Rn represents the first
n-components (x1, · · · , xn) and R>n represents the remainder (xn+1, xn+2, · · · ).
To define the product σ-algebra, we first introduce the algebra A of cylindrical
subsets defined by

A ≜
∞⋃
n=1

Fn, (3.15)

where

Fn ≜ {Gn × R>n : Gn ∈ B(Rn)}, n ⩾ 1.

Note that elements in A are of the form Γ = Gn × R>n for some n ⩾ 1 and
Gn ∈ B(Rn). This cylindrical representation may not be unique, e.g. G1 ×R>1 =
(G1 × R)× R>2.

Lemma 3.2. A is an algebra over R∞.

Proof. Obviously, R∞ ∈ A. Next, suppose that Γ ∈ A, say Γ = Gn × R>n. Then
Γc = Gc

n × R>n ∈ A. Finally, let Γ,Λ ∈ A with representations

Γ = Gm × R>m, Λ = Gn × R>n
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and assume without loss of generality that m ⩾ n. Then

Γ ∩ Λ =
(
Gm ∩ (Gn × R× · · · × R︸ ︷︷ ︸

m−n

)
)
× R>m ∈ A.

Definition 3.4. The product σ-algebra over R∞ is defined by B(R∞) ≜ σ(A).

Remark 3.4. The σ-algebra B(R∞) is the smallest σ-algebra F such that the
projection

πn : R∞ → R, (x1, x2, · · · , xn, · · · ) 7→ xn

is F -measurable for all n (why?).

3.3.2 Kolmogorov’s extension theorem

Let (Ω,F ,P) be a given probability space. Let X = {Xn : n ⩾ 1} be a sequence
of random variables defined on it. One can equivalently view X as a “random
variable” taking values in R∞ by

X : (Ω,F) → (R∞,B(R∞)), X(ω) = (X1(ω), X2(ω), · · · ).

Note that X is a measurable map.

Definition 3.5. The law of X is the probability measure on (R∞,B(R∞)) defined
by

µX(Γ) ≜ P(X ∈ Γ), Γ ∈ B(R∞).

For each n ⩾ 1, the joint law of the first n components (X1, · · · , Xn) is the
probability measure on (Rn,B(Rn)) defined by

ν
(n)
X (Gn) ≜ P

(
(X1, · · · , Xn) ∈ Gn

)
= µX(Gn × R>n), Gn ∈ B(Rn). (3.16)

The family {ν(n)X : n ⩾ 1} satisfies the following obvious consistency relation:

ν
(n+m)
X (Gn × Rm) = ν

(n)
X (Gn) (3.17)

for all m,n ⩾ 1 and Gn ∈ B(Rn). The law of X is uniquely determined by this
family of finite dimensional laws; indeed, according to Proposition 1.4 there is at
most one probability measure µX on (R∞,B(R∞)) such that (3.16) holds for all
n and all Gn ∈ B(Rn).
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Here comes a key question. Suppose that {ν(n) : n ⩾ 1} is a given sequence of
probability measures which satisfy the consistency relation (3.17). How can one
construct a sequence X = {Xn : n ⩾ 1} of random variables on some probability
space (Ω,F ,P) such that the joint law of (X1, · · · , Xn) is ν(n) for all n? The
answer is essentially contained in the following so-called Kolmogorov’s extension
theorem (in the countable case).

Theorem 3.3. For each n ⩾ 1, let ν(n) be a given probability measure on (Rn,B(Rn)).
Suppose that they satisfy the consistency relation (3.17). Then there exists a
unique probability measure µ on (R∞,B(R∞)), such that

µ(Gn × R>n) = ν(n)(Gn) ∀n ⩾ 1, Gn ∈ B(Rn).

To see how Theorem 3.3 addresses the above question, one simply takes

(Ω,F ,P) = (R∞,B(R∞), µ)

where µ is the probability measure given by the theorem, and define

Xn : Ω → R, ω = (x1, x2, · · · , xn, · · · ) 7→ Xn(ω) ≜ xn

to be the canonical projection (equivalently, X : Ω → R∞ is the identity map).
It is clear from the construction as well as the theorem that the joint law of
(X1, · · · , Xn) is ν(n) for all n (equivalently, the law of X is µ).

Example 3.5. For a Markov chain {Xn}, the one-step transition probabilities
together with the initial distribution determine the joint law ν(n) of (X1, · · · , Xn)
for each n. These probability measures {ν(n)} satisfy the consistency condition
(3.17). Therefore, the above discussion provides a mathematical construction of
Markov chains with given transition matrix and initial distribution.

The rest of this section is devoted to the proof of Theorem 3.3. The uniqueness
part has already been discussed. We now prove existence.

In the first place, the family {ν(n)} induces an obvious “probability measure”
on the algebra A (cf. (3.15)) defined by

µ̂(Γ) ≜ ν(n)(Gn), Γ = Gn × R>n.

Note that µ̂ is well-defined (i.e. independent of representations of Γ) as a result of
the consistency relation (3.17). We shall use Carathéodory’s extension theorem
to obtain a probability measure µ on B(R∞) as an extension of µ̂. To this end,
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since µ̂ is finitely additive on A (why?), the key ingredient is proving its countably
additivity. We do so by using the criterion given by Proposition 1.3 (iv), i.e. we
want to show that

Γn ∈ A, Γn ↓ ∅ =⇒ lim
n→∞

µ̂(Γn) = 0. (3.18)

We prove (3.18) by contradiction. Let Γn ∈ A be such that Γn ↓ ∅. Suppose
on the contrary that

lim
n→∞

µ̂(Γn) = ε > 0. (3.19)

Our eventual goal is to produce an element x∗ ∈ ∩nΓn which then leads to a
contradiction. The argument for this purpose contains the following steps.

(i) One may assume without loss of generality that Γn = Gn × R>n where Gn ∈
B(Rn). Indeed, since Γn ∈ A there exists mn ⩾ 1 such that Γn = Gmn × R>mn .
By adding sufficiently R’s following Gmn if necessary, one may assume that

1 ⩽ m1 < m2 < m3 < · · · ↑ ∞.

In this case, one defines

Γ̂1 ≜ R× R>1, Γ̂2 ≜ R2 × R>2, · · · , Γ̂m1−1 ≜ Rm1−1 × R>m1−1,

Γ̂m1 ≜ Γ1 = Gm1 × R>m1 ,

Γ̂m1+1 ≜ (Gm1 × R)× R>m1+1, · · · , Γ̂m2−1 ≜ (Gm1 × Rm2−m1−1)× R>m2−1,

Γ̂m2 ≜ Γ2 = Gm2 × R>m2 , · · · .

It is clear from the definition that Γ̂n has the form Ĝn×R>n for all n. In addition,
since the Γ̂n’s are obtained from the Γn’s by trivially inserting R’s, one also has
Γ̂n+1 ⊆ Γ̂n and

∞⋂
n=1

Γ̂n =
∞⋂
n=1

Γn = ∅.

We rename Γ̂n as Γn to ease notation.

(ii) Here comes an essential point where topological properties of Rn become rele-
vant. We quote the following deep result about probability measures on complete,
separable metric spaces (in particular, on Rn). Its proof can be found in [Fol99].

Proposition 3.5. Let ν be a probability measure on (Rn,B(Rn)). For any G ∈
B(Rn) and δ > 0, there exists a compact subset K of G, such that ν(G\K) < δ.
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By the assumption (3.19), one has

ν(n)(Gn) = µ̂(Γn) ⩾ ε ∀n.

According to Proposition 3.5, there exists a compact subset Kn ⊆ Gn (also setting
Λn ≜ Kn × R>n), such that

µ̂(Γn\Λn) = ν(n)(Gn\Kn) <
ε

2n+1
.

Let us set

K̃n ≜ (K1 × Rn−1) ∩ (K2 × Rn−2) ∩ · · · ∩ (Kn−1 × R) ∩Kn

and Λ̃n ≜ K̃n × R>n. Since Λ̃n = Λ1 ∩ · · · ∩ Λn, it follows that

ν(n)(K̃n) = µ̂(Λ̃n) = µ̂(Γn)− µ̂(Γn\Λ̃n) = µ̂(Γn)− µ̂
( n⋃
k=1

Γn\Λk

)
⩾ µ̂(Γn)−

n∑
k=1

µ̂(Γn\Λk)

⩾ µ̂(Γn)−
n∑

k=1

µ̂(Γk\Λk) (since Γn ⊆ Γk)

> ε−
n∑

k=1

ε

2k+1
> ε−

∞∑
k=1

ε

2k+1
=
ε

2
> 0.

In particular, K̃n ̸= ∅ for all n.

(iii) According to Step (ii), one can choose a point (x(n)1 , · · · , x(n)n ) ∈ K̃n for each n.
By the definition of K̃n, the sequence x(n)1 is contained in K1. Since K1 is compact,
there exists a subsequence xm1(n)

1 which converges to some point x1 ∈ K1. Next,
consider the sequence (x

m1(n)
1 , x

m1(n)
2 ) ∈ K2. Again by compactness, it contains a

further subsequence

(x
m2(n)
1 , x

m2(n)
2 ) → some (x′1, x2) ∈ K2.

Indeed x′1 = x1 since xm2(n)
1 is a subsequence of xm1(n)

1 . Arguing inductively, at the
n-th step one finds a point (x1, · · · , xn) ∈ Kn ((x1, · · · , xn−1) coincides with the
point coming from the (n− 1)-th step). Finally, one defines x∗ ≜ (x1, x2, x3, · · · ).
Since (x1, · · · , xn) ∈ Kn for all n, it follows that

x∗ ∈
∞⋂
n=1

Λn ⊆
∞⋂
n=1

Γn.
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This contradicts the assumption that ∩nΓn = ∅. As a consequence, µ̂ is continuous
at ∅. According to Proposition 1.3 (iv), µ̂ is countably additive on A. The existence
part of Theorem 3.3 now follows from Carathéodory’s extension theorem.

3.3.3 Construction of independent sequences

Suppose that {νn : n ⩾ 1} is a sequence of probability measures on (R,B(R)).
Define the product measure ν(n) ≜ ν1 ⊗ · · · ⊗ νn on (Rn,B(Rn)) for each n. Then
{ν(n)} satisfy the consistency relation (3.17). According to Theorem 3.3, there
exists a unique probability measure µ on (R∞,B(R∞)) such that

µ(B1 × · · · ×Bn × Rn) = ν1(B1) · · · νn(Bn) ∀n ⩾ 1, B1, · · · , Bn ∈ B(R).

Definition 3.6. The probability space (R∞,B(R∞), µ) is called the infinite prod-
uct space of (R,B(R), νn) (n ⩾ 1).

To construct an independent sequence with marginal laws {νn}, one takes

(Ω,F ,P) = (R∞,B(R∞), µ)

and define
Xn(ω) ≜ xn, ω = (x1, x2, x3, · · · ) ∈ Ω

as before. It is readily checked that the sequence of random variables {Xn :

n ⩾ 1} are independent with Xn
law
= νn for all n. This mathematically justifies

the existence of independent sequences with given marginal laws (e.g. an i.i.d.
sequence of Bernoulli random variables).

Remark 3.5. We have not yet define the independence in general. This will done
in Section 5.1.1 below; for now a random sequence {Xn} is independent means
that X1, · · · , Xn are independent for each n.

3.3.4 Some generalisations

In the first place, Kolmogorov’s extension theorem has a natural generalisation to
the case of uncountable products (the argument is essentially the same the one
given above). Such a generalisation is particularly useful in the study of stochastic
processes (e.g. construction of Brownian motion).

Secondly, there is a version of infinite products of general measurable spaces
instead of just (R,B(R)). The construction of probability measures on such prod-
uct spaces requires the notion of transition probability kernels. The argument is
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measure-theoretic and does not require topological considerations. However, the
general existence of such kernels relies on topological properties of the underlying
measurable spaces (typically, one requires them to be complete, separable met-
ric spaces). In any case, some sort of “compactness” property is needed for the
extension theorem to hold.

There is one exceptional situation where the construction is entirely measure-
theoretic and no topological assumptions are needed: the infinite product of prob-
ability spaces (Ωn,Fn,Pn) (n ⩾ 1). Similar to the case of (R,B(R), νn), let us set

Ω ≜
∞∏
k=1

Ωk, F ≜ σ(A),

where A is the algebra of cylindrical subsets defined in a similar way by

A ≜
{
Γn = Gn ×

∏
k>n

Ωk : n ⩾ 1, Gn ∈ F1 ⊗ · · · ⊗ Fn

}
.

Theorem 3.4. There exists a unique probability measure P on (Ω,F), such that

P
(
A1 × · · · × An ×

∏
k>n

Ωk

)
= P1(A1) · · ·Pn(An)

for all n ⩾ 1 and Ai ∈ Fi (1 ⩽ i ⩽ n).

Proof. The argument is parallel to the proof of Theorem 3.3 with one exceptional
difference (replacing the compactness argument by a measure-theoretic one). As
before, we first define a set function P̂ : A → [0, 1] by

P̂(Gn ×
∏
k>n

Ωk) ≜ (P1 ⊗ · · · ⊗ Pn)(Gn).

Note that P̂ is well-defined and finitely additive on A. Following the proof of
Theorem 3.3, the core step is to show that

Γn ∈ A, Γn ↓ ∅ =⇒ lim
n→∞

P̂(Γn) = 0,

where one assumes without loss of generality that Γn has the form Γn = Gn ×∏
k>nΩk. Suppose on the contrary that

P̂(Γn) ⩾ ε > 0 ∀n.
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We want to find a point ω∗ ∈ ∩nΓn, which then leads to a contradiction.
For n ⩾ 2, define the function ϕ1,n : Ω1 → R by

ϕ1,n(ω1) ≜
∫
Ω2×···×Ωn

1Gn(ω1, ω2, · · · , ωn)P2(dω2) · · ·Pn(dωn).

One can easily check that

0 ⩽ ϕ1,n+1(ω1) ⩽ ϕ1,n(ω1) ⩽ 1 ∀n ⩾ 1, ω1 ∈ Ω1.

Set ϕ1 ≜ lim
n→∞

ϕ1,n. By the dominated convergence theorem, one has∫
Ω1

ϕ1dP1 = lim
n→∞

∫
Ω1

( ∫
Ω2×···×Ωn

1Gn(ω1, ω2, · · · , ωn)P2(dω2) · · ·Pn(dωn)
)
P1(dω1)

= lim
n→∞

(P1 ⊗ · · · ⊗ Pn)(Gn) = lim
n→∞

P̂(Γn) ⩾ ε > 0. (3.20)

As a result, there exists ω∗
1 ∈ Ω1, such that ϕ1(ω

∗
1) > 0. We claim that ω∗

1 ∈ G1.
Indeed, if ω∗

1 /∈ G1, then (ω∗
1, ω2, · · · , ωn) /∈ Gn for all n ⩾ 2 and ωi ∈ Ωi (since

Gn ⊆ G1 ×
∏n

k=2Ωk by assumption), which implies that ϕ1,n(ω
∗
1) = 0 for all n,

contradicting the property (3.20).
Next, for n ⩾ 3 one defines ϕ2,n : Ω2 → R by

ϕ2,n(ω2) ≜
∫
Ω3×···×Ωn

1Gn(ω
∗
1, ω2, · · · , ωn)P3(dω3) · · ·Pn(dωn).

For the same reason as before, with ϕ2 ≜ lim
n→∞

ϕ2,n one has∫
Ω2

ϕ2dP2 = lim
n→∞

∫
Ω2×···×Ωn

1Gn(ω
∗
1, ω2, · · · , ωn)P2(dω2) · · ·Pn(dωn) = ϕ1(ω

∗
1) > 0.

As a result, there exists ω∗
2 ∈ Ω2 such that ϕ2(ω

∗
2). One also sees in the same way

as before that (ω∗
1, ω

∗
2) ∈ G2. It is now a routine matter of induction to see that

one can choose ω∗
n ∈ Ωn, such that (ω∗

1, · · · , ω∗
n) ∈ Gn (ω∗

1, · · · , ω∗
n−1 are chosen in

the first (n− 1) steps). Consequently, one finds that

ω∗ = (ω∗
1, ω

∗
2, ω

∗
3, · · · ) ∈

∞⋂
n=1

Γn,

which gives a contradiction.
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Example 3.6. Consider the random experiment of tossing a fair coin inde-
pendently in a sequence. For each n ⩾ 1, we define Ωn = {H,T}, Fn =
{∅, {H}, {T},Ωn} and Pn({H}) = Pn({T}) = 1/2. The classical probability
model (Ωn,Fn,Pn) represents the n-th toss. The countable product space

(Ω,F ,P) ≜
∞⊗
n=1

(Ωn,Fn,Pn)

defines a canonical probability space which models the underlying random exper-
iment.
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4 Modes of convergence
A central theme of study in this subject is related to understanding asymptotic
behaviours of sequences of random variables. Unlike sequences of real numbers
where there is no ambiguity of talking about convergence, there are various natural
ways of defining convergence for random sequences. For instance, the law of large
numbers is concerned with almost sure convergence as well as convergence in
probability (strong and weak laws respectively), while the central limit theorem is
concerned with weak convergence (or convergence in distribution). On the other
hand, Lp-convergence (primarily p = 1, 2) plays an essential role in martingale
theory and stochastic calculus.

Before moving to concrete probabilistic settings and examples, in this chapter
we develop some general tools for studying convergence of random variables and
probability measures. In Section 4.1, we introduce the four types of convergence
we shall encounter in the sequel and discuss some of their basic relations. In
Section 4.2, we discuss the connection between L1-convergence and convergence
in probability through the important concept of uniform integrability. Section
4.3 is the core of this chapter where we study weak convergence of probability
measures in depth.

4.1 Basic convergence concepts

Let Xn, X be random variables defined on some probability space (Ω,F ,P). There
are various ways of interpreting the convergence of Xn towards X. Among others,
we are going to discuss four basic types of convergence: almost sure convergence,
convergence in probability, L1-convergence and weak convergence. The basic re-
lations are that{

a.s. convergence =⇒ convergence in probability =⇒ weak convergence,
convergence in probability + "uniform integrability" ⇐⇒ L1-convergence.

Different modes of convergence have different applications depending on the na-
ture of the underlying problem.

We begin with the strongest one: almost sure convergence.

Definition 4.1. We say that Xn converges to X almost surely or with probability
one, if there exists a null event N such that for any ω /∈ N one has

lim
n→∞

Xn(ω) = X(ω).
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Equivalently,
P
({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

)
= 1.

We often use the shorthanded notation “Xn → X a.s.” to denote almost sure
convergence.

In contrast to almost sure convergence, one has the weaker notion of conver-
gence in probability.

Definition 4.2. We say that Xn converges to X in probability, if for any ε > 0
one has

lim
n→∞

P(|Xn −X| > ε) = 0.

We often use the shorthanded notation “Xn → X in prob.” to denote convergence
in probability.

The third type of convergence we shall consider is L1-convergence.

Definition 4.3. We say that Xn converges to X in L1 if

lim
n→∞

E
[
|Xn −X|

]
= 0.

The basic relation between the above three types of convergence is summarised
as follows.

Proposition 4.1. Either almost sure convergence or L1-convergence implies con-
vergence in probability.

Proof. Suppose that Xn converges to X a.s. Let ε > 0 be given fixed. Since{
lim
n→∞

Xn = X
}
⊆

∞⋃
n=1

∞⋂
m=n

{
|Xm −X| ⩽ ε

}
,

one finds that

1 = P
(
lim
n→∞

Xn = X
)
⩽ lim

n→∞
P
( ∞⋂
m=n

{
|Xm −X| ⩽ ε

})
⩽ lim

n→∞
P
(
|Xn −X| ⩽ ε

)
.

As a result, P(|Xn − X| ⩽ ε)] → 1 or equivalently P(|Xn − X| > ε) → 0. This
gives convergence in probability.

Now suppose that Xn converges to X in L1. By Markov’s inequality, one has

P
(
|Xn −X| > ε

)
⩽

1

ε
E
[
|Xn −X|

]
,

which gives convergence in probability immediately.
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As the example below suggests, the converse of Proposition 4.1 is not true in
general.

Example 4.1. (i) Convergence in probability does not imply almost sure con-
vergence. Consider the random experiment of choosing a point ω ∈ Ω = [0, 1]
uniformly at random. We construct a sequence {Yn : n ⩾ 1} of random variables
as follows. Firstly, divide [0, 1] into two sub-intervals, and define Y1 ≜ 1[0,1/2] and
Y2 ≜ 1[1/2,1]. Next, divide [0, 1] into three sub-intervals, and define Y3 ≜ 1[0,1/3],

Y4 ≜ 1[1/3,2/3] and Y5 ≜ 1[2/3,1]. Now the procedure continues in the obvious way
to define the whole sequence {Yn}. Since the event

{ω ∈ [0, 1] : |Yn(ω)| > ε} = {ω : Yn(ω) = 1}

is given by a particular sub-interval whose length tends to zero, we conclude that
Yn converges to zero in probability. However, Yn(ω) does not converge to zero
at any ω ∈ [0, 1]. Indeed, for each ω, by the construction there must exist a
subsequence nk such that Ynk

(ω) = 1 for all k.
(ii) Convergence in probability does not imply L1-convergence. Take (Ω,F ,P) =
([0, 1],B([0, 1]), dx). Define Xn(ω) ≜ n1[0,1/n](ω). Since P(|Xn| > ε) = 1/n, one
knows that Xn → 0 in probability. However, Xn does not converges to 0 in L1

since E[|Xn|] = 1 for all n.

The above three types of convergence rely on the realisations of Xn, X on
a common probability space (coupling between Xn and X). In particular, one
cannot talk about such convergence by only looking at the distributions of Xn

and X separately. There is the weakest notion of convergence which has such a
“distributional” nature: weak convergence.

Definition 4.4. Let Fn(x), F (x) be the distribution functions of Xn, X respec-
tively. We say that Xn converges weakly to X, if Fn(x) converges to F (x) at
every continuity point x of F. Weak convergence is also known as convergence in
distribution.

The concept of weak convergence is only distributional; it depends only on
the distribution functions Fn(x) and F (x) but has nothing to do with how one
chooses the probability space and constructs the random variables on it. The fact
that weak convergence is the weakest among the four requires more tools from
weak convergence theory. We will prove it in Proposition 4.6 below. The following
example shows that weak convergence does not imply convergence in probability
in general.
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Example 4.2. Let W be a Bernoulli random variable with parameter 1/2. Define
Zn ≜ W for all n and Z ≜ 1 −W. Since Zn and Z are both Bernoulli random
variables with parameter 1/2, it is trivial that Zn converges weakly to Z. However,
for any ε ∈ (0, 1) one has

P
(
|Zn − Z| > ε

)
= P(|2W − 1| > ε) = 1.

Therefore, Zn does not converge to Z in probability.

There is a special situation where the two concepts are equivalent, i.e. when
the limiting random variable is a deterministic constant.

Proposition 4.2. Suppose that Xn converges weakly to a deterministic constant
c. Then Xn → c in probability.

Proof. The distribution function of the constant random variable X ≡ c is given
by

F (x) ≜

{
0, x < c;

1, x ⩾ c.

By assumption, one knows that

P(Xn ⩽ x) → F (x)

for all x ̸= c (any x ̸= c is a continuity point of F ). Therefore, given ε > 0, one
has

P(|Xn − c| > ε) = P(Xn > c+ ε) + P(Xn < c− ε)

⩽ 1− P(Xn ⩽ c+ ε) + P(Xn ⩽ c− ε)

→ 1− F (c+ ε) + F (c− ε)

→ 1− 1 + 0 = 0.

This shows that Xn → c in probability.

4.2 Uniform integrability and L1-convergence

Sometimes it is useful to have L1-convergence (e.g. if one wants to have E[Xn] →
E[X]). We have seen that L1-convergence implies convergence in probability but
the converse is not true in general (cf. Example 4.1 (ii)). The bridge connecting
these two concepts is the so-called uniform integrability.
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To motivate its definition, we first consider a single integrable random variable
X. An application of dominated convergence shows that

lim
λ→∞

E[|X|1{|X|>λ}] = 0. (4.1)

More generally, the integral E[|X|1F ] can be made arbitrarily small whenever
P(F ) is small enough (cf. Proposition 2.8). The idea of uniform integrability for a
family {Xt} of random variables is that the convergence (4.1) should be required
to hold uniformly with respect to the entire family {Xt}.

Definition 4.5. Let {Xt : t ∈ T } be a family of integrable random variables
defined on some probability space (Ω,F ,P). We say that the family {Xt} is
uniformly integrable, if

lim
λ→∞

sup
t∈T

E
[
|Xt|1{|Xt|>λ}

]
= 0.

Similar to the case of a single random variable, uniform integrability essentially
suggests that the integral E[|Xt|1F ] can be made arbitrarily small in a uniform
manner as long as P(F ) is small enough. This is made precise by the following
characterisation.

Theorem 4.1. A family {Xt : t ∈ T } of integrable random variables is uniformly
integrable if and only if the following two statements hold true.

(i) The family {Xt} is bounded in L1, i.e. there exists M > 0 such that

E[|Xt|] ⩽M ∀t ∈ T .

(ii) For any ε > 0, there exists δ > 0 such that

∀F ∈ F ,P(F ) < δ =⇒ E[|Xt|1F ] < ε ∀t ∈ T . (4.2)

Proof. Necessity. Suppose that the family {Xt : t ∈ T } is uniformly integrable.
By definition, given any ε > 0, there exists Λ > 0 such that

E
[
|Xt|1{|Xt|>Λ}

]
⩽ ε ∀t ∈ T .

It follows that

E[|Xt|] = E
[
|Xt|1{|Xt|⩽Λ}

]
+ E

[
|Xt|1{|Xt|>Λ}

]
⩽ Λ + ε,
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which gives the L1-boundedness. In addition, for the above Λ and any F ∈ F ,
one has

E[|Xt|1F ] = E
[
|Xt|1{|Xt|⩽Λ}∩F

]
+ E

[
|Xt|1{|Xt|>Λ}∩F

]
⩽ ΛP(F ) + E

[
|Xt|1{|Xt|>Λ}

]
< ΛP(F ) + ε.

Take δ ≜ ε/Λ. Whenever P(F ) < δ, one has

E
[
|Xt|1F

]
< 2ε ∀t ∈ T .

This gives the uniform continuity property (4.2).
Sufficiency. Since {Xt} is bounded in L1, by Markov’s inequality one has

P
(
|Xt| > λ

)
⩽

1

λ
E[|Xt|] ⩽

1

λ
M ∀t ∈ T .

Therefore, given ε > 0 there exists Λ > 0 such that

λ > Λ =⇒ P
(
|Xt| > λ

)
< δ,

where δ is the number appearing in (4.2). By using that assumed property, one
obtains that

E
[
|Xt|1{|Xt|>λ}

]
< ε ∀t ∈ T .

This gives the uniform integrability.

Verifying either the definition or the conditions in Theorem 4.1 is not always
easy. We present two useful sufficient conditions for uniform integrability.

Proposition 4.3. Let {Xt : t ∈ T } be a family of random variables. Suppose
that one of the following two conditions holds true.

(i) There exists p > 1 and M > 0 such that

E[|Xt|p] ⩽M ∀t ∈ T .

(ii) There exists an integrable random variable Y such that

|Xt| ⩽ Y a.s. ∀t ∈ T .

Then the family {Xt} is uniformly integrable.

103



Proof. We only consider the first case and leave the second one as an exercise. By
the assumption, one has

E
[
|Xt|1{|Xt|>λ}

]
⩽ E

[
(|Xt|/λ)p−1|Xt|

]
=

1

λp−1
E[|Xt|p] ⩽

M

λp−1
∀t ∈ T .

Therefore,
lim
λ→∞

sup
t∈T

E
[
|Xt|1{|Xt|>λ}

]
= 0.

Below is a particularly useful way of constructing uniformly integrable families.
It plays an important role in the study of martingales.

Proposition 4.4. Let X be an integrable random variable on (Ω,F ,P). Let {Gt :
t ∈ T } be a family of sub-σ-algebras of F . Then the family {E[X|Gt] : t ∈ T } is
uniformly integrable.

Proof. Denote Xt ≜ E[X|Gt]. By using properties of the conditional expectation,
one has

E
[
|Xt|1{|Xt|}>λ

]
⩽ E

[
E[|X|

∣∣Gt]1{|Xt|>λ}
]

= E
[
E[|X|1{|Xt|>λ}

∣∣Gt]
]
= E

[
|X|1{|Xt|>λ}

]
. (4.3)

On the other hand, since X is integrable, by Proposition 2.8 for any ε > 0 there
exists δ > 0 such that

∀F ∈ F ,P(F ) < δ =⇒ E
[
|X|1F

]
< ε. (4.4)

By Markov’s inequality, one has

P(|Xt| > λ) ⩽
1

λ
E[|Xt|] ⩽

1

λ
E
[
E[|X|

∣∣Gt]
]
=

1

λ
E[|X|].

In particular, there exists Λ > 0 such that

λ > Λ =⇒ P(|Xt| > λ) < δ ∀t ∈ T ,

which further implies by (4.3) and (4.4) that

E
[
|Xt|1{|Xt|}>λ

]
< ε ∀t ∈ T .

This gives the uniform integrability of {Xt}.
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In the sequential context, uniform integrability plays an essential role in the
connection between convergence in probability and convergence in L1.

Theorem 4.2. Let Xn, X (n ⩾ 1) be integrable random variables on (Ω,F ,P).
The following two statements are equivalent.

(i) Xn converges to X in L1.
(ii) Xn convergence to X in probability and the family {Xn : n ⩾ 1} is uniformly
integrable.

Proof. Necessity. Suppose that Xn converges to X in L1. It is immediate from
Markov’s inequality that Xn converges to X in probability. We now use Theorem
4.1 to prove uniform integrability. Boundedness in L1 is obvious. To prove the
uniform continuity property (4.2), one first notes that

E
[
|Xn|1F

]
⩽ E

[
|Xn −X|1F

]
+ E

[
|X|1F

]
⩽ E

[
|Xn −X|

]
+ E

[
|X|1F

]
for all F ∈ F . By the L1-convergence and integrability of X, for any ε > 0 there
exist N ⩾ 1 and δ > 0, such that

n > N, P(F ) < δ =⇒ E
[
|Xn −X|

]
< ε, E

[
|X|1F

]
< ε.

As a result, one has
sup
n>N

E
[
|Xn|1F

]
⩽ 2ε (4.5)

for any F ∈ F with P(F ) < δ. By further reducing δ if necessary, one can include
the first N terms into the relation (4.5). This proves the uniform integrability.

Sufficiency. Suppose that Xn converges to X in probability and {Xn} is
uniformly integrable. For any ε > 0 and n ⩾ 1, one can write

E[|Xn −X|] ⩽ E
[
|Xn −X|1{|Xn−X|⩽ε}

]
+ E

[
|Xn −X|1{|Xn−X|>ε}

]
⩽ ε+ E

[
|Xn|1{|Xn−X|>ε}

]
+ E

[
|X|1{|Xn−X|>ε}

]
. (4.6)

According to the property (4.2) and integrability of X, there exists δ > 0 such
that

F ∈ F , P(F ) < δ =⇒ sup
n⩾1

E
[
|Xn|1F

]
< ε, E

[
|X|1F

]
< ε.

In addition, by the convergence in probability there exists N ⩾ 1 such that

n > N =⇒ P
(
|Xn −X| > ε

)
< δ.

It follows from (4.6) that for all n > N , one has

E
[
|Xn −X|

]
< 3ε.

This proves L1-convergence.
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4.3 Weak convergence of probability measures

Weak convergence, being the weakest type of convergence among the four, is
essentially a distributional property (it is concerned with probability laws of the
random variables). It does not reflect the correlations among the random variables
and it does not rely on the probability space where the random variables are
defined. As a consequence, it applies to a broader range of problems and has larger
flexibility to support finer quantitative estimates. In this section, we develop the
basic tools for the study of weak convergence in reasonable generality.

4.3.1 Recapturing weak convergence for distribution functions

Let Fn, F be given distribution functions on R. Recall from Definition 4.4 that
Fn converges weakly to F if Fn(x) → F (x) at every continuity point of F (the
definition has nothing to do with the actual random variables; it is essentially
about convergence of the distribution functions). The reason why one cannot
replace the definition with the “seemingly more natural” condition

“Fn(x) → F (x) for every x ∈ R”

is best illustrated by the following simple example. Let Xn = 1/n be the deter-
ministic random variable taking value 1/n. Obviously, any useful and reasonable
notion of convergence should ensure that Xn “converges” to the zero random vari-
able X = 0 as n → ∞. On the other hand, the distribution functions of Xn and
X are given by

Fn(x) =

{
0, x < 1/n;

1, x ⩾ 1/n,
F (x) =

{
0, x < 0;

1, x ⩾ 0,

respectively. It is apparent that

Fn(0) = 0 ↛ F (0) = 1

as n → ∞. This simple example shows that it is generally too restrictive to
require Fn(x) converging to F (x) for all x ∈ R. In this example, the issue occurs
precisely at x = 0, which is a discontinuity point of F . It is easily seen that at
every continuity point of F (i.e. whenever x ̸= 0) one has Fn(x) → F (x). In other
words, Xn converges weakly to X in the sense of Definition 4.4.

Example 4.3. Let Xn be a discrete uniform random variable over {1, 2, · · · , n},
i.e.

P(Xn = k) =
1

n
, k = 1, 2, · · ·n.
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Let X be a continuous uniform random variable over [0, 1]. Then Xn/n → X
weakly as n→ ∞. Indeed, the distribution function of Xn is given by

Fn(x) = P
(Xn

n
⩽ x

)
= P(Xn ⩽ nx) =


0, x < 0;
[nx]
n
, 0 ⩽ x < 1;

1, x ⩾ 1,

where [nx] denotes the integer part of nx. From the simple inequality

[nx]

n
⩽
nx

n
= x ⩽

[nx]

n
+

1

n
,

we know that [nx]
n

→ x as n→ ∞. It follows that

lim
n→∞

Fn(x) =


0, x < 0;

x, 0 ⩽ x < 1;

1, x ⩾ 1,

which is precisely the distribution function F (x) of X. Therefore, by definition
one concludes that Xn/n → X weakly. Note that F (x) is continuous at every
x ∈ R.

Example 4.4. Let {Xn : n ⩾ 1} be a sequence of independent and identi-
cally distributed random variables with finite mean and variance. Define Sn ≜
X1 + · · · + Xn. Then the sample average Sn/n converges to E[X1] a.s. In addi-
tion, the normalised fluctuation Sn−E[Sn]√

Var[Sn]
converges weakly to the standard normal

distribution. These are the contents of the strong law of large numbers and the
central limit theorem. We will make precise the definition of independence and
prove these facts later on.

When the limiting random variable X is continuous (i.e. the distribution func-
tion ofX being continuous), weak convergence does become pointwise convergence
at every x ∈ R. A surprising fact is that one can obtain the stronger property of
uniform convergence in this context. Such a result was due to G. Pólya.

Theorem 4.3. Let Xn, X be random variables with distribution functions Fn, F
respectively. Suppose that F is continuous on R. Then Xn converges weakly to X
if and only if Fn converges to F uniformly on R.
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Proof. We only need to prove necessity as the other direction is trivial. Suppose
that Fn converges to F at every x ∈ R. Let k ⩾ 1 be an arbitrary given integer.
We choose a partition

−∞ = x0 < x1 < x2 < · · · < xk−1 < xk = ∞

such that
F (xi) =

i

k
, i = 0, 1, · · · , k.

This is possible since F is continuous on R. For any x ∈ [xi−1, xi), according to
the monotonicity of distribution functions, one has

Fn(x)− F (x) ⩽ Fn(xi)− F (xi−1) = Fn(xi)− F (xi) +
1

k
.

Similarly, one also has

Fn(x)− F (x) ⩾ Fn(xi−1)− F (xi) = Fn(xi−1)− F (xi−1)−
1

k
.

Combining the two inequalities, one obtains that

|Fn(x)− F (x)| ⩽ max
{∣∣Fn(xi−1)− F (xi−1)

∣∣, ∣∣Fn(xi)− F (xi)
∣∣}+

1

k
,

for all i and x ∈ [xi−1, xi). As a result,

sup
x∈R

∣∣Fn(x)− F (x)
∣∣ ⩽ max

0⩽i⩽k

∣∣Fn(xi)− F (xi)
∣∣+ 1

k

Since Fn(xi) → F (xi) at each xi, by letting n→ ∞ on both sides one finds that

lim
n→∞

sup
x∈R

|Fn(x)− F (x)| ⩽ 1

k
.

Since k is arbitrary, it follows that

lim
n→∞

sup
x∈R

|Fn(x)− F (x)| = 0.

In many situations, working with distribution functions may not be as con-
venient as working with probability measures (this is particularly the case in
higher dimensions). Recall from Corollary 1.1 that distribution functions on R
and probability measures on B(R) are essentially the same thing. As a result,
it is reasonable to expect that Definition 4.4 has a counterpart for probability
measures on B(R). We first give the following definition.

108



Definition 4.6. Let µ be a finite measure on (R,B(R)). A real number a ∈ R is
called a continuity point of µ if µ({a}) = 0. The set of continuity points of µ is
denoted as C(µ).

Remark 4.1. The complement of C(µ) is at most countable. To see this, one first
observes that for each fixed ε > 0, the set Eε ≜ {a ∈ R : µ({a}) ⩾ ε} is at most
finite. For otherwise, say Eε contains an infinite sequence {a1, a2, · · · }, one then
has

µ({a1, a2, · · · }) =
∞∑
i=1

µ({ai}) ⩾
∞∑
i=1

ε = ∞,

contradicting the finiteness of µ. It follows that

C(µ)c =
{
a ∈ R : µ({a}) > 0

}
=

∞⋃
n=1

{
a ∈ R : µ({a}) ⩾ 1

n

}
is at most countable. As a consequence, one also knows that C(µ) is dense in R.

The following result provides the counterpart of Definition 4.4 in the context
of probability measures.

Proposition 4.5. Let Fn, F be distribution functions and let µn, µ be the induced
probability measures on (R,B(R)). Then Fn converges weakly to F if and only if

µn((a, b]) → µ((a, b])

for all continuity points a < b of µ.

The necessity part of Proposition 4.5 is trivial. Indeed, suppose that Fn con-
verges weakly to F . Note that a is a continuity point of µ if and only if it is a
continuity point of F . Therefore, for any continuity points a < b of µ, one has

µn((a, b]) = Fn(b)− Fn(a) → F (b)− F (a) = µ((a, b]).

The sufficiency part is not as obvious. The crucial point is a tightness property for
the sequence {µn}, which is in turn based on the fact that µn and µ are probability
measures. We take this result as granted in order to motivate the next definitions.
We will come back to its proof when we are acquainted with more tools on weak
convergence.
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4.3.2 Vague convergence and Helly’s theorem

Inspired by Proposition 4.5, we introduce the following definition.

Definition 4.7. Let µn (n ⩾ 1) and µ be finite measures on B(R). We say that
µn converges vaguely to µ, if µn((a, b]) → µ((a, b]) for all continuity points a < b
of µ. If additionally µn(R) → µ(R), we say that µn converges weakly to µ.

When µn and µ are probability measures, vague and weak convergence are the
same thing since µn(R) = µ(R) = 1. In general, these two notions of convergence
are different as seen from the following example.

Example 4.5. Consider µn = δn (the Dirac mass at the point x = n) and µ = 0
(the zero measure). Every real number is a continuity point of µ. For any fixed
a < b, when n is large (precisely when n > b) one has µn((a, b]) = 0. In particular,
µn converges vaguely to µ. But

µn(R) = 1 ↛ 0 = µ(R).

In other words, µn does not converge weakly to µ.

Intervals are too special for many purposes. One needs to identify more ro-
bust characterisations of vague and weak convergence in order to generalise these
concepts to higher (random vectors) and even infinite dimensions (stochastic pro-
cesses). The next two results provide particularly useful characterisations in terms
of integration against suitable test functions.

Recall that a continuous function on Rd is said to have compact support if it
vanishes identically outside some bounded subset of Rd. The space of continuous
functions on Rd with compact support is denoted as Cc(Rd). Respectively, the
space of bounded continuous functions on Rd is denoted as Cb(Rd). Apparently,
Cc(Rd) ⊆ Cb(Rd).

First of all, one has the following characterisation of vague convergence.

Theorem 4.4. Let µn (n ⩾ 1) and µ be finite measures on R. Then µn converges
vaguely to µ if and only if∫

R
f(x)µn(dx) →

∫
R
f(x)µ(dx) for all f ∈ Cc(R).

Proof. Necessity. Let f ∈ Cc(R). Firstly, we choose a < b in C(µ) (continuity
points of µ) such that f(x) = 0 outside [a, b]. Since f is continuous, it is uniformly
continuous on [a, b]. In particular, given any ε > 0, there exists δ > 0 such that

x, y ∈ [a, b], |x− y| < δ =⇒ |f(x)− f(y)| < ε.
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For such δ, we choose a partition

a = x0 < x1 < · · · < xk−1 < xk = b

such that xi ∈ C(µ) and |xi − xi−1| < δ. This is possible since C(µ) is dense in R
(cf. Remark 4.1). If we define the step function

g(x) ≜
k∑

i=1

f(xi−1)1(xi−1,xi](x),

then f(x) = g(x) = 0 when x /∈ (a, b] and |f(x) − g(x)| < ε when x ∈ [a, b]. It
follows that∣∣ ∫

R
f(x)µn(dx)−

∫
R
f(x)µ(dx)

∣∣
⩽

∣∣ ∫
R
f(x)µn(dx)−

∫
R
g(x)µn(dx)

∣∣+ ∣∣ ∫
R
g(x)µn(dx)−

∫
R
g(x)µ(dx)

∣∣
+
∣∣ ∫

R
g(x)µ(dx)−

∫
R
f(x)µ(dx)

∣∣
⩽ ε · µn((a, b]) +

k∑
i=1

|f(xi−1)| · |µn((xi−1, xi])− µ((xi−1, xi])|+ ε · µ((a, b]).

(4.7)

Since a, b, xi ∈ C(µ), one has

µn((a, b]) → µ((a, b]), µn((xi−1, xi]) → µ((xi−1, xi])

as n→ ∞. As a consequence, by taking n→ ∞ in (4.7) one arrives at

lim
n→∞

∣∣ ∫
R
f(x)µn(dx)−

∫
R
f(x)µ(dx)

∣∣ ⩽ 2ε · µ((a, b]).

Since ε is arbitrary, it follows that

lim
n→∞

∫
R
f(x)µn(dx) =

∫
R
f(x)µ(dx).

Sufficiency. Let a < b be two continuity points of µ and define g(x) ≜ 1(a,b](x).
Given fixed δ > 0, we are going to define two “tent-shaped” functions g1, g2 ∈ Cc(R)
that approximate g from above and below respectively. Precisely, g1(x) ≜ 1 when
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x ∈ [a, b], g1(x) ≜ 0 when x /∈ [a− δ, b+ δ], and g1(x) is linear when x ∈ [a− δ, a]
and x ∈ [b, b + δ]. Similarly, g2(x) ≜ 1 when x ∈ [a + δ, b − δ], g1(x) ≜ 0 when
x /∈ [a, b], and g2(x) is linear when x ∈ [a, a+ δ] and x ∈ [b− δ, b].

By the construction, it is not hard to see that

g2(x) ⩽ g(x) ⩽ g1(x) ∀x ∈ R, (4.8)

and
g1 = g2 on U c, 0 ⩽ g1 − g2 ⩽ 1 on U (4.9)

with U ≜ (a− δ, a+ δ) ∪ (b− δ, b+ δ).
By integrating (4.8) against µn and µ respectively, one obtains that∫
g2dµn ⩽

∫
gdµn = µn((a, b]) ⩽

∫
g1dµn,

∫
g2dµ ⩽ µ((a, b]) ⩽

∫
g1dµ.

Therefore,∫
g2dµn −

∫
g1dµ ⩽ µn((a, b])− µ((a, b]) ⩽

∫
g1dµn −

∫
g2dµ. (4.10)

By taking n→ ∞ in the first inequality and using (4.9), one finds that

lim
n→∞

(
µn((a, b])− µ((a, b])

)
⩾

∫
g2dµ−

∫
g1dµ ⩾ −µ(U)

= −
(
µ((a− δ, a+ δ)) + µ((b− δ, b+ δ))

)
.

Since a, b are continuity points of µ and δ is arbitrary, by letting δ → 0 the last
term goes to zero and thus

lim
n→∞

(
µn((a, b])− µ((a, b])

)
⩾ 0.

112



Exactly the same argument applied to the second inequality in (4.10) yields

lim
n→∞

(
µn((a, b])− µ((a, b])

)
⩽ 0.

Therefore, one arrives at

lim
n→∞

µn((a, b]) = µ((a, b]).

Respectively, one has the following characterisation of weak convergence.

Theorem 4.5. Let µn (n ⩾ 1) and µ be finite measures on R. Then µn converges
weakly to µ if and only if∫

R
f(x)µn(dx) →

∫
R
f(x)µ(dx) for all f ∈ Cb(R). (4.11)

Proof. Sufficiency. The condition already implies vague convergence as a conse-
quence of Theorem 4.4 since Cc(R) ⊆ Cb(R). In addition, by taking f = 1 one also
has µn(R) → µ(R). Therefore, µn converges weakly to µ.

Necessity. Let f ∈ Cb(R) and suppose that |f(x)| ⩽M for all x. Given ε > 0,
we pick two continuity points a < b of µ so that µ((a, b]c) < ε. By the weak
convergence assumption, one has

µn((a, b]
c) = µn(R)− µn((a, b]) → µ(R)− µ((a, b]) = µ((a, b]c).

In particular, µn((a, b]
c) < ε when n is large. It follows that∣∣ ∫

R
f(x)µn(dx)−

∫
R
f(x)µ(dx)

∣∣
⩽

∣∣ ∫
(a,b]

f(x)µn(dx)−
∫
(a,b]

f(x)µ(dx)
∣∣+ ∣∣ ∫

(a,b]c
f(x)µn(dx)−

∫
(a,b]c

f(x)µ(dx)
∣∣

⩽
∣∣ ∫

(a,b]

f(x)µn(dx)−
∫
(a,b]

f(x)µ(dx)
∣∣+ 2Mε. (4.12)

By using the same approximation argument as in the necessity part of Theorem
4.4, one can show that the first term on the right hand side of (4.12) vanishes as
n→ ∞. As a result,

lim
n→∞

∣∣ ∫
R
f(x)µn(dx)−

∫
R
f(x)µ(dx)

∣∣ ⩽ 2Mε,
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which further implies

lim
n→∞

∫
R
f(x)µn(dx) =

∫
R
f(x)µ(dx)

since ε is arbitrary.

The characterisations given by Theorem 4.4 and Theorem 4.5 allow one to
generalise the concepts of vague and weak convergence to higher dimensions nat-
urally.

Definition 4.8. Let µn (n ⩾ 1) and µ be finite measures on (Rd,B(Rd)).

(i) We say that µn converges vaguely to µ if∫
Rd

f(x)µn(dx) →
∫
Rd

f(x)µ(dx)

for every f ∈ Cc(Rd).
(ii) We say that µn converges weakly to µ if∫

Rd

f(x)µn(dx) →
∫
Rd

f(x)µ(dx)

for every f ∈ Cb(Rd).

It can be shown that weak convergence is equivalent to vague convergence
plus the additional property that µn(Rd) → µ(Rd). In particular, when µn, µ are
probability measures, the two notions of convergence are again the same thing. In
the context of Rd-valued random variables Xn and X, we say that Xn converges
weakly to X if the law of Xn converges weakly to the law of X. According to
Theorem 2.5, this is also equivalent to saying that

E[f(Xn)] → E[f(X)] for all f ∈ Cb(Rd).

Recall from real analysis that a bounded sequence in Rd admits a convergent
subsequence. The extension of this result to probability measures is the content
of Helly’s theorem. This theorem is important because it is often the first step
towards proving weak convergence of probability measures. Before stating the
theorem, we first introduce the following definition.

Definition 4.9. A sub-probability measure µ on (Rd,B(Rd)) is a finite measure
such that µ(Rd) ⩽ 1.
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Helly’s theorem for vague convergence of sub-probability measures is stated as
follows.

Theorem 4.6. Let {µn : n ⩾ 1} be a sequence of probability measures on
(Rd,B(Rd)). Then there exists a subsequence µnk

and a sub-probability measure
µ, such that µnk

converges vaguely to µ as k → ∞.

Proof. We only prove the result in one dimension and let the reader to adapt the
argument to higher dimensions. We break down the proof into several steps.

Step One. Consider the corresponding sequence of distribution functions
Fn(x) ≜ µn((−∞, x]). Let D = {xj : j ⩾ 1} be a countable dense subset of
R (e.g. the rational numbers). We claim that there exists a subsequence {Fnk

}
of {Fn}, such that limk→∞ Fnk

(xj) exists for every xj ∈ D. To prove this, let
us start with the sequence {Fn(x1)} of real numbers. Since this is a bounded
sequence, there exists a subsequence {n1(k) : k ⩾ 1} of N and some real number
denoted as G(x1), such that Fn1(k)(x1) → G(x1). Next, for the bounded sequence
{Fn1(k)(x2) : k ⩾ 1}, there exists a further subsequence {n2(k)} of {n1(k)} and
some real number denoted as G(x2), such that Fn2(k)(x2) → G(x2). If one con-
tinues this procedure, at the j-th step one finds a subsequence {nj(k)} of the
previous sequence {nj−1(k)} as well as G(xj) ∈ R, such that Fnj(k)(xj) → G(xj).
Now we consider the “diagonal” subsequence {nk(k) : k ⩾ 1}. For each fixed j,
from the construction {nk(k) : k ⩾ j} is a subsequence of {nj(k) : k ⩾ 1}. In
particular, one has

lim
k→∞

Fnk(k)(xj) = G(xj),

which proves the desired claim.
Step Two. Using the previous limit points {G(xj) : j ⩾ 1}, we define the

function
F (x) ≜ inf{G(xj) : xj > x}.

It is obvious that 0 ⩽ F (x) ⩽ 1 and F (x) is increasing. Moreover, F (x) is right
continuous. Indeed, let x ∈ R and ε > 0. By the definition of F , there exists
xj > x such that G(xj) < F (x) + ε. It follows that whenever 0 < h < xj − x one
has x+ h < xj and thus

F (x+ h) ⩽ G(xj) < F (x) + ε.

This shows that F is right continuous at x.
Step Three. At every continuity point x of F , one has Fnk(k)(x) → F (x). For

simplicity we write nk ≜ nk(k). Given ε > 0, there exists xp > x such that

G(xp) < F (x) + ε. (4.13)
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In addition, since x is a continuity point of F, there exists y < x such that
F (x)−F (y) < ε. Pick any xq ∈ D∩ (y, x). It follows that F (y) ⩽ G(xq) and thus

F (x)−G(xq) ⩽ F (x)− F (y) < ε. (4.14)

Adding (4.13) and (4.14) gives G(xp) − G(xq) < 2ε. As a consequence, one finds
that

|Fnk
(x)− F (x)| ⩽ |Fnk

(x)− Fnk
(xp)|+ |Fnk

(xp)−G(xp)|+ |G(xp)− F (x)|
⩽

(
Fnk

(xp)− Fnk
(xq)

)
+ |Fnk

(xp)−G(xp)|+ ε.

By taking k → ∞, one obtains that

lim
k→∞

∣∣Fnk
(x)− F (x)

∣∣ ⩽ G(xp)−G(xq) + ε ⩽ 3ε.

Since ε is arbitrary, it follows that Fnk
(x) → F (x).

Step Four. According to Corollary 1.1, the function F induces a unique sub-
probability µ on (R1,B(R1)) such that µ((a, b]) = F (b) − F (a) for any a < b.
Step three shows that µnk

converges vaguely to µ. This completes the proof of
the theorem.

It is important to point out that one cannot strengthen the conclusion of
Helly’s theorem to weak convergence, as the limit point µ may fail to be a prob-
ability measure.

Example 4.6. Let µn be the uniform distribution over [−n, n]. Then µn converges
vaguely to the zero measure (and so does any of its subsequence). Indeed, for any
fixed a < b, when n is large one has

µn((a, b]) =
b− a

2n
,

which converges to zero as n→ ∞.

The next natural question is to investigate when a vague limit point is indeed
a probability measure. The answer to this question is intimately related to the
concept of tightness which will be discussed in Section 4.3.4 below. Here we look
at a simple motivating example.

Example 4.7. Let M > 0 be a fixed number. Let {µn : n ⩾ 1} be a sequence of
probability measures on (R,B(R)) such that µn([−M,M ]) = 1 for each n. Then
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every vague convergent subsequence of µn must converge weakly to a probability
measure. Indeed, suppose that µnk

converges vaguely to some sub-probability
measure µ. Pick two continuity points a, b of µ such that a < −M and b > M.
Then

1 = µn((a, b]) → µ((a, b]),

showing that µ has to be a probability measure and thus µnk
converges weakly to

µ. The key point in this example is that masses for the sequence {µn} are uniformly
concentrated on a large interval. This is essentially the tightness property which
is of fundamental importance in the study of weak convergence.

4.3.3 Weak convergence on metric spaces and the Portmanteau theo-
rem

Working with probability measures over Rd (i.e. in finite dimensions) is unfor-
tunately not always sufficient. For instance, when one studies distributions of
stochastic processes, one is led to the consideration of probability measures over
infinite dimensional spaces (space of paths). It is essential to extend the notion
of weak convergence to the more general context of metric spaces.

Metric spaces

We first recall the relevant concepts. Heuristically, a metric space is a set equipped
with a distance function.

Definition 4.10. Let S be a non-empty set. A metric on S is a non-negative
function ρ : S × S → [0,∞) which satisfies the following three properties.

(i) Positive definiteness: ρ(x, y) = 0 if and only if x = y;
(ii) Symmetry: ρ(x, y) = ρ(y, x);
(iii) Triangle inequality: ρ(x, z) ⩽ ρ(x, y) + ρ(y, z).

When a set S is equipped with a metric ρ, we call (S, ρ) a metric space.

Example 4.8. An obvious metric on Rd is the Euclidean metric:

ρ(x, y) =
√
(x1 − y1)2 + · · ·+ (xd − yd)2.

There are other choices of metrics, such as

ρ′(x, y) = |x1 − y1|+ · · ·+ |xd − yd| (the l1 metric)

and
ρ′′(x, y) = max

1⩽i⩽d
|xi − yi| (the l∞ metric).
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Example 4.9. An important infinite dimensional example of a metric space is
the space of paths. More precisely, let W = C[0, 1] be the set of all continuous
functions w : [0, 1] → R. Define a function ρ : W ×W → [0,∞) by

ρ(w1, w2) ≜ sup
0⩽t⩽1

|w1(t)− w2(t)|, w1, w2 ∈ W.

It is a simple exercise to check that ρ is a metric on W (it is called the uniform
metric). One will frequently encounter this metric space (W, ρ) in the study of
continuous-time stochastic processes such as Brownian motion, Gaussian processes
etc.

Let (S, ρ) be a given metric space. We introduce a few basic set classes over
S. Unlike the usual Rd, there are no analogues of intervals on S. However, one
has the natural notion of open balls

B(x, r) ≜ {y ∈ S : d(y, x) < r}

and similarly of closed balls.

Definition 4.11. Given a subset A ⊆ S, a point x ∈ A is called an interior point
of A if there exists r > 0 such that B(x, r) ⊆ A. A subset G ⊆ S is said to
be open if every point in G is an interior point. A subset F ⊆ S is said to be
closed if its complement F c is open. A subset K ⊆ S is said to be compact if any
open cover of K contains a finite subcover, namely whenever K is contained in
the union of a family of open sets, one can always choose finitely many members
in that family whose union still contains K.

These concepts are better illustrated along with the notion of convergence.

Definition 4.12. Let xn (n ⩾ 1) and x be points in S. We say that xn converges
to x, denoted as xn → x, if ρ(xn, x) → 0 as n→ ∞.

It can be shown that a subset F is closed if and only if

xn ∈ F, xn → x =⇒ x ∈ F.

In addition, a subset K is compact if and only if it is closed and any sequence in
K admits a convergent subsequence.

Definition 4.13. Let A be a subset of S. The closure of A, denoted as Ā, is the
smallest closed subset containing A. Equivalently, Ā consists of all limit points
of A. The interior of A, denoted as Å, is the largest open subset contained in A.
Equivalently, Å is the set of interior points of A. The boundary of A is defined to
be ∂A ≜ Ā\Å.
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Continuous functions and uniformly continuous functions are defined in the
usual way.

Definition 4.14. A function f : S → R is continuous at x, if

xn ∈ S, xn → x =⇒ f(xn) → f(x).

A continuous function on S is a function that is continuous at every point in S.
A function is uniformly continuous, if for any ε > 0, there exists δ > 0 such that

x, y ∈ S, d(x, y) < δ =⇒ |f(y)− f(x)| < ε.

If f : S → R is continuous, then

U ⊆ R, U is open =⇒ f−1U is open in S;
C ⊆ R, C is closed =⇒ f−1C is closed in S.

The space of bounded, continuous functions on S is denoted as Cb(S).
Remark 4.2. All the above concepts are natural generalisations of the Rd case.
They are best visualised when one looks at the case of Rd. A major difference
from the Rd case is notion of compact sets. In Rd, one knows that a subset is
compact if and only if it is bounded and closed. This is not true for general metric
spaces (compactness is much harder to characterise in infinite dimensions). In the
appendix, we give the description of compact sets in the path space C[0, 1] of
Example 4.9.

Weak convergence and the Portmanteau theorem

Before studying probability measures and weak convergence on a metric space,
one needs to introduce a natural σ-algebra over it.

Definition 4.15. The Borel σ-algebra over S, denoted as B(S), is σ-algebra
generated by all open subsets of S.

Example 4.10. Open balls, closed balls, open sets, closed sets, compact sets and
countable unions / intersections of these sets are members of B(S).

Remark 4.3. In the case of R, the Borel σ-algebra is generated by the class of open
intervals (a, b). For general metric spaces, the Borel σ-algebra may not necessarily
be generated by open balls. Nonetheless, this will be the case if the metric space
(S, ρ) is separable, namely if there exists a countable subset D ⊆ S such that
D̄ = S.
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We will always work with the Borel σ-algebra B(S) and all probability mea-
sures are assumed to be defined on B(S). A natural way of generalising weak
convergence to metric spaces is through the characterisation given by Theorem
4.5 in the Rd case.

Definition 4.16. Let µn (n ⩾ 1) and µ be probability measures on a metric space
(S,B(S), ρ). We say that µn converges weakly to µ, if∫

S

f(x)µn(dx) →
∫
S

f(x)µ(dx)

for all f ∈ Cb(S).

One may wonder if weak convergence can be seen through testing against “sets”.
As in the case of R, one cannot expect that µn(A) → µ(A) for all A ∈ B(S) and
some sort of continuity for the set A with respect to µ is needed.

Definition 4.17. Let µ be a probability measure on (S,B(S), ρ). A subset A ∈
B(S) is said to be µ-continuous, if µ(∂A) = 0.

Example 4.11. In the case of S = R, an interval (a, b] is µ-continuous if and
only if a, b are both continuity points of µ (cf. Definition 4.6).

Example 4.12. Let S = {(x, y) : 0 ⩽ x, y ⩽ 1} be the unit square in R2 and
let µ be the Lebesgue measure on (S,B(S)). Then any region in S enclosed by a
smooth curve is µ-continuous, since its boundary curve has zero measure.

The following basic result, known as the Portmanteau theorem, provides a set
of equivalent characterisations for weak convergence.

Theorem 4.7. Let µn (n ⩾ 1) and µ be probability measures on a metric space
(S,B(S), ρ). The following statements are equivalent:

(i) µn converges weakly to µ;
(ii) for any bounded, uniformly continuous function f on S, one has∫

S

f(x)µn(dx) →
∫
S

f(x)µ(dx);

(iii) for any closed subset F ⊆ S, one has

lim
n→∞

µn(F ) ⩽ µ(F );
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(iv) for any open subsets G ⊆ S, one has

lim
n→∞

µn(G) ⩾ µ(G);

(v) for any A ∈ B(S) that is µ-continuous, one has

lim
n→∞

µn(A) = µ(A).

Proof. (i) =⇒ (ii) is trivial.
(ii) =⇒ (iii). Let F be a closed subset of S. For k ⩾ 1, we define

fk(x) =

(
1

1 + ρ(x, F )

)k

, x ∈ S,

where ρ(x, F ) is the distance between x and F . Then fk is bounded and uniformly
continuous. In addition,

1F (x) ⩽ fk(x) ⩽ 1, (4.15)

and fk(x) ↓ 1F (x) as k → ∞. It follows from (4.15) and the assumption that

lim
n→∞

µn(F ) ⩽ lim
n→∞

∫
S

fk(x)µn(dx) =

∫
S

fk(x)µ(dx)

for every k ⩾ 1. By taking k → ∞ and using the dominated convergence theorem,
one finds that

lim
n→∞

µn(F ) ⩽ µ(F ).

(iii)⇐⇒(iv) is obvious as they are complementary to each other.
(iii)+(iv) =⇒ (v). Let A ∈ B(S) be such that µ(∂A) = 0. Then

µ(Å) = µ(A) = µ(Ā).

By the assumptions of (iii) and (iv), one has

lim
n→∞

µn(A) ⩽ lim
n→∞

µn(Ā) ⩽ µ(Ā) = µ(A) = µ(Å) ⩽ lim
n→∞

µn(Å) ⩽ lim
n→∞

µn(A).

As a result, µn(A) → µ(A).
(v) =⇒ (i). Let f ∈ Cb(S) be given fixed. One may assume that 0 < f < 1;

for otherwise, say a < f(x) < b, one can consider the normalised function

0 < f̄(x) ≜
f(x)− a

b− a
< 1.
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The idea is to approximate f by linear combinations of indicator functions of
µ-continuous sets. Since µ is a probability measure, for each n ⩾ 1 the set {a ∈
R1 : µ(f = a) ⩾ 1/n} must be finite, and thus the set {a ∈ R1 : µ(f = a) > 0}
is at most countable. Given k ⩾ 1, for each 1 ⩽ i ⩽ k one can then choose some
ai ∈ ((i− 1)/k, i/k) such that µ(f = ai) = 0. Set a0 ≜ 0 and ak+1 ≜ 1. Note that
|ai − ai−1| < 2/k for all i. Next, define the subsets

Bi ≜ {x ∈ S : ai−1 ⩽ f(x) < ai}, 1 ⩽ i ⩽ k + 1.

The Bi’s are disjoint and S = ∪k+1
i=1Bi since 0 < f < 1. In addition, it is seen from

the continuity of f that

Bi ⊆ {ai−1 ⩽ f ⩽ ai}, {ai−1 < f < ai} ⊆ B̊i.

Therefore, one has
∂Bi ⊆ {f = ai−1} ∪ {f = ai},

showing that µ(∂Bi) = 0. We now consider the step function

g(x) ≜
k+1∑
i=1

ai−11Bi
(x).

The function g approximates f in the sense that

|f(x)− g(x)| ⩽ 2

k
∀x ∈ S,

which is easily seen from the construction of the Bi’s and g. It follows that∣∣∣∣∫
S

fdµn −
∫
S

fdµ

∣∣∣∣
⩽

∫
S

|f(x)− g(x)|dµn +

∫
S

|f(x)− g(x)|dµ+
∣∣ ∫

S

gdµn −
∫
S

gdµ
∣∣

⩽
4

k
+

k+1∑
i=1

ai−1 ·
∣∣µn(Bi)− µ(Bi)

∣∣.
Since µ(∂Bi) = 0, by taking n→ ∞ one has

lim
n→∞

∣∣∣∣∫
S

fdµn −
∫
S

fdµ

∣∣∣∣ ⩽ 4

k
.

Since k is arbitrary, one concludes that
∫
S
fdµn →

∫
S
fdµ.
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As an application of the Portmanteau theorem, we return to prove an earlier
claim that weak convergence is the weakest among the four types of convergence
we defined before.

Proposition 4.6. Convergence in probability implies weak convergence.

Proof. Suppose that Xn converges to X in probability. We use the second chara-
terisation in the Portmanteau theorem to show that Xn converges weakly to X.
To this end, let f be a bounded and uniformly continuous function on R. Given
ε > 0, there exists δ > 0 such that

|x− y| ⩽ δ =⇒ |f(x)− f(y)| ⩽ ε.

It follows that∣∣E[f(Xn)]− E[f(X)]
∣∣

⩽ E[|f(Xn)− f(X)|]
= E[|f(Xn)− f(X)|; |Xn −X| ⩽ δ] + E[|f(Xn)− f(X)|; |Xn −X| > δ]

⩽ ε+ 2∥f∥∞P(|Xn −X| > δ),

where ∥f∥∞ ≜ supx∈R |f(x)|. Since Xn → X in probability, by letting n → ∞
one finds that

lim
n→∞

∣∣E[f(Xn)]− E[f(X)]
∣∣ ⩽ ε.

As ε is arbitrary, one concludes that E[f(Xn)] → E[f(X)], yielding the desired
weak convergence.

4.3.4 Tightness and Prokhorov’s theorem

Helly’s theorem ensures the existence of a vaguely convergent subsequence for a
given family of probability measures (though it is only true in finite dimensions!).
To understand whether vague limit points are always probability measures, one
is led to the concept of tightness.

Definition 4.18. A family {µ : µ ∈ Λ} of probability measures on a metric space
(S,B(S), ρ) is said to be tight, if for any ε > 0 there exists a compact subset
K ⊆ S, such that

µ(K) ⩾ 1− ε for every µ ∈ Λ. (4.16)

We say that a family of random variables is tight if the induced family of laws on
S = R is tight.
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Note that when S = R, the condition (4.16) means that for any ε > 0 there
exists M > 0, such that

µ([−M,M ]) ⩾ 1− ε for every µ.

The following result, known as Prokhorov’s theorem, is of fundamental impor-
tance in the study of weak convergence. We only prove the finite dimensional
version, which gives a precise condition under which vague limit points are al-
ways probability measures, thus enhancing Helly’s theorem to the level of weak
convergence.

Theorem 4.8 (Prokhorov’s theorem in Rd). Let {µ : µ ∈ Λ} be a family of prob-
ability measures on (Rd,B(Rd)). The the following two statements are equivalent:

(i) The family {µ : µ ∈ Λ} is tight;
(ii) Every sequence in the family {µ : µ ∈ Λ} admits a weakly convergent subse-
quence.

Proof. For simplicity we only consider the one dimensional case (i.e. d = 1).
(i) =⇒ (ii). Let µn ∈ Λ be a given sequence in the family. According to Helly’s

theorem (cf. Theorem 4.6), there exists a subsequence µnk
and a sub-probability

measure µ, such that µnk
converges vaguely to µ. We need to show that µ is a

probability measure. Since the family is tight by assumption, for given m ⩾ 1
there exists a closed interval Km such that

µnk
(Km) ⩾ 1− 1

m
for all k.

One may assume that Km is contained in (am, bm], where am < bm are continuity
points of µ such that am ↓ −∞ and bm ↑ ∞ (as m→ ∞). It follows that

µnk
((am, bm]) ⩾ 1− 1

m
for all k.

Letting k → ∞, one obtains that µ((am, bm]) ⩾ 1 − 1/m. By further sending
m → ∞ one concludes that µ(R1) ⩾ 1. Therefore, µ must be a probability
measure.

(ii) =⇒ (i). Suppose on the contrary that the family is not tight. Then there
exists ε > 0, such that for each closed interval [−n, n] one can find µn ∈ Λ with

µn([−n, n]) < 1− ε. (4.17)
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On the other hand, by the assumption of (ii) µn has a weakly convergent subse-
quence, say µnk

converging weakly to some probability measure µ. The property
(4.17) implies that, for each fixed n, when k is large one has

µnk
([−n, n]) ⩽ µnk

([−nk, nk]) < 1− ε.

It follows from the Portmanteau theorem (cf. Theorem 4.7 (iv)) that

µ((−n, n)) ⩽ lim
k→∞

µnk
((−n, n)) ⩽ 1− ε

for every fixed n. Letting n→ ∞, one obtains that µ(R) ⩽ 1−ε which contradicts
the fact that µ is a probability measure. Therefore, the family {µ : µ ∈ Λ} is
tight.

Example 4.13. Let {Xn : n ⩾ 1} be a sequence of random variables such that

L ≜ sup
n

E[|Xn|] <∞.

Then this family is tight. Indeed, let µn be the law of Xn. Then for each M > 0,
one has

µn([−M,M ]c) = P(|Xn| > M) ⩽
E[|Xn|]
M

⩽
L

M

for all n ⩾ 1. When M is large enough, the right hand side is arbitrarily small
uniformly in n. This gives the tightness property.

We must point out the remarkable fact that Prokhorov’s theorem holds in the
general context of metric spaces. We only state the result as its proof is beyond
the scope of the subject. A metric space (S, ρ) is said to be complete, if every
Cauchy sequence is convergent. Examples 4.8 and 4.9 are both complete (and
separable) metric spaces. The general Prokhorov’s theorem is stated as follows.

Theorem 4.9 (Prokhorov’s theorem in metric spaces). Let {µ : µ ∈ Λ} be a
family of probability measures defined on a separable metric space (S,B(S), ρ).

(i) If the family {µ : µ ∈ Λ} is tight, then every sequence in the family admits a
weakly convergent subsequence.
(ii) Suppose further that S is complete. If every sequence in the family {µ : µ ∈ Λ}
admits a weakly convergent subsequence, then the family is tight.

125



4.3.5 An important example: C[0, 1]

We conclude this topic by discussing a useful tightness criterion for the Example
4.9 of the path space C[0, 1]. This is an important result for studying convergence
of stochastic processes such as functional central limit theorems.

Definition 4.19. A stochastic process on [0, 1] is a family of random variables
{X(t) : t ∈ [0, 1]} defined on some probability space (Ω,F ,P).

Since the X(t)’s are random variables, there is a hidden dependence on sam-
ple points ω ∈ Ω. It is therefore more precise to write X(t, ω) to indicate such
dependence. A useful way of looking at a stochastic process is that for each fixed
ω ∈ Ω, the function [0, 1] ∋ t 7→ X(t, ω) defines a real valued path on [0, 1] (called
a sample path). In this way, a stochastic process on [0, 1] can be equivalently
viewed as a mapping from Ω to “the space of paths”.

Recall that W = C[0, 1] is the space of continuous functions (paths) w :
[0, 1] → R equipped with the uniform metric (cf. Example 4.9). Let {X(t) : t ∈
[0, 1]} be a stochastic process defined over some probability space (Ω,F ,P). The
process is said to be continuous, if every sample path is continuous, i.e. for every
ω ∈ Ω, the function [0, 1] ∋ t 7→ X(t, ω) is continuous. Using the sample path
viewpoint, a continuous stochastic process can be regarded as a mapping from Ω
to W .

Definition 4.20. Let X = {X(t) : t ∈ [0, 1]} be a continuous stochastic process
defined over some probability space (Ω,F ,P), viewed as a measurable mapping
X : (Ω,F) → (W,B(W )). The law of X is the probability measure µX on
(W,B(W )) defined by

µX(Γ) ≜ P(X ∈ Γ), Γ ∈ B(W ).

We are often interested in the weak convergence of a sequence of stochastic
processes Xn(t). The following result provides a useful criterion for tightness in
this context, which is an important ingredient in the study of weak convergence.
Its proof, which is enlightening but also quite involved, is deferred to the appendix.

Theorem 4.10. Let Xn = {Xn(t) : t ∈ [0, 1]} (n ⩾ 1) be a sequence of continuous
stochastic processes defined on some probability space (Ω,F ,P). Suppose that the
following two conditions hold true.

(i) There exists r > 0 such that

sup
n⩾1

E[|Xn(0)|r] <∞.
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(ii) There exists α, β, C > 0 such that

E[|Xn(t)−Xn(s)|α] ⩽ C|t− s|1+β

for all s, t ∈ [0, 1] and n ⩾ 1.

Let µn be the law of Xn on (W,B(W )). Then the sequence of probability measures
{µn : n ⩾ 1} is tight.

Appendix. Compactness and tightness in C[0, 1]

The characterisation of compact sets in W = C[0, 1] is given by the well known
Arzelà-Ascoli theorem in functional analysis.

Theorem 4.11. A subset F ⊆ W is precompact (i.e. the closure of F is compact)
if and only if the following two conditions hold true.

(i) F is bounded at t = 0, in the sense that there exists M > 0 such that

|w(0)| ⩽M for all w ∈ F.

(ii) F is uniformly equicontinuous, in the sense that for any ε > 0, there exists
δ > 0 such that

|w(t)− w(s)| < ε

for all w ∈ F and s, t ∈ [0, 1] with |t− s| < δ.

In particular, F is compact if and only if it is closed and Conditions (i) & (ii)
hold.

Remark 4.4. Conditions (i) and (ii) can be written in the following more concise
forms:

(i) sup
w∈F

|w(0)| <∞ and (ii) lim
δ↓0

sup
w∈F

∆(δ;w) = 0

respectively, where ∆(δ;w) is the modulus of continuity for w defined by

∆(δ;w) ≜ sup
|t−s|<δ

|w(t)− w(s)|. (4.18)

Remark 4.5. In its more common form, Condition (i) is often replaced by the
following uniform boundedness condition: there exists M > 0 such that

|w(t)| ⩽M for all w ∈ F and t ∈ [0, 1].

With the presence of Condition (ii), this uniform boundedness condition is equiv-
alent to Condition (i) (why?).
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Example 4.14. Let L > 0 be a fixed number. Define F to be the set of paths
w ∈ W such that w(0) = 0 and

|w(t)− w(s)| ⩽ L|t− s| ∀s, t ∈ [0, 1].

Then F is compact.

Since the notion of tightness is closely related to compact sets, it is reasonable
to expect that tightness over W can be characterised in terms of suitable prob-
abilistic versions of Conditions (i) and (ii) in the Arzelà-Ascoli theorem. This is
the content of the following result.

Theorem 4.12. Let {µ : µ ∈ Λ} be a family of probability measures on (W,B(W )).
Suppose that the following two conditions hold true.

(i) One has
lim

M→∞
sup
µ∈Λ

µ
(
{w : |w(0)| > M}

)
= 0;

(ii) for any ε > 0, one has

lim
δ↓0

sup
µ∈Λ

µ
(
{w : |∆(δ;w)| > ε}

)
= 0. (4.19)

Then the family {µ : µ ∈ Λ} is tight.

Proof. Let ε > 0.Our goal is to find a compact subsetK ⊆ W such that µ(Kc) < ε
for all µ ∈ Λ. To this end, by Assumption (i) there exists M > 0, such that

µ({w : |w(0)| > M}) < ε

2
∀µ ∈ Λ.

In addition, by Assumption (ii), for each n > 0 there exists δn > 0 such that

µ
({
w : |∆(δn;w)| >

1

n

})
<

ε

2n+1
∀µ ∈ Λ.

Now let us define

Γε ≜
{
w : |w(0)| ⩽M

}
∩
( ∞⋂
n=1

{
w : |∆(δn;w)| ⩽

1

n

})
.

It is easy to check that Γε satisfies the two conditions in the Arzelà-Ascoli theorem
and is thus precompact (i.e. Γε is compact). On the other hand, one also has

Γε
c ⊆ Γc

ε =
{
w : |w(0)| > M

}
∪
( ∞⋃
n=1

{
w : |∆(δn;w)| >

1

n

})
.
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It follows that

µ(Γε
c
) ⩽ µ({w : |w(0)| > M) +

∞∑
n=1

µ
({
w : |∆(δn;w)| >

1

n

})
<
ε

2
+

∞∑
n=1

ε

2n+1
< ε

for all µ ∈ Λ. This gives the tightness property.

We now use the tightness criterion given by Theorem 4.12 to prove Theorem
4.10. We first recall an elementary fact about real numbers that will be needed
for the proof. We shall make use of dyadic partitions of [0, 1]. For m ⩾ 0, define

Dm = {k/2m : 0 ⩽ k ⩽ 2m}

to be the m-th dyadic partition of [0, 1]. Let D ≜ ∪∞
m=0Dm. D is the collection

of dyadic points on [0, 1]. Every real number t ∈ [0, 1] admits a unique dyadic
expansion

t =
∞∑
i=0

ai(t)2
−i

where ai(t) = 0 or 1 for each i. If t ∈ D, then the expansion is a finite sum (i.e.
there are at most finitely many 1’s among the ai(t)’s). For instance,

D ∋ 11

16
= 0 · 2−0 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3 + 1 · 2−4 + 0 + 0 + · · · .

Proof of Theorem 4.10. One needs to check the two conditions in Theorem 4.12
for the laws of the sequence {Xn : n ⩾ 1}. Condition (i) is a simple consequence
of Chebyshev’s inequality:

P(|Xn(0)| > M) ⩽
E[|Xn(0)|r]

M r
⩽

L

M r

where
L ≜ sup

n⩾1
E[|Xn(0)|r] <∞.

It follows that
lim

M→∞
sup
n⩾1

P(|Xn(0)| > M) = 0
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and thus Condition (i) holds. Checking Condition (ii) requires deeper probabilistic
reasoning. Since the following argument is uniform in n, to ease notation we will
write Y (t) = Xn(t).

Let γ ∈ (0, β/α) be a fixed number (α, β are the exponents appearing in the
second assumption of the theorem). According to Chebyshev’s inequality, one has

P
(
|Y (k/2m)− Y ((k − 1)/2m)| > 2−γm

)
⩽ 2αγm · E

[
|Y (k/2m)− Y ((k − 1)/2m)|α

]
⩽ C · 2−m(1+β−αγ),

for all 1 ⩽ k ⩽ 2m. It follows that,

P
(

max
1⩽k⩽2m

|Y (k/2m)− Y ((k − 1)/2m)| > 2−γm
)

⩽ P
( 2m⋃
k=1

{
|Y (k/2m)− Y ((k − 1)/2m)| > 2−γm

})
⩽

2m∑
k=1

P
(
|Y (k/2m)− Y ((k − 1)/2m)| > 2−γm

)
⩽ C · 2−m(β−αγ).

Since γ < β/α, the right hand side is summable in m. In particular, given η > 0
there exists p ⩾ 1, such that if one defines

Ωp ≜
∞⋃

m=p

{
max

1⩽k⩽2m

∣∣Y (k/2m)− Y ((k − 1)/2m)
∣∣ > 2−γm

}
,

then

P(Ωp) ⩽ C ·
∞∑

m=p

2−m(β−αγ) < η.

Now let ε > 0 be given. We claim that {∆(δ;Y ) > ε} ⊆ Ωp, or equivalently,

Ωc
p ⊆

{
∆(δ;Y ) ⩽ ε

}
for δ small enough, where ∆(δ;w) is the modulus of continuity for Y defined by
(4.18). To this end, suppose that Ωc

p occurs. Then one has

|Y (k/2m)− Y ((k − 1)/2m)| ⩽ 2−γm for all m ⩾ p and 1 ⩽ k ⩽ 2m.
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Let s, t ∈ D (the set of dyadic points on [0, 1]) be such that

0 < |t− s| < δ ≜ 2−p.

For each l we use the notation sl (respectively, tl) to denote the largest l-th dyadic
point in Dl such that sl ⩽ s (respectively, tl ⩽ t). Let m ⩾ p be the unique integer
such that

2−(m+1) < |t− s| < 2−m.

Note that either sm = tm or tm − sm = 2−m. It follows that

|Y (t)− Y (s)| ⩽ |Y (tm)− Y (sm)|+
∞∑

l=m

|Y (tl+1)− Y (tl)|+
∞∑

l=m

|Y (sl+1)− Y (sl)|

⩽ 2−γm + 2
∞∑

l=m

2−γ(l+1) =
(
1 +

2

2γ − 1

)
· 2−γm

⩽ 2γ
(
1 +

2

2γ − 1

)
|t− s|γ < 2γ

(
1 +

2

2γ − 1

)
· 2−pγ. (4.20)

If it is further assumed that p satisfies

2γ
(
1 +

2

2γ − 1

)
· 2−pγ < ε

at the beginning, then (4.20) gives that |Y (t)− Y (s)| < ε. Since this holds for all
s, t ∈ D with |t− s| < δ and D is dense in [0, 1], by continuity one concludes that
∆(δ;Y ) < ε.

Now the proof of Theorem 4.10 is complete.
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5 Sequences and sums of independent random vari-
ables

This chapter is an introduction to the realm of probabilistic limit theory. The
study of asymptotic behaviours of stochastic processes, random dynamical sys-
tems, complex random structures etc. has been (and will continue to be) a central
theme of modern research in probability theory. Basic limit theorems such as law
of large numbers, central limit theorem etc. also have enormous applications in a
variety of mathematical and scientific areas.

To introduce some of the essential probabilistic ideas, in this chapter we will
focus on the most basic and classical situation: sequence of independent ran-
dom variables. In particular, we are going to establish the following three major
theorems:

(i) Kolmogorov’s two-series theorem for random series;
(ii) The strong law of large numbers;
(iii) Cramér’s theorem of large deviations.

Among others, these three theorems are of fundamental importance in probability
theory; apart from their broad applications, the proofs of these results also contain
deep mathematical ideas and techniques that have far-reaching implications.

In Section 5.1, we begin by introducing Kolmogorov’s zero-one law and the
Borel-Cantelli lemma. These are powerful tools which are particularly useful for
proving various probabilistic limit theorems. In Section 5.3, we establish Kol-
mogorov’s two-series theorem which gives a useful criterion for the convergence
of random series. It also provides a basic tool for proving the strong law of large
numbers. In Sections 5.4 and 5.6, we establish the strong law of large numbers and
the large deviation principle respectively in the context of i.i.d. sequences. The
former result mathematically justifies the phenomenon that the sample average
asymptotically stabilises at its theoretical mean. The latter result quantifies the
concentration of measure associated with the law of large numbers.

5.1 Kolmogorov’s zero-one law and the Borel-Cantelli lemma

Let {Xn : n ⩾ 1} be a sequence of random variables. We are interested in deriving
conditions under which the random series

∑∞
n=1Xn is convergent. When the Xn’s

are independent, it is a remarkable theorem (Kolmogorov’s zero-one law) that the
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event { ∞∑
n=1

Xn is convergent
}

has probability either zero or one. Before discussing this result, we first spend
some time recalling the general definition of independence.

5.1.1 Definition of independence

Let (Ω,F ,P) be a given probability space. Let {Gn : n ⩾ 1} be a sequence of
sub-σ-algebras of F .

Definition 5.1. We say that G1,G2, · · · are independent if whenever Gi ∈ Gi and
i1, · · · , in are distinct, one has

P
(
Gi1 ∩ · · · ∩Gin

)
= P(Gi1) · · ·P(Gin).

Remark 5.1. One can of course just talk about the independence between two (or
finitely many) σ-algebras: G1,G2 are independent if

P(G1 ∩G2) = P(G1)P(G2) ∀Gi ∈ Gi (i = 1, 2).

Definition 5.1 is the most general one; it covers all notions of independence we
have seen before. For instance, two random variables X, Y are independent if and
only if σ(X), σ(Y ) are independent. Here

σ(X) ≜ σ({X ⩽ x} : x ∈ R) = X−1B(R)

denotes the σ-algebra generated by X. A collection of events A1, · · · , An are
independent if and only if the σ-algebras σ(A1), · · · , σ(An) are independent (recall
that σ(Ai) ≜ {∅, Ai, A

c
i ,Ω}). This is also equivalent to saying that the random

variables 1A1 , · · · ,1An are independent.

Definition 5.2. A sequence {Xn : n ⩾ 1} of random variables are said to be
independent, if the sequence σ(X1), σ(X2), · · · of σ-algebras are independent in
the sense of Definition 5.1.

5.1.2 Tail σ-algebras and Kolmogorov’s zero-one law

Let {Gn : n ⩾ 1} be a given sequence of sub-σ-algebras over (Ω,F ,P). For each
n ⩾ 1, let us define

Tn ≜ σ
( ∞⋃
k=n+1

Gk

)
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to be the σ-algebra generated by the tail sequence Gn+1,Gn+2, · · · . We then set

T ≜
∞⋂
n=1

Tn.

It is routine to check that T is a sub-σ-algebra of F . Heuristically, T is generated
by the information encoded in the “infinitely far tail” of the sequence {Gn}. This
leads to the following definition.

Definition 5.3. The σ-algebra T is called the tail σ-algebra of the sequence {Gn}.
Members of T are called tail events.

The most important situation to have in mind (which will always be the case in
our study unless otherwise stated) is when {Gn} come from a sequence of random
variables {Xn} (i.e. Gn = σ(Xn)). Below are some important examples of tail
events in this case.

Example 5.1. The following events are tail events of the sequence {Xn}:

F1 =
{
lim
n→∞

Xn exists
}
≜

{
ω ∈ Ω : lim

n→∞
Xn(ω) exists

}
,

F2 =
{ ∞∑

n=1

Xn is convergent
}
,

F3 =
{
lim
n→∞

X1 + · · ·+Xn

n
exists

}
.

We only look at F2 and leave the other two as an exercise. To show that F2 ∈ T ,
by definition one needs to show that F2 ∈ Tn for each fixed n. But this is obvious,
since F2 can also be written as

F2 =
{ ∞∑

m=n+1

Xm is convergent
}
,

which is clearly measurable with respect to Xn+1, Xn+2, · · · .

Example 5.2. The event {Xn > 0 ∀n} is not a tail event, since its occurrence
relies on the values of all the Xn’s and cannot be determined by the information
encoded in {Xn+1, Xn+2, · · · } for arbitrarily large n.

Kolmogorov’s zero-one law asserts that tail events of an independent sequence
always have probabilities either zero or one.
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Theorem 5.1. Let {Gn : n ⩾ 1} be an independent sequence of sub-σ-algebras
over (Ω,F ,P). For any A ∈ T , one has

P(A) = 0 or 1.

Proof. Define
Fn ≜ σ(G1, · · · ,Gn).

By using Dynkin’s π-λ theorem, one sees that Fn and Tm are independent for all
m ⩾ n. In particular, Fn and T are independent (for every n). Let us define

F∞ ≜ σ
( ∞⋃
n=1

Fn

)
= σ(G1,G2, · · · ).

It follows from a similar reason that F∞ and T are independent. Given A ∈ T ,
one can trivially write A = A∩A. By viewing the first A as a member of F∞ and
the second A as a member of T , one concludes by their independence that

P(A) = P(A ∩ A) = P(A)2 ⇐⇒ P(A)
(
1− P(A)

)
= 0.

As a consequence, P(A) = 0 or 1.

The following result is an immediate consequence of Theorem 5.1. We leave
its proof as an exercise.

Corollary 5.1. Under the assumption of Theorem 5.1, let Y be a random variable
that is measurable with respect to T . Then Y is degenerate, i.e. Y = constant
a.s.

5.1.3 The Borel-Cantelli lemma

According to Example 5.1 and Theorem 5.1, for an independent sequence {Xn}
the event { ∞∑

n=1

Xn is convergent
}

is a tail event and thus has probability either zero or one. However, it is a priori not
clear which case occurs. In probability theory, there is a particularly useful tool
(the Borel-Cantelli lemma) which can often be applied to answer such questions.

We first recall the following definitions. Let {An : n ⩾ 1} be a given sequence
of events. We use the notation

lim
n→∞

An ≜
∞⋂
n=1

∞⋃
m=n

Am
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to denote the event that “An happens for infinitely many n’s (or “An happens
infinitely often”). Sometimes we simply write “An i.o.” Respectively, the notation

lim
n→∞

An ≜
⋃
n=1

⋂
m=n

Am

denotes the event that “from some point on every An happens” (or “An happens
for all but finitely many n’s”). Sometimes we simply write “An eventually.” It is
obvious that (

lim
n→∞

An

)c
= lim

n→∞
Ac

n,
(
lim
n→∞

An

)c
= lim

n→∞
Ac

n.

The Borel-Cantelli lemma is stated as follows.

Theorem 5.2. Let {An : n ⩾ 1} be a sequence of events defined on some proba-
bility space (Ω,F ,P).

(i) [1st Borel-Cantelli lemma] If
∞∑
n=1

P(An) <∞, then P
(
lim
n→∞

An

)
= 0.

(ii) [2nd Borel-Cantelli lemma] Suppose further that the sequence {An} are inde-

pendent. If
∞∑
n=1

P(An) = ∞, then P
(
lim
n→∞

An

)
= 1.

Proof. (i) By the definition of lim
n→∞

An and the assumption, one has

P
(
lim
n→∞

An

)
= P

( ∞⋂
n=1

∞⋃
m=n

Am

)
= lim

n→∞
P
( ∞⋃
m=n

Am

)
⩽ lim

n→∞

∞∑
m=n

P(Am) = 0.

(ii) By considering the complement, one has

P
((

lim
n→∞

An

)c)
= P

( ∞⋃
n=1

∞⋂
m=n

Ac
m

)
= lim

n→∞
P
( ∞⋂
m=n

Ac
m

)
= lim

n→∞
lim

N→∞
P
( N⋂
m=n

Ac
m

)
.

Now we study the above limit. First of all, by independence one knows that

P
( N⋂
m=n

Ac
m

)
=

(
1− P(An)

)
· · ·

(
1− P(AN)

)
= exp

( N∑
m=n

log(1− P(Am)
)
⩽ exp

(
−

N∑
m=n

P(Am))
)
,
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where we used the elementary inequality that log(1−x) ⩽ −x. Since
∑∞

n=1 P(An) =
∞, by letting N → ∞ one finds that

lim
N→∞

P
( N⋂
m=n

Ac
m

)
⩽ exp

(
−

∞∑
m=n

P(Am)
)
= exp(−∞) = 0.

This is true for every n. As a consequence,

P
((

lim
n→∞

An

)c)
= lim

n→∞
lim

N→∞
P
( N⋂
m=n

Ac
m

)
= 0

and the result thus follows.

As illustrated by the following example, the independence assumption is es-
sential for the second Borel-Cantelli’s lemma to hold.

Example 5.3. Let X be a uniform random variable over [0, 1]. Define An ≜ {X ⩽
1/n} (n ⩾ 1). Then P(An) = 1/n and thus

∑
n P(An) = ∞. However, one has

lim
n→∞

An = {X = 0},

which is an event of zero probability. The issue here is that the An’s are not
independent.

Remark 5.2. The second Borel-Cantelli lemma remains valid under the assumption
of pairwise independence, i.e. only assuming that An and Am are independent for
each pair of n ̸= m.

The following example is a trivial application of the second Borel-Cantelli
lemma, although it may still look surprising to non-probabilists.

Example 5.4. Suppose that one tosses a fair coin independently in a sequence.
Let A1 be the event that the first 1010 consecutive tosses all result in “heads”. Let
A2 be the event that the next 1010 consecutive tosses all result in “heads”, and so
forth. It is apparent that the An’s are independent and each of them has a rather
small probability:

P(An) = 0.510
10

> 0.

Nonetheless, one still has
∑∞

n=1 P(An) = ∞. It follows from the second Borel-
Cantelli lemma that

P
(
lim
n→∞

An

)
= 1.
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In other words, with probability one, there will be infinitely many intervals of
length 1010 that contain only “heads”! There is another interesting way of describ-
ing this phenomenon. If a monkey randomly types one letter at each time, then
with probability one it will eventually produce an exact copy of Shakespeare’s
“Hamlet” (in fact infinitely many copies!). The next question is: how long on
average does the monkey need to produce such a copy for the first time? We will
answer this question in Section 8.7.1 below by using martingale theory.

5.1.4 An application to random walks: recurrence / transience

We discuss an interesting application of Kolmogorov’s zero-one law and the Borel-
Cantelli lemma to the recurrence / transience of simple random walks. Let {Xn :
n ⩾ 1} be an i.i.d. sequence with distribution

P(X1 = 1) = p, P(X1 = −1) = q ≜ 1− p,

where p ∈ (0, 1) is given fixed. For each n ⩾ 1, we set Sn ≜ X1+· · ·+Xn (S0 ≜ 0).
The sequence {Sn} defines a random walk on the integer lattice Z. Suppose that
its current location is Sn = x ∈ Z. In the next move, it will jump to x + 1 with
probability p and to x − 1 with probability q respectively. We are interested in
the probability that the random walk will return to the origin infinitely often.

Proposition 5.1. (i) Suppose that p ̸= 1/2. Then P(Sn = 0 i.o.) = 0.
(ii) Suppose that p = 1/2. Then P(Sn = 0 i.o.) = 1.

Proof. (i) Note that Sn can only return to the origin in even number of steps. It
is elementary to see that

P(S2n = 0) =

(
2n

n

)
pnqn =

(2n)!

(n!)2
(pq)n.

In addition, recall from Stirling’s formula (cf. Proposition 7.1 below) that

n! ∼
√
2πn

(n
e

)n as n→ ∞,

where an ∼ bn means lim
n→∞

an
bn

= 1. As a consequence,

P(S2n = 0) ∼
√
2π · 2n(2n/e)2n(√
2πn(n/e)n

)2 (pq)n =
1√
πn

(4pq)n as n→ ∞. (5.1)
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Since p ̸= 1/2, one has

4pq = 4p(1− p) = 4p− 4p2 = 1− (1− 2p)2 < 1.

It follows from (5.1) that
∞∑
n=1

P(S2n = 0) <∞.

According to the first Borel-Cantelli lemma, one concludes that

P(Sn = 0 i.o.) = P(S2n = 0 i.o.) = 0.

(ii) If p = 1/2, the relation (5.1) yields that
∞∑
n=1

P(S2n = 0) = ∞.

However, one cannot apply the second Borel-Cantelli lemma directly since the
events {S2n = 0} (n ⩾ 1) are not independent. To solve the problem, we claim
that

P
(
lim
n→∞

Sn√
n
= ∞ and lim

n→∞

Sn√
n
= −∞

)
= 1. (5.2)

If this is true, it implies that with probability one, there are subsequences of
times along which Sn explodes to ∞ and −∞ respectively. In particular, with
probability one it has to return to the origin infinitely often (in order to “fluctuate
between ±∞”).

To prove (5.2), let us set

A ≜
{
lim
n→∞

Sn√
n
= ∞

}
.

For each M > 0 we define

AM ≜
{
lim
n→∞

Sn√
n
⩾M

}
.

Then AM ↓ A and thus P(AM) ↓ P(A) as M → ∞. In order to prove P(A) = 1, it
suffices to show that P(AM) = 1 for all M . To this end, a key observation is that
AM is a tail event of the sequence {Xn} (why?). As a result of Theorem 5.1, it is
enough to show that P(AM) > 0. Since

lim
n→∞

{ Sn√
n
> M

}
⊆ AM ,

139



one finds that

P(AM) ⩾ P
(
lim

M→∞

{ Sn√
n
> M

})
= P

( ∞⋂
n=1

∞⋃
m=n

{ Sm√
m
> M

})
= lim

n→∞
P
( ∞⋃
m=n

{ Sm√
m
> M

})
⩾ lim

n→∞
P
( Sn√

n
> M

)
.

According to the classical central limit theorem (cf. Theorem 7.1 below), one has

lim
n→∞

P
( Sn√

n
> M

)
=

1√
2π

∫ ∞

M

e−x2/2dx > 0.

Therefore P(AM) > 0, which implies that P(AM) = 1 (for all M) and thus P(A) =
1. The second event in (5.2) is treated in the same way (or simply use {Sn}

law
=

{−Sn}).

5.2 The weak law of large numbers

We demonstrate another important application of the Borel-Cantelli lemma: the
weak law of large numbers. We first prove a simple property for the expectation
that will be used later on.

Lemma 5.1. Let X be non-negative random variable. Then one has

E[X] <∞ ⇐⇒
∞∑
n=1

P(X > n) <∞. (5.3)

Proof. We only prove necessity part and leave the other direction as an exercise.
According to Proposition 3.2, one has

E[X] =

∫ ∞

0

P(X > x)dx =
∞∑
n=1

∫ n

n−1

P(X > x)dx

⩾
∞∑
n=1

∫ n

n−1

P(X > n)dx =
∞∑
n=1

P(X > n).

The implication “ =⇒ ” in (5.3) thus follows.

The weak law of large numbers (LLN) is stated as follows.
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Theorem 5.3. Let {Xn : n ⩾ 1} be a sequence of pairwise independent, identically
distributed random variables with finite mean m. Define Sn ≜ X1+ · · ·+Xn. Then

lim
n→∞

Sn

n
= m in prob. (5.4)

Before developing its proof, we first examine a particularly simple but enlight-
ening situation. For the moment, let us further assume that all the Xn’s have
finite variance σ2. By Chebyshev’s inequality, in this case one has

P
(∣∣Sn

n
−m

∣∣ > ε
)
⩽

1

ε2
Var

[Sn

n

]
=

1

ε2n2
Var[Sn] =

σ2

nε2
. (5.5)

This trivially gives the convergence (5.4). The key point here is that Var[Sn] =
o(n2) as n→ ∞ (o(n2) means a real sequence an such that an/n2 → 0).

The main idea of proving the weak LLN in the general case is to truncate Xn

to a bounded random variable. This is a basic technique that will be used again
in the study of the strong LLN.

Proof of Theorem 5.3. We divide the proof into several steps. Let F (x) be the
distribution function of X1 (equivalently, of any Xn).

Step one: truncation. We define

Yn ≜

{
Xn, if |Xn| ⩽ n;

0, otherwise.

Observe that {Xn ̸= Yn} = {|Xn| > n}. Since all the Xn’s are identically dis-
tributed, one has

∞∑
n=1

P(Xn ̸= Yn) =
∞∑
n=1

P(|Xn| > n) =
∞∑
n=1

P(|X1| > n) <∞,

where the last summability follows from Lemma 5.1. According to the first Borel-
Cantelli lemma,

P
(
Xn ̸= Yn for infinitely many n

)
= 0.

In other words, with probability one Xn = Yn for all n sufficiently large.
Step two: the weak LLN for {Yn}. Define Tn ≜ Y1 + · · ·+ Yn. Inspired by the

earlier argument for (5.5), let us estimate Var[Tn]. Since Y1, · · · , Yn are indepen-
dent, one has

Var[Tn] =
n∑

j=1

Var[Yj] ⩽
n∑

j=1

E[Y 2
j ].

141



Our goal is to show that the above quantity is of order o(n2). By the construction
of Yn, one has

n∑
j=1

E[Y 2
j ] =

n∑
j=1

E[X2
j 1{|Xj |⩽j}] =

n∑
j=1

∫
{|x|⩽j}

x2dF (x)

=
∑
j⩽

√
n

∫
{|x|⩽j}

x2dF (x) +
∑

√
n<j⩽n

∫
{|x|⩽j}

x2dF (x). (5.6)

We estimate the above two sums separately. For the first one,∑
j⩽

√
n

∫
{|x|⩽j}

x2dF (x) ⩽
∑
j⩽

√
n

∫
{|x|⩽j}

√
n · |x|dF (x)

⩽
∑
j⩽

√
n

√
n

∫ ∞

−∞
|x|dF (x) = n · E[|X1|].

For the second one,∑
√
n<j⩽n

∫
{|x|⩽j}

x2dF (x) =
∑

√
n<j⩽n

( ∫
{|x|⩽

√
n}
x2dF (x) +

∫
{
√
n<|x|⩽j}

x2dF (x)
)

⩽ n
√
n ·

∫ ∞

−∞
|x|dF (x) + n2

∫
{|x|>

√
n}
|x|dF (x)

= n
√
n · E[|X1|] + n2E[|X1| · 1{|X1|>

√
n}].

Note that (cf. Proposition 2.8)

lim
n→∞

E[|X1| · 1{|X1|>
√
n}] = 0.

As a result, both sums on the right hand side of (5.6) is of order o(n2). Therefore,
Var[Tn] = o(n2). By the same argument leading to (5.5), one obtains tha

lim
n→∞

Tn − E[Tn]
n

= 0 in prob.

Step three: relating back to the sequence {Xn}. To complete the proof, let us
compare Sn

n
−m with Tn−E[Tn]

n
. Firstly, observe that

∣∣(Sn

n
−m

)
−

(Tn − E[Tn]
n

)∣∣ ⩽ |Sn − Tn|
n

+
∣∣E[Tn]
n

−m
∣∣.
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In Step One, we have seen that with probability one Xn = Yn for all sufficiently
large n. This implies that with probability one,

Sn − Tn = (X1 − Y1) + · · ·+ (Xn − Yn)

stops depending on n after some point and thus

|Sn − Tn|
n

→ 0 as n→ ∞.

In addition, it is apparent that

E[Yn] =
∫
{|x|⩽n}

xdF (x) →
∫ ∞

−∞
xdF (x) = m

as n→ ∞. It follows that

E[Tn]
n

=
E[Y1] + · · ·+ E[Yn]

n
→ m,

where we used the elementary analytic fact that

an → a ∈ R =⇒ a1 + · · ·+ an
n

→ a. (5.7)

To summarise, one concludes that with probability one,

lim
n→∞

∣∣(Sn

n
−m

)
−

(Tn − E[Tn]
n

)∣∣ = 0.

Combining with Step Two, the result thus follows.

Remark 5.3. It is a remarkable fact that the conclusion of Theorem 5.3 can be
strengthened to almost sure convergence under exactly the same assumption,
hence yielding a strong LLN. In Section 5.4, we will prove such a result under
the stronger assumption of total independence.

5.3 Kolmogorov’s two-series theorem

Our study of the strong LLN relies heavily on techniques from random series. We
develop a few relevant tools in this section. Let {Xn : n ⩾ 1} be a sequence of
random variables defined on some probability space (Ω,F ,P).
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Definition 5.4. We say that the random series
∑∞

n=1Xn is convergent almost
surely (a.s.), if

P
(
{ω :

∞∑
n=1

Xn(ω) is convergent}
)
= 1.

Our first task is to derive a characterisation of the a.s. convergence of a random
series. In real analysis, the convergence of a real series

∑∞
n=1 xn is characterised

by the Cauchy criterion: the series
∑∞

n=1 xn is convergent if and only if for any
ε > 0, there exists n ⩾ 1 such that for any l ⩾ n one has∣∣sl − sn

∣∣ < ε,

where sn ≜ x1 + · · ·+ xn. Equivalently,
∞∑
n=1

xn not convergent ⇐⇒ ∃ε,∀n,∃l ⩾ n s.t. |sl − sn| ⩾ ε. (5.8)

The statement “∃l ⩾ n s.t. |sl − sn| ⩾ ε” can clearly be replaced by

∃N ⩾ n s.t. max
n⩽l⩽N

|sl − sn| ⩾ ε.

In the context of random series, it is thus reasonable to expect that
∑

nXn is
convergent a.s. if and only if

P
(
∃ε, ∀n,∃N ⩾ n s.t. max

n⩽l⩽N
|Sl − Sn| ⩾ ε

)
= 0,

where Sn ≜ X1 + · · ·+Xn. This is precisely the following probabilistic version of
the Cauchy criterion.

Proposition 5.2. Let {Xn : n ⩾ 1} be a sequence of random variables and set
Sn ≜ X1+ · · ·+Xn. The random series

∑∞
n=1Xn is convergent a.s. if and only if

lim
n→∞

lim
N→∞

P
(
max
n⩽l⩽N

|Sl − Sn| ⩾ ε
)
= 0 (5.9)

for all ε > 0.

Proof. One can clearly pretend that ε ∈ Q (why?). Based on the above reasoning,
it is seen that

P
( ∞∑

n=1

Xn is not convergent
)
= 0 ⇐⇒ P

( ⋃
ε>0,ε∈Q

⋂
n⩾1

⋃
N⩾n

{
max
n⩽l⩽N

|Sl − Sn| ⩾ ε
})

= 0.
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The last property is equivalent to that

P
( ⋂
n⩾1

⋃
N⩾n

{
max
n⩽l⩽N

|Sl − Sn| ⩾ ε
})

= 0 ∀ε ∈ Q ∩ (0,∞).

By the continuity of probability measures, one also has

P
( ⋂
n⩾1

⋃
N⩾n

{
max
n⩽l⩽N

|Sl − Sn| ⩾ ε
})

= lim
n→∞

lim
N→∞

P
(
max
n⩽l⩽N

|Sl − Sn| ⩾ ε
)
.

The result thus follows.

The probabilistic Cauchy criterion (5.9) is difficult to verify directly in general.
Nonetheless, there is a particularly simple and useful criterion in the independent
context. This is known as Kolmogorov’s two-series theorem.

Theorem 5.4. Let {Xn : n ⩾ 1} be a sequence of independent random vari-
ables. Suppose that each Xn has finite mean and variance. If both of the real
series

∑
n E[Xn] and

∑
n Var[Xn] are convergent, then the random series

∑
nXn

is convergent a.s.

The above theorem is almost an immediate consequence of the following in-
equality of Kolmogorov, whose proof is truly ingenious.

Lemma 5.2 (Kolmogorov’s maximal inequality). Let X1, · · · , Xn be independent
random variables. Suppose that E[Xk] = 0 and Var[Xk] <∞ for each k. Then for
any ε > 0, one has

P
(
max
1⩽k⩽n

|Sk| ⩾ ε
)
⩽

1

ε2

n∑
k=1

Var[Xk], (5.10)

where Sk ≜ X1 + · · ·+Xk.

Proof. We decompose the event

A ≜
{
max
1⩽k⩽n

|Sk| ⩾ ε
}

according to the first k such that |Sk| ⩾ ε. More precisely, for each 1 ⩽ k ⩽ n we
introduce the event

Ak ≜
{
|S1| < ε, · · · , |Sk−1| < ε, |Sk| ⩾ ε

}
.
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It is obvious that A1, · · · , An are disjoint and A = ∪n
k=1Ak. Therefore, one has

P
(
A
)
=

n∑
k=1

P(Ak) ⩽
1

ε2

n∑
k=1

E[S2
k1Ak

], (5.11)

where the last inequality follows from the fact that |Sk| ⩾ ε on Ak.
Here is the crucial point. We claim that

E[S2
k1Ak

] ⩽ E[S2
n1Ak

] (5.12)

for every k ⩽ n. Coming up with such an observation is much harder than its
proof; the intuition behind (5.12) is better understood with insight from martin-
gale theory. Here we just prove this inequality directly. Note that

E[S2
n1Ak

] = E[(Sn − Sk + Sk)
21Ak

]

= E[(Sn − Sk)
21Ak

] + 2E[(Sn − Sk)Sk1Ak
] + E[S2

k1Ak
]. (5.13)

Since X1, · · · , Xn are independent, one has

E[(Sn − Sk)Sk1Ak
] = E[(Xk+1 + · · ·+Xn)Sk1Ak

]

= E[Xk+1 + · · ·+Xn] · E[Sk1Ak
]

= 0.

In addition, the first term on the right hand side of (5.13) is non-negative. As a
result, the inequality (5.12) holds.

It follows from (5.11) and (5.12) that

P
(
A
)
⩽

1

ε2

n∑
k=1

E[S2
n1Ak

] =
1

ε2
E[S2

n1A] ⩽
1

ε2
E[S2

n].

On the other hand, due to the independence and mean zero assumptions one also
has

E[S2
n] = E[(X1 + · · ·+Xn)

2] =
n∑

k=1

E[X2
k ] +

∑
i ̸=j

E[XiXj]

=
n∑

k=1

E[X2
k ] +

∑
i ̸=j

E[Xi]E[Xj] =
n∑

k=1

Var[Xk].

Therefore, the desired inequality (5.10) follows.
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Using Kolmogorov’s maximal inequality and the probabilistic Cauchy criterion,
the two-series theorem can be proved quite easily.

Proof of Theorem 5.4. We shall verify the criterion (5.9). Without loss of gener-
ality, one may assume that E[Xn] = 0; for otherwise one can consider the sequence
Xn − E[Xn] instead. In this case, according to the maximal inequality (5.10), for
any ε > 0 one has

P
(
max
n⩽l⩽N

|Sl − Sn| ⩾ ε
)
⩽

1

ε2
(
Var[Xn+1] + · · ·+Var[XN ]

)
,

where Sn ≜ X1 + · · ·+Xn. It follows that

lim
N→∞

P
(
max
n⩽l⩽N

|Sl − Sn| ⩾ ε
)
⩽

1

ε2

∞∑
k=n+1

Var[Xk].

Since
∑

n Var[Xn] <∞, one further has

lim
n→∞

lim
N→∞

P
(
max
n⩽l⩽N

|Sl − Sn| ⩾ ε
)
⩽

1

ε2
lim
n→∞

∞∑
k=n+1

Var[Xk] = 0.

Therefore, the property (5.9) holds and one concludes from Proposition 5.2 that
the random series

∑
nXn is convergent a.s.

Example 5.5. From real analysis, the harmonic series
∑

n 1/n diverges while the
alternating harmonic series

∑
n

(−1)n−1

n
is convergent. It is interesting to investi-

gate the convergence of the series if one puts a “random ±-sign” in front of each
1/n. A natural mathematical formulation is to consider the random series

∑
n

Xn

n
,

where {Xn : n ⩾ 1} is an i.i.d. symmetric Bernoulli sequence:

P(X1 = 1) = P(X1 = −1) =
1

2
.

It follows easily from Kolmogorov’s two-series theorem that
∑

n
Xn

n
is convergent

a.s.

Remark 5.4. There is a more general characterisation of the a.s. convergence of∑
nXn which covers the case when the Xn’s fail to have finite variance (Kol-

mogorov’s three-series theorem). Let {Xn : n ⩾ 1} be a sequence of independent
random variables. Then the random series

∑
nXn converges a.s. if and only if
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there exists C > 0 (equivalently, for every C > 0), such that the following three
properties hold true:

(i)
∑

n P(|Xn| > C) <∞;
(ii)

∑
n E[Xn1{|Xn|⩽C}] is convergent;

(iii)
∑

n Var[Xn1{|Xn|⩽C}] <∞.

The reader is referred to [Shi96] for a proof of this result.

5.4 The strong law of large numbers

In this section, we use tools from random series (in particular, the two-series
theorem) to establish the strong LLN in the i.i.d. context. Let {Xn : n ⩾ 1} be
an i.i.d. sequence of random variables defined on some probability space (Ω,F ,P).
As usual, we denote Sn ≜ X1 + · · ·+Xn as the partial sum sequence. The strong
LLN is stated as follows.

Theorem 5.5. (i) Suppose that E[|X1|] <∞. Then one has

lim
n→∞

Sn

n
= E[X1] a.s. (5.14)

(ii) Suppose that E[|X1|] = ∞. Then one has

lim
n→∞

|Sn|
n

= ∞ a.s. (5.15)

We are going to take an analytic perspective to prove Theorem 5.5. Conceptu-
ally, the LLN is essentially related to the following type of convergence properties:

1

an

n∑
j=1

xj → 0 (5.16)

where 0 < an ↑ ∞ and xn ∈ R. It is typical that an = n and xn = Xn(ω)−E[Xn].
The property (5.16) is often shown by means of the following analytic fact known
as Kronecker’s lemma.

Lemma 5.3. Let {xn} be a real sequence and {an} be a positive sequence increas-
ing to infinity. Suppose that the series

∑∞
n=1

xn

an
is convergent. Then the property

(5.16) holds.
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The proof of this lemma is deferred to the appendix for not distracting the
reader from the main probabilistic picture. An inspiration from this lemma is that
one can try to prove the strong LLN through the convergence of suitable random
series. We now give the precise argument for this.

Proof of Theorem 5.5. The argument is quite involved and we divide it into sev-
eral steps. The idea is similar to the proof of the weak law (truncation). We first
prove (5.14) which is the main case of interest.

Step one: truncation. We again introduce the following truncated sequence:

Yn ≜

{
Xn, if |Xn| ⩽ n;

0, otherwise.

In the same way as in Step One for the proof of the weak law, one concludes that

P
(
Xn = Yn for all sufficiently large n

)
= 1.

As a consequence,

lim
n→∞

1

n

n∑
j=1

(Xj − Yj) = 0 a.s. (5.17)

Step two: convergence of
∑

n
Yn−E[Yn]

n
. Our next step is to apply Kolmogorov’s

two-series theorem to the random series
∑

n Zn where Zn ≜ Yn−E[Yn]
n

. Since Zn

has mean zero, one only needs to check that
∑

nVar[Zn] <∞. To this end, let µ
denote the law of X1. By the definition of Yn, one has

Var[Zn] ⩽
1

n2
E[Y 2

n ] =
1

n2

∫
{|x|⩽n}

x2µ(dx).

It follows that
∞∑
n=1

Var[Zn] ⩽
∞∑
n=1

1

n2

∫
{|x|⩽n}

x2µ(dx) =
∞∑
n=1

1

n2

n∑
j=1

∫
{j−1<|x|⩽j}

x2µ(dx)

=
∞∑
j=1

( ∫
{j−1<|x|⩽j}

x2µ(dx)
) ∞∑

n=j

1

n2
(exchange of summation).

To analyse the last expression, one first observes that∫
{j−1<|x|⩽j}

x2µ(dx) ⩽ j ·
∫
{j−1<|x|⩽j}

|x|µ(dx).

149



In addition, one also has

∞∑
n=j

1

n2
⩽

∞∑
n=j

1

(n− 1)n
=

∞∑
n=j

( 1

n− 1
− 1

n

)
=

1

j − 1
⩽

2

j

for all j ⩾ 2. Note that the above inequality is also valid when j = 1 since

∞∑
n=1

1

n2
=
π2

6
< 2.

As a result, one obtains that

∞∑
n=1

Var[Zn] ⩽
∞∑
j=1

j ·
( ∫

{j−1<|x|⩽j}
|x|µ(dx)

)
· 2
j

= 2
∞∑
j=1

∫
{j−1<|x|⩽j}

|x|µ(dx) = 2E[|X1|] <∞.

According to Kolmogorov’s two-series theorem, one concludes that the random
series

∑
n Zn converges a.s. It then follows from Kronecker’s lemma (cf. Lemma

5.3) with an = n and xn = Yn − E[Yn] that

1

n

n∑
j=1

(Yj − E[Yj]) → 0 a.s. (5.18)

as n→ ∞.

Step three: convergence of 1
n

n∑
j=1

E[Yj]. By definition and the dominated

convergence theorem, one has

E[Yn] =
∫
{|x|⩽n}

xµ(dx) → E[X1]. (5.19)

It follows from (5.18) and the elementary fact (5.7) that

1

n

n∑
j=1

Yj → E[X1] a.s.

The strong LLN (5.14) is now a consequence of (5.17) obtained in the first step.
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Finally, we consider the divergent case. Suppose that E[|X1|] = ∞. A simple
adaptation of the proof of Lemma 5.1 implies that

∞∑
n=1

P(|X1| > An) = ∞

for any given A > 0. Since the Xn’s are identically distributed, it follows that
∞∑
n=1

P(|Xn| > An) = ∞.

By independence and the second Borel-Cantelli lemma, one thus finds that

P(|Xn| > An for infinitely many n) = 1.

Observe that

{Xn > An} ⊆
{
|Sn| >

An

2

}
∪
{
|Sn−1| >

A(n− 1)

2

}
.

As a result, one has

P
(
|Sn| >

An

2
for infinitely many n

)
= 1.

Note that this is true for all A > 0. To conclude, for each m ⩾ 1 we define

Ωm ≜
{
|Sn| > mn for infinitely many n

}
and set Ω ≜ ∩∞

m=1Ωm. Then P(Ω) = 1 and one also has

Ω ⊆
{
lim
n→∞

|Sn|
n

⩾ m ∀m
}
=

{
lim
n→∞

|Sn|
n

= ∞
}
.

Consequently, the divergence property (5.15) follows.

Remark 5.5. It was a remarkable result of N. Etemadi [Ete81] that Theorem 5.5
remains true when the assumption of total independence is weakened to pairwise
independence.

5.5 Some applications of the law of large numbers

In this section, we present a few applications of (weak and strong) LLN.
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5.5.1 Bernstein’s polynomial approximation theorem

As the first example, we discuss an application of the weak LLN to polynomial
approximations of continuous functions. From calculus, one can easily approx-
imate a smooth function by polynomials through the Taylor expansion. If the
function is only assumed to be continuous, how can one construct its polynomial
approximation in some natural way? This question is of practical importance
since polynomials are much easier to analyse both theoretically and computation-
ally. Among various different approaches, the following elegant one was originally
due to S. Bernstein.

Theorem 5.6. Let f(x) be a continuous function on [0, 1]. For each n ⩾ 1, define
the polynomial

pn(x) ≜
n∑

k=0

f
(k
n

)( n
k

)
xk(1− x)n−k, x ∈ [0, 1].

Then pn converges to f uniformly on [0, 1] as n→ ∞.

Proof. Fix x ∈ [0, 1]. Let {Xn : n ⩾ 1} be an i.i.d. sequence each following the
Bernoulli distribution with parameter x, i.e.

P(Xn = 1) = x, P(Xn = 0) = 1− x.

Define Sn ≜ X1+ · · ·+Xn. It is straight forward to check that pn(x) = E
[
f
(
Sn

n

)]
.

According to the weak LLN, Sn/n → E[X1] = x in probability. In particular,
Sn/n→ x weakly. Since f is bounded and continuous, this already implies that

pn(x) = E
[
f
(Sn

n

)]
→ E[f(x)] = f(x)

for every given x ∈ [0, 1].
Proving uniform convergence requires extra effort. First of all, since f is

uniformly continuous on [0, 1], for any given ε > 0 there exists δ > 0 such that

x, y ∈ [0, 1], |x− y| ⩽ δ =⇒ |f(x)− f(y)| ⩽ ε.

Exactly the same argument as the proof of Proposition 4.6 yields that∣∣pn(x)− f(x)
∣∣ ⩽ ε+ 2∥f∥∞ · P

(∣∣Sn

n
− x

∣∣ > δ
)
,
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where ∥f∥∞ ≜ supx∈[0,1] |f(x)|. In addition, from Chebyshev’s inequality one has

P
(∣∣Sn

n
− x

∣∣ > δ
)
⩽

1

δ2
Var

[Sn

n

]
=
x(1− x)

nδ2
⩽

1

4nδ2
,

where we used the elementary inequality that x(1 − x) ⩽ 1/4. Therefore, one
arrives at ∣∣pn(x)− f(x)

∣∣ ⩽ ε+
∥f∥∞
2nδ2

.

When n is large, the right hand side can be made smaller than 2ε uniformly in
x ∈ [0, 1]. This proves the desired uniform convergence.

5.5.2 Borel’s theorem on normal numbers

As the second example, we discuss an interesting application of the strong LLN
to number theory. Recall that every real number x ∈ (0, 1) admits a decimal
expansion

x = 0.x1x2 · · ·xn · · ·

where xn = 0, 1, · · · , 9. Except for countably many points in (0, 1) (precisely,
points of the form x = m/10n with m,n being positive integers) whose expansions
terminate in finitely many steps, such a representation is infinite and unique.

Given x ∈ (0, 1) and 0 ⩽ k ⩽ 9, let ν(k)n (x) be the number of digits among the
first n positions in the expansion of x that are equal to k. Apparently, ν(k)n (x)/n
is the relative frequency of the digit k in the first n places. It is reasonable to
expect that for “generic” points in (0, 1), this frequency should become close to 1

10

when n gets large. Probabilistically, all the ten digits should occur equally likely
in the decimal expansion of x if x is chosen in a suitably random manner.

Definition 5.5. A real number x ∈ (0, 1) is said to be simply normal (in base
10) if

lim
n→∞

ν
(k)
n (x)

n
=

1

10
for every k = 0, 1, · · · , 9.

The following result, which was originally due to Borel, asserts that almost
every real number in (0, 1) is simply normal.

Theorem 5.7. Let X be a point in (0, 1) chosen uniformly at random (i.e. X d
=

U(0, 1)). Then with probability one, X is a simply normal number.
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Proof. We express X in terms of its decimal expansion: X = 0.X1X2 · · ·Xn · · · .
The crucial observation is that the sequence {Xn : n ⩾ 1} of digits are i.i.d. with
discrete uniform distribution

P(Xn = k) =
1

10
, k = 0, 1, · · · , 9. (5.20)

We first show that (5.20) holds. To understand the event {Xn = k}, letA1, · · · , Am

(m = 10n−1) be the partition of (0, 1) into 10n−1 subintervals of equal length. For
each j, we further divide Aj into 10 equal subintervals and let Bj,k be the k-th
one. It is not hard to see that

{Xn = k} =
m⋃
j=1

{
X ∈ Bj,k

}
.

Therefore, one has

P(Xn = k) =
m∑
j=1

P
(
X ∈ Bj,k

)
= 10n−1 · 1

10n
=

1

10
.

This shows that the Xn’s are identically distributed. The geometric intuition
behind the above argument is best seen when one considers binary instead of
decimal expansions and draw a picture for the cases n = 1, 2, 3. In addition, for
any n ⩾ 1 and 0 ⩽ k1, · · · kn ⩽ 9, the event

{X1 = k1, X2 = k2, · · · , Xn = kn}

simply means thatX falls into one particular subinterval (depending on k1, · · · , kn)
in the partition of (0, 1) into 10n equal subintervals. In particular, one has

P
(
X1 = k1, · · · , Xn = kn

)
=

1

10n
= P(X1 = k1) · · ·P(Xn = kn).

This gives the independence among X1, · · · , Xn.
To prove the theorem, let 0 ⩽ k ⩽ 9 be given fixed and consider the i.i.d.

Bernoulli sequence

Yn =

{
1, Xn = k;

0, otherwise.

It is clear that ν(k)n (X) = Y1 + · · ·+ Yn. According to the strong LLN (5.14), one
has

lim
n→∞

ν
(k)
n (X)

n
= E[Y1] = P(X1 = k) =

1

10
a.s. (5.21)
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In other words,

P(Ωk) = 1 where Ωk ≜
{ν(k)n (X)

n
→ 1

10

}
.

The conclusion of the theorem follows by observing that

P
(ν(k)n (X)

n
→ 1

10
for every k

)
= P

( 9⋂
k=0

Ωk

)
= 1.

Remark 5.6. Although Theorem 5.7 asserts that almost every real number in
(0, 1) is simply normal, it does not provide an explicit example of a single one!
In fact, one can easily come up with numbers that are not simply normal e.g.
x = 1/3 = 0.333 · · · . Explicitly constructing simply normal numbers appears to
be a bit more challenging. It is typical that probabilistic methods provide simpler
ways of proving existence theorems but they often have a non-constructive nature
as a price to pay. Another famous example is the existence of continuous but
nowhere differentiable functions. While it is quite non-trivial to explicitly write
down one such function (e.g. the Weierstrass function), one can use the notion
of Brownian motion to produce a rich class of examples (with probability one,
Brownian trajectories are continuous but nowhere differentiable!).

5.5.3 Poincaré’s lemma on Gaussian measures

As the third example, we prove a striking fact that the standard Gaussian measure
on Rn can be realised through projections of spherical measures from “infinitely”
high dimensions. Such a result, which was originally due to H. Poincaré, plays
a fundamental role in Gaussian analysis. For instance, based on such a property
one can derive isoperimetric inequalities for the Gaussian measure from classical
isometric inequalities on spheres.

We first introduce some basic concepts. The standard Gaussian measure (law
of standard Gaussian vector) on Rn is defined by

γn(dx) =
1

(2π)n/2
e−|x|2/2dx,

where | · | denotes the Euclidean norm and dx is the Lebesgue measure on Rn. In
what follows, n is fixed and N > n is varying (we shall send N → ∞ eventually).
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The map ΠN+1,n : RN+1 → Rn denotes the project onto the first n coordinates.
The N -sphere in RN+1 with radius ρ is denoted as

SN
ρ ≜ {x = (x1, · · · , xN+1)

T :
√
x21 + · · ·+ x2N+1 = ρ} ⊆ RN+1,

where (·)T means matrix transpose (we adopt the convention that elements in
RN+1 are column vectors). The normalised surface measure on SN

ρ is denoted as
σN
ρ . In other words, for any Borel measurable subset B ⊆ SN

ρ , one has

σN
ρ (B) =

Area of B
Total area of SN

ρ

.

It is classical that the total area of SN
ρ is equal to 2π(N+1)/2

Γ((N+1)/2)
ρN . Note that σN

ρ is a
probability measure and it is rotationally invariant in the sense that σN

ρ (OB) =

σN
ρ (B) for any B ∈ B(SN

ρ ) and (N + 1) × (N + 1) orthogonal matrix O (OB ≜
{O ·x : x ∈ B}). Indeed, such a property uniquely characterises σN

ρ (cf. [Lan93]).

Proposition 5.3. σN
ρ is the unique rotationally invariant probability measure on

SN
ρ .

Poincaré’s lemma for the Gaussian measure γn is stated as follows.

Theorem 5.8. For every Borel set A in Rn, one has

lim
N→∞

σN√
N

(
Π−1

N+1,n(A) ∩ S
N√
N

)
= γn(A). (5.22)

Proof. If one is satisfied with weak convergence, the argument is conceptually
simpler by using the strong LLN. To see this, let {Z1, · · · , ZN+1} be an i.i.d.
family of standard normals and set

RN+1 ≜
√
Z2

1 + · · ·+ Z2
N+1.

A key property of the standard Gaussian measure is its rotational invariance. In
other words, letting Z ≜ (Z1, · · · , ZN+1)

T one has O · Z law
= Z for any (N + 1) ×

(N + 1) orthogonal matrix O (why?). In particular, the law of the normalised
random vector √

N

RN+1

(Z1, · · · , ZN+1) ∈ SN√
N
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is rotationally invariant on the sphere SN√
N

, thus being equal to σN√
N

as a conse-
quence of Proposition 5.3. It follows that the law of the random vector

√
N

RN+1

(Z1, · · · , Zn) ∈ Rn

is σN√
N

(
Π−1

N+1,n(·) ∩ SN√
N

)
. On the other hand, according to the strong LLN,

√
N

RN+1

(Z1, · · · , Zn) → (Z1, · · · , Zn) a.s. as N → ∞.

Since a.s. convergence implies weak convergence, one thus concludes that

σN√
N

(
Π−1

N+1,n(·) ∩ S
N√
N

)
→ γn weakly as N → ∞.

Proving convergence for every A ∈ B(Rn) requires some extra work. Let
{Zk : k ⩾ 1} be an i.i.d. sequence of standard normals. For each N we set
RN ≜

√
Z2

1 + · · ·+ Z2
N . We have already seen that

σN√
N

(
Π−1

N+1,n(A) ∩ S
N√
N

)
= P

( √
N

RN+1

(Z1, · · · , Zn) ∈ A
)

= P
(√NR2

n

R2
N+1

· (Z1, · · · , Zn)

Rn

∈ A
)

(5.23)

To proceed further, the key observation is that R2
n/R

2
N+1 is independent of

(Z1, · · · , Zn)/Rn. To see this, it suffices to show that (Z1, · · · , Zn)/Rn is indepen-
dent of Rn (why?). Recall from the rotational invariance of γn that O · Z law

= Z,
where Z ≜ (Z1, · · · , Zn)

T . It follows that

O · Z
r

∣∣|Z|=r =
O · Z
|O · Z|

∣∣|O·Z|=r
law
=

Z

|Z|
||Z|=r =

Z

r

∣∣|Z|=r,

where | · | denotes the Euclidean norm. In particular, this shows that conditional
on |Z| = r, the law of Z/r on the unit sphere Sn−1

1 is rotational invariant. As
a result, this conditional distribution must be the normalised surface measure on
Sn−1
1 . But the unconditional law of Z/|Z| is also the normalised surface measure.

As a consequence, Z/|Z| and |Z| are independent.
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Note that R2
n/R

2
N+1 is β-distributed with parameters (n/2, (N + 1− n)/2). It

follows from (5.23) and the above independence property that

σN√
N

(
Π−1

N+1,n(A) ∩ S
N√
N

)
=

Γ(n/2)

2πn/2
β
(n
2
,
N + 1− n

2

)−1
∫
Sn−1
1

∫ 1

0

1A(
√
Ntx)t

n
2
−1(1− t)

N+1−n
2

−1dtdσn−1
1 (x)

=
Γ(N+1

2
)

πn/2Nn/2Γ(N+1−n
2

)

∫
Sn−1
1

∫ √
N

0

1A(ux)u
n−1

(
1− u2

N

)N+1−n
2

−1
dudσn−1

1 (x),

where we made the change of variable u =
√
Nt to reach the last line. By applying

the dominated convergence theorem on the inner integral, after sending N → ∞
the right hand side converges to

1

(2π)n/2

∫ ∞

0

∫
Sn−1
1

1A(ux)u
n−1e−u2/2dσn−1

1 (x)du,

which is exactly γn(A) computed under polar coordinates.

5.6 Introduction to the large deviation principle

Let {Xn : n ⩾ 1} be an i.i.d. sequence of random variables with finite mean. We
define the sample average sequence

S̄n ≜
1

n
(X1 + · · ·+Xn), n ⩾ 1.

By the strong LLN, one knows that S̄n → x̄ a.s. However, this result does not
contain quantitative information about the underlying convergence. In this sec-
tion, we discuss a particularly typical phenomenon associated with a LLN: the
large deviation principle. As we will see, the central limit theorem (cf. Chapter
7 below) and the large deviation principle quantify the strong LLN at different
levels. The central limit theorem indicates that the error S̄n − x̄ from the strong
LLN, at the level of random variables, is roughly of order 1/

√
n. On the other

hand, the large deviation principle is more like a concentration of measure prop-
erty; it suggests that the law of S̄n concentrates at the Dirac delta measure δx̄
exponentially fast.
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5.6.1 Motivation and formulation of Cramér’s theorem

To motivate the underlying phenomenon, let B be an arbitrary subset of R that
has positive distance (say ε) away from x̄ (in particular, x̄ /∈ B). In other words,
(x̄− ε, x̄+ ε) ⊆ Bc which further implies that

P(S̄n ∈ B) ⩽ P(|S̄n − x̄| ⩾ ε).

Since a.s. convergence implies convergence in probability, it follows that

lim
n→∞

P(S̄n ∈ B) = 0.

The large deviation principle quantifies the precise decay rate of the probability
P(S̄n ∈ B) as n → ∞. It turns out that this probability decays to zero exponen-
tially fast:

P
(
S̄n ∈ B

)
≈ e−nIB as n→ ∞. (5.24)

Here IB is an exponent that depends on B, which can be determined explicitly
from the distribution µ. Heuristically, (5.24) describes a concentration of measure
phenomenon. It suggests that masses of S̄n over any set that “deviates” from x̄
vanish exponentially fast. As a result, masses of S̄n concentrate around x̄ with
exponential speed as n→ ∞.

Figure 5.1: Concentration of measure in LDP
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The statement (5.24) is rather vague at this stage (and in fact, it is not exactly
true!). Before introducing the precise formulaltion of the result, let us take a little
bit extra effort to motivate the expression of the exponent IB.

For simplicity, we consider B = [x,∞) where x > x̄. By using Markov’s
inequality, for any λ ⩾ 0 one has

P
(
S̄n ∈ B

)
⩽ P

(
enλS̄n ⩾ enλx

)
⩽ e−nλxE[enλS̄n ] = e−nλxE[eλX1 ]n. (5.25)

Recall that the cumulant generating function of X1 is defined by

Λ(λ) ≜ logE[eλX1 ], λ ∈ R. (5.26)

By using Λ(λ), one can rewrite (5.25) as

P
(
S̄n ∈ B

)
⩽ e−n(λx−Λ(λ)). (5.27)

Since (5.27) is true for all λ ⩾ 0, by optimising it over λ one finds that

P
(
S̄n ∈ B

)
⩽ exp

(
− n sup

λ⩾0
{λx− Λ(λ)}

)
. (5.28)

Now it becomes natural to introduce the following function:

Λ∗(x) ≜ sup
λ⩾0

{λx− Λ(λ)}, x > x̄. (5.29)

It will be shown in Lemma 5.4 below that Λ∗(x) (as a function of x) is increasing
on (x̄,∞). As a consequence, the inequality (5.28) can also be expressed as

P
(
S̄n ∈ B

)
⩽ exp

(
− n inf

y∈B
Λ∗(y)

)
⇐⇒ 1

n
logP

(
S̄n ∈ B

)
⩽ − inf

y∈B
Λ∗(B). (5.30)

It turns out that as n → ∞, the above estimate becomes asymptotically sharp
and the exponent IB appearing in (5.24) is given by the right hand side of (5.30)

We now proceed to introduce the precise mathematical formulation of the large
deviation principle. From the above discussion, the function Λ∗(x) shall play a
central role in this problem and we first define it in a more careful way. Recall
that Λ(λ) is the cumulant generating function of X1 defined by (5.26). Note that
Λ(0) = 0 and Λ(λ) ∈ (−∞,∞] for all λ ∈ R (why?).

Definition 5.6. The Legendre transform of Λ(λ) is the function defined by

Λ∗(x) ≜ sup
λ∈R

{λx− Λ(λ)}, x ∈ R.
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By definition, Λ∗(x) measures the maximal excess of the straight line λ 7→ x ·λ
over the function Λ(λ). Since Λ(0) = 0, it is clear that Λ∗ ⩾ 0. It is possible that
Λ∗(x) = ∞. Some basic properties of Λ∗(x) are given in Lemma 5.4 below (see
also Figure 5.2 for the geometric intuition).
Remark 5.7. In Definition 5.6, the supremum is taken over R while it is over
λ ⩾ 0 in (5.29). These two representations are identical when x ∈ (x̄,∞) (cf.
(5.34) below).

Example 5.6. Suppose that X1 ∼ N(0, σ2). Its cumulant generating function is
given by

Λ(λ) = log eλ
2σ2/2 =

1

2
σ2λ2.

It follows that
Λ∗(x) = sup

λ∈R

{
λx− 1

2
σ2λ2

}
=

x2

2σ2
.

Note that x̄ = 0 is the unique global minimum of Λ∗ and IB ∈ (0,∞) for all B
having positive distance to 0.

Example 5.7. Suppose that X1 follows the symmetric Bernoulli distribution:

P(X1 = 1) = P(X1 = −1) =
1

2
.

Then one has

Λ(λ) = log
(eλ + e−λ

2

)
.

For each x ∈ R, define

φx(λ) ≜ λx− Λ(λ) = λx− log
(eλ + e−λ

2

)
, λ ∈ R.

Simple calculus shows that when x ∈ (−1, 1), φx(λ) attains its maximum at
λx ≜ 1

2
log

(
1+x
1−x

)
with value

Λ∗(x) = φx(λx) =
1 + x

2
log(1 + x) +

1− x

2
log(1− x).

If x = 1 (respectively, x = −1), the supremum Λ∗(x) = log 2 is asymptotically
attained at λ → ∞ (respectively, λ → −∞). If x /∈ [−1, 1], one has Λ∗(x) = ∞.
To summarise,

Λ∗(x) =

{
1+x
2

log(1 + x) + 1−x
2

log(1− x), −1 ⩽ x ⩽ 1;

∞, otherwise.

This example also shows that Λ∗(x) needs not be finite for all x.
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The large deviation principle (LDP) for the sequence {S̄n : n ⩾ 1}, which is
also known as Cramér’s theorem on R, is stated as follows. It contains both an
upper and a lower estimate.

Theorem 5.9. Let {Xn : n ⩾ 1} be an i.i.d. sequence and define S̄n ≜ X1+···+Xn

n
.

(i) [Upper bound] For any closed subset F ⊆ R, one has

lim
n→∞

1

n
logP

(
S̄n ∈ F

)
⩽ − inf

x∈F
Λ∗(x). (5.31)

(ii) [Lower bound] for any open subset G ⊆ R, one has

lim
n→∞

1

n
logP

(
S̄n ∈ G

)
⩾ − inf

x∈G
Λ∗(x). (5.32)

Heuristically, Cramér’s theorem suggests that for “suitably reasonable” subsets
B, the probability P(S̄n ∈ B) decays like e−nIB as n→ ∞ with rate exponent

IB = inf
x∈B

Λ∗(x).

Indeed, for any Borel subset B ∈ B(R), according to (5.31) and (5.32) one has

lim
n→∞

1

n
logP

(
S̄n ∈ B

)
⩽ lim

n→∞

1

n
logP

(
S̄n ∈ B̄

)
⩽ − inf

x∈B̄
Λ∗(x)

and
lim
n→∞

1

n
logP

(
S̄n ∈ B

)
⩾ lim

n→∞

1

n
logP

(
S̄n ∈ B̊

)
⩾ − inf

x∈B̊
Λ∗(x)

respectively. Here B̄ denotes the closure of B and B̊ is its interior. The above
two inequalities hold simply because B̊ ⊆ B ⊆ B̄. As a consequence, all possible
limit points of the sequence {n−1 logP(S̄n ∈ B)} are contained in the interval[

− inf
x∈B̊

Λ∗(x),− inf
x∈B̄

Λ∗(x)
]
.

If the subset B ∈ B(R) satisfies

inf
x∈B̄

Λ∗(x) = inf
x∈B̊

Λ∗(x),

then one has
lim
n→∞

1

n
logP

(
S̄n ∈ B

)
= − inf

x∈B
Λ∗(x) (5.33)
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On the other hand, it should be pointed out that the sequence {n−1 logP(S̄n ∈
B)} itself may fail to converge and (5.33) may not hold in general. For instance,
consider X1 ∼ N(0, 1) and B = Q. The left hand side is trivially equal to −∞
since P(S̄n ∈ Q) = 0, while the right hand side is zero as seen from Example 5.6.
Nonetheless, (5.33) is true for B = [y,∞) (cf. Corollary 5.2 below).
Remark 5.8. Later on it will be clear that Λ∗(x̄) = 0. In particular, IB = 0
if x̄ ∈ B, in which case the LDP does not contain much useful information.
The main interesting regime is when B has a positive distance to x̄, in which
case one typically observes an exponential decay with a meaningful exponent
IB ∈ (0,∞) (not always true though!). Therefore, the theorem really measures
the (un)likelihood of “large deviations” of S̄n from its mean x̄. The function Λ∗(x)
is commonly known as the rate function for the LDP of {S̄n}.

Example 5.8. Cramér’s theorem is easily appreciated in the simple example
of Gaussian distributions. Let {Xn} be i.i.d. standard normals. Then S̄n

d
=

N(0, 1/n). We also recall from Example 5.6 that Λ∗(x) = x2/2. For simplicity, let
us take B = [a, b] with a > 0 (whether one includes any of the endpoints is of no
significance). Then

P(S̄n ∈ B) =

∫ b

a

√
n√
2π
e−nx2/2dx ⩽

√
n√
2π
e−na2/2(b− a),

from which it follows that

lim
n→∞

1

n
logP(S̄n ∈ B) ⩽ −a

2

2
= − inf

x∈B
Λ∗(x).

On the other hand, for any small ε > 0 one also has

P(S̄n ∈ B) ⩾
∫ a+ε

a

√
n√
2π
e−nx2/2dx ⩾

√
n√
2π
e−n(a+ε)2/2ε,

which implies that

lim
n→∞

1

n
logP(S̄n ∈ B) ⩾ −(a+ ε)2

2
.

Since ε is arbitrary, one easily obtains the matching lower bound. The density
function

ρn(x) =

√
n√
2π
e−nx2/2

for S̄n in this example also illustrates the aforementioned exponential concentra-
tion phenomenon around x̄ = 0 (cf. Figure 5.1).
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Figure 5.2: Geometric interpretation of Λ∗(x)

5.6.2 Basic properties of the Legendre transform

Before proving Theorem 5.9, we summarise a few basic properties of the function
Λ∗ in the lemma below. We only discuss the ones that are directly related to
the proof of the theorem. Examples 5.6, 5.7 and Figure 5.2 should provide some
geometric intuition behind the function Λ∗.

Lemma 5.4. Suppose that E[X1] has finite mean. Then the following properties
of the Legendre transform Λ∗ hold true.

(i) Λ∗(x̄) = inf
x∈R

Λ∗(x) = 0.

(ii) For any x > x̄, one has

Λ∗(x) = sup
λ⩾0

{λx− Λ(λ)}. (5.34)

The function Λ∗(x) is increasing on (x̄,∞).
(iii) For any x < x̄, one has

Λ∗(x) = sup
λ⩽0

{λx− Λ(λ)}.

The function Λ∗(x) is decreasing on (−∞, x̄).
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Proof. (i) We have seen that Λ∗ ⩾ 0. In addition, since log x is a concave function,
by Jensen’s inequality one has

Λ(λ) = logE[eλX1 ] ⩾ E
[
log eλX1

]
= λx̄ ∀λ ∈ R. (5.35)

As a result,

λx̄− Λ(λ) ⩽ 0 ∀λ ∈ R =⇒ Λ∗(x̄) = sup
λ∈R

{λx̄− Λ(λ)} ⩽ 0.

Therefore, Λ∗(x̄) = 0.

(ii) Let x > x̄. According to (5.35), for any λ < 0 one has

λx− Λ(λ) ⩽ λx̄− Λ(λ) ⩽ 0 = 0 · x− Λ(0).

In particular, the values of λx− Λ(λ) for all λ < 0 cannot exceed the supremum
over λ ⩾ 0. As a result, one has the representation (5.34). Under such a represen-
tation (for x > x̄), since the function x 7→ λx−Λ(λ) is increasing for each λ ⩾ 0,
it follows that Λ∗(x) is increasing on (x̄,∞).

(iii) The argument is parallel to Part (ii) and is thus omitted.

In what follows, we develop the proof of Cramér’s theorem. For simplicity, we
assume exclusively that X1 has finite mean. We remark that the theorem remains
true even if E[X1] does not exist.

5.6.3 Proof of Cramér’s theorem: upper bound

We have already obtained the following lemma in (5.30) before. This is the key
ingredient for proving the LDP upper bound (5.31).

Lemma 5.5. For any x > x̄, one has

P
(
S̄n ⩾ x

)
⩽ e−nΛ∗(x). (5.36)

Similarly, for any x < x̄, one has

P(S̄n ⩽ x) ⩽ e−nΛ∗(x).

Proof. In view of (5.30), one only needs to apply (5.34) which holds since x > x̄.
The other case is treated in a similar way.
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Proof of LDP upper bound (5.31). Let F ⊆ R be a closed subset and define

IF ≜ inf
x∈F

Λ∗(x).

One may assume that x̄ /∈ F ; for otherwise IF = 0 (since Λ∗(x̄) = 0 by Lemma
5.4) and the result is trivial. Define

x− ≜ sup{r < x̄ : r ∈ F}, x+ ≜ inf{r > x̄ : r ∈ F}.

Note that x− < x̄ < x+ and at lease one of x± is finite (since F ̸= ∅). In addition,
whenever x± is finite one has x± ∈ F (since F is closed). As a result,

F ⊆ (−∞, x−] ∪ [x+,∞),

which implies by Lemma 5.5 that

P
(
S̄n ∈ F

)
⩽ P

(
S̄n ⩽ x−

)
+ P

(
S̄n ⩾ x+

)
⩽ e−nΛ∗(x−) + e−nΛ∗(x+) ⩽ 2e−nIF .

The desired estimate (5.31) follows from this inequality.

5.6.4 Proof of Cramér’s theorem: lower bound

Next, we turn to the proof of the LDP lower bound (5.32). We first make the
following key observation.

Lemma 5.6. In order to establish (5.32), it is sufficient to show that for any
δ > 0 and any marginal distribution µ (the distribution of X1), one has

lim
n→∞

1

n
logP

(
S̄n ∈ (−δ, δ)

)
⩾ inf

λ∈R
Λµ(λ), (5.37)

where Λµ(λ) denotes the cumulant generating function of µ.

Proof. Suppose that (5.37) is true for any marginal distribution µ. Note that the
right hand side of (5.37) is also equal to −Λ∗(0). As a result, given any x ∈ R
one has

lim
n→∞

1

n
logP

(
S̄X
n ∈ (x− δ, x+ δ)

)
= lim

n→∞

1

n
logP

(
S̄Y
n ∈ (−δ, δ)

)
⩾ −Λ∗

Y (0). (5.38)

Here S̄X
n refers to the sample average associated with the i.i.d. sequenceX = {Xn}

whose marginal distribution is the given fixed µ in the LDP. S̄Y
n denotes the sample
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average of the sequence Y ≜ {Yn ≜ Xn−x} and Λ∗
Y is defined with respect to the

law of Y1. It is easy to figure out the relation between Λ∗
X and Λ∗

Y ; indeed, since

ΛY (λ) = logE[eλY1 ] = logE[eλ(X1−x)] = ΛX(λ)− λx,

one has

Λ∗
Y (y) = sup

λ∈R
(λy − ΛY (λ)) = sup

λ∈R
(λ(x+ y)− ΛX(λ)) = Λ∗

X(y + x).

As a result, the inequality (5.38) becomes

lim
n→∞

1

n
logP

(
S̄X
n ∈ (x− δ, x+ δ)

)
⩾ −Λ∗

X(x). (5.39)

To establish the LDP lower bound (5.32), let G ⊆ R be a given open subset.
For any x ∈ G, choose δ > 0 such that (x− δ, x + δ) ⊆ G. It follows from (5.39)
that

lim
n→∞

1

n
logP(S̄X

n ∈ G) ⩾ lim
n→∞

1

n
logP

(
S̄X
n ∈ (x− δ, x+ δ)

)
⩾ −Λ∗

X(x).

Since this is true for all x ∈ G, the desired estimate (5.32) follows.

To complete the proof, it remains to establish the key estimate (5.37). The
argument for this part contains an essential technique of change of measure. Such
a technique has deep extensions and rich applications in probability theory. Let
µ denote the law of X1 and Λ(λ) is its cumulant generating function. We divide
the discussion into three cases.

Case I: µ has positive measure on both (−∞, 0) and (0,∞), and it is supported
in a bounded interval, say [−M,M ].

Equivalently, it is assumed that

P(X1 > 0) > 0, P(X1 < 0) > 0, |X1| ⩽M a.s.

The heart of the proof is contained in this case. The main benefit here is that the
function Λ(λ) is continuously differentiable on R, and one also has

lim
λ→±∞

Λ(λ) = ∞. (why?) (5.40)

As a consequence, there exists η ∈ R such that Λ′(η) = 0.
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To proceed further, the key idea is to change µ to a new probability measure
µ̃ that has mean zero. To motivate its construction, one first notes that

0 = Λ′(η) =
M ′(η)

M(η)
=

∫
R
xeηx−Λ(η)µ(dx). (5.41)

As a result, one defines µ̃ by

µ̃(dx) ≜ eηx−Λ(η)µ(dx). (Equivalently, µ̃(A) =
∫
A

eηx−Λ(η)µ(dx) ∀A ∈ B(R).)

It follows from (5.41) that
∫
R xµ̃(dx) = 0.

Recall that X = {Xn} is an i.i.d. sequence with marginal distribution µ. Let
X̃ = {X̃n} denote an i.i.d. sequence with marginal distribution µ̃. We use S̄X

n , S̄X̃
n

to denote their sample average sequences respectively. For any ε ∈ (0, δ) (recall
that δ is given fixed in (5.37)), one has

P
(
S̄X
n ∈ (−ε, ε)

)
=

∫{
(x1,··· ,xn):

∣∣x1+···+xn
n

∣∣<ε
} µ(dx1) · · ·µ(dxn)

=

∫{
(x1,··· ,xn):

∣∣x1+···+xn
n

∣∣<ε
} e−η(x1+···+xn)+nΛ(η)µ̃(dx1) · · · µ̃(dxn)

(5.42)

Since (−ε, ε) ⊆ (−δ, δ) and∣∣x1 + · · ·+ xn
n

∣∣ < ε =⇒ |η(x1 + · · ·+ xn)| < nε|η| =⇒ e−nε|η| < e−η(x1+···+xn),

it follows from (5.42) that

P
(
S̄X
n ∈ (−δ, δ)

)
⩾ e−nε|η|+nΛ(η)

∫{
(x1,··· ,xn):

∣∣x1+···+xn
n

∣∣<ε
} µ̃(dx1) · · · µ̃(dxn)

= e−nε|η|+nΛ(η)P
(
S̄X̃
n ∈ (−ε, ε)

)
.

After taking logarithm, one arrives at

1

n
logP

(
S̄X
n ∈ (−δ, δ)

)
⩾ −ε|η|+ Λ(η) +

1

n
logP

(
S̄X̃
n ∈ (−ε, ε)

)
. (5.43)

Here is the main benefit of the change of measure: {X̃n} is an i.i.d. sequence
with mean zero. One can therefore apply the strong LLN to conclude that S̄X̃

n → 0
a.s. In particular,

lim
n→∞

P
(
S̄X̃
n ∈ (−ε, ε)

)
= 1.
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By taking n→ ∞ in (5.43), it follows that

lim
n→∞

1

n
logP

(
S̄X
n ∈ (−δ, δ)

)
⩾ −ε|η|+ Λ(η) ⩾ −ε|η|+ inf

λ∈R
Λ(λ).

Since ε ∈ (0, δ) is arbitrary, one concludes that

lim
n→∞

1

n
logP

(
S̄X
n ∈ (−δ, δ)

)
⩾ inf

λ∈R
Λ(λ),

which gives the desired estimate (5.37).
Case II: µ has positive measure on both (−∞, 0) and (0,∞), but it needs not be
supported in a bounded interval. This case is a rather technical extension of Case
I (it can be omitted on first reading).

Choose M0 > 0 such that

µ([−M, 0)) > 0, µ((0,M ]) > 0 ∀M ⩾M0.

For each fixed M ⩾M0, define ν to be the conditional law of X1 given |X1| ⩽M
and νn to be the conditional law of S̄n given {|Xi| ⩽ M,∀i = 1, · · · , n}. Note
that νn is just the law of the sample average of an i.i.d. sequence whose marginal
distribution is ν (why?). We also denote µn as the (unconditional) law of S̄n. By
the definition of νn, one has

µn((−δ, δ)) ⩾ νn((−δ, δ)) · µ([−M,M ])n.

It follows from the result of Case I that

lim
n→∞

1

n
log µn((−δ, δ)) ⩾ lim

n→∞

1

n
log νn((−δ, δ)) + log µ([−M,M ])

⩾ inf
λ∈R

Λν(λ) + log µ([−M,M ]). (5.44)

To compute Λν(λ), by definition one has

Mν(λ) ≜ E
[
eλX1

∣∣|X1| ⩽M
]
=

∫
[−M,M ]

eλxµ(dx)

µ([−M,M ])
.

Hence
Λν(λ) ≜ logMν(λ) = ΛM(λ)− log µ([−M,M ]), (5.45)
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where ΛM(λ) ≜ log
∫
[−M,M ]

eλxµ(dx). By substituting (5.45) into (5.44), one finds
that

lim
n→∞

1

n
log µn((−δ, δ)) ⩾ inf

λ∈R
ΛM(λ) =: JM .

It is apparent that JM is increasing in M . Denoting J∗ ≜ lim
M→∞

JM , it follows that

lim
n→∞

1

n
log µn((−δ, δ)) ⩾ J∗.

We claim that there exists λ0 ∈ R, such that Λ(λ0) ⩽ J∗. The desired inequal-
ity (5.37) follows from this claim trivially. To prove the claim, for each M ⩾ M0

we introduce the set
KM ≜ {λ ∈ R : ΛM(λ) ⩽ J∗}.

We summarise the key properties of KM in the following two lemmas, which then
lead to the conclusion of the claim easily.

Lemma 5.7. KM is a non-empty compact subset of R.

Proof. The key observation is that ΛM is continuous on R and

lim
λ→±∞

ΛM(λ) = ∞, (5.46)

which follows from the same reason leading to (5.40). As a result, the global
infimum of ΛM(λ) is attained at some λM ∈ R, i.e.

ΛM(λM) = JM ⩽ J∗.

This shows that KM ̸= ∅. The compactness of KM follows from the fact that it
is a bounded, closed subset, which is again a consequence of (5.46).

Lemma 5.8. Let {Ln : n ⩾ 1} be a decreasing sequence of non-empty compact
subsets of R. Then

∞⋂
n=1

Ln ̸= ∅.

Proof. This is well-known in real analysis, but we still give its proof for complete-
ness. Suppose on the contrary that ∩nLn = ∅. Then ∪nL

c
n = R ⊇ L1. Since Lc

n is
open for every n, by compactness there exists N ⩾ 1 such that

L1 ⊆
N⋃

n=1

Lc
n = Lc

N .

This is absurd since LN ⊆ L1. Therefore, ∩nLn ̸= ∅.
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According to Lemma 5.7, KM (M ⩾M0) is a decreasing sequence of non-empty
compact subsets of R (decreasingness follows from monotonicity of M 7→ ΛM(λ)).
It then follows from Lemma 5.8 that

∞⋂
M=M0

KM ̸= ∅.

In particular, there exists λ0 ∈ R such that

ΛM(λ0) ⩽ J∗ ∀M ⩾M0.

Letting M ↑ ∞, one concludes that Λ(λ0) ⩽ J∗. This proves the desired claim.

Case III: Either µ((−∞, 0)) or µ((0,∞)) is zero, say µ((−∞, 0)) = 0. This case
can be dealt with independently in a relatively easy way.

In this case, one has

Λ(λ) = logE[eλX1 ] = log
(
P(X1 = 0) + E[eλX1 ;X1 > 0]

)
.

In particular, Λ(λ) is increasing on R, and thus

inf
λ∈R

Λ(λ) = lim
λ→−∞

Λ(λ) = logP(X1 = 0). (5.47)

To prove (5.37), one simply notes that

P
(
S̄n ∈ (−δ, δ)

)
⩾ P(S̄n = 0) ⩾ P(X1 = 0, · · · , Xn = 0) = P(X1 = 0)n.

It follows from (5.47) that

1

n
logP

(
S̄n ∈ (−δ, δ)

)
⩾ logP(X1 = 0) = inf

λ∈R
Λ(λ).

Since this is true for all n, by taking n → ∞ one obtains the desired inequality
(5.37).

The following corollary gives the exact convergence (5.33) for special subsets.
Its proof is only a small adaptation of what we have obtained so far.

Corollary 5.2. Under the setting of Cramér’s theorem, one has

lim
n→∞

1

n
logP

(
S̄n ∈ [y,∞)

)
= − inf

x∈[y,∞)
Λ∗(x)

for all y ∈ R.
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Proof. Since [y,∞) is closed, one already has the upper bound (5.31) for the
“limsup”. To establish a matching lower bound for the “liminf”, the point is to
strengthen the key inequality (5.37) to the following one:

lim
n→∞

1

n
logP

(
S̄n ∈ [0, δ)

)
⩾ inf

λ∈R
Λµ(λ).

The entire argument developed in Section 5.6.4 carries through in exactly the
same way with (x − δ, x + δ), (−δ, δ), (−ε, ε) replaced by [x, x + δ), [0, δ), [0, ε)
respectively. There is only one exception though: in order to show that (cf. (5.43))

1

n
logP

(
S̄X̃
n ∈ [0, ε)

)
→ 0,

one now observes

P
(
S̄X̃
n ∈ [0, ε)

)
= P

(
S̄X̃
n ⩾ 0

)
− P

(
S̄X̃
n ⩾ ε

)
→ 1

2
− 0 =

1

2
,

where the first limit 1/2 follows from the central limit theorem and the second
limit 0 is a consequence of LLN.

Remark 5.9. Cramér’s theorem has a natural extension to multidimensions. LDP
for infinite dimensional distributions (e.g. laws of stochastic processes) is a sig-
nificant research topic in modern probability theory. The general definition is
given as follows. Let {µn : n ⩾ 1} be a sequence of probability measures over a
topological space E equipped with its Borel σ-algebra (the σ-algebra generated
by open subsets). We say that {µn} satisfies the large deviation principle with a
rate function I : E → [0,∞], if the following estimates hold true.

(i) [Upper bound] For any closed subset F ⊆ E, one has

lim
n→∞

1

n
log µn(F ) ⩽ − inf

x∈F
I(x).

(ii) [Lower bound] For any open subset G ⊆ E, one has

lim
n→∞

1

n
log µn(G) ⩾ − inf

x∈G
I(x).

We briefly mention one fundamental example which has profound implications in
modern probability and PDE theory. Consider a stochastic differential equation
(parametrised by n){

dX
(n)
t = b(X

(n)
t )dt+ 1√

n
σ(X

(n)
t )dBt, 0 ⩽ t ⩽ 1;

X
(n)
0 = x,
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where Bt is the so-called Bownian motion which resembles a continuous-time ver-
sion of the simple random walk. Since n is large, one can think of the above
stochastic dynamics as a “small random perturbation” of the deterministic dy-
namics (ordinary differential equation){

dxt = b(xt)dt, 0 ⩽ t ⩽ 1;

x0 = x.

There is an obvious “law of large numbers” in this situation: the stochastic process
X

(n)
t converges to the deterministic function xt as n → ∞, simply because the

random perturbation 1√
n
σ(X

(n)
t )dBt vanishes in the limit. The renowned Freidlin–

Wentzell theorem establishes a large deviation principle for the law of X(n) (as a
stochastic process) on the infinite dimensional space of paths with an explicit rate
function induced by the stochastic dynamics (b, σ, B). Although the setting here
is quite involved, the essential idea is to some extent inspired by (and is not too
much deeper than) the proof of Cramér’s theorem we developed in this section.

Appendix. Proof of Kronecker’s lemma

In this appendix, we give a proof of Kronecker’s lemma (cf. Lemma 5.3).

Proof of Lemma 5.3. Define bn ≜
∑n

j=1
xj

aj
and set a0 = b0 ≜ 0. Then xn =

an(bn − bn−1) and thus

1

an

n∑
j=1

xj =
1

an

n∑
j=1

aj(bj − bj−1).

The crucial step is to write

n∑
j=1

aj(bj − bj−1) = anbn −
n−1∑
j=0

bj(aj+1 − aj). (5.48)

This is a discrete version of integration by parts. The intuition behind (5.48) is
best illustrated by the figure below.
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As a result of (5.48), one obtains that

1

an

n∑
j=1

xj = bn −
n−1∑
j=0

aj+1 − aj
an

· bj.

By the assumption of the lemma, say bn → b ∈ R. We claim that

lim
n→∞

n−1∑
j=0

aj+1 − aj
an

· bj = b.

Indeed, given ε > 0, there existsN ⩾ 1 such that for all n > N, one has |bn−b| < ε.
It follows that for n > N ,∣∣ n−1∑

j=0

(aj+1 − aj)bj
an

− b
∣∣

=
∣∣ n−1∑
j=0

(aj+1 − aj)(bj − b)

an

∣∣ = ∣∣(∑
j⩽N

+
∑

N<j⩽n−1

)(aj+1 − aj)(bj − b)

an

∣∣
⩽
aN+1

a0
· 2M + ε ·

∑
N<j⩽n−1

aj+1 − aj
an

⩽
2MaN+1

an
+ ε,

where M > 0 is a constant such that |bn| ⩽ M for all n. By letting n → ∞, one
obtains that

lim
n→∞

∣∣ n−1∑
j=0

(aj+1 − aj)bj
an

− b
∣∣ ⩽ ε.

The result follows as ε is arbitrary.
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6 The characteristic function
In this chapter, we develop a fundamental tool for the study of distributional
properties of random variables: the characteristic function.

In elementary probability, we have seen the notion of moment generating func-
tions. There are many important reasons for introducing the moment generating
function. For instance, it uniquely determines the law of a random variable. It
can be used to compute moments effectively and to study convergence in distribu-
tion. One disadvantage of the moment generating function is that it is not always
well-defined (the Cauchy distribution is such an example). Even if it is defined,
it comes with its intrinsic domain of definition making the analysis cumbersome.

On the other hand, the characteristic function is always well-defined for any
random variable. It has better analytic properties making it more convenient
to work with, although a price to pay is that one needs to work with complex
numbers (mostly in the obvious manner). The method of characteristic functions
is rather powerful in the study of limiting behaviours of random variables, in
particular in questions related to weak convergence (e.g the central limit theorem
as we will see in the next chapter).

In Section 6.1, we give the definition of the characteristic function and discuss
some of its basic properties. In Section 6.2, we discuss how one can recover the
original distribution from the characteristic function (the inversion formula). In
Section 6.3, we characterise weak convergence in terms of convergence of char-
acteristic functions (the Lévy-Cramér continuity theorem). In Section 6.4, we
discuss a few simple applications of the characteristic function. In Section 6.5,
we discuss an elegant and useful result of G. Pólya which provides a sufficient
condition for being characteristic functions.

6.1 Definition of the characteristic function and its basic
properties

The characteristic function is a complexified version of the moment generating
function. In particular, it takes complex values in general. We first recall a basic
formula for complex exponentials. For z = x+ iy ∈ C, ez is the complex number
given by

ez = ex(cos y + i sin y).

Setting x = 0, one obtains Euler’s formula:

eiy = cos y + i sin y, y ∈ R. (6.1)
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Definition 6.1. Let X be a random variable. The characteristic function of X
is the C-valued function defined by

fX(t) ≜ E[eitX ], t ∈ R. (6.2)

Remark 6.1. Using Euler’s formula (6.1), equation (6.2) is interpreted as

fX(t) = E[cos tX] + iE[sin tX].

In most circumstances, there is no need to treat the real and imaginary parts
separately; it is more effective to work over C.
Remark 6.2. The characteristic function is defined in terms of the distribution of
X and the underlying probability space plays no role. In fact, it is more intrinsic
to write

fX(t) =

∫ ∞

−∞
eitxµX(dx)

where µX is the law of X. Equivalently, one can directly define the characteristic
function of a probability measure µ on R as

fµ(t) ≜
∫
R
eitxµ(dx)

without referring to any random variables. When X (or µ) admits a density
function ρ(x), the characteristic function is given by

f(t) =

∫ ∞

−∞
eitxρ(x)dx.

This is also known as the Fourier transform of the function ρ(x).
The first benefit of working with the characteristic function is that it is well-

defined for all t ∈ R. Indeed, by the triangle inequality one has

|fX(t)| ⩽ E[|eitX |] = E[1] = 1.

In addition, it is obvious that fX(0) = 1 and

fX(t) = E[eitX ] = E[e−itX ] = fX(−t).

At a formal level, the characteristic function is related to the moment generating
function MX(t) by the simple relation

fX(t) =MX(it).

In particular, one has the following parallel properties for the characteristic func-
tion.
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Proposition 6.1. Let a, b ∈ R and X, Y be random variables.

(i) faX+b(t) = eitbfX(at) and f−X(t) = fX(t).
(ii) If X and Y are independent, then fX+Y (t) = fX(t) · fY (t).

Proof. (i) By definition,

faX+b(t) = E[eit(aX+b)] = E[eitaX · eitb] = eitb · fX(at),

and
f−X(t) = E[eit·(−X)] = fX(−t) = fX(t).

(ii) Recall from Proposition 3.4 that X and Y are independent if and only if

E[φ(X)ψ(Y )] = E[φ(X)] · E[ψ(Y )]

for any bounded Borel-measurable functions φ, ψ. Applying this to the function
φ(x) = ψ(x) = eitx (for fixed t), one gets that

fX+Y (t) = E[eit(X+Y )] = E[eitX · eitY ] = E[eitX ] · E[eitY ] = fX(t)fY (t).

On the other hand, below is a nice analytic property which does not have its
counterpart for moment generating functions.

Proposition 6.2. The characteristic function fX(t) is uniformly continuous on
R.

Proof. By definition, for any t, h ∈ R one has

fX(t+ h)− fX(t) =

∫ ∞

−∞
(ei(t+h)x − eitx)µX(dx)

=

∫ ∞

−∞
eitx(eihx − 1)µX(dx).

According to the triangle inequality,

|fX(t+ h)− fX(t)| ⩽
∫ ∞

−∞
|eihx − 1|µX(dx). (6.3)

Note that the right hand side is independent of t and the integrand |eihx− 1| → 0
as h → 0 (for each fixed x). By dominated convergence, the right hand side of
(6.3) converges to zero as h→ 0. This gives the uniform continuity of fX(t).
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We do not list the explicit formulae for the characteristic functions of those
special distributions one encounters in elementary probability. Some of them
are straight forward while some could be tricky to derive. Here we look at one
example: the standard normal distribution.

Example 6.1. The characteristic function of X d
= N (0, 1) is given by f(t) =

e−t2/2. We start with the definition

f(t) =
1√
2π

∫ ∞

−∞
eitxe−x2/2dx.

By differentiation and integration by parts,

f ′(t) =
i√
2π

∫ ∞

−∞
xeitxe−x2/2dx = − i√

2π

∫ ∞

−∞
eitxd

(
e−x2/2

)
=

i√
2π

∫ ∞

−∞
e−x2/2d(eitx) = − t√

2π

∫ ∞

−∞
eitxe−x2/2dx = −tf(t).

This is a first order ODE that can be solved uniquely with the initial condition
f(0) = 1. Its solution is f(t) = e−t2/2.

We conclude this section with an elementary inequality for the complex expo-
nential that will be used frequently later on.

Lemma 6.1. For any a, b ∈ R, one has

|eib − eia| ⩽ |b− a|. (6.4)

Proof. Assume that a < b. A simple application of the triangle inequality yields

|eib − eia| =
∣∣ ∫ b

a

ieitdt
∣∣ ⩽ ∫ b

a

∣∣ieit∣∣dt = ∫ b

a

1dt = b− a.

The desired inequality thus follows.

6.2 Uniqueness theorem and inversion formula

One basic reason of working with the characteristic function is that it uniquely
determines the distribution of the random variable. In addition, one can recover
the distribution as well as many of its properties from the characteristic function
in a fairly explicit way.

The main result here is the following inversion formula, which easily implies
the uniqueness property.
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Theorem 6.1. Let µ be a probability measure on R and let f(t) be its character-
istic function. Then for any real numbers x1 < x2, one has

µ((x1, x2)) +
1

2
µ({x1}) +

1

2
µ({x2}) = lim

T→∞

1

2π

∫ T

−T

e−itx1 − e−itx2

it
f(t)dt. (6.5)

Remark 6.3. The function e−itx1−e−itx2

it
at t = 0 is defined in the limiting sense as

x2 − x1. It should be pointed out that the right hand side of (6.5) cannot simply
be understood as the integral

1

2π

∫ ∞

−∞

e−itx1 − e−itx2

it
f(t)dt.

Indeed, such an integral over (−∞,∞) may not be well-defined unless f(t) is
integrable over R.

We postpone the proof of Theorem 6.1 to the end of this section and first
discuss some of its implications. First of all, it implies the following uniqueness
result, which asserts that a probability measure is uniquely determined by its
characteristic function.

Corollary 6.1. Let µ1 and µ2 be two probability measures. Suppose that they
have the same characteristic function. Then µ1 = µ2.

Proof. Let Di ≜ {x ∈ R1 : µi({x}) > 0} denote the set of atoms (discontinuity
points) for µi (i = 1, 2) and D ≜ D1 ∪ D2. Since µ1 and µ2 have the same
characteristic function, by the inversion formula (6.5) one has

µ1((x1, x2)) = µ2((x1, x2)), for all x1 < x2 in Dc. (6.6)

On the other hand, D1, D2 are both countable and so is D. In particular, Dc is
dense in R. By a simple approximation argument, the relation (6.6) is enough
to conclude that µ1((a, b]) = µ2((a, b]) for all real numbers a < b. This in turns
implies µ1 = µ2 by Proposition 1.4.

Due to the uniqueness theorem, many properties of the original distribution
can be detected from its characteristic function. We give two examples of this kind.
The first one only uses the uniqueness property while the second one requires an
application of the inversion formula.

Proposition 6.3. Let X be a random variable with characteristic function fX(t).
Then fX(t) is real-valued if and only if X and −X have the same distribution.
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Proof. Note that f−X(t) = fX(−t) = fX(t). Therefore, fX(t) is real-valued if and
only if f−X(t) = fX(t), which according to the uniqueness theorem is equivalent
to saying that X law

= −X.

Proposition 6.4. Let X be a random variable with distribution function F (x)
and characteristic function f(t) respectively. Suppose that f(t) is integrable over
(−∞,∞). Then F (x) is continuously differentiable on R and its derivative (the
probability density function) is given by the formula

ρ(x) =
1

2π

∫ ∞

−∞
e−itxf(t)dt. (6.7)

Proof. In this case, the inversion formula (6.5) is equivalently expressed as

P(x1 < X < x2) +
1

2
P(X = x1) +

1

2
P(X = x2) =

1

2π

∫ ∞

−∞

e−itx1 − e−itx2

it
f(t)dt.

(6.8)
Indeed, according to (6.4) one has

∣∣e−itx1 − e−itx2

it

∣∣ ⩽ |x1 − x2|.

It follows from assumption that the function t 7→ e−itx1−e−itx2

it
f(t) is integrable

over (−∞,∞).
We first show that F is left continuous (and thus continuous). Let x ∈ R and

h > 0. Using the relations
P(x− h < X < x) = F (x−)− F (x− h),

P(X = x− h) = F (x− h)− F ((x− h)−),

P(X = x) = F (x)− F (x−),

the inversion formula (6.8) applied to x1 = x− h and x2 = x yields that

1

2
(F (x)−F (x−h))+

1

2
(F (x−)−F ((x−h)−)) =

1

2π

∫ ∞

−∞

e−it(x−h) − e−itx

it
f(t)dt.

(6.9)
Note that one always has

lim
h↓0

F ((x− h)−) = F (x−) (why?).
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In addition, since

lim
h↓0

e−it(x−h) − e−itx

it
= 0

for every fixed t, by dominated convergence the right hand side of (6.9) tends to
zero as h ↓ 0. Therefore, F (x − h) → F (x) as h ↓ 0 which shows that F is left
continuous at x.

Since F is continuous, by applying the inversion formula to x1 = x, x2 = x+h
and dividing it by h, one obtains that

F (x+ h)− F (x)

h
=

1

2π

∫ ∞

−∞

e−itx − e−it(x+h)

ith
f(t)dt.

By dominated convergence, the right hand side tends to 1
2π

∫∞
−∞ e−itxf(t)dt as

h→ 0. Therefore, F is differentiable at x with derivative

F ′(x) =
1

2π

∫ ∞

−∞
e−itxf(t)dt.

The continuity of F ′(x) follows from the continuity of x 7→
∫∞
−∞ e−itxf(t)dt, which

is again a simple consequence of dominated convergence.

Proof of the inversion formula (6.5)

The proof of (6.5) relies on the following Dirichlet integral∫ ∞

0

sinu

u
du =

π

2
(6.10)

which was derived in Example 3.3 before. Note that this integral needs to be
understood as an improper integral lim

R→∞

∫ R

0
sinu
u
du and sin 0

0
≜ 1.

To prove the inversion formula we begin with its right hand side. We fix
x1 < x2 throughout the discussion. By the definition of the characteristic function,
for each T > 0 one has∫ T

−T

e−itx1 − e−itx2

it
f(t)dt =

∫ T

−T

e−itx1 − e−itx2

it

( ∫ ∞

−∞
eitxµ(dx)

)
dt

=

∫ ∞

−∞

( ∫ T

−T

e−it(x1−x) − e−it(x2−x)

it
dt
)
µ(dx). (6.11)
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Here we used Fubini’s theorem to change the order of integration. This is legal
since ∣∣∣∣e−itx1 − e−itx2

it
· eitx

∣∣∣∣ ⩽ |x2 − x1|

which is integrable over [−T, T ]×R with respect to the product measure dt⊗ µ.
Next, we set

IT (x;x1, x2) ≜
∫ T

−T

e−it(x1−x) − e−it(x2−x)

it
dt.

By writing out the real and imaginary parts one obtains that

IT (x;x1, x2)

=

∫ T

−T

(
cos t(x1 − x)− cos t(x2 − x)

)
+ i

(
sin t(x2 − x)− sin t(x1 − x)

)
it

dt

= 2
( ∫ T

0

sin t(x2 − x)

t
dt−

∫ T

0

sin t(x1 − x)

t
dt
)
,

where the cosine part vanishes since cosx is an even function. By applying a
change of variables and discussing according to different scenarios of x, it is routine
to see that

IT (x;x1, x2) =



2
( ∫ T (x2−x)

0
sinu/udu−

∫ T (x1−x)

0
sinu/udu

)
, x < x1;

2
∫ T (x2−x)

0
sinu/udu, x = x1;

2
( ∫ T (x2−x)

0
sinu/udu+

∫ T (x−x1)

0
sinu/udu

)
, x1 < x < x2;

2
∫ T (x−x1)

0
sinu/udu, x = x2;

2
(
−

∫ T (x−x2)

0
sinu/udu+

∫ T (x−x1)

0
sinu/udu

)
, x > x2.

(6.12)
Sending T → ∞ and using the Dirichlet integral (6.10), one obtains that

lim
T→∞

IT (x;x1, x2) =



0, x < x1;

π, x = x1;

2π, x1 < x < x2;

π, x = x2;

0, x > x2.

(6.13)

Note that we have expressed the right hand side of the inversion formula (6.5)
as

lim
T→∞

1

2π

∫ ∞

−∞
IT (x;x1, x2)µ(dx).
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The equation (6.13) urges us to take limit under the integral sign. This is indeed
legal as a result of the following elementary fact.

Lemma 6.2. One has

0 ⩽
∫ y

0

sinu

u
du ⩽

∫ π

0

sinu

u
du for all y ⩾ 0.

In view of the expression (6.12) of IT (x;x1, x2), Lemma 6.2 shows that

|IT (x;x1, x2)| ⩽ 4

∫ π

0

sinu

u
du <∞ for all x and T.

According to the dominated convergence theorem and (6.13), one obtains that

lim
T→∞

1

2π

∫ ∞

−∞
IT (x;x1, x2)µ(dx) =

1

2
µ({x1}) + µ((x1, x2)) +

1

2
µ({x2})

which concludes the desired inversion formula.
As the last piece of the puzzle, it remains to prove Lemma 6.2.

Proof of Lemma 6.2. We first show that D(y) ≜
∫ y

0
sinu
u
du is non-negative for all

y ⩾ 0. This is obvious when y ∈ [0, π]. When y ∈ [(2k − 1)π, (2k + 1)π] with any
k ⩾ 1, one has∫ y

0

sinu

u
du ⩾

∫ 2kπ

0

sinu

u
du =

k∑
l=1

∫ 2lπ

2(l−1)π

sinu

u
du

=
k∑

l=1

( ∫ (2l−1)π

(2l−2)π

sinu

u
du+

∫ 2lπ

(2l−1)π

sinu

u
du

)
=

k∑
l=1

∫ (2l−1)

(2l−2)π

(sinu) ·
(1
u
− 1

u+ π

)
du

⩾ 0,

where we have applied a change of variables to the integral
∫ 2lπ

(2l−1)π
sinu/udu to

reach the last equality.
Next, we show that D(y) is maximised at y = π. Due to the sign pattern of

sinu, it is enough to show that∫ (2k+1)π

π

sinu

u
du ⩽ 0 ∀k ⩾ 0. (why?)
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This can be proved in a similar way to the positivity part:∫ (2k+1)π

π

sinu

u
du =

k∑
l=1

( ∫ 2lπ

(2l−1)π

sinu

u
du+

∫ (2l+1)π

2lπ

sinu

u
du

)
=

k∑
l=1

∫ 2lπ

(2l−1)π

(sinu) ·
(1
u
− 1

u+ π

)
du

⩽ 0.

Remark 6.4. The proof of the inversion formula (6.5) we gave here is not entire
satisfactory, since we started from the right hand side of the formula pretend-
ing that it was known in advance. In the context of Fourier transform, it took
mathematicians quite a while to understand why the simple inversion formula

ρ(x) =
1

2π

∫ ∞

−∞
e−itxf(t)dt

recovers the original function ρ(x) from its Fourier transform f(t). One needs to
delve deeper into Fourier analysis to understand how the inversion formula arises
naturally (cf. Appendix B for a discussion).

6.3 The Lévy-Cramér continuity theorem

One of the most important properties of the characteristic function is that weak
convergence of random variables is equivalent to pointwise convergence of their
characteristic functions. This is the content of the Lévy-Cramér continuity theo-
rem. As we will see, it provides a useful tool for proving central limit theorems.

We start with the easier part of the theorem.

Theorem 6.2. Let µn (n ⩾ 1) and µ be probability measures on R with charac-
teristic functions fn (n ⩾ 1) and f respectively. Suppose that µn converges weakly
to µ. Then fn converges to f uniformly on every finite interval of R.

Proof. For each fixed t, the function x 7→ eitx is bounded and continuous. The
convergence of fn(t) to f(t) (for fixed t) is thus a trivial consequence of the weak
convergence of µn to µ.

The uniformity assertion requires more effort than pointwise convergence. We
first claim that, under the current assumption the family of functions {fn : n ⩾ 1}
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is uniformly equicontinuous on R, in the sense that for any ε > 0, there exists
δ > 0 such that

|fn(t)− fn(s)| < ε

for all n ⩾ 1 and all s, t with |t − s| < δ. To prove the uniform equicontinuity
of {fn}, first note that the family of probability measures {µn : n ⩾ 1} is tight
as a consequence of weak convergence. In particular, given ε > 0, there exists
A = A(ε) > 0 such that

µn([−A,A]c) < ε for all n.

Next, for any real numbers t and h and n ⩾ 1, one has

|fn(t+ h)− fn(t)| =
∣∣ ∫ ∞

−∞
ei(t+h)xµn(dx)−

∫ ∞

−∞
eitxµn(dx)

∣∣
⩽

∫ ∞

−∞
|eihx − 1|µn(dx)

=

∫
{x:|x|⩽A}

|hx|µn(dx) +

∫
{x:|x|>A}

2µn(dx)

⩽ |h|A+ 2µn([−A,A]c)
< |h|A+ 2ε.

When |h| is small enough (in a way independent of t), the right hand side can be
made less than 3ε. This proves the uniform equicontinuity property.

Now we establish the desired uniform convergence. Let I = [a, b] be an ar-
bitrary finite interval. First of all, given ε > 0, by uniform equicontinuity there
exists δ > 0, such that whenever |t− s| < δ one has

|fn(t)− fn(s)| < ε ∀n ⩾ 1.

We may also assume that for the same δ one has |f(t) − f(s)| < ε, since f is
uniformly continuous (cf. Proposition 6.2). Next, we fix a finite partition

P : a = t0 < t1 < · · · < tr−1 < tr = b

of [a, b] such that |ti − ti−1| < δ for all 1 ⩽ i ⩽ r. Since at each partition point ti
one has the pointwise convergence fn(ti) → f(ti) and there are finitely many of
them, one can find N ⩾ 1 such that

|fn(ti)− f(ti)| < ε for all n > N and 0 ⩽ i ⩽ r.
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It follows that for each n > N and t ∈ [a, b], with ti ∈ P being the partition point
such that t ∈ [ti, ti+1], one has

|fn(t)− f(t)| ⩽ |fn(t)− fn(ti)|+ |fn(ti)− f(ti)|+ |f(ti)− f(t)|
< ε+ ε+ ε = 3ε.

This gives the uniform convergence of fn to f on [a, b].

The harder (and more useful) part of the theorem is the other direction which
asserts that weak convergence can be established through pointwise convergence
of the characteristic functions.

Theorem 6.3. Let {µn : n ⩾ 1} be a sequence of probability measures on R with
characteristic functions {fn : n ⩾ 1} respectively. Suppose that the following two
conditions hold:

(i) fn(t) converges pointwisely to some limiting function f(t);
(ii) f(t) is continuous at t = 0.

Then there exists a probability measure µ, such that µn converges weakly to µ. In
addition, f is the characteristic function of µ.

We postpone its proof to the end of this section. There are two important
remarks concerning the assumptions in the above two theorems. On the one hand,
in Theorem 6.2 it is crucial to assume weak convergence of µn. As illustrated by the
following example, fn may fail to converge if only vague convergence is imposed.

Example 6.2. Let µn = 1
2
δ0 +

1
2
δn be the two-point distribution at 0 and n with

equal probabilities. It is a simple exercise that µn converges vaguely to the zero
measure on R. The characteristic function of µn is given by fn(t) = 1

2
+ 1

2
eint,

which fails to converge at any t /∈ 2πZ.

On the other hand, the following example illustrates that in Theorem 6.3, the
continuity assumption of the limiting function at t = 0 cannot be removed. As we
will also see in the proof of that theorem, such an assumption ensures tightness
which is essential to expect weak convergence.

Example 6.3. Let µn be the normal distribution with mean zero and variance
n. Then

fn(t) = e−
1
2
nt2 n→∞−→ f(t) =

{
0, t ̸= 0;

1, t = 0.
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Note that although fn converges pointwisely, the limiting function is not contin-
uous at t = 0. The sequence µn converges vaguely to the zero measure and thus
fails to be weakly convergent.

Combining the two theorems, one obtains the following neater but slightly
weaker formulation.

Corollary 6.2. Let µn (n ⩾ 1) and µ be probability measures on R, with charac-
teristic functions fn (n ⩾ 1) and f respectively. Then µn converges weakly to µ if
and only if fn converges pointwisely to f .

Proof. Necessity is trivial. For sufficiency, since f is a characteristic function it
must be continuous at t = 0. In particular, the two conditions of Theorem 6.3
are both verified. As a result, there exists a probability measure ν such that µn

converges weakly to ν and f is the characteristic function of ν. Since f is assumed
to be the characteristic function of µ, by the uniqueness theorem one has ν = µ,
hence showing that µn converges weakly to µ.

Proof of Theorem 6.3

Before proving Theorem 6.3, we first derive a general estimate for the character-
istic function which is also of independent interest.

Lemma 6.3. Let µ be a probability measure on R with characteristic function f .
Then for any δ > 0, one has

µ([−2δ−1, 2δ−1]) ⩾
1

δ

∣∣ ∫ δ

−δ

f(t)dt
∣∣− 1. (6.14)

Proof. By definition, one has∫ δ

−δ

f(t)dt =

∫ δ

−δ

∫ ∞

−∞
eitxµ(dx)dt

=

∫ ∞

−∞
µ(dx)

∫ δ

−δ

(cos tx+ i sin tx)dt

=

∫ ∞

−∞

2 sin δx

x
µ(dx).
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Since | sinx
x
| ⩽ 1, it follows that

1

2δ

∣∣ ∫ δ

−δ

f(t)dt
∣∣ = ∣∣ ∫ ∞

−∞

sin δx

δx
µ(dx)

∣∣
⩽

∫
{x:|δx|⩽2}

µ(dx) +

∫
{x:|δx|>2}

1

|δx|
µ(dx)

⩽ µ([−2δ−1, 2δ−1]) +
1

2
µ([−2δ−1, 2δ−1]c)

=
1

2
+

1

2
µ([−2δ−1, 2δ−1]).

Rearranging the terms gives the desired inequality.

The significance of Lemma 6.3 is that the continuity of f(t) at t = 0 controls
the speed that µ loses its mass at infinity. Indeed, a further rearrangement of
(6.14) yields

µ([−2δ−1, 2δ−1]c) ⩽ 2− 1

δ

∣∣ ∫ δ

−δ

f(t)dt
∣∣

=

∣∣ ∫ δ

−δ
f(0)dt

∣∣− ∣∣ ∫ δ

−δ
f(t)dt

∣∣
δ

(since f(0) = 1)

⩽
1

δ

∫ δ

−δ

∣∣f(t)− f(0)
∣∣dt. (6.15)

This inequality shows that the speed that µ([−2δ−1, 2δ−1]c) → 0 as δ ↓ 0 is
controlled by the speed of convergence to zero for the right hand side, which is in
turn controlled by the (modulus of) continuity of f(t) at t = 0.

Remark 6.5. In the language of analysis, understanding the precise relationship
between the tail behaviour of a function and the behaviour near the origin of its
Fourier transform falls into the scope of Tauberian theory.

The key step for proving Theorem 6.3 is to show that the family {µn : n ⩾ 1}
is tight, which in turn ensures the existence of a weakly convergent subsequence.
The assumptions in the theorem play essential roles for establishing tightness
through the estimate (6.15).

Proof of Theorem 6.3. Step one: tightness of {µn}. According to (6.15), for every
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δ > 0 one has

µn([−2δ−1, 2δ−1]c) ⩽
1

δ

∫ δ

−δ

∣∣fn(t)− fn(0)
∣∣dt

⩽
1

δ

∫ δ

−δ

∣∣fn(t)− f(t)
∣∣dt+ 1

δ

∫ δ

−δ

∣∣f(t)− f(0)
∣∣dt

where we have also used fn(0) = f(0) = 1. Now given ε > 0, by the continuity
assumption for f(t) at t = 0, there exists δ = δ(ε) > 0 such that

1

δ

∫ δ

−δ

∣∣f(t)− f(0)
∣∣dt < ε.

Since fn(t) → f(t) for every t and |fn(t)−f(t)| ⩽ 2, by the dominated convergence
theorem (for such fixed δ) one sees that

lim
n→∞

∫ δ

−δ

|fn(t)− f(t)|dt = 0.

In particular, there exists N = N(ε) ⩾ 1 such that

1

δ

∫ δ

−δ

∣∣fn(t)− f(t)
∣∣dt < ε for all n > N.

It follows that
µn([−2δ−1, 2δ−1]c) < 2ε for all n > N. (6.16)

By further shrinking δ, one can ensure that (6.16) holds for µ1, · · · , µN as well
and thus for all n. This gives the tightness property.

Step two: there is precisely one weak limit point of µn. Since the family
{µn} is tight, there exists a subsequence µnk

converging weakly to some probabil-
ity measure µ. Let µmj

another subsequence which converges weakly to another
probability measure ν. According to Theorem 6.2, one has

fnk
(t) → fµ(t), fmj

(t) → fν(t)

for the corresponding characteristic functions. But from assumption, fn(t) con-
verges pointwisely. As a result, one concludes that fν(t) = fµ(t), which implies
ν = µ by uniqueness. Consequently, the sequence has one and only one weak limit
point µ.
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Step three: µn converges weakly to µ. Let f ∈ Cb(R) and denote cn ≜
∫∞
−∞ f(x)µn(dx).

Suppose that c is a limit point of cn, say along a subsequence cmj
. By tightness,

there is a further weakly convergent subsequence µmjl
, whose weak limit has to

be µ by Step Two. As a result, one has

cmjl
=

∫ ∞

−∞
f(x)µmjl

(dx) →
∫ ∞

−∞
f(x)µ(dx)

as l → ∞. This shows that c =
∫∞
−∞ f(x)µ(dx). In other words, cn has precisely

one limit point c. It follows that

cn =

∫ ∞

−∞
f(x)µn(dx) → c =

∫ ∞

−∞
f(x)µ(dx)

as n→ ∞. This proves the weak convergence of µn to µ.

6.4 Some applications of the characteristic function

We discuss a few simple applications of the characteristic function. Its more
powerful applications to central limit theorems will be discussed in the Chapter
7.

In the first place, by formally differentiating the expression f(t) = E[eitX ] at
t = 0, one obtains that f (k)(0) = ikE[Xk]. This suggests that the characteristic
function can be used to compute moments. The following result makes this point
precise.

Theorem 6.4. Suppose that the random variable X has finite absolute moments
up to order n. Then its characteristic function f(t) has bounded, continuous
derivatives up to order n, and they are given by

f (k)(t) = ikE[XkeitX ], 1 ⩽ k ⩽ n.

In particular, E[Xk] = f (k)(0)
ik

for each 1 ⩽ k ⩽ n.

Proof. We only consider the case when n = 1 as the general case follows by
induction. First of all, for any real numbers t and h one has

f(t+ h)− f(t)

h
= E

[ei(t+h)X − eitX

h

]
.
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Note that
ei(t+h)X − eitX

h
→ iXeitX as h→ 0,

and
∣∣ ei(t+h)X−eitX

h

∣∣ ⩽ |X| which is integrable by assumption. It follows from the
dominated convergence theorem that

f(t+ h)− f(t)

h
→ E[iXeitX ] as h→ 0,

which is also the derivative of f(t). Its continuity is another consequence of dom-
inated convergence.

The following result is a direct corollary of Theorem 6.4 and the Taylor ap-
proximation theorem in real analysis.

Corollary 6.3. Under the same assumption as in Theorem 6.4, one has

f(t) =
n∑

k=0

ikE[Xk]

k!
tk + o(|t|n),

where o(|t|n) denotes a function such that o(|t|n)/|t|n → 0 as t→ 0.

As another application, we reproduce the weak LLN in the i.i.d. case by using
the characteristic function.

Theorem 6.5. Let {Xn : n ⩾ 1} be a sequence of i.i.d. random variables with
finite mean m ≜ E[X1]. Then

lim
n→∞

X1 + · · ·+Xn

n
= m in prob.

Proof. Since the asserted limit is a deterministic constant, it is equivalent to
proving weak convergence (cf. Proposition 4.2). Let f(t) be the characteristic
function of X1 (thus of Xn for every n). Then, with Sn ≜ X1 + · · ·+Xn one has

fSn/n(t) = E
[
eit(X1+···+Xn)/n

]
=

(
f
( t
n

))n
.

Since X1 has finite mean, by Corollary 6.3 one can write

fSn/n(t) =
(
1 +

imt

n
+ o(1/n)

)n
= (1 + qn)

1
qn

·nqn ,

where qn ≜ imt/n + o(1/n). Note that qn → 0 and nqn → imt as n → ∞.
Therefore, (1 + qn)

1/qn → e and fSn/n(t) → eimt as n → ∞. Since eimt is the
characteristic function of the constant random variable X = m, one concludes
from the Lévy-Cramér continuity theorem that Sn/n converges weakly to m.
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6.5 Pólya’s criterion for characteristic functions

Let us consider the following question. Suppose that f(t) is a given function.
How can one know if it is the characteristic function of some random variable /
probability measure? There is a general theorem due to S. Bochner, which pro-
vides a necessary and sufficient condition for f(t) to be a characteristic function.
Bochner’s criterion is not easy to verify in practice. On the other hand, there
is a simple sufficient condition discovered by G. Pólya which is more useful in
many situations. Pólya’s criterion can often be checked explicitly and be used to
construct a rich class of characteristic functions. The main theorem is stated as
folllows.

Theorem 6.6. Let f : R → R be a function which satisfies the following proper-
ties:

(i) f(0) = 1 and f(t) = f(−t) for all t;
(ii) f(t) is decreasing and convex on (0,∞);
(iii) f(t) is continuous at the origin and limt→∞ f(t) = 0.
Then f(t) is the characteristic function of some random variable / probability

measure.

The generic shape of functions that satisfy Pólya’s criterion is sketched in the
figure below. ‌

Remark 6.6. The conditions in the theorem imply that f(t) is non-negative. The
condition that f(t) is continuous at t = 0 is important. Indeed, the function

f(t) ≜

{
1, t = 0;

0, t ̸= 0
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satisfies all conditions of the theorem except for continuity at the origin. This
function is clearly not a characteristic function. The condition that limt→∞ f(t) =
0 is not essential and can be replaced by limt→∞ f(t) = c > 0 for some c ∈ (0, 1).
Indeed, in the latter case one considers

g(t) ≜
f(t)− c

1− c
.

Then g(t) satisfies the conditions of the theorem and is thus a characteristic
function. But one can then write

f(t) = (1− c) · g(t) + c · 1,

which is a convex combination of two characteristic functions (g(t) and 1). As a
result, f(t) is also a characteristic function (cf. Lemma 6.4 below).

Before proving Theorem 6.6, we first look at a simple but enlightening example.

Example 6.4. A basic example that satisfies Pólya’s criterion is given as follows:

f(t) = (1− |t|)+ ≜

{
1− |t|, |t| ⩽ 1;

0, otherwise.

For this example, there is no need to use Theorem 6.6 to see that it is a character-
istic function. By evaluating the inversion formula (6.7) explicitly, one finds that
f(t) is the characteristic function of the distribution whose probability density
function is given by

ρ(x) =
1− cosx

πx2
, x ∈ R.

Example 6.5. Another example that satisfies Pólya’s criterion is the function
fα(t) ≜ e−|t|α (α ∈ (0, 1]). In particular, this covers the case of the Cauchy
distribution (when α = 1). When α ∈ (1, 2), fα is still a characteristic function,
however, Theorem 6.6 does not apply since fα is no longer convex. The treatment
of this case will be given in Section 7.3 below by using a different approach when
we study the central limit theorem.

The starting point for proving Theorem 6.6 is the observation that convex
combinations of characteristic functions are again characteristic functions.

Lemma 6.4. Suppose that f1, f2 are characteristic functions and λ ∈ (0, 1). Then
λf1 + (1− λ)f2 is also a characteristic function.
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Proof. Let µ1, µ2 be the probability measures corresponding to f1, f2 respectively.
By definition, one has

fi(t) =

∫
R
eitxµi(dx), i = 1, 2.

It follows that

f(t) ≜ λf1(t) + (1− λ)f2(t) =

∫
R
eitx

(
λµ1 + (1− λ)µ2

)
(dx).

In other words, f(t) is the characteristic function of the probability measure λµ1+
(1− λ)µ2.

Lemma 6.4 naturally extends to the case of more than two members: if
f1, · · · , fn are characteristic functions and λ1, · · · , λn are positive numbers such
that λ1 + · · ·+ λn = 1, then

λ1f1 + · · ·+ λnfn

is also a characteristic function. Without surprise, this fact can further be gener-
alised to the case of the convex combination of a continuous family of characteristic
functions. To be specific, let ν be a probability measure on (0,∞) and for each
r ∈ (0,∞) let t 7→ fr(t) be a characteristic function. Under suitable measurability
condition on r 7→ fr, it can be shown that the function

t 7→
∫
(0,∞)

fr(t)ν(dr)

is also a characteristic function. The assumption that ν is a probability measure on
(0,∞) ensures that this is a “convex combination” of the family {fr : r ∈ (0,∞)}
of characteristic functions weighted by the measure ν.

As a result, the key idea of proving Theorem 6.6 is to express f(t) as a convex
combination of a (continuous) family of characteristic functions, more precisely,
as

f(t) =

∫
(0,∞)

fr(t)ν(dr) (6.17)

where fr is some classical characteristic function (for each r > 0) and ν is a
probability measure on (0,∞). The above discussion then shows that f must also
be a characteristic function. We now implement this idea mathematically.
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Proof of Theorem 6.6. Step one. We first collect some standard properties arising
from the convexity of f(t) as well as the other assumptions in the theorem (we
will not prove them here). Recall that the right derivative of f(t) is given by

f ′
+(t) ≜ lim

h↓0

f(t+ h)− f(t)

h
.

(i) f ′
+ is well defined and one has −∞ < f ′

+(t) ⩽ 0 for every t > 0.
(ii) f ′

+ is increasing and right continuous on (0,∞).
(iii) For each given t > 0, f is Lipschitz (and absolutely continuous) on [t,∞).
(iv) Since limt→∞ f(t) = 0, one has

lim
t→∞

f ′
+(t) = 0.

Step two. Since f ′
+ is increasing and right continuous, it induces a Lebesgue-

Stieltjes measure µ on B(R) which satisfies

µ((a, b]) ≜ f ′
+(b)− f ′

+(a), 0 < a < b.

Using µ and the density function ρ(r) = r, we introduce another measure ν on
(0,∞) by

ν(dr) ≜ rµ(dr).

The definition of ν is understood as

ν(A) ≜
∫
A

rν(dr), A ∈ B((0,∞)).

Step three. We shall express f(t) as an integral with respect to ν in the form
(6.17). To this end, one first observes from the definition of µ that

−f ′
+(s) = 0− f ′

+(s) = f ′
+(∞)− f ′

+(s) =

∫ ∞

s

µ(dr) =

∫ ∞

s

r−1ν(dr)

for every s > 0. In addition, by the fundamental theorem of calculus one has

f(t) = −(f(∞)− f(t)) = −
∫ ∞

t

f ′
+(s)ds =

∫ ∞

t

∫ ∞

s

r−1ν(dr)ds

for every t > 0. Using Fubini’s theorem, one obtains that

f(t) =

∫ ∞

t

( ∫ r

t

ds
)
r−1ν(dr) =

∫ ∞

t

(
1− t

r

)
ν(dr)

=

∫
(0,∞)

(
1− t

r

)+
ν(dr), for all t > 0.
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Since f(t) is an even function, one arrives at

f(t) =

∫
(0,∞)

(
1− |t|

r

)+
ν(dr), for all t ∈ R\{0}. (6.18)

Step four. For each given r > 0, the function

fr(t) ≜
(
1− |t|

r

)+
, t ∈ R

is a characteristic function. This is a direct consequence of Example 6.4 and the
scaling property of the characteristic function.

Step five. It remains to show that ν is a probability measure on (0,∞) which
then recognises (6.18) as a convex combination of the family {fr : r > 0}. To this
end, one sends t ↓ 0 in the equation (6.18). By the assumption, the left hand side
converges to f(0) = 1. For the right hand side, note that for each fixed r one has(

1− |t|
r

)+ ↑ 1 as t ↓ 0.

According to the monotone convergence theorem,

1 = lim
t↓0

∫
(0,∞)

(
1− |t|

r

)+
ν(dr) =

∫
(0,∞)

1ν(dr) = ν(0,∞).

Therefore, ν is a probability measure on (0,∞), hence finishing the proof of The-
orem 6.6.

We conclude this chapter with two applications of Pólya’s theorem.

Corollary 6.4. Let c > 0. There exist two different characteristic functions f1, f2
such that

f1(t) = f2(t) for t ∈ (−c, c).

Proof. Let f1(t) = e−|t| be the characteristic function of the Cauchy distribution.
We draw the tangent line of f1(t) at the point A = (c, f1(c)) and let this line
intersect the positive t-aixs at the point B. We construct f2 whose graph on
(0,∞) consists of the following parts:

(i) the graph of f1 on the part of (0, c);
(ii) the line segment AB on the part from A to B;
(iii) the zero function from B to infinity.
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We also extend f2(t) to the negative t-axis by symmetry. It is readily checked that
f2 satisfies Pólya’s criterion and is thus a characteristic function. The functions
f1, f2 satisfy the desired property.

Corollary 6.5. There exist three characteristic functions f1, f2, f3 such that f1 ̸=
f2 but f1f3 = f2f3.

Proof. Let f1, f2 be given as in Corollary 6.4 and set f3(t) ≜ (1 − |t|/c′)+ where
c′ ∈ (0, c) is a fixed constant. Then f1, f2, f3 are desired.

Remark 6.7. Corollary 6.5 tells us that the cancellation law does not hold for
characteristic functions:

f1f3 = f2f3 ⇏ f1 = f2.

Appendix A. The uniqueness theorem without inversion

Using the inversion formula to prove the uniqueness result (as we did before) is
quite involved and unnatural. There is another argument which provides more
insight into the uniqueness property. Suppose that µ1 and µ2 have the same
characteristic function, i.e.∫ ∞

−∞
eitxµ1(dx) =

∫ ∞

−∞
eitxµ2(dx) for allt ∈ R.

We want to show that µ1 = µ2. A natural idea is described as follows.

(i) It is enough to show that∫ ∞

−∞
f(x)µ1(dx) =

∫ ∞

−∞
f(x)µ2(dx) (6.19)
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for a sufficiently rich class of functions f .
(ii) Such a class of functions can be approximated by linear combinations of func-
tions from the family {eitx : t ∈ R}.
The first point is reasonable to expect. The fact that the family {eitx : t ∈ R}
generates a rich class of functions is also natural from the view of Fourier series :
any continuous periodic function f(x) with period T = 1 (i.e. f(x + 1) = f(x))
admits a Fourier series expansion

f(x) ∼
∞∑

n=−∞

cne
2πinx, x ∈ [0, 1],

where cn ≜
∫ 1

0
f(x)e2πinxdx is the n-th Fourier coefficient.

Instead of using Fourier series, we shall take a different approach to imple-
ment the above idea mathematically. The key ingredient is the so-called Stone-
Weierstrass theorem, which is stated in the context of periodic functions as follows.
Its proof can be found in [Lan93].

Theorem 6.7 (The Stone-Weierstrass Theorem for Periodic Functions). Let T >
0. Define CT to be the space of periodic functions f : R → C with period T . Let
A be a subset of CT satisfying the following three properties.

(i) A is an algebra: f, g ∈ A, a, b ∈ R =⇒ af + bg, f · g ∈ A.
(ii) A vanishes at no point: for any x ∈ [0, T ), there exists f ∈ A such that
f(x) ̸= 0.
(iii) A separates points: for any x ̸= y ∈ [0, T ), there exists f ∈ A such that
f(x) ̸= f(y).

Then A is dense in CT with respect to uniform convergence on [0, T ]. More pre-
cisely, for any periodic function f ∈ CT and ε > 0, there exists g ∈ A such
that

sup
t∈[0,T ]

|f(t)− g(t)| < ε.

Now we proceed to prove the uniqueness result for the characteristic function
by using the Stone-Weierstrass theorem.

Another proof of Corollary 6.1. Let µ1, µ2 be two probability measures with the
same characteristic function.

We first claim that (6.19) holds for any continuous periodic function f . Indeed,
let T > 0 be an arbitrary positive number and define CT to be the space of periodic
functions f : R → C with period T . Let AT ⊆ CT be the vector space spanned by

198



the family {e2πinx/T : n ∈ Z} of functions. It is routine to check that AT satisfies
all the assumptions in Theorem 6.7. As a result, AT is dense in CT with respect
to uniform convergence on [0, T ]. On the other hand, by assumption one knows
that (6.19) holds for all f ∈ AT . It follows from approximation that (6.19) holds
for all f ∈ CT .

Next, we claim that (6.19) holds for all bounded, continuous function f . The
idea is to replace f by a periodic function with large period. Given an arbitrary
ε > 0, there exists M > 0 such that

µi([−M,M ]c) < ε for i = 1, 2.

Let g : [−M − 1,M + 1] → R be the continuous function given by

g(x) ≜


f(x), x ∈ [−M,M ];

0, x ∈ (−∞,−M − 1) ∪ (M + 1,∞);

linear, x ∈ [−M − 1,−M ] or x ∈ [M,M + 1].

By definition, one has g(−M − 1) = g(M + 1) and

|g(x)| ⩽ ∥f∥∞ ∀x ∈ [−M − 1,M + 1].

Let ḡ : R → R be the periodic extension of g to R with period T = 2M +2. From
the previous step one knows that (6.19) holds for ḡ. Since f = ḡ on [−M,M ], it
follows that∣∣ ∫ fdµ1 −

∫
fdµ2

∣∣
⩽

∣∣ ∫ fdµ1 −
∫
ḡdµ1

∣∣+ ∣∣ ∫ ḡdµ1 −
∫
ḡdµ2

∣∣+ ∣∣ ∫ ḡdµ2 −
∫
fdµ2

∣∣
=

∣∣ ∫ fdµ1 −
∫
ḡdµ1

∣∣+ ∣∣ ∫ ḡdµ2 −
∫
fdµ2

∣∣
⩽ 2∥f∥∞ ·

(
µ1([−M,M ]c) + µ2([−M,M ]c)

)
< 4∥f∥∞ε.

As ε is arbitrary, one obtains (6.19) for f .
Finally, if (6.19) holds for all bounded, continuous functions, one must have

µ1 = µ2. The proof of this claim is left as an exercise.
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Appendix B. Formal derivation of the inversion formula

Let µ be a probability measure on R and let f(t) be its characteristic function.
Recall that the inversion formula is given by

µ((x1, x2)) +
1

2
µ({x1}) +

1

2
µ({x2}) = lim

T→∞

1

2π

∫ T

−T

e−itx1 − e−itx2

it
f(t)dt. (6.20)

In Section 6.2, we proved the above formula by starting from the right hand side
of the equation (as if we know the formula in advance). This perspective is thus
not very natural and satisfactory. In this appendix, we give a more constructive
derivation of the inversion formula (indeed of (6.21) below). Our discussion here
aims at conveying the essential idea and is thus only semi-rigorous.

First of all, recall from Proposition 6.4 that if f(t) is integrable on R, then µ
admits a continuous density function given by

ρ(x) =
1

2π

∫
R
e−itxf(t)dt. (6.21)

At a formal level, it is not hard to see how the two formulae (6.20) and (6.21) are
related with each other. On the one hand, presuming that µ has no discontinuity
points, by taking x1 = x, x2 = x+ h and sending h→ 0 after dividing both sides
by h, one obtains (6.21). On the other hand, integrating (6.21) with respect to x
over [x1, x2] produces (6.20).

For simplicity, we shall work at the level of functions instead of measures.
In particular, our main goal is to give a constructive derivation of the inversion
formula (6.21). In the context of functions, the characteristic function is more
commonly known as the Fourier transform. To be precise, the Fourier transform
of a function g : R → C is the function defined by

ĝ(t) ≜
∫
R
eitxg(x)dx, t ∈ R.

The question thus becomes: how can one recover g from ĝ? There are two key
observations before answering this question.

(i) Suppose that X is a random variable. For ε > 0, let Nε be a Gaussian
random variable with mean zero and variance ε, and we assume that X,Nε are
independent. It is reasonable to expect that X +Nε converges to X as ε → 0 in
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a reasonable sense. Now suppose that g(x) is the probability density function of
X. One knows that the convolution

(g ∗ ρε)(x) ≜
∫
R
g(y)ρε(x− y)dy

is the density of X + Nε, where ρε(x) ≜ 1√
2πε
e−

x2

2ε is the density of Nε. As a
consequence, it is natural to expect that∫

R
g(y)ρε(x− y)dy → g(x)

as ε→ 0.
(ii) The following property of the Fourier transform is fairly straight forward:∫

R
ĝ(t)h(t)dt =

∫
R
g(t)ĥ(t)dt. (6.22)

Indeed, one has ∫
R
ĝ(t)h(t)dt =

∫
R

( ∫
R
eitxg(x)dx

)
h(t)dt

=

∫
R
g(x)dx

∫
R
eitxh(t)dt (Fubini’s theorem)

=

∫
R
g(x)ĥ(x)dx.

Accepting the above two points, here is a natural idea of recovering the function
g from ĝ. Firstly, we recall from Point (i) that

g(x) = lim
ε→0

∫
R
g(y)ρε(x− y)dy.

To proceed further, let us ask the following question: given fixed x and ε, which
function hx,ε has Fourier transform given by ĥx,ε(y) = ρε(x− y)?

If one knows the answer, by applying (6.22) from Point (ii) one would have

g(x) = lim
ε→0

∫
R
g(y)ĥx,ε(y)dy = lim

ε→0

∫
R
ĝ(t)hx,ε(t)dt.

One then expects that the last expression yields an explicit inversion formula.
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It is not too difficult to figure out the answer to the above question. In fact,
one notes that y 7→ ρε(x−y) is the density of the Gaussian distribution with mean
x and variance ε. In particular, its Fourier transform (or characteristic function)
is given by

t 7→ eixt−
1
2
ε2t2 .

Based on this observation, a moment’s though reveals that

hx,ε(t) ≜
1

2π
e−ixt− 1

2
ε2t2

is the desired function. One can of course directly verify that ĥx,ε(·) = ρε(x − ·)
again by using the formula for the Fourier transform of a Gaussian density.

To summarise the above formal discussion, one concludes that

g(x) = lim
ε→0

1

2π

∫
R
ĝ(t)e−ixt− 1

2
ε2t2dt =

1

2π

∫
R
e−itxĝ(t)dt.

This is exact the inversion formula (6.21) one looks for!

Appendix C. A geometric proof of Pólya’s theorem

The proof of Pólya’s theorem (cf. Theorem 6.6) we gave in Section 6.5 is based on
expressing f(t) as a convex combination of a continuous family of characteristic
functions. However, discovering such an ingenious representation (6.18) requires
deep insight and is not obvious at all. The purpose of this appendix is to develop
an alternative (and more constructive) proof of Pólya’s theorem. The argument
here relies heavily on Euclidean geometric considerations.

Since the theorem is concerned with even functions, from now on we will only
work on the positive t-axis and assume that all functions are extended to the
negative t-axis by symmetry.

The building block: the simplest example

Our starting point is the following classical fact: the function

f1(t) = (1− |t|)+, t ∈ R.

is a characteristic function. Indeed, using the inversion formula one checks that
f1 is the characteristic function of the distribution whose density function is given
by

ρ(x) =
1− cosx

πx2
, x ∈ R.

202



By the scaling property, for each r > 0 the function

fr(t) ≜
(
1− |t|

r

)+
, t ∈ R, (6.23)

is also a characteristic function. The shape of fr is sketched in Figure 6.1 below.

Figure 6.1: The characteristic function fr

To illustrate the intuition better, in what follows we will avoid the use of
equations and describe the constructions in geometric terms. For instance, one
can rephrase fr in the following way. Let A be the point (0, 1) on the vertical axis
(we always call this point A). For each given point B on the positive axis, the
function whose graph is given by the polygon AB∞ (i.e. the segment AB plus
the segment from B to ∞ along the positive axis) is the characteristic function
fr with r = B.

We denote C = {fr : r > 0} to be the class of characteristic functions provided
by this example.

A slightly more complicated example

As the next step, let us consider a slightly more complicated situation. The graph
of the function f(t) we shall consider in this example is given by the polygon
ABC∞ as illustrated in Figure 6.2.
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Figure 6.2: The function f(t)

We claim that f(t) is a characteristic function.The idea is to show that f is
the convex combination of two characteristic functions from the above class C.
This is illustrated by Figure 6.3 below.

Figure 6.3: f(t) as a convex combination of f1, f2

The two red segments AP and AC correspond to two characteristic functions
f1, f2 ∈ C respectively. It is useful to note that the points B and C can be
regarded as the “turning points” for the function f . The functions f1, f2 are
associated with these two “turning points” in a natural way. More precisely, they
are defined uniquely in terms of the t-coordinates of B and C respectively.

We look at the triangles ∆AQP and ∆CQP separately, which corresponds to
the first two pieces of f(t) respectively. In the triangle ∆AQP , the segment AB
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correspond to the function f, while the segments AP and AQ correspond to f1
and f2 respectively. From the relation among these three segments, it is apparent
that

f = λf1 + (1− λ)f2

on this part, where λ ≜ |QB|
|QP | .This is merely a consequence of the relation that

B = λ · P + (1− λ) ·Q (6.24)

in terms of coordinates.
In the triangle ∆CQP , the segment BC corresponds to f, while the segments

PC and QC correspond to f1 and f2 respectively. In view of the relation (6.24)
on the segment QP , one has exactly the same relation

f = λf1 + (1− λ)f2

for this part!
Note that this relation holds trivially on the part C∞. Therefore, one con-

cludes that f is a characteristic function (as the convex combination of two char-
acteristic functions).

An even more complicated construction

To prove Pólya’s theorem, one has to consider an even more complicated situation.
The analysis developed in this example will provide the core ingredient of the
entire proof. The function f(t) we shall consider here is constructed by adding
one extra piece to the last example. In view of Figure 6.4 below, the graph of f(t)
is given by the polygon ABDE∞. To compare f(t) with the previous example,
one has two extra pointsD ∈ BC and E ∈ C∞. The new function f(t) is identical
with the earlier one on the parts AB and BD. On the part from D to E, the
previous function (given by DCE) is changed to the new function f(t) (given by
DE). We claim that f(t) is a characteristic function.

To this end, the main idea is to show that f(t) is now a convex combination of
three functions from the class C. These three functions are marked by red segments
and are denoted as f1, f2, f3 respectively (cf. Figure 6.5 below). In a similar way
as before, B,D,E are the three “turning points” of f , and the three functions
f1, f2, f3 ∈ C are associated with these three points B,D,E in the sense that they
are determined by the t-coordinates of these points respectively. However, directly
showing that f is a convex combination of f1, f2, f3 is too complicated and not
inspiring. We shall make use of what we have already obtained in the previous
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Figure 6.4: The function f(t)

example and apply an induction argument. This will also lead to a complete proof
of Pólya’s theorem without much extra effort!

To make the connection clear, let us denote the current function f(t) by f (3)(t)
and let f (2)(t) be the function defined in the previous example (in Figure 6.5 below,
f (2)(t) = ABC∞). In the previous example, we have seen that

f (2) = λ1 · f1 + λ2 · f̃2 (6.25)

with some λ1, λ2 > 0 and λ1 + λ2 = 1. Here the function f̃2 ∈ C in Figure 6.5 is
the function f2 in Figure 6.3 of the previous example. Note that f (3) = f (2) on
ABD. Therefore, one has

f (3) = λ1 · f1 + λ2 · f̃2

on the part ABD.
The next observation is that, in the triangle ∆APQ one easily expresses f̃2 as

a convex combination of f2 and f3. To be more precise, let α ≜ |RP |
|QP | . Then one

has
f̃2 = (1− α) · f2 + α · f3

on the part up to the point D (in the sense of t-coordinate). As a consequence,
for the same part one has

f (3) = λ1 · f1 + λ2(1− α) · f2 + λ2α · f3. (6.26)

Note that this is a convex combination of f1, f2, f3 (though for the moment this
is only true up to the point D).
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Figure 6.5: f(t) as a convex combination of f1, f2, f3

It remains to show that the relation (6.26) is also valid on the part DE. Since
f1 = f2 = 0 on this part, it reduces to showing that

f (3) = λ2α · f3 (6.27)

on DE. To this end, one first looks at the segment DC. This segment is from the
graph of f (2). Since f1 = 0 on this part, the relation (6.25) for f (2) becomes

f (2) = λ2 · f̃2.

In view of the triangle ∆CRP, this relation yields λ2 = |DP |
|RP | . Now if one looks at

the triangle ∆EQP, on the part DE one has

f (3) =
|DP |
|QP |

· f3 =
|DP |
|RP |

· |RP |
|QP |

· f3 = λ2α · f3.

This gives the desired relation (6.27).
Note that (6.26) is trivial on E∞. Therefore, one concludes that f(t) = f (3)(t)

is a convex combination of the characteristic functions f1, f2, f3. It follows that
f(t) is a characteristic function.

Generalising the construction to arbitrarily many pieces

One can continue the previous construction by adding in more pieces. To be
precise, if one picks two arbitrary points F ∈ DE, G ∈ E∞ and create a new
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segment FG, one obtains a new function f (4) from f (3) whose graph is given by
ABDFG∞. One can keep adding new pieces to obtain f (5) from f (4), and f (6)

from f (5) etc. in a similar way. Note that these functions are not arbitrary piece-
wise linear functions. The fact that the slope gets larger when passing through
each “turning point” is an important feature of the construction. Let D denote
the family of functions that can be constructed from this manner.

We claim that these functions f (m) are all characteristic functions. The crucial
observation is that the previous argument has an inductive nature and therefore
it requires almost no extra effort to treat this general f (m). To convey the idea
clearly, let f (m) ∈ D be a function whose graph is given by A0A1 · · ·Am∞ where
A0 = (0, 1), A1 · · · , Am−1 all lie above the t-axis and Am lies on the t-axis. The
points A1, · · · , Am are “turning points” through which the slopes of the segments
Ai−1Ai get increased. For each 1 ⩽ i ⩽ m, let fi ∈ C be the characteristic
function associated with the “turning point” Ai. More precisely, letting ti be the
t-coordinate of Ai, one has fi ≜ fti where fti is the function defined by (6.27) and
is thus in class C. We propose the following induction hypothesis.

Induction hypothesis : f (m) is a convex combination of f1, · · · , fm.

To develop the inductive step, let f (m+1) be a function obtained from f (m) in
the following way. Let A′

m ∈ Am−1Am and A′
m+1 ∈ Am∞. Then f (m+1) = f (m)

from A0 up to the point A′
m. On the part after A′

m, the graph of f (m+1) is given by
A′

mA
′
m+1∞. Let f̃m, f̃m+1 ∈ C be the characteristic functions associated with the

“turning points” A′
m, A

′
m+1 respectively. We need to show that f (m+1) is a convex

combination of f1, · · · fm−1, f̃m, f̃m+1.
By the induction hypothesis, one knows that

f (m) = λ1f1 + · · ·+ λm−1fm−1 + λmfm

where λ1, · · · , λm are positive numbers such that λ1+ · · ·+λm = 1. One is now in
exactly the same situation as in the last example. Figure 6.6 describes the main
geometric intuition. In the figure, one views B as Am−1, D as A′

m, C as Am, E
as A′

m+1, and replaces the line segment AB by A0 · · ·Am−1. This does not change
the argument at all. In the same way as in the last example, we set α ≜ |RP |

|QP | .
Then

fm = (1− α)f̃m + αf̃m+1

on the part from A0 to A′
m. In particular, one has

f (m+1) = f (m) = (λ1f1 + · · ·+ λm−1fm−1) + λm(1− α)f̃m + λmαf̃m+1 (6.28)
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Figure 6.6: The induction step

for this part. Note that on the part Am−1Am one has f1 = · · · = fm−1 = 0 and
thus f (m) = λmfm on this part. Using the triangle ∆AmRP, one sees that

λm =
|A′

mP |
|RP |

.

By exactly the same argument as in the last example, one finds that

f (m+1) = λmαf̃m+1

on the part A′
mA

′
m+1. This relation is equivalent to (6.28) since

f1 = · · · = fm−1 = f̃m = 0

on this part. Therefore, the convex linear relation (6.28) holds for f (m+1) for all
t. This concludes the induction step.

Proof of Theorem 6.6

Now we are able to give another independent proof of Pólya’s theorem. The
main idea is to approximate f(t) by using the functions f (m) ∈ D constructed
previously. Intuitively, these functions will be piecewise linear interpolations of
f(t).

209



Let m ⩾ 1 and let

Pm : 0 = t0 < t1 < · · · < tkm = m

be a finite partition of [0,m] such that

mesh(Pm) ≜ max
1⩽i⩽km

|ti − ti−1| → 0

as m→ ∞. We define an approximating function φ(m)(t) in the following way. On
the interval [0, tkm ], φ(m)(t) is the linear interpolation of f(t) over the partition
Pm, i.e.

φ(m)(ti) = f(ti), ti ∈ Pm,

and φ(m)(t) is linear on each sub-interval [ti−1, ti]. It is clear that this part of φ(m)

is given by a polygon A0A1 · · ·Akm where Ai = (ti, f(ti)). To define the remaining
part of φ(m), we extend the last piece

−−−−−−→
Akm−1Akm until it meets the t-axis at a

point A′
km
. The part of φ(m) on the interval [tkm ,∞) will be given by the graph

AkmA
′
km
∞. Since f(t) is decreasing and convex, one sees that φ(m) ∈ D and they

are thus characteristic functions. It is routine to check that

lim
m→∞

φ(m)(t) = f(t), for every t ∈ R.

It follows from the Lévy-Cramér theorem that f(t) is a characteristic function.
The proof of Theorem 6.6 is now complete.

Comparison with the short / ingenious proof

To relate the current proof with the one given in Section 6.5, recall from (6.17)
that f(t) admits the following integral representation:

f(t) =

∫
(0,∞)

fr(t)ν(dr), (6.29)

where dν ≜ rdf ′
+(r). Using this ingenious formula, one can easily express the

earlier φ(m) (more generally, f (m) ∈ D) as a convex combination of members in C.
Let us again consider f (m) given by A0A1 · · ·Am∞ as in Figure 6.6. Let ti be the
t-coordinate of Ai and let ai > 0 be the change of slope from Ai−1Ai to AiAi+1

(1 ⩽ i ⩽ m) where Am+1 ≜ ∞. By explicit calculation, one finds that

ν =
m∑
i=1

aitiδti .
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It follows from the general formula (6.29) that

f (m)(t) =
m∑
i=1

aitifti(t),

which is of no surprise a convex combination of ft1 , · · · , ftm .
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7 The central limit theorem
The LLN asserts that for i.i.d. random variables, the sample average S̄n stabilises
at its theoretical mean x̄ as n → ∞. The LDP (Cramér’s theorem) describes an
associated concentration of measure phenomenon: the law of S̄n concentrates at
the Dirac delta mass δx̄ exponentially fast. The central limit theorem (CLT), on
the other hand, quantifies the rate of convergence for the LLN. Roughly speaking,
it describes the behaviour that

S̄n − x̄ ≈ 1√
n
σZ

where σ2 = Var[X1] and Z is standard normal (one needs to be very careful about
the interpretation of such a statement though!). Another way of interpreting the
CLT is that the fluctuation of the partial sum of an i.i.d. sequence around its mean
is asymptotically Gaussian. It is a rather striking fact that such a behaviour is
universal for a wide class of models; it arises as along as the contribution of each
random individual is “small” and the dependence among different individuals is
“weak”. In addition, the particular distribution of each individual is of little rele-
vance and one ends up with a canonical Gaussian limit. Of course such statements
are quite vague and of no mathematical precision at this point. The mathematics
behind such a phenomenon as well as the appearance of the Gaussian nature is
rather deep.

In this chapter, we develop some insights into the hidden mechanism behind
the CLT from several perspectives. In Section 7.1, we recapture the classical
CLT for i.i.d. sequences from the viewpoints of characteristic functions and mo-
ments. Such a theorem is qualitative and only gives weak convergence without
any quantitative rate of convergence. In Section 7.2, we prove Lindeberg’s CLT
which extend the classical CLT to a more general context (still independent but
not necessarily identically distributed). In particular, we introduce a different
method that describes the weak convergence in a more quantitative form. In
Section 7.3, we use an explicit example to illustrate the possibility of having non-
Gaussian limit even in the i.i.d. case if the random variables have heavy tails.
In Section 7.4, we introduce a powerful modern technique of establishing rates
of convergence for distributional approximations: Stein’s method. To illustrate
the essential ideas, we only consider Gaussian approximations in the context of
independent sequences.
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7.1 The classical central limit theorem

We start by recapturing the classical central limit theorem (CLT) in the i.i.d.
context. This fundamental result was due to J. Lindeberg and P. Lévy. Its proof
is a typical application of characteristic functions.

Theorem 7.1. Let {Xn : n ⩾ 1} be an i.i.d. sequence of random variables which
has finite mean and variance. Then Sn−E[Sn]√

Var[Sn]
converges weakly to the standard

normal distribution as n→ ∞, where Sn ≜ X1 + · · ·+Xn.

Proof. One may assume that E[X1] = 0, for otherwise one can consider the se-
quence Xn − E[Xn] instead. Let f(t) be the characteristic function of X1. Since
X1 has finite second moment, according to Corollary 6.3 one has

f(t) = 1− 1

2
σ2t2 + o(t2),

where σ2 ≜ Var[X1]. In addition, since {Xn} is an i.i.d. sequence, it is easily seen
that the characteristic function of Sn−E[Sn]√

Var[Sn]
is given by

fn(t) =
(
f
( t

σ
√
n

))n
=

(
1− t2

2n
+ o

( t2

nσ2

))n
.

Note that t is fixed here and the infinitesimal term o(t2/nσ2) is understood in the
limit as n→ ∞. By writing

cn ≜ − t2

2n
+ o

( t2

nσ2

)
,

one finds that
fn(t) = (1 + cn)

1
cn

·ncn → e−t2/2

as n → ∞. The above limit is precisely the characteristic function of the stan-
dard normal distribution. According to the Lévy-Cramér continuity theorem, one
concludes that

Sn − E[Sn]√
Var[Sn]

→ N(0, 1)

weakly as n→ ∞. This proves the classical CLT.

The above proof, as the most standard one, is so simple that it has unfor-
tunately concealed many of the deeper insights into this fundamental theorem.
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The use of characteristic functions is somehow like a piece of magic, leaving the
audience in shock after the play is over without telling the deeper truth of why.

The following alternative argument perhaps provides a bit more clues towards
the hidden mechanism. In the first place, it is reasonable to believe that most of
the common distributions one encounters in elementary probability are uniquely
determined by the sequence of moments. The normal distribution is such an
example (we will not prove this fact here). Recall that the moments of Z d

= N(0, 1)
are given by

E[Z2m−1] = 0, E[Z2m] = (2m− 1) · (2m− 3) · · · · · 3 · 1

for each m ⩾ 1.
Let us compute moments of the quantity Sn−E[Sn]√

Var[Sn]
correspondingly. For sim-

plicity, we assume that E[X1] = 0 and Var[X1] = 1 ( Sn−E[Sn]√
Var[Sn]

becomes Sn/
√
n).

To make use of the method of moments, we further assume that X1 has finite
moments of all orders. The lemma below provides the key reason for the weak
convergence of Sn/

√
n towards the standard normal distribution.

Lemma 7.1. For each m ⩾ 1, one has

lim
n→∞

E
[( Sn√

n

)m]
= Lm,

where Lm ≜ E[Zm] is the m-th moment of the standard normal distribution.

Proof. We prove the claim by induction on m. The case when m = 1 is trivial.
When m = 2, one has

E[
( Sn√

n

)2]
=

1

n

n∑
j=1

E[X2
j ] = 1 = L2.

Now suppose that the claim is true for general m. To examine the (m + 1)-case,
one first observes that

E[Sm+1
n ] = E[(X1 + · · ·+Xn)S

m
n ] = n · E[XnS

m
n ] (since {Xn} are i.i.d.)

= n · E[Xn(Xn + Sn−1)
m] = n ·

m∑
j=0

( m
j

)
E[Xj+1

n ]E[Sm−j
n−1 ]

= nm · E[Sm−1
n−1 ] + n ·

m∑
j=2

( m
j

)
E[Xj+1

n ]E[Sm−j
n−1 ], (7.1)
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where we used E[Xn] = 0 and E[X2
n] = 1 to reach the last equality.

We now take into account the
√
n-normalisation. To simplify the notation, we

set
Lm(n) ≜ E

[( Sn√
n

)m]
, Cj ≜ E[Xj+1

n ].

It follows from (7.1) that

Lm+1(n) = mLm−1(n− 1) ·
(n− 1

n

)m−1
2

+
m∑
j=2

( m
j

)
CjLm−j(n− 1) · (n− 1)(m−j)/2

n(m−1)/2
.

According to the induction hypothesis and the simple observation that (for j ⩾ 2)

lim
n→∞

(n− 1)(m−j)/2

n(m−1)/2
= 0,

one finds that Lm+1(n) → mLm−1 as n→ ∞. This not only shows the convergence
of Lm+1(n), but more importantly its convergence to the correct limit

mLm−1 = Lm,

which is precisely the relation satisfied by the moments of N(0, 1). This completes
the proof of the lemma.

Due to Lemma 7.1, it becomes reasonable to expect that the CLT holds true
(i.e. Sn/

√
n converges weakly to N(0, 1)). Technically, there is still a missing

step in the above proof, i.e. why the convergence of moments implies the weak
convergence of distributions? This question falls into the scope of the so-called
moment problem which typically studies the relation between moments and dis-
tributions. We will not delve deeper into this direction and refer the interested
reader to [Bil86] for a discussion.

An application: Stirling’s formula

We discuss an enlightening application of the classical CLT: Stirling’s formula.
We used such a formula when we studied the random walk in Proposition 5.1

Proposition 7.1. One has the following asymptotic equivalence:

lim
n→∞

n!√
2πn(n/e)n

= 1. (7.2)
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We fist provide a heuristic argument which explains the key point of the proof.
Let {Xn : n ⩾ 1} be a sequence of independent and Poisson random variables
with parameter 1. Define Sn ≜ X1 + · · ·+Xn. Then one has

P(Sn = n) = P(n− 1 < Sn ⩽ n) = P
(
− 1√

n
<
Sn − n√

n
⩽ 0

)
.

By the CLT, Sn−n√
n

→ N(0, 1) weakly. In particular,

P(Sn = n) ≈ 1√
2π

∫ 0

−1/
√
n

e−x2/2dx

when n is large. Note that

P(Sn = n) =
nne−n

n!

since Sn
d
= Poisson(n), and one also has∫ 0

−1/
√
n

e−x2/2dx ≈ 1√
n
.

It follows that
nne−n

n!
≈ 1√

2πn

which is precisely the Stirling approximation (7.2). However, this argument is not
entirely rigorous; indeed, the step

P
(
− 1√

n
<
Sn − n√

n
⩽ 0

)
≈ 1√

2π

∫ 0

−1/
√
n

e−x2/2dx

is by no mean a simple consequence of the CLT as one also varies the end point
of the interval here.

To give a rigorous treatment, we consider a sequence {Xn : n ⩾ 1} of inde-
pendent and exponential random variables with parameter 1. Note that Sn ≜
X1 + · · ·+Xn follows a Gamma distribution with parameters n and 1. Using the
explicit formula for the Gamma density, it is plain to check that

P
(
0 ⩽

Sn+1 − (n+ 1)√
n+ 1

⩽ 1
)

=

√
n+ 1

n!

∫ 1

0

(
√
n+ 1 · (x+

√
n+ 1))ne−

√
n+1(x+

√
n+1)dx. (7.3)
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In the first place, according to the CLT one has

lim
n→∞

P
(
0 ⩽

Sn+1 − (n+ 1)√
n+ 1

⩽ 1
)
=

1√
2π

∫ 1

0

e−x2/2dx. (7.4)

On the other hand, by applying two steps of change of variables

y =
√
n+ 1(x+

√
n+ 1), z =

y − n√
n

to the right hand side of (7.3), one is led to

P
(
0 ⩽

Sn+1 − (n+ 1)√
n+ 1

⩽ 1
)
=

1

n!

∫ 1+n+
√
n+1

1+n

yne−ydy

=

√
nnne−n

n!

∫ 1√
n
+
√

1+ 1
n

1√
n

(
1 +

z√
n

)n
e−

√
nzdz.

Note that(
1 +

z√
n

)n
= exp

(
n log

(
1 +

z√
n

))
= exp

(
n ·

( z√
n
− z2

2n
+ o(

1

n
)
))
,

which implies
lim
n→∞

(
1 +

z√
n

)n
e−

√
nz = e−z2/2.

It follows that

P
(
0 ⩽

Sn+1 − (n+ 1)√
n+ 1

⩽ 1
)
∼

√
nnne−n

n!

∫ 1

0

e−z2/2dz. (7.5)

Stirling’s formula (7.2) thus follows by comparing (7.4) and (7.5).

7.2 Lindeberg’s central limit theorem

There are at least two reasons for push our understanding of the CLT further. The
first reason is that in the classical CLT, we have made the restrictive assumption
that the sequence {Xn} is i.i.d . The two proofs given in the last section make use
of this condition in a crucial way. However, the i.i.d. assumption is not strictly
essential for general CLTs. One needs to understand the deeper mechanism leading
to such a phenomenon. The second reason is that the previous proofs are only
qualitative; it does not contain any information about how close the distribution
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of Sn−E[Sn]√
Var[Sn]

is to the standard normal for each given n. For practical purposes

it is necessary and important to develop robust tools for studying the rate of
convergence in the CLT.

Lindeberg’s CLT provides some deeper insights into the above two aspects.
For the first aspect, it suggests that some sort of “uniform negligibility of each
summand Xm (1 ⩽ m ⩽ n) with respect to Sn” is essential for the CLT to
hold. For the second aspect, recall that a sequence of probability measures µn on
(R,B(R)) converges weakly to µ if and only if∫

R
f(x)µn(dx) →

∫
R
f(x)µ(dx) ∀f ∈ Cb(R).

In this spirit, a natural way of comparing the “distance” between µn and µ is
to quantitatively estimate the distance

∣∣ ∫
R fdµn −

∫
R fdµ

∣∣ for each f within a
suitable class of functions. In the CLT context, one is thus led to estimating the
distance∣∣E[f(Sn − E[Sn]√

Var[Sn]

)]
− E[f(Z)]

∣∣ for suitable class of functions f,

where Z d
= N(0, 1). Lindeberg’s CLT gives an answer to questions of such kind.

Before stating the theorem, we first present the basic set-up. We again con-
sider a sequence {Xn : n ⩾ 1} of independent (but not necessarily identically
distributed!) random variables with finite mean and variance. We assume that
E[Xn] = 0, for otherwise one can always centralise the sequence to have mean
zero. For each n ⩾ 1, let us set

σn ≜
√

Var[Xn], Σn ≜
√

Var[Sn], Ŝn ≜
Sn

Σn

.

We introduce two key quantities that will appear in the rate of convergence esti-
mate:

rn ≜ max
1⩽m⩽n

σm
Σn

(7.6)

and

gn(ε) ≜
1

Σ2
n

n∑
m=1

E[X2
m; |Xm| ⩾ εΣn], ε > 0.

Vaguely speaking, these two quantities reflect the relative magnitude of each
summand Xm (1 ⩽ m ⩽ n) with respect to Sn. We also recall the notation
∥f∥∞ ≜ supx∈R |f(x)| for a given function f : R → R.
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Now we are able to state Lindeberg’s CLT. In many ways it is deeper than
the classical CLT in the last section. We denote C3

b (R) as the space of functions
f : R → R that are continuously differentiable with bounded derivatives up to
order three.

Theorem 7.2. Under the aforementioned set-up, let f ∈ C3
b (R). Then for each

ε > 0 and n ⩾ 1, one has∣∣E[f(Ŝn)]− E[f(Z)]
∣∣ ⩽ (ε

6
+
γ · rn
6

)
∥f ′′′∥∞ + gn(ε) · ∥f ′′∥∞, (7.7)

where Z d
= N(0, 1) and γ ≜ E[|Z|3] =

√
8/π is the third absolute moment of Z.

In addition, if
lim
n→∞

gn(ε) = 0 for every ε > 0, (7.8)

then one has
Ŝn → Z weakly

as n→ ∞, hence giving the CLT for {Xn}.

The condition (7.8) is known as Lindeberg’s condition. Theorem 7.2 therefore
indicates that Lindeberg’s condition implies a CLT in the context of independent
random variables with finite mean and variance. As a direct corollary, one recovers
the CLT. Indeed, for an i.i.d. sequence {Xn : n ⩾ 1} one has Σn =

√
nσ (σ2 ≜

Var[X1]) and thus

gn(ε) =
1

nσ2

n∑
m=1

E[X2
m; |Xm| ⩾ ε

√
nσ]

=
1

σ2
E[X2

1 ; |X1| ⩾ ε
√
nσ],

which vanishes as n → ∞. In particular, Lindeberg’s condition holds. Another
interesting corollary of Lindeberg’s theorem is the following Liapunov’s CLT.

Corollary 7.1. Let {Xn : n ⩾ 1} be a sequence of independent random variables
with mean zero and finite third moment. Define Sn,Σn as before and we also set

Γn ≜
n∑

m=1

E[|Xm|3].

Suppose that Γn/Σ
3
n → 0. Then Sn/Σn converges weakly to N(0, 1).
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Proof. One verifies Lindeberg’s condition by using Chebyshev’s inequality:

gn(ε) =
1

Σ2
n

n∑
m=1

E[X2
m; |Xm| ⩾ εΣn] ⩽

1

εΣ3
n

n∑
m=1

E[|Xm|3] =
Γn

εΣ3
n

→ 0.

Remark 7.1. Liapunov’s CLT can also be derived using the method of character-
istic functions (third-order Taylor expansion for the characteristic function).

The rest of this section is devoted to the proof of Lindeberg’s CLT.

Proof of Theorem 7.2

We first establish the quantitative estimate (7.7) and then show how it leads to
the weak convergence property for the CLT.

The quantitative estimate.

Let n ⩾ 1 be given fixed. For each 1 ⩽ m ⩽ n, we define X̂m ≜ Xm/Σn so
that

Ŝn = X̂1 + · · ·+ X̂n.

The main idea of the proof is to swap each X̂m to a reference normal random
variable Ŷm (one flip at each step) in a way that after n swaps the accumulated
error is controllable.

Step one: Introducing the reference normal random variables. To implement
the swapping idea mathematically, we first assume that there are n standard
normal random variables Y1, · · · , Yn along with the Xi’s being defined on the
same probability space and the random variables

X1, X2, · · · , Xn, Y1, Y2, · · · , Yn

are all independent. This is always possible by using product spaces (why?). We
then set

Ŷm ≜
σmYm
Σn

, 1 ⩽ m ⩽ n,

and
T̂n ≜ Ŷ1 + · · ·+ Ŷn.

Observe that Ŷm is Gaussian with mean zero and the same variance as X̂m’s.
In addition, T̂n

d
= N(0, 1). The problem is essentially reduced to estimating the

quantity ∣∣E[f(Ŝn)]− E[f(T̂n)]
∣∣,
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where f ∈ C3
b (R) is a given fixed test function.

Step two: Forming the telescoping sum. We estimate the above quantity by
consecutively flipping X̂m to Ŷm (one at each time). More precisely, one writes

E[f(Ŝn)]− E[f(T̂n)]
= E[f(X̂1 + X̂2 + X̂3 + · · ·+ X̂n)]− E[f(Ŷ1 + X̂2 + X̂3 + · · ·+ X̂n)]

+ E[f(Ŷ1 + X̂2 + X̂3 + · · ·+ X̂n)]− E[f(Ŷ1 + Ŷ2 + X̂3 + · · ·+ X̂n)]

+ E[f(Ŷ1 + Ŷ2 + X̂3 + · · ·+ X̂n)]− E[f(Ŷ1 + Ŷ2 + Ŷ3 + · · ·+ X̂n)]

· · ·
+ E[f(Ŷ1 + · · · Ŷn−1 + X̂n)]− E[f(Ŷ1 + · · ·+ Ŷn−1 + Ŷn)]. (7.9)

To rewrite the expression in a more enlightening form, let us introduce for 1 ⩽
m ⩽ n,

Um ≜ Ŷ1 + · · ·+ Ŷm−1 + X̂m+1 + · · ·+ X̂n.

Then (7.9) can be expressed as

E[f(Ŝn)]− E[f(T̂n)] =
n∑

m=1

(
E[f(Um + X̂m)]− E[f(Um + Ŷm)]

)
.

Step three: Introducing the Taylor approximation. We now use Taylor’s ap-
proximation for the function f to estimate the quantity∣∣E[f(Um + X̂m)]− E[f(Um + Ŷm)]

∣∣.
For this purpose, let us define

Rm(ξ) ≜ f(Um + ξ)− f(Um)− f ′(Um)ξ −
f ′′(Um)

2
ξ2, ξ ∈ R.

This is the remainder for the second-order Taylor expansion of f around Um. Since
Um, X̂m, Ŷm are independent and X̂m, Ŷm have the same mean and variance, one
sees that

E[f(Um + X̂m)]− E[f(Um + Ŷm)] = E[Rm(X̂m)]− E[Rm(Ŷm)].

It follows that∣∣E[f(Ŝn)]− E[f(T̂n)]
∣∣ ⩽ n∑

m=1

∣∣E[Rm(X̂m)]
∣∣+ n∑

m=1

∣∣E[Rm(Ŷm)]
∣∣. (7.10)
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Step four: Estimating the E[Rm(X̂m)]- and E[Rm(Ŷm)]-sums separately. We
estimate the right hand side of (7.10). First of all, by using a third-order Taylor
expansion of f one has

|Rm(ξ)| ⩽
1

3!
∥f ′′′∥∞|ξ|3, (7.11)

In addition, the second-order Taylor expansion gives

|f(Um + ξ)− f(Um)− f ′(Um)ξ| ⩽
1

2
∥f ′′∥∞|ξ|2.

As a result, one also has

|Rm(ξ)| ⩽
1

2
∥f ′′∥∞|ξ|2 + 1

2
|f ′′(Um)| · |ξ|2 ⩽ ∥f ′′∥∞|ξ|2. (7.12)

We use (7.11) to estimate the E[Rm(Ŷm)]-sum as follows:

n∑
m=1

∣∣E[Rm(Ŷm)]
∣∣ ⩽ 1

6
∥f ′′′∥∞

n∑
m=1

E[|Ŷm|3] =
γ

6
∥f ′′′∥∞

n∑
m=1

σ3
m

Σ3
n

⩽
γ

6
∥f ′′′∥∞ · max1⩽m⩽n σm

Σn

·
n∑

m=1

σ2
m

Σ2
n

=
γ

6
∥f ′′′∥∞ · rn, (7.13)

where rn is defined in (7.6) and γ ≜ E[|Y1|3] =
√

8/π is the third absolute moment
of N(0, 1).

The estimation of the E[Rm(X̂m)]-sum is a bit more involved. One needs to
decompose the region of integration into two parts:

n∑
m=1

∣∣E[Rm(X̂m)]
∣∣

=
n∑

m=1

∣∣E[Rm(X̂m); |X̂m| < ε]
∣∣+ n∑

m=1

∣∣E[Rm(X̂m); |X̂m| ⩾ ε]
∣∣

⩽
∥f ′′′∥∞

6

n∑
m=1

E[|X̂m|3; |X̂m| < ε] + ∥f ′′∥∞
n∑

m=1

E[|X̂m|2; |X̂m| ⩾ ε]

⩽
∥f ′′′∥∞ε

6

n∑
m=1

σ2
m

Σ2
n

+ ∥f ′′∥∞gn(ε)

=
ε

6
∥f ′′′∥∞ + gn(ε)∥f ′′∥∞, (7.14)
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where we used (7.11) and (7.12) to estimate the two parts respectively.
The desired estimate (7.7) is now a consequence of (7.13) and (7.14).

Proving weak convergence in the CLT.

Finally, we show that Lindeberg’s condition (7.8) implies that

Ŝn → N(0, 1) weakly.

To this end, let m be the integer at which the maximum in (7.6) is attained, i.e.
rn = σm/Σn. It follows that

r2n =
σ2
m

Σ2
n

= E[X̂2
m]

= E[X̂2
m; |X̂m| < ε] + E[X̂2

m : |X̂m| ⩾ ε]

⩽ ε2 + gn(ε),

for every ε > 0. In particular, if Lindeberg’s condition (7.8) holds, then rn → 0.
According to (7.7), one has

E[f(Ŝn)] → E[f(Z)] for every f ∈ C3
b (R),

where Z d
= N(0, 1).

In order to establish weak convergence, using the second characterisation in
the Portmanteau theorem, one has to strengthen the class C3(R) of test functions
to the class of bounded, uniformly continuous functions. This is possible due to a
standard mollification technique in analysis (which is particularly useful in PDE
theory).

Lemma 7.2. Let f : R → R be a bounded, uniformly continuous function. Then
there exists a sequence fn ∈ C3

b (R) such that fn converges uniformly to f .

Proof. The main idea is to convolute f with a “nice” function. One possible choice
is the following. For each η > 0, we define

ρη(x) =
1√
2πη

e−
x2

2η , x ∈ R

to be the density function of N(0, η). Let

fη(x) ≜ (ρη ∗ f)(x) ≜
∫
R
ρη(x− y)f(y)dy.
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Since
∫
R ρη(x)dx = 1 and f is bounded, one knows that fη is well-defined. Indeed,

fη is smooth and its k-th derivative is given by

f (k)
η (x) =

∫
R
ρ(k)η (x− y)f(y)dy

which is easily seen to be bounded on R.
We now show that fη converges uniformly to f as η → 0. First of all, since f

is uniformly continuous, given ε > 0 there exists δ > 0 such that

|y − x| < δ =⇒ |f(y)− f(x)| < ε.

It follows that∣∣fη(x)− f(x)
∣∣ = ∣∣ ∫

R
ρη(x− y)(f(y)− f(x))dy

∣∣
⩽

∣∣ ∫
{y:|y−x|<δ}

ρη(x− y)(f(y)− f(x))dy
∣∣

+
∣∣ ∫

{y:|y−x|⩾δ}
ρη(x− y)(f(y)− f(x))dy

∣∣
⩽ ε+ 2∥f∥∞ ·

∫
{y:|y−x|⩾δ}

ρη(x− y)dy

= ε+ 2∥f∥∞ · P(|Xη| ⩾ δ)

where Xη
d
= N(0, η). Note that

P(|Xη| ⩾ δ) = P
(
Z ⩾

δ
√
η

)
→ 0 as η → 0,

where Z d
= N(0, 1). Therefore, one obtains that

lim
η→0

∥fη − f∥∞ ⩽ ε.

The result follows as ε is arbitrary.

To complete the proof of the CLT, let f be a bounded and uniformly continuous
function on R. Given ε > 0, let g ∈ C3

b (R) be such that

∥g − f∥∞ ≜ sup
x∈R

|g(x)− f(x)| < ε.
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The existence of g is guaranteed by Lemma 7.2. It follows that∣∣E[f(Ŝn)]− E[f(Z)]
∣∣

⩽
∣∣E[f(Ŝn)]− E[g(Ŝn)]

∣∣+ ∣∣E[g(Ŝn)]− E[g(Z)]
∣∣

+
∣∣E[g(Z)]− E[f(Z)]

∣∣
⩽ 2ε+

∣∣E[g(Ŝn)]− E[g(Z)]
∣∣.

According to (7.7), the second term tends to zero as n→ ∞. Since ε is arbitrary,
one concludes that

E[f(Ŝn)] → E[f(Z)].

This yields the desired weak convergence.

Remark 7.2. As we have seen, Lindeberg’s condition (7.8) implies that (i) Sn/Σn →
N(0, 1) weakly and (ii) rn → 0. Later on, W. Feller proved that Lindeberg’s con-
dition is also necessary for (i) and (ii) to hold. This result together with Theorem
7.2 is known as the Lindeberg-Feller theorem. We refer the reader to [Chu01] for
its proof.

7.3 Non-Gaussian central limit theorems: an example

In the i.i.d. context, if the random variables have finite mean and variance, the
limiting distribution of the normalised partial sum is Gaussian. However, if the
random variables have heavy tails (thus having less integrability), the limiting
distribution (if it exists) could fail to be Gaussian in general. In this section, we
use one example to demonstrate such a phenomenon. Note that non-Gaussian
type limit theorems already appear for instance in the Poisson approximation of
binomial distributions:

Binomial(n, pn)
weakly−→ Poisson(λ) if npn → λ > 0.

Let 0 < α < 2 be a given fixed number. Let {Xn : n ⩾ 1} be an i.i.d. sequence
with probability density function

pα(x) ≜

{
α

2|x|1+α , |x| ⩾ 1;

0, otherwise.

We are interested in the asymptotic behaviour of X1+···+Xn

an
with a suitable nor-

malising sequence an. Note that X1 does not have finite variance and thus the
classical CLT does not apply.
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Let fα(t) be the characteristic function of X1. The crucial point for under-
standing this situation is to figure out the behaviour of fα(t) near t = 0. Since
fα(0) = 1, let us write

1− fα(t) =

∫ ∞

−∞

(
1− eitx

)
pα(x)dx

= α

∫ ∞

1

1− cos tx

x1+α
dx

= α|t|α
∫ ∞

|t|

1− cosu

u1+α
du

= α|t|α
( ∫ ∞

0

1− cosu

u1+α
du−

∫ |t|

0

1− cosu

u1+α
du

)
.

Since 1− cosu = 1
2
u2 + o(u2), the first integral on the right hand side is finite, In

addition, for the second integral one has∫ |t|

0

1− cosu

u1+α
du =

∫ |t|

0

1
2
u2 + o(u2)

u1+α
du = O(|t|2−α).

As a result, one finds that

1− fα(t) = Cα|t|α +O(|t|2) as t→ 0, (7.15)

where Cα > 0 is a constant depending only on α.
The relation (7.15) naturally leads to the correct normalisation in the corre-

sponding CLT. In fact, the characteristic function of Sn/n
1/α (Sn ≜ X1+ · · ·+Xn)

is given by

fSn/n1/α(t) =
(
fα
( t

n1/α

))n
=

(
1− Cα|t|α

n
+O

( t2

n2/α

))n
.

In the above equation, t is fixed and the term O( t2

n2/α ) is understood in the limit
n→ ∞. It follows that

lim
n→∞

fSn/n1/α(t) = e−Cα|t|α .

According to the Lévy-Cramér theorem, the function gα(t) ≜ e−Cα|t|α must be a
characteristic function (of some distribution Gα) and one has

Sn

n1/α
→ Gα weakly

as n→ ∞.
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Remark 7.3. When α = 1, Gα is a Cauchy distribution. When α > 2, one is back
to the setting of the classical CLT and thus Sn/

√
n converges weakly to a normal

distribution. What if α = 2?

7.4 Introduction to Stein’s method

To gain deeper understanding on the CLT, it is necessary to develop effective
methods of analysing the associated error (rate of convergence) at various quan-
titative levels. A powerful modern technique for this purpose is known as Stein’s
method. In this section, we develop the basic ingredients behind this method and
use it to derive quantitative error estimates in the CLT. Although the scope of
Stein’s method is rather broad, to illustrate the essential ideas we confine ourselves
to the context of independent random variables.

7.4.1 The general picture and basic ingredients

Recall that the CLT asserts that Ŝn → Z weakly, where Ŝn is a suitably normalised
random variable and Z

d
= N(0, 1). To understand the rate of convergence in

the CLT, one first needs a natural notion of “distance” between two distribution
functions (or equivalently, between two probability measures).

Different notions of distance for distributions

To get the main idea, suppose that W and Z are two random variables with
distribution functions F and G respectively. Among others, there are at least two
apparent notions of “distance” between F and G :

(i) The uniform distance:

∥F −G∥∞ ≜ sup
x∈R

|F (x)−G(x)|. (7.16)

(ii) The L1-distance:

∥F −G∥L1 ≜
∫
R
|F (x)−G(x)|dx. (7.17)

There is a unified viewpoint to look at these two distances. Let µ, ν be the
probability laws of W,Z respectively. We have seen in the definition of weak
convergence and the proof of the CLT that the quantity∣∣E[φ(W )]− E[φ(Z)]

∣∣ = ∣∣ ∫
R
φdµ−

∫
R
φdν

∣∣,
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when φ ranges over certain class of test functions, gives a natural sense of “close-
ness” between the two distributions. In fact, if one fixes a suitable class H of test
functions on R, there is an associated notion of distance defined by

dH(µ, ν) ≜ sup
{∣∣ ∫

R
φdµ−

∫
R
φdν

∣∣ : φ ∈ H
}
. (7.18)

Apparently, this notion of distance depends crucially on the underlying class H
of test functions.

(i) Suppose that H is the class of indicator functions of semi-infinite intervals,
i.e.

H ≜ {1(−∞,a](x) : a ∈ R}.

Then dH(µ, ν) recovers the uniform distance between F and G defined in (7.16).
The uniform distance is also known as the Kolmogorov distance.
(ii) Assume further that W and Z both have finite mean. If one takes H to be
the class of 1-Lipschitz functions, i.e. the class of functions φ : R → R such that

|φ(x)− φ(y)| ⩽ |x− y| for all x, y ∈ R,

then it can be shown that dH(µ, ν) recovers the L1-distance between F and G
defined in (7.17). This fact, which is not entirely obvious at the moment, will be
shown in the appendix. The distance in this case is known as the 1-Wasserstein
distance.
(iii) There is another natural distance associated with the class of test functions
taken to be indicator functions of Borel subsets, i.e. H ≜ {1A(x) : A ∈ B(R)}.
The associated distance, given by

dH(µ, ν) = sup
A∈B(R)

∣∣ ∫
R
1Adµ−

∫
R
1Adν

∣∣ = sup
A∈B(R)

∣∣µ(A)− ν(A)
∣∣,

is known as the total variation distance. This distance is commonly used in the
context of discrete random variables e.g. in the study of Poisson approximations.

From the above discussion, in order to estimate the “distance” between the
distributions of W and Z, an essential ingredient is to find an effective way to
estimate the quantity

|E[φ(W )]− E[φ(Z)]| (7.19)

in terms of suitable “norms” of the test function φ. For instance, we have seen such
type of estimate in terms of the third derivative of φ in Lindeberg’s CLT. However,
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this is not sufficient for many applications and it is necessary to strengthen the
estimate to weaker norms of φ (e.g. in terms of the first derivative of φ).

In the 1960s, C. Stein developed a powerful method to estimate distributional
distances defined through quantities like (7.19). The scope of Stein’s method
goes way beyond the CLT and Gaussian approximations. Here we only discuss
the Gaussian case in the classical setting. Nonetheless, our analysis contains the
essential ideas behind this general method (at least in the classical sense). Our
main goal is to estimate the L1-distance between the distributions of W = Ŝn and
Z

d
= N(0, 1) in the context of independent random variables. Such an estimate is

known as the L1-Berry-Esseen estimate. The uniform Berry-Esseen estimate (i.e.
the corresponding estimate for the uniform distance) is technically much harder
to obtain, but it is also achievable within Stein’s method.

Basic ingredients of Stein’s method for Gaussian approximation

Recall that in the CLT context, Z is a standard normal random variable and W =
Ŝn. The starting point of Stein’s method is the following simple calculation. Let
f be a suitably regular test function. By applying integration by parts (assuming
the boundary term goes away), one has

E[f ′(Z)] =
1√
2π

∫
R
f ′(z)e−z2/2dz

=
1√
2π

∫
R
zf(z)e−z2/2dz

= E[Zf(Z)].

A key observation is that the above property indeed characterises the standard
normal distribution. Namely, a random variable Z is N(0, 1)-distributed if and
only if

E[f ′(Z)]− E[Zf(Z)] = 0 (7.20)
for a wide class of test functions f . This will be the content of Stein’s lemma
in Section 7.4.2 below. Based on this fact, one naturally expects that if the
distribution of W is “close to” N(0, 1), the quantity E[f ′(W )]−E[Wf(W )] should
be “small”.

To quantify such a property, recall that we wish to estimate (7.19) for given
test function φ, where W is a general random variable and Z d

= N(0, 1). The next
key step is to write down a so-called Stein’s equation associated with the given
function φ:

f ′(x)− xf(x) = φ(x)− cφ, (7.21)
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where
cφ ≜ E[φ(Z)] =

1√
2π

∫
R
φ(z)e−z2/2dz

is the mean of φ with respect to the standard normal distribution. The form
of this equation is naturally motivated from the characterisation (7.20). Stein’s
equation (7.21) is a first order linear ODE, whose solution f can be written down
easily. It follows that

f ′(W )−Wf(W ) = φ(W )− cφ.

If one takes expectation on both sides, one arrives at

E[f ′(W )]− E[Wf(W )] = E[φ(W )]− E[φ(Z)].

In particular, the original task of estimating (7.19) is magically transferred to the
estimation of the quantity

E[f ′(W )]− E[Wf(W )]. (7.22)

Note that if W = Z, this quantity is zero which is consistent with the charac-
terisation (7.20). In general, this quantity can be estimated in terms of certain
derivatives of the function f (the development of this part is the last step of Stein’s
method). Since the original goal is to estimate (7.19) in terms of φ, one must find
a way to estimate derivatives of the solution f in terms of suitable norms of φ.
This part corresponds to the analysis of Stein’s equation, which is the second step
of Stein’s method and will be developed in Section 7.4.3 below.

The last step is to estimate the quantity (7.22). There is no universal ap-
proach to this step and the analysis for this part depends heavily on the nature
of the underlying problem (i.e. the specific assumption on the random variable
W ). To illustrate the essential idea, we will only develop this step in the con-
text of independent random variables, i.e. when W = Ŝn with {Xn : n ⩾ 1}
being an independent sequence (cf. Section 7.4.4 below). Nonetheless, we must
point out that this step can be established in a much wider context (e.g. for ran-
dom variables with local dependence), which makes Stein’s method robust and
powerful.

The three main ingredients of Stein’s method are summarised as follows.

Step one. Establish the characterising property for the standard normal distribu-
tion. In abstract terms, this characterising property takes the form

E[Af(Z)] = 0 for all suitable test functions f.
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For the standard normal distribution, one has (Af)(x) = f ′(x)− xf(x).
Step two. Write down Stein’s equation associated with a given test function

φ. This equation takes the form

Af = φ− cφ.

For the standard normal distribution, this equation is given by (7.21). One also
needs to estimate the solution f in terms of the given function φ.

Step three. Using the specific structure of the random variable W to estimate

the quantity E[Af(W )] in terms of f . In the Gaussian context, this quantity is
given by (7.22).

Remark 7.4. Although we only consider Gaussian approximations here, the for-
mulation of these three steps is robust and applies to other types of distributional
approximations (e.g. when the limiting distribution is Poisson, the “generator” A
takes a different form).

In the following sections, we develop the above three ingredients mathemat-
ically with our ultimate goal towards the L1-Berry-Esseen estimate in the inde-
pendent context.

7.4.2 Step one: Stein’s lemma

We start by establishing the characterising property (7.20) of N(0, 1). This is
known as Stein’s lemma for the normal distribution.

Lemma 7.3. Let Z be a random variable. Then the following two statements are
equivalent.

(i) Z d
= N(0, 1).

(ii) For any piecewise differentiable function f : R → R that is integrable with
respect to the standard Gaussian measure, both of E[f ′(Z)] and E[Zf(Z)] are finite
and one has

E[f ′(Z)] = E[Zf(Z)].

Proof. (i) =⇒ (ii). Suppose that Z d
= N(0, 1). Given f satisfying the assumptions,
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one has

E[f ′(Z)] =
1√
2π

∫ ∞

−∞
f ′(z)e−z2/2dz

=
1√
2π

∫ 0

−∞
f ′(z)

( ∫ z

−∞
(−x)e−x2/2dx

)
dz

+
1√
2π

∫ ∞

0

f ′(z)
( ∫ ∞

z

xe−x2/2dx
)
dz,

where we used the relation

e−z2/2 =

∫ z

−∞
(−x)e−x2/2dx =

∫ ∞

z

xe−x2/2dx.

By using Fubini’s theorem, one has∫ 0

−∞
f ′(z)

( ∫ z

−∞
(−x)e−x2/2dx

)
dz =

∫ 0

−∞
(−x)e−x2/2dx

∫ 0

x

f ′(z)dz

=

∫ 0

−∞
(−x)e−x2/2

(
f(0)− f(x)

)
dx

=

∫ 0

−∞
x
(
f(x)− f(0)

)
e−x2/2dx.

Similarly, ∫ ∞

0

f ′(z)
( ∫ ∞

z

xe−x2/2dx
)
dz =

∫ ∞

0

x
(
f(x)− f(0)

)
e−x2/2dx.

It follows that

E[f ′(Z)] =
1√
2π

∫ 0

−∞
x
(
f(x)− f(0)

)
e−x2/2dx

+
1√
2π

∫ ∞

0

x
(
f(x)− f(0)

)
e−x2/2dx

=
1√
2π

∫ ∞

−∞
xf(x)e−x2/2dx (since

∫ ∞

−∞
xe−x2/2dx = 0)

= E[Zf(Z)].

(ii) =⇒ (i). Let φ(t) ≜ E[eitZ ] be the characteristic function of Z. Taking
f = 1 in the assumption, one sees that E[Z] is finite. According to Theorem 6.4,
φ(t) is differentiable and

φ′(t) = iE[ZeitZ ].
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On the other hand, by choosing f(x) = eitx (with t fixed) one has

E[f ′(Z)] = itE[eitZ ] = itφ(t),

and
E[Zf(Z)] = E[ZeitZ ] = −iφ′(t).

The assumption implies that itφ(t) = −iφ′(t), or equivalently

φ′(t) = −tφ(t).

Since φ(0) = 1, the above ODE has the unique solution φ(t) = e−t2/2 which
is precisely the characteristic function of N(0, 1). Therefore, one concludes that
Z

d
= N(0, 1).

7.4.3 Step two: Analysing Stein’s equation

For a given function φ, we wish to estimate the solution f to Stein’s equation

f ′(x)− xf(x) = φ(x)− cφ

in terms of φ. To do so, one needs the following lemma regarding Gaussian tail
estimates.

Lemma 7.4. For any x ∈ R, we have

|x|ex2/2

∫ ∞

|x|
e−t2/2dt ⩽ 1, ex

2/2

∫ ∞

|x|
e−t2/2dt ⩽

√
π

2
.

Proof. Apparently we can assume that x ⩾ 0. The first claim follows from

xex
2/2

∫ ∞

x

e−t2/2dt ⩽ ex
2/2

∫ ∞

x

te−t2/2dt = 1.

For the second claim, one considers the function

q(x) ≜ ex
2/2

∫ ∞

x

e−t2/2dt, x ⩾ 0.

Using the first part, one sees that

q′(x) = xex
2/2

∫ ∞

x

e−t2/2dt− 1 ⩽ 0

and thus

q(x) ⩽ q(0) =

∫ ∞

0

e−t2/2dt =

√
π

2
.
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Remark 7.5. Such type of Gaussian tail estimate was already obtained in Example
2.3 based on Chebyshev’s inequality. Here we reproduced a similar result by using
an analytic argument.

The main result for the analysis of Stein’s equation is stated as follows.

Proposition 7.2. Let φ : R → R be continuously differentiable with uniformly
bounded derivative. Set

φ̃(x) ≜ φ(x)− cφ,

where we recall that cφ ≜ 1√
2π

∫
R φ(x)e

−x2/2dx is the mean of φ with respect to
N(0, 1). Then

f(x) ≜ ex
2/2

∫ x

−∞
φ̃(t)e−t2/2dt, x ∈ R (7.23)

is the unique bounded solution to Stein’s equation

f ′(x)− xf(x) = φ̃(x). (7.24)

In addition, f has bounded, continuous derivatives up to order two, and the fol-
lowing estimates hold:

∥f∥∞ ⩽ 2∥φ′∥∞, ∥f ′∥∞ ⩽ 3

√
π

2
∥φ′∥∞, ∥f ′′∥∞ ⩽ 6∥φ′∥∞.

Proof. From standard ODE theory, the general solution to the linear ODE (7.24)
is found to be

fc(x) = cex
2/2 + f(x),

where f(x) is the function defined by (7.23) and c is an arbitrary constant. In
what follows, we prove that f(x) is bounded. It is then clear that f(x) is the
unique bounded solution, since any choice of c ̸= 0 would lead to an unbounded
solution due to the unboundedness of the factor ex2/2.

(i) Estimating f. Let us assume that φ(0) = 0, as subtracting a constant to φ
does not change φ̃ or the ODE (7.24). In this case, one has

|φ(t)| = |φ(t)− φ(0)| ⩽ ∥φ′∥∞ · |t| (7.25)

and

|cφ| ⩽ ∥φ′∥∞ · 1√
2π

∫
R
|t|e−t2/2dt = ∥φ′∥∞ ·

√
2

π
, (7.26)

where we used the explicit expression for the first absolute moment of N(0, 1).
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To estimate f(x), one first considers the case when x ⩽ 0. By using (7.25)
and (7.26), one has

|f(x)| ⩽ ex
2/2

∫ ∞

|x|

(
∥φ′∥∞ · t+ ∥φ′∥∞ ·

√
2

π

)
e−t2/2dt

= ∥φ′∥∞ · ex2/2

∫ ∞

|x|
te−t2/2dt+

√
2

π
∥φ′∥∞ · ex2/2

∫ ∞

|x|
e−t2/2dt

= ∥φ′∥∞ +

√
2

π
∥φ′∥∞ · ex2/2

∫ ∞

|x|
e−t2/2dt.

According to Lemma 7.4, one sees that

|f(x)| ⩽ 2∥φ′∥∞. (7.27)

If x ⩾ 0, one use the alternative expression for f given by

f(x) = −ex2/2

∫ ∞

x

φ̃(t)e−t2/2dt, (7.28)

which follows from the observation that∫ ∞

−∞
φ̃(t)e−t2/2dt = 0.

In this case, the same argument applied to (7.28) gives the same estimate (7.27).
Therefore, one obtains that

∥f∥∞ ⩽ 2∥φ′∥∞.

(ii) Estimating f ′. Since φ is differentiable, by differentiating the ODE (7.24) one
has

f ′′(x)− xf ′(x) = f(x) + φ′(x). (7.29)

Inspired by the previous argument, in order to estimate f ′, just like the case for
f one may wish to express f ′ as the product of ex2/2 and another function (an∫ x

−∞-integral). For this purpose, one computes

d

dx

(
e−x2/2f ′(x)

)
= e−x2/2f ′′(x)− xe−x2/2f ′(x)

= e−x2/2
(
f(x) + φ′(x)

)
.
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It follows that
f ′(x) = ex

2/2 ·
∫ x

−∞

(
f(t) + φ′(t)

)
e−t2/2dt. (7.30)

Similar to Part (i), one first considers x ⩽ 0. In this case, using the estimate
(7.27) on f as well as Lemma 7.4, one finds that

|f ′(x)| ⩽ 3∥φ′∥∞ex
2/2

∫ ∞

|x|
e−t2/2dt ⩽ 3

√
π

2
∥φ′∥∞. (7.31)

If x ⩾ 0, one turns to the alternative expression

f ′(x) = −ex2/2

∫ ∞

x

(
f(t) + φ′(t)

)
e−t2/2dt. (7.32)

This is legal since∫ ∞

−∞

(
f(t) + φ′(t)

)
e−t2/2dt =

∫ ∞

−∞

(
f ′′(t) + tf ′(t)

)
e−t2/2dt = 0,

where the second equality follows from integration by parts. The same argument
applied to (7.32) again gives (7.31) in this case. Therefore, one arrives at

∥f ′∥∞ ⩽ 3

√
π

2
∥φ′∥∞.

(iii) Estimating f ′′. According to the equation (7.29) for f ′′ and the expression
(7.30) for f ′, one has

f ′′(x) = xex
2/2

∫ x

−∞

(
f(t) + φ′(t)

)
e−t2/2dt+

(
f(x) + φ′(x)

)
.

One has already got all the needed ingredients to estimate the above terms. To
be precise, again by considering the cases x ⩽ 0 and x ⩾ 0 separately one finds
that

|f ′′(x)| ⩽
(
∥f∥∞ + ∥φ′∥∞

)
· |x|ex2/2

∫ ∞

|x|
e−t2/2dt+

(
∥f∥∞ + ∥φ′∥∞

)
⩽ 2

(
∥f∥∞ + ∥φ′∥∞

)
⩽ 6∥φ′∥∞,

where we used Lemma 7.4 and the estimate on f obtained in Part (i).
The proof of the proposition is now complete.
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7.4.4 Step three: Establishing the L1-Berry-Esseen estimate

The first two steps are general. To develop the last step, we restrict ourselves to
the independent case. In its precise form, the main theorem is stated as follows.

Theorem 7.3. Let {Xn : n ⩾ 1} be a sequence of independent random variables,
each having mean zero and finite third moment. For each n, we set

Σn ≜
√

Var[Sn], τn ≜
(
E[|Xn|3]

)1/3
, Ŝn ≜

Sn

Σn

,

where Sn ≜ X1 + · · · + Xn. Then for any continuously differentiable function
φ : R → R with bounded derivative, one has∣∣E[φ(Ŝn

)
]− E[φ(Z)]

∣∣ ⩽ 9∥φ′∥∞ ·
∑n

m=1 τ
3
m

Σ3
n

∀n ⩾ 1, (7.33)

where Z d
= N(0, 1). In particular, if {Xn : n ⩾ 1} is an i.i.d. sequence with mean

zero, unit variance and τ ≜
(
E[|X1|3]

)1/3
<∞, then one has∣∣E[φ(Ŝn

)
]− E[φ(Z)]

∣∣ ⩽ 9∥φ′∥∞ · τ√
n
.

Proof. Let f be the unique bounded solution to Stein’s equation (7.24) corre-
sponding to φ. Then

E[φ
(
Ŝn

)
]− E[φ(Z)] = E[f ′(Ŝn)]− E[Ŝnf(Ŝn)].

As the last step in Stein’s method, our goal is to estimate the right hand side of
the above equation. For this purpose, we first introduce the following notation:

X̂m ≜
Xm

Σn

, σ̂m ≜
σm
Σn

, 1 ⩽ m ⩽ n.

Note that σ̂2
m = E[X̂2

m] and
n∑

m=1

X̂m = Ŝn,

n∑
m=1

σ̂2
m = 1.

One can now rewrite

E[f ′(Ŝn)]− E[Ŝnf(Ŝn)] =
n∑

m=1

E[σ̂2
mf

′(Ŝn)]−
n∑

m=1

E[X̂mf(Ŝn)].
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The next crucial point is to relate f(Ŝn) with f(Ŝn − X̂m) through f ′ (this
is beneficial since Ŝn − X̂m and X̂m are independent). To this end, recall from
calculus that

f(y) = f(x) +

∫ 1

0

f ′((1− t)x+ ty
)
· (y − x)dt.

Taking x = Ŝn − X̂m and y = Ŝn, one can write

f(Ŝn) = f(Ŝn − X̂m) +

∫ 1

0

f ′(Tn,m(t))X̂mdt,

where we set Tn,m(t) ≜ (1 − t)(Ŝn − X̂m) + tŜn to simplify notation. It follows
that

E[X̂mf(Ŝn)] = E[X̂mf(Ŝn − X̂m)] + E
[
X̂2

m ·
∫ 1

0

f ′(Tn,m(t))dt
]

= E
[
X̂2

m ·
∫ 1

0

f ′(Tn,m(t))dt
]
.

Therefore,

E[f ′(Ŝn)]− E[Ŝnf(Ŝn)]

=
n∑

m=1

E[σ̂2
mf

′(Ŝn)]−
n∑

m=1

E
[
X̂2

m ·
∫ 1

0

f ′(Tn,m(t))dt
]

=
n∑

m=1

E
[
σ̂2
m ·

(
f ′(Ŝn)− f ′(Tn,m(0))

)]
+

n∑
m=1

E
[
X̂2

m ·
∫ 1

0

(
f ′(Tn,m(t))− f ′(Tn,m(0))

)
dt
]
, (7.34)

where we used the observation Tn,m(0) = Ŝn − X̂m to reach the last equality and
thus

E[σ̂2
mf

′(Tn,m(0))] = E[X̂2
mf

′(Tn,m(0))].

To estimate the first summation on the right hand side of (7.34), we shall use
the inequality ∣∣f ′(Ŝn)− f ′(Tn,m(0))

∣∣ ⩽ ∥f ′′∥∞ · |X̂m|.
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This gives∣∣E[σ̂2
m ·

(
f ′(Ŝn)− f ′(Tn,m(0))

)]∣∣ ⩽ ∥f ′′∥∞σ̂2
m · E[|X̂m|] ⩽ ∥f ′′∥∞ · τ

3
m

Σ3
n

,

where we used the fact that p 7→ ∥X∥p is increasing in p ⩾ 1 (cf. Corollary 2.3);
in particular, E[|Xm|] ⩽ τm and σm ⩽ τm. To estimate the second summation on
the right hand side of (7.34), note that∣∣f ′(Tn,m(t))− f ′(Tn,m(0))

)∣∣ ⩽ t∥f ′′∥∞ · |X̂m|.

This gives

∣∣E[X̂2
m ·

∫ 1

0

(
f ′(Tn,m(t))− f ′(Tn,m(0))

)
dt
]∣∣ ⩽ 1

2
∥f ′′∥∞ · τ

3
m

Σ3
n

.

Finally, using the estimate ∥f ′′∥∞ ⩽ 6∥φ′∥∞ given by Proposition 7.2, one
arrives at ∣∣E[f ′(Ŝn)]− E[Ŝnf(Ŝn)]

∣∣ ⩽ 9∥φ′∥∞ ·
∑n

m=1 τ
3
m

Σ3
n

,

which is the desired estimate.

The estimate (7.33) is not yet in the shape of an L1-distance estimate. To
complete the discussion, we now proceed to see how Theorem 7.3 gives rise to an
L1-estimate for the distribution functions. Here for simplicity we only sketch the
argument. Making the analysis fully rigorous requires more technical effort; this
unpleasant task will be deferred to the appendix.

Let Fn be the distribution function of Ŝn and let Φ be the distribution function
of N(0, 1). First of all, a naive integration by parts gives∫

R
φ(x)dFn(x)−

∫
R
φ(x)dΦ(x) =

∫
R
φ′(x)(Φ(x)− Fn(x))dx.

Therefore, Theorem 7.3 yields that∣∣ ∫
R
φ′(x)

(
Φ(x)− Fn(x)

)∣∣ ⩽ Cn · ∥φ′∥∞ (7.35)

for any φ with φ′ ∈ Cb(R), where

Cn ≜ 9 ·
∑n

m=1 τ
3
m

Σ3
n
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is the constant that provides the rate of convergence. Symbolically, one can just
put ψ ≜ φ′ to see that∣∣ ∫

R
ψ(x)(Fn(x)− Φ(x))dx

∣∣ ⩽ Cn∥ψ∥∞

for any bounded continuous function ψ. Based on this point, it is not too surprising
to expect that

∥Fn − Φ∥L1 =

∫
R
|Fn(x)− Φ(x)| ⩽ Cn.

In fact, if one were allowed to even choose ψ(x) = sgn(Fn(x)−G(x)) where sgn(x)
is the function defined by

sgn(x) ≜


1, x > 0,

−1, x < 0,

0, x = 0,

then one has ∥ψ∥∞ ⩽ 1 and∫
R
ψ(x)(Fn(x)− Φ(x))dx =

∫
R
|Fn(x)− Φ(x)|dx,

yielding the desired L1-estimate. The main difficulty here is that ψ(x) is not a
continuous function. Getting around this difficulty requires more analysis and
this is done in the appendix.

To summarise, the L1-Berry-Esseen estimate is the content of the following
result.

Corollary 7.2. Under the same set-up as in Theorem 7.3, one has∫
R
|Fn(x)− Φ(x)|dx ⩽ 9

∑n
m=1 τ

3
m

Σ3
n

. (7.36)

In particular, in the i.i.d. context one has∫
R
|Fn(x)− Φ(x)|dx ⩽ 9

τ√
n
.
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7.4.5 Further remarks and scopes

We conclude this chapter with a few further discussions on Stein’s method.

(i) Let us take a second look at our previous heuristic argument about obtaining
the L1-Berry-Esseen estimate. The fact that the right hand side of (7.35) is the
uniform norm of φ′ leads one to the L1-estimate for the distribution functions.
Through a naive duality viewpoint, if one were able to replace the right hand side
of (7.35) by the L1-norm of φ′ (∥φ′∥L1 ≜

∫
R |φ

′(x)|dx), one should then be able
to deduce the uniform Berry-Esseen estimate. This requires strengthening the
analysis of Stein’s equation (cf. Proposition 7.2) to estimating the uniform norms
of f, f ′, f ′′ in terms of ∥φ′∥L1 . It can be done for f, f ′ but not for f ′′! This is
why the uniform Berry-Esseen estimate is much harder than the L1-estimate to
obtain. The result is stated as follows. A complete proof along the above lines of
argument can be found in [Str11].

Theorem 7.4 (The Uniform Berry-Esseen Estimate). Under the same notation
as in Theorem 7.3 and Corollary 7.2, one has

∥Fn − Φ∥∞ ⩽ 10 ·
∑n

m=1 τ
3
m

Σ3
n

.

In particular, in the i.i.d. context one has

∥Fn − Φ∥∞ ⩽ 10 · τ√
n
.

(ii) As we mentioned earlier, Step 3 in Stein’s method can be developed in the
more general context of dependent random variables. In addition, the underlying
principles are robust enough to be applied to other types of distributional approx-
imations. One significant application is Poisson approximations. The monograph
[BC05] contains a excellent exposition on this topic.

(iii) There are extensions of the one-dimensional theory we developed here to mul-
tivariate Gaussian approximations. An effective way of performing the analysis
in the multidimensional context is to make use of modern tools from Gaussian
analysis such as the Malliavin calculus. The monograph [NP12] contains a nice
introduction of relevant techniques.

(iv) There is a modern viewpoint of Stein’s method, known as the generator
approach, that leads to deeper applications such as distributional approximations
for stochastic processes. Suppose that µ is the target distribution that one wishes
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to approximate. Here µ can be defined on R, Rn or even an infinite dimensional
space (e.g. the space of continuous paths in the context of stochastic process
approximations). As the first step in Stein’s method, one needs to identify the
Stein operator, say A, which is an operator acting on a space of functions on S,
so that

E[Af(Z)] = 0 ∀f

uniquely characterises the distribution µ. The key point behind the generator
approach is to realise µ as the invariant measure of some S-valued Markov process.
The Stein operator A will then be given by the generator of this Markov process. It
turns out that the associated Stein’s equation can be studied effectively through
the analysis of this Markov process. The monograph [BC05] also contains an
introduction to this approach.

Appendix. A functional-analytic lemma for the L1-Berry-
Esseen estimate

We now provide the precise details that lead to the L1-Berry-Esseen estimate
(7.36) from Theorem 7.3. The key technical ingredient is a functional-analytic
lemma which gives a representation of the L1-norm from a duality perspective.

Lemma 7.5. Let F,G : R → R be distribution functions with finite first mo-
ment, i.e.

∫
R |x|dF (x) and

∫
R |x|dG(x) are both finite. Let ψ be a bounded Borel-

measurable function and define φ(x) ≜
∫ x

0
ψ(u)du. Then∫

R
φ(x)dF (x)−

∫
R
φ(x)dG(x) =

∫
R
ψ(x)

(
G(x)− F (x)

)
dx. (7.37)

Proof. One can write∫
R
φ(x)dF (x)

=

∫
R

( ∫ x

0

ψ(u)du
)
dF (x)

= −
∫ 0

−∞

∫ 0

x

ψ(u)dudF (x) +

∫ ∞

0

∫ x

0

ψ(u)dudF (x)

= −
∫ 0

−∞
ψ(u)F (u)du+

∫ ∞

0

ψ(u)(1− F (u))du,
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where we used Fubini’s theorem to reach the last equality . Similarly, one has∫
R
φ(x)dG(x) = −

∫ 0

−∞
ψ(u)G(u)du+

∫ ∞

0

ψ(u)(1−G(u))du.

By subtracting the two results, one obtains (7.37).

Lemma 7.6. Let Q : R → R be a function which contains at most countably
many discontinuity points and suppose that

∫
R |Q(x)|dx <∞. Then∫

R
|Q(x)|dx = sup

{∣∣ ∫
R
φ(x)Q(x)dx

∣∣ : φ ∈ Cb(R), ∥φ∥∞ ⩽ 1
}
. (7.38)

Proof. For any φ with ∥φ∥∞ ⩽ 1, one has∣∣ ∫
R
φ(x)Q(x)dx

∣∣ ⩽ ∥φ∥∞ ·
∫
R
|Q(x)|dx ⩽

∫
R
|Q(x)|dx.

Therefore, the right hand side of (7.38) is not greater than the left hand side. To
prove the other direction, first note that∫

R
|Q(x)|dx =

∫
R
sgn(Q(x)) ·Q(x)dx,

where sgn(x) is the function defined by

sgn(x) ≜


1, x > 0,

−1, x < 0,

0, x = 0.

We set ψ(x) ≜ sgn(Q(x)). The main difficulty here is that ψ(x) is not a continuous
function. One thus needs to construct Cb(R)-approximations.

For this purpose, for each ε > 0, let us choose a continuous function ρε : R → R
such that

ρε ⩾ 0,

∫
R
ρε(x)dx = 1

and ρε(x) = 0 for any |x| > ε. Define ψε to be the convolution of ψ and ρε, i.e.

ψε(x) ≜
∫
R
ψ(x− y)ρε(y)dy =

∫
R
ρε(x− y)ψ(y)dy. (7.39)
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Using the latter expression, one can check that ψε is continuous. Since |ψ| ⩽ 1,
one also knows that

|ψε(x)| ⩽
∫
R
|ψ(x− y)| · ρε(y)dy ⩽

∫
R
ρε(y)dy = 1.

Therefore, ψε ∈ Cb(R). It may not be true that ψε(x) → ψ(x) for every x ∈ R as
ε→ 0. However, we claim that

lim
ε→0

∫
R
ψε(x)Q(x)dx =

∫
R
ψ(x)Q(x)dx. (7.40)

If one can prove this, it is then immediate that the left hand side of (7.38) is not
greater than the right hand side, and the proof of (7.38) will be finished.

To prove (7.40), let CQ be the set of continuity points of Q. The crucial
observation is that

ψε(x)1{x:Q(x)̸=0}∩CQ(x) → ψ(x)1{x:Q(x)̸=0}∩CQ(x) (7.41)

as ε → 0. Indeed, if x is a continuity point of Q and Q(x) ̸= 0, one knows by
continuity that Q(x) does not change sign in a small neighbourhood of x. Suppose
that Q(x) > 0 (so that ψ(x) = 1). Then there exists δ > 0 such that Q(x−y) > 0
for any y ∈ (−δ, δ). In particular,

ψ(x− y) = sgn(Q(x− y)) = 1, y ∈ (−δ, δ).

According to the constructions of ρε and ψε, for any ε < δ one has

ψε(x) =

∫
R
ψ(x− y)ρε(y)dy =

∫
(−ε,ε)

1 · ρε(y)dy = 1 = ψ(x),

which trivially implies that ψε(x) → ψ(x) as ε→ 0. Therefore, (7.41) holds. The
dominated convergence theorem then implies that∫

{x:Q(x)̸=0}∩CQ
ψε(x)Q(x)dx→

∫
{x:Q(x)̸=0}∩CQ

ψ(x)Q(x)dx.

On the other hand, since Cc
Q is at most countable (and thus has zero Lebesgue

measure), one knows that∫
R
ψε(x)Q(x)dx =

∫
{x:Q(x)̸=0}

ψε(x)Q(x)dx =

∫
{x:Q(x)̸=0}∩CQ

ψε(x)Q(x)dx.

The same property holds for ψ(x). Therefore, one concludes that (7.40) holds.
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Finally, we are in a position to complete the proof of the L1-Berry-Esseen
estimate.

Proof of Corollary 7.2. In Theorem 7.3, we have shown that

∣∣ ∫
R
φ(x)dFn(x)−

∫
R
φ(x)dG(x)

∣∣ ⩽ 9∥φ′∥∞ ·
∑n

m=1 τ
3
m

Σ3
n

for any φ with φ′ ∈ Cb(R). Using Lemma 7.5 and setting ψ ≜ φ′, one concludes
that ∣∣ ∫

R
ψ(x)

(
F (x)−G(x)

)
dx

∣∣ ⩽ 9∥ψ∥∞ ·
∑n

m=1 τ
3
m

Σ3
n

for any ψ ∈ Cb(R). The L1-estimate (7.36) then follows from Lemma 7.6.
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8 Discrete-time martingales
In previous chapters, we have been mostly dealing with sequences of independent
random variables. Another type of random sequences that exhibit rich and inter-
esting properties are martingale sequences. Martingale theory is of fundamental
importance for several reasons. Apart from its wide applications in applied areas
(e.g. statistics, finance, physics, biology etc.), martingale methods have also been
proven to be powerful in modern mathematics. Within the realm of probability
theory, one of its most important applications is the study of stochastic calculus
(stochastic integration and differential equations). Outside probability theory, a
notable example is its use in obtaining weak solutions to parabolic PDEs. Appli-
cations of martingale theory to other mathematical areas such as number theory,
group theory, complex analysis, harmonic analysis, differential geometry have been
explored in depth since the second half of the last century. It will continue to be
a rich area of study in modern probability theory.

In this chapter, we study the basic theory of discrete-time martingales in depth.
There are three fundamental results we shall establish:

(i) The optional sampling theorem;
(ii) The maximal and Lp-inequalities;
(iii) The martingale convergence theorem.

The development of martingale theory was largely due to J.B. Doob around the
1950s. Following [Wil91], we will take a unified (and rather enlightening) approach
to study these basic results (the martingale transform).

In Section 8.1, we begin by introducing the definition of (sub/super)martingales
and related concepts. In Section 8.2, we discuss the martingale transform which is
the core technique for proving the basic martingale theorems. In Sections 8.3–8.5,
we develop the aforementioned three results respectively. In Section 8.6, we study
uniformly integrable martingales which exhibit better convergence properties. In
Section 8.7, we discuss a few enlightening applications of martingale methods.

8.1 Martingales, submartingales and supermartingales

Heuristically, a martingale models the wealth sequence of a fair game. The de-
scription of “fairness” relies on the notion of “information growth” in the evolution
of time: filtration. We first define it mathematically before discussing the conpect
of a martingale.
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8.1.1 Filtration and adaptedness

Let (Ω,F) be a given measurable space. Let X = {Xn : n ⩾ 0} be a sequence of
random variables on it.

Definition 8.1. A filtration over (Ω,F) is a sequence {Fn : n ⩾ 0} of sub-σ-
algebras of F such that

Fn ⊆ Fn+1 ∀n ⩾ 0.

The sequence X is said to be adapted to the filtration {Fn} (or simply {Fn}-
adapted), if Xn is Fn-measurable (i.e. X−1

n B ∈ Fn for all B ∈ B(R)) for every
n.

Heuristically, Fn represents the accumulative information up to time n. Adapt-
edness means that given the information up to time n, one can determine the exact
value of Xn (indeed, the values of X0, · · · , Xn). Given a random sequence, there
is a canonical filtration with respect to which X is adapted.

Definition 8.2. Let X = {Xn ⩾ 0} be a sequence of random variables on (Ω,F).
The natural filtration of X is defined by

FX
n ≜ σ(X0, X1, · · · , Xn) ≜ σ

(
{X−1

k B : B ∈ B(R), 0 ⩽ k ⩽ n}
)

for each n ⩾ 0.

By definition, it is obvious that X is adapted to its natural filtration.

8.1.2 Definition of (sub/super)martingale sequences

We now give the precise definition of a martingale. Let (Ω,F ,P) be a probability
space equipped with a given filtration {Fn : n ⩾ 0}.

Definition 8.3. A sequence X = {Xn : n ⩾ 0} of random variables is called an
{Fn}-martingale (respectively, a submartingale / supermartingale) if the following
properties hold true:

(i) X is {Fn}-adapted;
(ii) Xn is integrable for every n ⩾ 0;
(iii) for every n ⩾ 0, one has

E[Xn+1|Fn] = Xn (respectively "⩾" / "⩽"). (8.1)
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The martingale property (8.1) is equivalent to E[Xm|Fn] = Xn for all m > n
(why?). Heuristically, this property suggests that given the information up to
the present time, the rational expectation of future wealth should simply be the
current wealth. In particular, one will not gain or lose money under such a
situation. Therefore, a martingale models a “fair game” in a mathematical way.
Remark 8.1. Definition 8.3 relies crucially on the underlying filtration. As a short-
handed convention, we sometimes say that {Xn,Fn} is a (sub/super)martingale.
Note that a martingale with respect to one filtration may fail to be a martingale
with respect to another.

Example 8.1. Let X = {Xn : n = 1, 2, · · · } denote an i.i.d. sequence of random
variables with distribution

P(X1 = 1) = P(X1 = −1) =
1

2
.

We consider the natural filtration associated with the sequence X:

F0 ≜ {∅,Ω}; Fn ≜ σ(X1, · · · , Xn), n ⩾ 1.

Define Sn ≜ X1+· · ·+Xn (S0 ≜ 0). Then {Sn,Fn : n ⩾ 0} is a martingale. Indeed,
it is clear that Sn is integrable and Fn-measurable. To obtain the martingale
property (8.1), for any n ⩾ 0 one has

E[Sn+1|Fn] = E[Sn +Xn+1|Fn] = E[Sn|Fn] + E[Xn+1|Fn] = Sn + E[Xn+1] = Sn.

A simple way of constructing submartingales from a given martingale is to
compose with convex functions.

Proposition 8.1. Let {Xn,Fn : n ⩾ 0} be a martingale (respectively, a sub-
martingale). Suppose that φ : R → R is a convex function (respectively, a convex
and increasing function). If φ(Xn) is integrable for every n, then {φ(Xn),Fn :
n ⩾ 0} is a submartingale.

Proof. The adaptedness and integrability conditions are clearly satisfied. To see
the submartingale property, one applies Jensen’s inequality (2.25) to find that

E[φ(Xn+1)|Fn] ⩾ φ(E[Xn+1|Fn]) ⩾ φ(Xn)

for all n.

Example 8.2. The functions

φ1(x) = x+ ≜ max{x, 0}, φ2(x) = |x|p (p ⩾ 1)

are convex on R. As a result, if {Xn,Fn} is a martingale, then {X+
n } and {|Xn|p}

(p ⩾ 1) are both {Fn}-submartingales, provided that E[|Xn|p] <∞ for every n.
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8.2 A fundamental technique: the martingale transform

We discuss a particularly useful construction of martingales. This also provides an
essential tool for proving several basic theorems in martingale theory. We begin
by introducing a few definitions.

Definition 8.4. Let {Fn : n ⩾ 0} be a filtration. A random sequence {Cn : n ⩾
1} is said to be {Fn}-predictable if Cn is Fn−1-measurable for every n ⩾ 1.

Heuristically, predictability means that the future value Cn+1 can be deter-
mined by the information up to the present time n.

Let {Xn : n ⩾ 0} and {Cn : n ⩾ 1} be two random sequences. We define
another sequence {Yn : n ⩾ 0} by Y0 ≜ 0 and

Yn ≜
n∑

k=1

Ck(Xk −Xk−1), n ⩾ 1.

Definition 8.5. The sequence {Yn : n ⩾ 0} is called the martingale transform
of {Xn} by {Cn}. We often write Yn as (C •X)n.

Remark 8.2. The martingale transform is a discrete-time version of stochastic
integration as seen from the following continuous / discrete comparison:∫

CtdXt ≈
∑
k

Ck(Xtk −Xtk−1
).

The result below justifies the name of martingale transform. It plays a funda-
mental role in our later study.

Theorem 8.1. Let {Xn,Fn : n ⩾ 0} be a martingale (respectively, submartingale
/ supermartingale) and let {Cn : n ⩾ 1} be an {Fn}-predictable random sequence
which is uniformly bounded (respectively, uniformly bounded and non-negative).
Then the martingale transform {(C • X)n,Fn : n ⩾ 0} is a martingale (respec-
tively, submartingale / supermartingale).

Proof. We only consider the martingale case. Adaptedness and integrability are
clear. To check the martingale property, one computes

E[(C •X)n+1|Fn] = E[(C •X)n + Cn+1(Xn+1 −Xn)|Fn]

= (C •X)n + Cn+1 ·
(
E[Xn+1|Fn]−Xn

)
= (C •X)n,

where we used the predictability of {Cn} to reach the second last identity.
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Remark 8.3. The boundedness of {Cn} is not an essential assumption. It is im-
posed to ensure the integrability of Yn.

The following intuition behind the martingale transform is particularly useful.
Suppose that you are gambling over the time horizon {1, 2, · · · }.The quantity Cn

represents your stake at game n. Predictability means that you are making your
next decision on the stake amount Cn+1 based on the information Fn observed up
to the present round n. The quantity Xn−Xn−1 represents your winning at game
n per unit stake. As a result, Yn is your total winning up to time n. Theorem
8.1 asserts that if the game is fair (i.e. {Xn,Fn} is a martingale) and if you are
playing the game based on the intrinsic information carried by the game itself (i.e.
predictability), then you cannot beat fairness (i.e. your wealth process {Yn,Fn}
is also a martingale).

As we will see, the martingale transform can be used as a unified approach to
establish several fundamental results in martingale theory.

8.3 Doob’s optional sampling theorem

Apart from deterministic times, in practice it is often useful to consider random
times as well. For instance, when predicting the behaviour of a volcano one relies
on the dynamical data / information up to the next time of its eruption. However,
the next eruption day is itself a random variable. In this case, one is talking about
the accumulative information up to a random time. It is natural to expect that
the martingale property remains valid even when one evaluates the martingale
sequence at a suitable random time and looks at information up to such a time.
The precise mathematical formulation of this result is content of the optional
sampling theorem. Before discussing it, we first introduce the concept of stopping
time.

8.3.1 Stopping times

Let (Ω,F) be a measurable space equipped with a filtration {Fn : n ⩾ 0}. By
a random time we shall mean a function τ : Ω → N ∪ {∞} = {0, 1, 2, · · · ,∞}
(one can of course consider time continuously but in our current study time is
always assumed to be discrete). Allowing τ to achieve ∞-value is convenient
since it may not always be the case that τ is finite. In the volcano example,
it is theoretically possible that the volcano never erupts any more in the future
(τ(ω) = +∞). Similar to the notion of random variables, in order to study its
distributional properties one needs to impose suitable measurability condition on
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a random time. Such a condition should respect the information flow given by
the filtration {Fn}.

Definition 8.6. A random time τ : Ω → N∪{∞} is said to be an {Fn}-stopping
time, if

{ω ∈ Ω : τ(ω) ⩽ n} ∈ Fn ∀n ⩾ 0. (8.2)

The idea behind the measurability condition (8.2) can be described as follows.
Suppose that one is given the accumulative information up to time n. Then one
is able to determine whether the event {τ ⩽ n} occurs or not. If it is the case
that τ ⩽ n, one can actually further determine the exact value of τ. Indeed, since
one can decide whether {τ ⩽ k} happens for every k ⩽ n (the information up
to k is also known as part of Fn), the value of τ can then be extracted from the
first k ⩽ n such that {τ ⩽ k} happens while {τ ⩽ k − 1} fails. On the other
hand, if it is the case that τ > n, no further implication on the value of τ can be
made. In the volcano example, if one has observed its activity continuously for
100 days, one certainly knows whether the volcano has erupted within this period
of 100 days (i.e. whether τ ⩽ 100 or not). If it does, the given data should further
indicate the exact day of eruption, while if does not one cannot determine its next
eruption day by using the given information.

Proposition 8.2. A random time τ is a stopping time if and only if {τ = n} ∈ Fn

for all n.

Proof. Sufficiency. Suppose that {τ = n} ∈ Fn for all n. Then

{τ ⩽ n} =
n⋃

k=0

{τ = k} ∈ Fn,

since {τ = k} ∈ Fk ⊆ Fn for all k ⩽ n.
Necessity. Suppose that τ is a stopping time. Then

{τ = n} = {τ ⩽ n}\{τ ⩽ n− 1} ∈ Fn,

since {τ ⩽ n− 1} ∈ Fn−1 ⊆ Fn.

Apparently, every deterministic time is an {Fn}-stopping time. Moreover, one
can construct new stopping times from given ones. We use a ∧ b (respectively,
a∨ b) to denote the minimum (respectively, the maximum) between two numbers
a, b.
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Proposition 8.3. Suppose that σ, τ, τm (m ⩾ 1) are {Fn}-stopping times. Then

σ + τ, σ ∧ τ, σ ∨ τ, sup
m
τm

are all {Fn}-stopping times.

Proof. We only consider the first and the last cases (the other two are left as an
exercise). For σ + τ, one uses Proposition 8.2:

{σ + τ = n} =
n⋃

k=0

(
{σ = k} ∩ {τ = n− k}

)
∈ Fn.

For supm τm, one observes that{
sup
m
τm ⩽ n

}
=

∞⋂
m=1

{τm ⩽ n} ∈ Fn.

It is helpful to re-examine the above property from the heuristic perspective.
Suppose that one know the accumulative information up to time n. The criterion
of being a stopping time is to see if one can decide whether {σ+τ ⩽ n} happens or
not. Since σ, τ are both stopping times, the following scenarios are all decidable:

σ ⩽ n, σ > n, τ ⩽ n, τ > n.

If it is determined that either {σ > n} or {τ > n} happens, then one decides that
σ + τ > n since both σ, τ are non-negative. If it is determined that σ ⩽ n and
τ ⩽ n, from earlier discussion the exact values of σ and τ are both decidable. As
a result, the value of σ+ τ can then be determined, which certainly allows one to
further decide if {σ + τ ⩽ n} happens or not.

One can use this kind of heuristic argument to discuss the other cases in
Proposition 8.3. It also allows one to see e.g. why σ− τ may not necessarily be a
stopping time (assuming σ ⩾ τ). Indeed, suppose again that the information up
to n is presented. If one finds that σ ⩽ n, then {σ − τ ⩽ n} happens. However,
if one finds that σ > n, no further implication on the value of σ can be obtained.
In this case, σ − τ can either be smaller or larger than n and the occurrence of
{σ − τ ⩽ n} is thus not decidable.

Example 8.3. Consider the random experiment of tossing a coin repeatedly. Let
Fn denote the σ-algebra generated by results of the first n outcomes. Define τ
to be the first time that a “Head” appears. Then τ is an {Fn}-stopping time.
Indeed,

{τ ⩽ n} = {at leat one H appears among the first n tosses} ∈ Fn.
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8.3.2 The σ-algebra at a stopping time

With the notion of a stopping time τ, it becomes natural to talk about the accumu-
lative information up to τ. Similar to Fn, this should be a suitable sub-σ-algebra
of F . The essential idea behind defining this σ-algebra is described as follows.
First of all, an event A ∈ Fτ means that knowing the information up to τ allows
one to determine whether A happens or not. To rephrase this point properly in
terms of the filtration {Fn}, let n be a given fixed deterministic time. Suppose
that one knows the information up to time n. Since τ is a stopping time, one
can determine whether {τ ⩽ n} has occurred or not. If it is the first case, the
information up to τ is then known since one is given the information up to n and
has already determined that τ ⩽ n. In this scenario, one can decide whether A
occurs or not. If it happens to be the second case (τ > n), since one only has the
information up to n, the information over the period from n + 1 to τ is missing
and one should not be able to decide whether A occurs in this scenario. To sum-
marise, given the information up to time n, it is only in the scenario {τ ⩽ n} that
one can determine whether A occurs or not. This heuristic argument leads to the
following precise mathematical definition.
Definition 8.7. Let τ be a given {Fn}-stopping time. The σ-algebra at the
stopping time τ is defined by

Fτ ≜ {A ∈ F : A ∩ {τ ⩽ n} ∈ Fn ∀n ⩾ 0}.
The following fact justifies the definition of Fτ .

Proposition 8.4. The set class Fτ is a sub-σ-algebra of F .
Proof. (i) Since τ is a stopping time, for each n ⩾ 0 one has

Ω ∩ {τ ⩽ n} = {τ ⩽ n} ∈ Fn.

Therefore, Ω ∈ Fτ .

(ii) Suppose A ∈ Fτ . Given an arbitrary n ⩾ 0, note that both of {τ ⩽ n} and
A ∩ {τ ⩽ n} belong to Fn. As a result,

Ac ∩ {τ ⩽ n} = {τ ⩽ n}\
(
A ∩ {τ ⩽ n}

)
∈ Fn.

In particular, Ac ∈ Fτ .

(iii) Let Am ∈ Fτ (m ⩾ 1). For each n ⩾ 0, one has( ∞⋃
m=1

Am

)
∩ {τ ⩽ n} =

∞⋃
m=1

(
Am ∩ {τ ⩽ n}

)
∈ Fn,

since each Am ∩ {τ ⩽ n} ∈ Fn. Therefore, ∪mAm ∈ Fτ .
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8.3.3 The optional sampling theorem

The optional sampling theorem asserts that the martingale property (8.1) remains
valid when one samples along suitable stopping times. To elaborate this fact, let
{Xn,Fn : n ⩾ 0} be a (sub/super)martingale and let τ be an {Fn}-stopping time.
We introduce the stopped process

Xτ
n ≜ Xτ∧n =

{
Xn, n ⩽ τ,

Xτ , n > τ.

Note that Xτ∧n means the random variable ω 7→ Xτ(ω)∧n(ω).

Theorem 8.2. The stopped process {Xτ
n} is an {Fn}-(sub/super)martingale.

Proof. The main idea is to represent Xτ
n as a martingale transform (and such a

method will appear for many times later on!). To this end, we consider a gambling
model where Xn − Xn−1 represents the winning at game n per unit stake. The
gambling strategy is constructed as follows:

Keep playing unit stake from the beginning and quit immediately after the time τ.

Mathematically, the strategy is given by

Cn ≜ 1{n⩽τ}, n ⩾ 1.

Since
{Cn = 1} = {n ⩽ τ} = {τ ⩽ n− 1}c ∈ Fn−1,

the sequence {Cn : n ⩾ 1} is {Fn}-predictable. The total winning up to time n is
given by (C •X)n = Xτ∧n −X0. According to Theorem 8.1, one concludes that
{Xτ

n ,Fn} is a martingale.

Next, we consider the situation when one also stops the filtration at a stopping
time. For simplicity, we only consider the case of bounded stopping times which
is sufficient for most applications. Situations involving unbounded stopping times
are often dealt with by truncation to the bounded case and then passing to the
limit (see the application to random walks below for such a situation and also
Propositions 8.6, 8.8 for suitable extensions to integrable stopping times).

Theorem 8.3 (The Optional Sampling Theorem). Let {Xn,Fn : n ⩾ 0} be a
martingale. Suppose that σ, τ are two bounded {Fn}-stopping times such that
σ ⩽ τ . Then Xσ (respectively, Xτ) is integrable, Fσ-measurable (respectively,
Fτ -measurable) and one has

E[Xτ |Fσ] = Xσ. (8.3)
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Proof. Assume that σ ⩽ τ ⩽ N for some constant N ⩾ 0. Integrability is seen by
the following simple estimate:

E[|Xσ|] =
N∑

n=0

E
[
|Xσ|1{σ=n}

]
=

N∑
n=0

E
[
|Xn|1{σ=n}

]
⩽

N∑
n=0

E[|Xn|] <∞.

To prove Fσ-measurability, given B ∈ B(R) and any n ⩾ 0, one has

{Xσ ∈ B} ∩ {σ ⩽ n} =
n⋃

k=0

(
{Xσ ∈ B} ∩ {σ = k}

)
=

n⋃
k=0

(
{Xk ∈ B} ∩ {σ = k}

)
∈ Fn.

By the definition of Fσ, one concludes that X−1
σ B ∈ Fσ.

To obtain the martingale property (8.3), since Xσ is Fσ-measurable, by the
definition of conditional expectation one needs to show that∫

F

XτdP =

∫
F

XσdP ∀F ∈ Fσ. (8.4)

Let F ∈ Fσ be given fixed. Consider the gambling strategy of playing unit stake
at each time step from σ + 1 until τ under the occurrence of F :

Cn ≜ 1F1{σ<n⩽τ}, n ⩾ 1.

The strategy sequence {Cn} is {Fn}-predictable as seen by

F ∩ {σ < n ⩽ τ} = F ∩ {σ ⩽ n− 1} ∩ (τ ⩽ n− 1)c ∈ Fn−1.

The total winning by time N is (C •X)N = (Xτ −Xσ)1F . According to Theorem
8.1, one concludes that {(C •X)n,Fn} is a martingale. In particular,

E[(C •X)N ] = E[(Xτ −Xσ)1F ] = E[(C •X)0] = 0,

which gives the desired property (8.4).

Remark 8.4. Theorem 8.3 and its proof clearly extends to the case of sub/super
martingales as well.
Remark 8.5. Sometimes a more useful form of (8.3) is obtained after taking ex-
pectation:

E[Xτ ] = E[Xσ](= E[X0]). (8.5)

255



Example 8.4. Consider the martingale {Sn} defined by the simple random walk
on Z (cf. Example 8.1 for the precise definition). Consider the stopping time

τ ≜ inf{n ⩾ 0 : Sn = 1}.

One knows from (5.2) that τ <∞ a.s. As a result, Sτ is a.s. well-defined; indeed,
by definition Sτ = 1 trivially. In particular,

1 = E[Sτ ] ̸= E[S0] = 0.

In other words, the optional sampling theorem does not hold for this τ . The main
issue here is that τ is not bounded (it is not even integrable).

An application: gambler’s ruin

Imagine there are two gamblers A and B. Their initial capitals at time n = 0 are
a and b respectively (a, b are given fixed positive integers). At each round n ⩾ 1,
either A wins $1 from B or the otherwise. Suppose that A’s winning probability at
each round is given by p ∈ (0, 1). Different rounds are assumed to be independent.
The game is finished if either one of them goes bankrupt. We are interested in
computing the average length of the game and the probability that Player A first
goes bankrupt.

We now introduce a suitable mathematical model to describe the underlying
problem. Consider a random walk Sn ≜ X1+ · · ·+Xn with initial position S0 ≜ a.
Here {Xn : n ⩾ 1} is an i.i.d. sequence with distribution

P(X1 = 1) = p, P(X1 = −1) = q ≜ 1− p.

Define
τ = inf{n : Sn = 0 or Sn = a+ b}.

The problem is thus about computing E[τ ] and γ ≜ P(Sτ = 0).

(i) The case when p ̸= 1/2.

We first introduce some martingales associated with such a model. More
specifically, we shall look for two martingales of the forms

Mn ≜ αSn , Nn ≜ Sn − βn

respectively, where α, β are parameters to be determined. For Mn to be a mar-
tingale, one requires that

E[αSn+1 |Fn] = E[αSn+Xn+1 |Fn] = pαSn+1 + qαSn−1 = αSn ,
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where Fn ≜ σ(X1, · · · , Xn). This implies that

αp+
q

α
= 1 ⇐⇒ α = 1 or α =

q

p
.

Of course the meaningful choice is the latter. Similarly, for Nn to be a martingale
one needs

E[Sn+1 − β(n+ 1)|Fn] = p(Sn + 1) + q(Sn − 1)− βn− β = Sn − βn.

This implies that β = p− q. To summarise, we have proved the following fact.

Lemma 8.1. Mn ≜ (q/p)Sn and Nn ≜ Sn − (p− q)n are both {Fn}-martingales.

For each n ⩾ 1, since τ ∧ n is a bounded stopping time, by applying the
optional sampling theorem to the martingale Nn one finds that

E[Nτ∧n] = E[N0] ⇐⇒ E[Sτ∧n]− (p− q)E[τ ∧ n] = a. (8.6)

Since 0 ⩽ Sτ∧n ⩽ a+ b, one has

E[τ ] = lim
n→∞

E[τ ∧ n] ⩽ 2a+ b

|p− q|
<∞.

In particular, τ is finite a.s. (with probability one, one of the two players will go
bankrupt). By taking n→ ∞ in (8.6), one obtains that

(p− q)E[τ ] = γ · 0 + (1− γ) · (a+ b)− a = b− (a+ b)γ (8.7)

Next, by applying optional sampling to the martingale Mn = αSn (with α ≜ q/p)
one also has

E[αSτ∧n ] = E[αS0 ] = αa ∀n.

Taking n→ ∞ yields
γ · α0 + (1− γ) · αa+b = αa.

Therefore,

γ =
αa − αa+b

1− αa+b
.

By substituting this into (8.7), one finds that

E[τ ] =
1

p− q

(
b− (a+ b)

αa − αa+b

1− αa+b

)
.
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(ii) The case when p = 1/2.

In this case, we consider the martingales Sn and S2
n−n. By optional sampling,

one has
E[Sτ∧n] = E[S0] = a

and
E[S2

τ∧n − τ ∧ n] = E[S2
0 ] = a2

for all n. By taking n→ ∞, in a similar way as before one finds that

γ =
b

a+ b
, E[τ ] = ab.

Remark 8.6. With no surprise, one can check that

b

a+ b
= lim

p→1/2

αa − αa+b

1− αa+b
, ab = lim

p→1/2

1

p− q

(
b− (a+ b)

αa − αa+b

1− αa+b

)
.

8.4 Doob’s maximal inequality

In probability theory (in particular, in the study of stochastic processes), it is
often useful to know how to control the supremum of a random sequence. This
can be done in a neat and simple way in the (sub)martingale context with the
aid of the optional sampling theorem. As a submartingale exhibits an increasing
trend, it is not surprising that its running maximum can be controlled by the
terminal value in a reasonable sense.

Theorem 8.4. Let {Xn,Fn : n ⩾ 0} be a submartingale. For all N ⩾ 0 and
λ > 0, one has

P
(
max
0⩽n⩽N

Xn ⩾ λ
)
⩽

E[X+
N ]

λ
. (8.8)

Proof. Let σ ≜ inf{n ⩽ N : Xn ⩾ λ} denote the first time (up to N) that Xn

exceeds the level λ. We set σ = N if no such n ⩽ N exists. Clearly σ is an
{Fn}-stopping time bounded by N . By taking expectation on both sides of (8.3)
(in the submartingale case), one obtains that

E[XN ] ⩾ E[Xσ]. (8.9)

On the other hand, one can write

Xσ = Xσ1{X∗
N⩾λ} +Xσ1{X∗

N<λ}
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where
X∗

N ≜ max
0⩽n⩽N

Xn.

On the event {X∗
N ⩾ λ}, the process Xn does exceed λ at some n ⩽ N and thus

Xσ ⩾ λ. On the event {X∗
N < λ} no such exceeding occurs and thus Xσ = XN

(σ = N in this case). As a result, one has

E[XN ] ⩾ E[Xσ] = E
[
Xσ1{X∗

N⩾λ}
]
+ E

[
Xσ1{X∗

N<λ}
]

⩾ λP
(
X∗

N ⩾ λ
)
+ E

[
XN1{X∗

N<λ}
]
.

It follows that

λP
(
X∗

N ⩾ λ
)
⩽ E[XN ]− E[XN1{X∗

N<λ}] = E[XN1{X∗
N⩾λ}] ⩽ E[X+

N ], (8.10)

which yields the desired inequality.

Remark 8.7. Kolmogorov’s maximal inequality (cf. Lemma 5.2) can be seen as a
special case of Theorem 8.4. Indeed, let {Xn : n ⩾ 1} be a sequence of independent
random variables with mean zero and finite variance. Define Sn ≜ X1 + · · ·+Xn.
Then {Sn} is a martingale with respect to its natural filtration. Since x 7→ x2 is a
convex function on R, it follows from Proposition 8.1 that {S2

n} is a submartingale.
According to Doob’s maximal inequality (8.8), one has

P
(
max
1⩽k⩽n

|Sk| > ε
)
= P

(
max
1⩽k⩽n

S2
k > ε2

)
⩽

1

ε2
E[S2

n] =
1

ε2

n∑
k=1

Var[Xk].

An important corollary of the maximal inequality is the Lp-inequality for the
running maximum. Due to the former result, it is not too surprising that the
integrability of the running maximum can also be controlled by the integrability
of the terminal value. Recall that ∥X∥p ≜ E[|X|p]1/p denotes the Lp-norm (p ⩾ 1)
of a random variable X and we say that X ∈ Lp if ∥X∥p <∞.

Corollary 8.1. Let {Xn,Fn : n ⩾ 0} be a non-negative submartingale. Let p > 1
and suppose that Xn ∈ Lp for all n. Then for every N ⩾ 0, one has

∥ max
0⩽n⩽N

Xn∥p ⩽
p

p− 1
∥XN∥p,

In particular, max
0⩽n⩽N

Xn ∈ Lp.

In order to prove this result, we first need the following lemma.
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Lemma 8.2. Suppose that X, Y are two non-negative random variables such that

P(X ⩾ λ) ⩽
E[Y 1{X⩾λ}]

λ
∀λ > 0. (8.11)

Then for any p > 1, one has

∥X∥p ⩽ q∥Y ∥p, (8.12)

where q ≜ p/(p− 1) (so that 1/p+ 1/q = 1).

Proof. Suppose ∥Y ∥p <∞ for otherwise the result is trivial. We write

E[Xp] = E
[ ∫ X

0

pλp−1dλ
]
= E

[∫ ∞

0

pλp−11{X⩾λ}dλ

]
.

By using Fubini’s theorem, one finds that

E[Xp] =

∫ ∞

0

pλp−1P(X ⩾ λ)dλ

⩽
∫ ∞

0

pλp−2E
[
Y 1{X⩾λ}

]
dλ

= E
[
Y

∫ X

0

pλp−2dλ
]

=
p

p− 1
E[Y Xp−1]. (8.13)

To proceed further, we assume for the moment that X ∈ Lp. According to
Hölder’s inequality (cf. (2.18)), one has

E[Y Xp−1] ⩽ ∥Y ∥p∥Xp−1∥q = ∥Y ∥p∥X∥p−1
p .

The inequality (8.12) thus follows by diving ∥X∥p−1
p to the left hand side of (8.13).

If ∥X∥p = ∞, we let XN ≜ X ∧N (N ⩾ 1). By considering the cases λ > N and
λ ⩽ N separately, it is not hard to see that the condition (8.11) holds for the pair
(XN , Y ). The desired inequality (8.12) follows by first considering XN and then
applying the monotone convergence theorem.

Proof of Corollary 8.1. Let us write X∗
N ≜ max

0⩽n⩽N
Xn. We have shown in (8.10)

that

P(X∗
N ⩾ λ) ⩽

E[XN1{X∗
N⩾λ}]

λ
.

In particular, the condition (8.11) holds with (X, Y ) = (X∗
N , XN). The result

follows immediate from Lemma 8.2.
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8.5 The martingale convergence theorem

The (sub/super)martingale property (8.1) exhibits certain kind of monotone be-
haviour. It is thus reasonable to expect that a (sub/super)martingale converges
in a suitable sense under some boundedness condition. To make this idea mathe-
matically precise, one is led to the martingale convergence theorem.

8.5.1 A general strategy for proving almost sure convergence

Before establishing such a theorem, we first explain a general strategy of proving
almost sure convergence. Let X = {Xn : n ⩾ 0} be a random sequence on
some probability space (Ω,F ,P). Given fixed ω ∈ Ω, the real sequence Xn(ω) is
convergent if and only if

lim
n→∞

Xn(ω) = lim
n→∞

Xn(ω).

Here we take the convention that Xn → ∞ or Xn → −∞ is also considered as
being convergent. Therefore,

{Xn is not convergent} ⊆
{
lim
n→∞

Xn < lim
n→∞

Xn

}
⊆

⋃
a<b
a,b∈Q

{
lim
n→∞

Xn < a < b < lim
n→∞

Xn

}
.

In order to prove that Xn converges a.s., it suffices to show that

P
(
lim
n→∞

Xn < a < b < lim
n→∞

Xn

)
= 0 (8.14)

for every pair of given numbers a < b.
Here is the key observation. Due to the definitions of the liminf and limsup, the

event in (8.14) implies that there is a subsequence of Xn lying below a and in the
meanwhile there is another subsequence of Xn lying above b. This further implies
that, as n increases there must be infinitely many upcrossings by the sequence Xn

from below the level a to above the level b.
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From this reasoning, the key step for proving the a.s. convergence of {Xn}
is to control its total upcrossing number with respect to the interval [a, b]. More
specifically, one is led to showing that with probability one, there are at most
finitely many upcrossings with respect to [a, b].

8.5.2 The upcrossing inequality

We now define the upcrossing number mathematically. Consider the following
two sequences of random times: σ0 ≜ 0,

σ1 ≜ inf{n ⩾ 0 : Xn < a}, τ1 ≜ inf{n > σ1 : Xn > b},
σ2 ≜ inf{n > τ1 : Xn < a}, τ2 ≜ inf{n > σ2 : Xn > b},

· · ·
σk ≜ inf{n > τk−1 : Xn < a}, τk ≜ inf{n > σk : Xn > b},

· · · .

Definition 8.8. Given N ⩾ 0, the upcrossing number UN(X; [a, b]) with respect
to the interval [a, b] by the sequence {Xn} up to time N is define by the random
number

UN(X; [a, b]) ≜
∞∑
k=1

1{τk⩽N}.

Note that UN(X; [a, b]) ⩽ N/2. Moreover, if {Fn} is a given filtration and X
is {Fn}-adapted, then σk, τk are {Fn}-stopping times. In particular, UN(X; [a, b])
is FN -measurable. The main result for controlling the quantity UN(X; [a, b]) in
the martingale context is stated as follows.
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Proposition 8.5 (The Upcrossing Inequality). Let {Xn,Fn : n ⩾ 0} be a su-
permartingale. Then the upcrossing number UN(X; [a, b]) satisfies the following
inequality:

E[UN(X; [a, b])] ⩽
E[(XN − a)−]

b− a
, (8.15)

where x− ≜ max{−x, 0}.

Proof. We again use the method of martingale transform. This time we construct
a gambling strategy as follows: repeat the following two steps forever.

(i) Wait for Xn to drop below a;
(ii) play unit stakes onwards until Xn gets above b and then stop playing.

Mathematically, the strategy {Cn : n ⩾ 1} is defined by the following equations

C1 ≜ 1{X0<a}; Cn ≜ 1{Cn−1=0}1{Xn−1<a} + 1{Cn−1=1}1{Xn−1⩽b}, n ⩾ 2.

Let {Yn} be the martingale transform of Xn by Cn. Then YN represents the
total winning up to time N. Observe that YN comes from two parts:

(i) the playing intervals corresponding to complete upcrossings;
(ii) the last playing interval corresponding to the last incomplete upcrossing (which
may possibly not exist).

The total winning YN from the first part is clearly bounded from below by
(b − a)UN(X; [a, b]). The total winning in the last playing interval (if it exists)
is bounded from below by −(XN − a)− (the worst scenario when a loss occurs).
Consequently, one finds that

YN ⩾ (b− a)UN(X; [a, b])− (XN − a)−.
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On the other hand, one checks by definition that {Cn} is bounded, non-
negative and {Fn}-predictable. According to Theorem 8.1, {Yn,Fn} is a super-
martingale. Therefore,

E[YN ] ⩽ E[Y0] = 0.

Rearranging this relation gives the upcrossing inequality (8.15).

Remark 8.8. There is also a version of the upcrossing inequality for the submartin-
gale case. However, the proof of that case is quite different from what we gave
here. Since they both lead to the same convergence theorem, we only consider
the supermartingale case.

8.5.3 The convergence theorem

Since UN(X; [a, b]) is increasing in N, one can define the total upcrossing number
for all time to be

U∞(X; [a, b]) ≜ lim
N→∞

UN(X; [a, b]).

Now let us further assume that the supermartingale {Xn,Fn} is bounded in L1,
namely there exists M > 0 such that

E[|Xn|] ⩽M ∀n ⩾ 0. (8.16)

According to the upcrossing inequality, one finds that

E[U∞(X; [a, b])] = lim
N→∞

E[UN(X; [a, b])] ⩽
M + |a|
b− a

<∞.

In particular, U∞(X; [a, b]) <∞ a.s. It then follows from the relation{
lim
n→∞

Xn < a < b < lim
n→∞

Xn

}
⊆ {U∞(X; [a, b]) = ∞}

that (8.14) holds. As a consequence, the sequence Xn is convergent a.s. Let
us denote the limiting random variable as X∞. From Fatou’s lemma, under the
L1-boundedness assumption (8.16) one also finds that

E[|X∞|] = E
[
lim
n→∞

|Xn|
]
⩽ lim

n→∞
E[|Xn|] ⩽M <∞.

To summarise, we have thus established the following convergence result.
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Theorem 8.5 (The Supermartingale Convergence Theorem). Let {Xn,Fn : n ⩾
0} be a supermartingale which is bounded in L1. Then Xn converges a.s. to an
integrable random variable X∞.

Remark 8.9. Since martingales are supermartingales and a submartingale is the
negative of a supermartingale, it is immediate that the above convergence theorem
is also valid for (sub)martingales.

8.6 Uniformly integrable martingales

Theorem 8.5 is an assertion about a.s. convergence of a (super)martingale se-
quence {Xn}. On the other hand, it is natural to ask if one also has E[Xn] →
E[X∞] (in the martingale context, this is asking whether E[X∞] = E[X0])? Though
it seems reasonable to expect so, the example below shows that this is surprisingly
not true in general.

Example 8.5. Consider a sequence {Xn : n ⩾ 1} of i.i.d. standard normal
random variables. Let Sn ≜ X1 + · · · + Xn (S0 ≜ 0). It is routine to check
that Mn ≜ eSn−n/2 is a martingale with respect to its natural filtration. Since
E[Mn] = 1 and Mn > 0, it is trivially bounded in L1. According to the martingale
convergence theorem, Mn converges a.s. to some integrable random variable M∞.
We claim that M∞ = 0 a.s.! Indeed, one knows from Proposition 5.1 (ii) (cf.
(5.2)) that with probability one, Sn < 0 along some subsequence of times, say
nk ↑ ∞ (nk depends on ω). It follows that

0 < Mnk
⩽ e−nk/2 → 0

as k → ∞. As a result, M∞ has to be zero (since the limit does not depend on
the choice of subsequences). This example shows that

1 = E[Mn] ↛ E[M∞] = 0,

even though {Mn} is bounded in L1 and Mn → M∞ a.s. In particular, Mn does
not converge to M∞ in L1.

The main issue in the above example is that {Mn} fails to be uniformly in-
tegrable. As we have seen in Theorem 4.2, uniform integrability is the bridge
connecting convergence in probability and L1-convergence. Uniformly integrable
martingales thus possess richer convergence properties and are better behaved
objects to work with.
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8.6.1 Uniformly integrable martingales and L1-convergence

The following result provides the L1-convergence counterpart of the martingale
convergence theorem.

Theorem 8.6. Let {Xn,Fn : n ⩾ 0} be a supermartingale which is bounded in
L1, so that Xn converges a.s. to some integrable random variable X∞. Then the
following two statements are equivalent:

(i) The family {Xn} is uniformly integrable.
(ii) Xn converges to X∞ in L1.
In this case, one also has

E[X∞|Fn] ⩽ Xn a.s. (8.17)

If {Xn,Fn} is a martingale, then (i) / (ii) is also equivalent to (8.17) with “⩽”
replaced by “=”.

Proof. Since a.s. convergence implies convergence in probability, the equivalence
between (i) and (ii) is a direct consequence of Theorem 4.2. To obtain (8.17), it
suffices to show that ∫

A

X∞dP ⩽
∫
A

XndP, ∀A ∈ Fn. (8.18)

To this end, by the supermartingale property one has∫
A

XmdP ⩽
∫
A

XndP ∀m ⩾ n, A ∈ Fn.

The relation (8.18) follows by lettingm→ ∞, which is legal due to L1-convergence.
The last part of the theorem in the martingale case is a direct consequence of
Proposition 4.4.

The following convergence result due to P. Lévy is a particularly useful situa-
tion.

Corollary 8.2 (Lévy’s Forward Theorem). Let Y be an integrable random variable
and let {Fn : n ⩾ 0} be a filtration. Then Xn = E[Y |Fn] is a uniformly integrable
{Fn}-martingale and

Xn → E[Y |F∞] both a.s. and in L1,

where F∞ ≜ σ(∪nFn).
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Proof. The martingale property follows from

E[Xm|Fn] = E[E[Y |Fm]|Fn] = E[Y |Fn] = Xn ∀m > n.

Uniform integrability follows from Proposition 4.4. In particular, one knows from
Theorem 4.1 that {Xn} is bounded in L1. According to Theorem 8.6, Xn converges
to some X∞ a.s. and in L1.

It remains to show that X∞ = E[Y |F∞]. Since ∪nFn is a π-system, one only
needs to verify ∫

A

X∞dP =

∫
A

Y dP

for all A ∈ Fn and n ⩾ 0. But this follows from taking m→ ∞ in the relation∫
A

XmdP =

∫
A

Y dP ∀m ⩾ n, A ∈ Fn.

Example 8.6 (Pólya’s urn). Initially, an urn contains b black balls and w white
balls. At each time, a ball is drawn uniformly at random and it is returned to the
urn along with c additional balls of the same colour. Let Xn denote the fraction
of black balls after the n-th draw. We claim that Xn is a martingale with respect
to its natural filtration {Fn}. Indeed, let Bn (respectively, Wn) denote the total
number of black (respectively, white) balls in the urn after the n-th draw. Then
given Fn, one has

Xn+1 =


Bn + c

Bn +Wn + c
, with prob.

Bn

Bn +Wn

;

Bn

Bn +Wn + c
, with prob.

Wn

Bn +Wn

.

As a result,

E[Xn+1|Fn] =
Bn + c

Bn +Wn + c
× Bn

Bn +Wn

+
Bn

Bn +Wn + c
× Wn

Bn +Wn

=
Bn

Bn +Wn

= Xn.

Note that Xn is also uniformly bounded (since Xn ∈ [0, 1]) and is thus uniformly
integrable by Proposition 4.3. According to Theorem 8.6, Xn converges to some
integrable random variable X∞ a.s. and in L1.
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There is an interesting observation of exchangeability in this example. For
each n ⩾ 1, let us define

Zn ≜

{
1, if the n-th draw is black;
0, otherwise.

Let z = (z1, · · · , zn) be a given word where zi ∈ {0, 1} and there are precisely k
of 1’s in z. We claim that

P
(
(Z1, · · · , Zn) = (z1, · · · , zn)

)
=

b

b+ w
· b+ c

b+ w + c
· · · b+ (k − 1)c

b+ w + (k − 1)c

× w

b+ w + kc
· w + c

b+ w + (k + 1)c
· · · w + (n− k − 1)c

b+ w + (n− 1)c
. (8.19)

This formula shows that the outcome distribution of the first n draws depends
only on k (the number of black draws) but not on the specific times that the black
balls are drawn. To prove (8.19), one observes that the formula is obvious when

(z1, · · · , zn) =
(
1, · · · , 1︸ ︷︷ ︸

k

, 0, · · · , 0︸ ︷︷ ︸
n−k

)
.

For a different word z (with k of 1’s), the denominator in (8.19) remains unchanged
while the numerator is suitably permuated from (8.19). The resulting product is
thus the same.

To get some feeling about the distribution of X∞, let us first consider the
special situation when b = w = c = 1. According to the formula (8.19), for any
k = 0, 1, · · · , n one has

P(Bn = k + 1) = P(precisely k black among first n draws)

=

(
n

k

)
× (1 · 2 · · · k)(1 · 2 · · · (n− k))

2 · 3 · · · (n+ 1)
=

1

n+ 1
.

In other words, Bn is a discrete uniform random variable over {1, 2, · · · , n + 1}.
As a consequence, X∞ ∼ U [0, 1]. Next, let us assume that b = c = 1 but w = 2.
Similar calculation shows that

P(Bn = k + 1) =
2(n− k + 1)

n+ 2
× 1

n+ 1
.
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If n→ ∞ and k/n→ x, the fraction 2(n−k+1)
n+2

converges to 2(1− x). This suggest
that the probability density of the random variable X∞ should be given by

f(x) = 2(1− x), x ∈ (0, 1).

Question. Can you derive the distribution of X∞ for general b, w, c?

8.6.2 Lévy’s backward theorem and a martingale proof of strong LLN

There is a “backward” counterpart of Corollary 8.2 (running time backward to-
wards −∞). As we will see, a benefit of running backward in time is that one has
a.s. convergence for free! We first introduce the following definition.

Definition 8.9. A backward (sub/super)martingale is a martingale indexed by
negative integers. More precisely, it is a sequence {Xn,Gn : n ⩽ −1} satisfying
the following properties:

(i) Gn is a sub-σ-algebra of F such that

· · · ⊆ Gn ⊆ · · · ⊆ G−2 ⊆ G−1;

(ii) Xn is integrable and Gn-measurable;
(iii) for any n < m ⩽ −1, one has

E[Xm|Gn](⩾ / ⩽) = Xn a.s.

Below is the backward martingale convergence theorem. As usual, we only
state the version for supermartingales while the (sub)martinagle counterpart of
the theorem should be transparent.

Theorem 8.7. Let {Xn,Gn : n ⩽ −1} be a backward supermartingale. Then the
limit

X−∞ ≜ lim
n→−∞

Xn ∈ [−∞,∞] (8.20)

exists a.s. Suppose further that

sup
n⩽−1

E[Xn] <∞. (8.21)

Then {Xn} is uniformly integrable, X−∞ is integrable and the limit (8.20) holds
in L1 as well. Moreover, in this case one has

E[Xn|G−∞] ⩽ X−∞ a.s.

where G−∞ ≜ ∩m⩽−1Gm.
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Remark 8.10. If {Xn,Gn : n ⩽ −1} is a martingale, the condition (8.21) is auto-
matically satisfied. As a result, every backward martingale converges a.s. and in
L1.

Proof. To prove the a.s. convergence of Xn, we use the same technique as in the
proof of Theorem 8.5. Recall that the essential point is to estimate the expected
upcrossing number. The notable difference here is that the upcrossing inequality
(8.15), when applied to the martingale {Xn,Gn : n = −N, · · · ,−1}, becomes

E[U−N(X; [a, b])] ⩽
E[(X−1 − a)−]

b− a
.

By taking N ↑ ∞, it follows that

E[U−∞(X; [a, b])] ⩽
E[(X−1 − a)−]

b− a

Here U−∞(X; [a, b]) denotes the upcrossing number with respect to the interval
[a, b] by the entire sequence {Xn}. Since X−1 is integrable, one obtains the a.s.
finiteness of U−∞(X; [a, b]) without the L1-boundedness assumption! From this
point on, the argument leading to the a.s. convergence of Xn is identical to the
forward case. Note that the limit X−∞ is not necessarily finite.

Now suppose further that (8.21) holds. We first observe that {Xn} is bounded
in L1. Indeed, since {X−

n } is a submartingale (it is the composition of the convex
function max{x, 0} and the submartingale −Xn), one has

E[|Xn|] = E[Xn] + 2E[X−
n ] ⩽ E[Xn] + 2E[X−

−1] ∀n ⩽ −1.

As a result,
M ≜ sup

n⩽−1
E[|Xn|] ⩽ 2E[X−

−1] + sup
n⩽−1

E[Xn] <∞. (8.22)

This already implies by Fatou’s lemma that X−∞ is finite a.s.
To prove the uniform integrability of {Xn}, let λ > 0 and n ⩽ k ⩽ −1.

According to the supermartingale property, one has

E
[
|Xn|1{|Xn|>λ}

]
= E

[
Xn1{Xn>λ}

]
− E

[
Xn1{Xn<−λ}

]
= E[Xn]− E

[
Xn1{Xn⩽λ}

]
− E

[
Xn1{Xn<−λ}

]
⩽ E[Xn]− E

[
Xk1{Xn⩽λ}

]
− E

[
Xk1{Xn<−λ}

]
= E[Xn]− E[Xk] + E

[
Xk1{Xn>λ}

]
− E

[
Xk1{Xn<−λ}

]
⩽ E[Xn]− E[Xk] + E

[
|Xk|1{|Xn|>λ}

]
. (8.23)
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Given ε > 0, by the assumption (8.21) there exists k ⩽ −1, such that

0 ⩽ E[Xn]− E[Xk] ⩽
ε

2
∀n ⩽ k.

We fix such a k. Since Xk is integrable, there exists δ > 0 such that

A ∈ F ,P(A) < δ =⇒ E[|Xk|1A] <
ε

2
.

In view of the L1-boundedness property (8.22), one can find Λ > 0 such that for
all λ > Λ,

P(|Xn| > λ) ⩽
E[|Xn|]
λ

⩽
M

λ
< δ ∀n ⩽ −1 and λ > 0.

It follows from (8.23) that

E
[
|Xn|1{|Xn|>λ}

]
< ε

for all n ⩽ k and λ > Λ. This yields the uniform integrability (why?). It is now a
consequence of Theorem 4.2 that Xn → X−∞ in L1 as well as n→ −∞.

The last part of the theorem follows by taking m → −∞ in the following
relation: ∫

A

XndP ⩽
∫
A

XmdP ∀A ∈ G−∞ and m ⩽ n ⩽ −1.

The following result, which is the backward version of Corollary 8.2, is an
immediate consequence of Theorem 8.7.

Corollary 8.3 (Lévy’s Backward Theorem). Let {Gn : n ⩽ −1} be a given filtra-
tion over (Ω,F ,P) as before. Let Y be an integrable random variable and define

Xn ≜ E[Y |Gn], n ⩽ −1.

Then
X−∞ ≜ lim

n→−∞
Xn exists a.s. and in L1,

and one has
X−∞ = E[Y |G−∞] a.s. (8.24)

where G−∞ ≜ ∩n⩽−1Gn.

271



As an application of Lévy’s backward theorem, we give an alternative (and
much shorter) proof of the strong LLN (Theorem 5.5 (i)) with an extra gain of
L1-convergence.

Theorem 8.8. Let {Xn} be an i.i.d. sequence with mean µ. Define Sn ≜ X1 +
· · ·+Xn. Then

Sn

n
→ µ a.s. and in L1

as n→ ∞.

Proof. For each n ⩾ 1, define

G−n ≜ σ(Sn, Sn+1, Sn+2, · · · ) = σ(Sn, Xn+1, Xn+2, · · · ).

Since the Xn’s are i.i.d., one has

E[X1|G−n] = E[X1|Sn] =
Sn

n
a.s. (why?)

According to Corollary 8.3, Sn/n converges to some integrable random variable
X−∞ a.s. and in L1 as n→ ∞. Since the random variable lim

n→∞
Sn/n is measurable

with respect to the tail σ-algebra of the sequence {Xn}, by Corollary 5.1 it is
constant a.s. In particular,

X−∞ = E[X−∞] = lim
n→∞

E
[Sn

n

]
= µ a.s.

The result thus follows.

8.6.3 An application: Wald’s identity

Consider a random walk Sn ≜ X1+ · · ·+Xn (S0 ≜ 0) where X = {Xn} is an i.i.d.
sequence with finite mean µ ≜ E[X1]. Let Fn ≜ σ(X1, · · · , Xn). The following
result, which was due to A. Wald, partially generalises the optional sampling
theorem to the case of integrable stopping times in the current context.

Proposition 8.6. Let τ be an integrable, {Fn}-stopping time. Then E[Sτ ] =
µE[τ ].

Proof. It is easily checked that Sn − µn is an {Fn}-martingale. According to the
optional sampling theorem, one has

E[Sτ∧n] = µE[τ ∧ n] ∀n ⩾ 1.
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Letting n → ∞, the right hand side converges to µE[τ ] by the monotone conver-
gence theorem. For the left hand side, one has Sτ∧n → Sτ a.s. (note that τ < ∞
a.s.) and additionally

|Sτ∧n| ⩽ |X1|+ · · ·+ |Xτ∧n| ⩽ |X1|+ · · ·+ |Xτ | =
∞∑
k=1

|Xk|1{τ⩾k}

for all n. We claim that the last random variable is integrable. Indeed, since

{τ ⩾ k} = {τ ⩽ k − 1}c ∈ Fk−1,

one knows that Xk and {τ ⩾ k} are independent. As a result,

E
[ ∞∑
k=1

|Xk|1{τ⩾k}
]
=

∞∑
k=1

E
[
|Xk|1{τ⩾k}

]
=

∞∑
k=1

E[|Xk|] · P(τ ⩾ k)

= E[|X1|] ·
∞∑
k=1

P(τ ⩾ k) <∞,

where the last property follows from Lemma 5.1. It follows from the dominated
convergence theorem that Sτ ∈ L1 and E[Sτ∧n] → E[Sτ ]. The result thus follows.

Proposition 8.6 is useful in determining the exact value of E[τ ] when µ ̸= 0. If
µ = 0, one needs to move to the quadratic level.

Proposition 8.7. Suppose that µ = 0 and σ2 ≜ E[X2
1 ] < ∞. Let τ be an

integrable, {Fn}-stopping time. Then E[S2
τ ] = σ2E[τ ].

Proof. First of all, one observes that S2
n − σ2n is a martinagle. By optional

sampling, one has
E[S2

τ∧n] = σ2E[τ ∧ n] ⩽ σ2E[τ ] ∀n.

According to Proposition 4.3 (i), the family {Sτ∧n} is uniformly integrable. Since
Sτ∧n → Sτ a.s. trivially, it follows that the same convergence also holds in L1.
Next, we claim that

Sτ∧n = E[Sτ |Fτ∧n]. (8.25)

Indeed, given A ∈ Fτ∧n, by optional sampling one has∫
A

Sτ∧ndP =

∫
A

Sτ∧mdP ∀m > n.
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Taking m → ∞, one obtains from L1-convergence that the right hand side goes
to

∫
A
SτdP. This justifies the claim (8.25).

Now one can use the conditional Jensen’s inequality to see that

S2
τ∧n =

(
E[Sτ |Fτ∧n]

)2
⩽ E[S2

τ |Fτ∧n].

As a result,

σ2E[τ ] = lim
n→∞

σ2E[τ ∧ n] = lim
n→∞

E[S2
τ∧n] ⩽ E[S2

τ ].

On the other hand, by Fatou’s lemma one also has

E[S2
τ ] ⩽ lim

n→∞
E[S2

τ∧n] = lim
n→∞

σ2E[τ ∧ n] = σ2E[τ ].

Therefore, one concludes that E[S2
τ ] = σ2E[τ ].

To conclude, we look at the example of Bernoulli random walks. Suppose that
X1 follows the distribution

P(X1 = 1) = p, P(X1 = −1) = q ≜ 1− p

where p ∈ (0, 1). Note that µ = p− q. Let x be a fixed positive integer and define

τ ≜ inf{n ⩾ 1 : Sn = x}.

The case when p > q. Since

µE[τ ∧ n] = E[Sτ∧n] ⩽ x,

by monotone convergence one sees that

µE[τ ] ⩽ x <∞ =⇒ E[τ ] <∞.

According to Proposition 8.6,

E[τ ] =
E[Sτ ]

µ
=
x

µ
.

The case when p ⩽ q. In this case, one must have E[τ ] = ∞; for otherwise,
one knows from Proposition 8.6 that

0 < x = E[Sτ ] = µE[τ ] ⩽ 0,
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which is absurd. We now compute P(τ <∞). Let

φ(t) ≜ E[etX1 ] = pet + qe−t

denote the moment generating function ofX1. The key observation is that for each
fixed t, the sequence etSn/φ(t)n is a martingale. Let us first assume that p < q.
In this case, since µ = φ′(0) < 0 there exists an r > 0 such that φ(r) = φ(0) = 1
(why?). In particular, erSn is a martingale. By the optional sampling theorem,
one has

E[erSτ∧n ] = 1 ∀n ⩾ 1. (8.26)

We now write

E[erSτ∧n ] = E
[
erSτ ; τ ⩽ n

]
+ E

[
erSn ; τ > n

]
= erxP(τ ⩽ n) + E

[
erSn ; τ > n

]
.

The first term converges to erxP(τ <∞) as n→ ∞. For the second term, due to
the strong LLN one has

Sn/n→ µ < 0 a.s. =⇒ erSn → 0 a.s.

In addition, on the event {τ > n} it is obvious that erSn ⩽ erx. By dominated
convergence, one finds that

lim
n→∞

E
[
erSn ; τ > n

]
= 0.

Therefore,
lim
n→∞

E[erSτ∧n ] = erxP(τ <∞).

It follows from (8.26) that P(τ <∞) = e−rx.
Next, we look at the symmetric case (p = q = 1/2). In this case, φ(t) = cosht.

It is clear from (5.2) that P(τ < ∞) = 1. But this fact can be easily reproduced
by the current martingale method. Recall that for each fixed t > 0, one has

E
[
(secht)τ∧netSτ∧n

]
= 1 ∀n. (8.27)

In addition, note that

lim
n→∞

(secht)τ∧netSτ∧n =

{
(secht)τetx, on {τ <∞};
0, on {τ = ∞}.

The second scenario follows from the fact that secht < 1. By dominated conver-
gence, one can take n→ ∞ in (8.27) to obtain that

E[(secht)τetx] = 1.
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Here (secht)τ ≜ 0 if τ = ∞. In other words,

E[(secht)τ1{τ<∞}] = e−tx ∀t > 0. (8.28)

Since(secht)τ1{τ<∞} ⩽ 1 for all t > 0, by taking t ↘ 0 and using dominated
convergence again, one concludes that

P(τ <∞) = lim
t↓0

E[(secht)τ1{τ<∞}] = lim
t↓0

e−tx = 1.

It is actually possible to compute the distribution of τ explicitly. We only
consider the symmetric case and x = 1 for simplicity. By letting α ≜ secht in
(8.28), one finds that

E[ατ ] = e−t =
1−

√
1− α2

α
.

We now expand the right hand side into a power series of α. First recall that

√
1− α2 =

∞∑
n=0

(
1/2

n

)
(−1)nα2n.

As a result,

E[ατ ] =
1

α

(
1−

∞∑
n=0

(
1/2

n

)
(−1)nα2n

)
=

∞∑
n=1

(
1/2

n

)
(−1)n+1α2n−1.

On the other hand, one also has

E[ατ ] =
∞∑
n=1

P(τ = 2n− 1) · α2n−1

since τ cannot achieve even values. By comparing the two expansions, it is easily
seen that

P(τ = 2n− 1) = (−1)n+1

(
1/2

n

)
.

8.7 Some applications of martingale methods

We conclude by discussing three enlightening applications of martingale methods.
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8.7.1 Monkey typing Shakespeare

The first application is an artificial one (and just for fun!). Nonetheless, it contains
a very insightful method and a non-trivial application of optional sampling.

Imagine that a monkey is typing letters on the keyboard. At each time, it
selects one of the 26 letters uniformly at random and different selections are
assumed to be independent from each other. We have seen in Example 5.4 that
(by using the second Borel-Cantelli lemma) with probability one, the monkey
will eventually produce an exact copy (in fact, infinitely many!) of Shakespeares’
“Hamlet”. Our next question is: how long on average does it take to produce one
for the first time?

Let us formulate the mathematics precisely. Our random experiment is toss-
ing a die with 26 faces (each letter per face) repeatedly and independently in
a sequence. We consider the string ALPHABETALPHA as a toy model of the
“Hamlet”. Let τ denote the first time this string appears. We wish to compute
E[τ ].

To solve this problem, we introduce the following imaginary model. Suppose
that a casino is proposing a new game called ALPHABETALPHA. The dealer
rolls a die with 26 faces repeatedly. At every round, precisely one gambler enters
the game and she bets in the following way. She bets $1 on the first letter A in
the string ALPHABETALPHA. She quits if she loses, while if she wins the dealer
pays her $26 dollars and she bets all this amount on the second letter L at the
next round. If she loses she quits, while if she wins again the dealer pays her $262
and she further bets all the money on the third letter P at the next round. The
strategy continues and she quits the game either when she loses at some point or
when she wins the entire string.

We now introduce several basic mathematical objects associated with this
model. The underlying probability space (Ω,F ,P) is defined as follows. The
sample space is given by

Ω = {ω = (ω1, ω2, · · · ) : ωn = A,B,C, · · · }.

Let ξn(ω) ≜ ωn be the random variable giving the n-th outcome of the game. F
is the σ-algebra generated by all the ξn’s. P is the unique probability measure on
F such that

P
(
ξ1 = a1, · · · , ξn = an

)
=

1

26n

for all n and ai ∈ {A, · · · , Z}. One can also construct (Ω,F ,P) as the countable
product space of the probability model for each single toss. We also introduce
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the filtration given by Fn ≜ σ(ξ1, · · · , ξn) (the σ-algebra generated by the first n
outcomes).

Let Mn (n ⩾ 1) denote the net gain of the casino up to the n-th round. The
first key observation is the following lemma.

Lemma 8.3. The sequence {Mn,Fn} is a martingale with uniformly bounded
increments, i.e. there exists C > 0 such that |Mn(ω)−Mn−1(ω)| ⩽ C for all ω, n.

Proof. Let S denote the string ALPHABETALPHA and set N ≜ 13 (length of
S). The key point is to find a suitable way of representing Mn. Given j, n ⩾ 1,
we introduce Y j

n to be the net gain of Player j at the end of Game n. We first
show that Y j = {Y j

n } is a martingale by realising it as a martingale transform.
According to the rules of the game, the strategy for this player at Game n is given
by

Cj
n = 0 if n < j or n > j +N − 1

and
Cj

n = 26n−j1Aj
n

if j ⩽ n ⩽ j +N − 1,

where Aj
n denotes the event that “Game j results in the first letter A in S, Game

j+1 results in the second letter L in S, · · · , Game n− 1 results in the (n− j)-th
letter in S”. Clearly, Cj

n ∈ Fn−1 so that the strategy sequence Cj = {Cj
n} is

{Fn}-predictable. For j ⩽ n ⩽ j + N − 1, let ξjn denote the net gain if one bets
$1 on seeing the (n − j + 1)-th letter in S in the outcome of Game n. It is not
hard to see that

ξjn =

{
25, if Game n produces the (n− j + 1)-th letter in S;
−1, otherwise.

We also set ξjn ≜ 0 if n < j or n > j +N − 1. One checks by definition that

Gj
n ≜

n∑
k=1

ξjk, n ⩾ 1

is an {Fn}-martingale. Since

Y j
n =

n∑
k=1

Cj
kξ

j
k =

n∑
k=1

Cj
k(G

j
k −Gj

k−1),

by Theorem 8.1 one knows that {Y j
n ,Fn} is a martingale.
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On the other hand, since the net gain of the casino is equal to the net loss of
all players, one sees that

Mn = −
∞∑
j=1

Y j
n = −

n∑
j=1

Y j
n .

It follows that

E[Mn+1|Fn] = −E
[ n+1∑

j=1

Y j
n+1|Fn

]
= −

n+1∑
j=1

E
[
Y j
n+1|Fn

]
= −

n+1∑
j=1

Y j
n (since Y j is a martingale)

= −
n∑

j=1

Y j
n =Mn. (since Y n+1

n = 0)

In other words, {Mn,Fn} is a martingale.
It remains to see that {Mn} has uniformly bounded increments. To this end,

one first observes that

|Mn+1 −Mn| =
∣∣ n∑
j=1

(
Y j
n+1 − Y j

n

)
+ Y n+1

n+1

∣∣ = ∣∣ n∑
j=1

Cj
n+1ξ

j
n+1 + Y n+1

n+1

∣∣
⩽

n∑
j=1

|Cj
n+1| · |ξ

j
n+1|+ |Y n+1

n+1 |. (8.29)

In addition, one has |Y n+1
n+1 | ⩽ 26 and

|Cj
n+1| · |ξ

j
n+1| ⩽ 26N−1 · 26 = 26N .

Note that the above term is non-zero only when

j ⩽ n+ 1 ⩽ j +N − 1( =⇒ j ⩾ n−N + 2).

In particular, there are at most N − 1 non-zero terms in the summation in (8.29).
As a result, one finds that

|Mn+1 −Mn| ⩽ (N − 1)26N + 26.
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Recall that τ is the first time that the string S appears. The next key obser-
vation is the integrability of τ .

Lemma 8.4. The stopping time τ is integrable.

Proof. Recall that N = 13 is the length of the string S. Let Bn denote the
event that the string S appears over the Games n + 1, n + 2, · · · , n +N . Then
Bn ⊆ {τ ⩽ n+N}. As a result, for any A ∈ Fn one has

P({τ ⩽ n+N} ∩ A)
⩾ P(Bn ∩ A) = P(Bn)P(A) (Bn and A are independent)
= 26−NP(A).

By the definition of the conditional expectation, one obtains that

P(τ ⩽ n+N |Fn) ⩾ 26−N =: ε ∀n. (8.30)

It follows from (8.30) that (for all k, r ⩾ 1)

P(τ > kN + r) = P(τ > kN + r, τ > (k − 1)N + r)

= E
[
1{τ>(k−1)N+r}P(τ > kN + r|F(k−1)N+r)

]
⩽ (1− ε) · P(τ > (k − 1)N + r).

Iterating the same inequality, one arrives at

P(τ > kN + r) ⩽ (1− ε)k−1P(τ > N + r).

It follows that

E[τ ] =
∞∑
j=1

P(τ ⩾ j) =
N+1∑
j=1

P(τ ⩾ j) +
∞∑
n=1

P(τ > N + n)

=
N+1∑
j=1

P(τ ⩾ j) +
N∑
r=1

∞∑
k=1

P(τ > kN + r)

⩽ (N + 1) +
( N∑

r=1

P(τ > N + r)
)
·
( ∞∑

k=1

(1− ε)k−1
)
<∞.

This gives the integrability of τ .
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The result below is another extension of the optional sampling theorem to the
case of integrable stopping times. Note that Proposition 8.6 does not apply here
since Mn is not a random walk.

Proposition 8.8. Suppose that X is a martingale with uniformly bounded incre-
ments and σ is an integrable stopping time. Then E[Xσ] = E[X0].

Proof. One begins by writing

E[Xσ] =
∞∑
n=0

E[Xσ1{σ=n}] =
∞∑
n=0

E[Xn1{σ=n}]

= E[X01{σ=0}] +
∞∑
n=1

E
[( n∑

k=1

(Xk −Xk−1) +X0

)
1{σ=n}

]
= E[X01{σ=0}] +

∞∑
n=1

n∑
k=1

E[(Xk −Xk−1)1{σ=n}] +
∞∑
n=1

E[X01{σ=n}]

= E[X0] +
∞∑
k=1

E
[
(Xk −Xk−1)

∞∑
n=k

1{σ=n}
]

(8.31)

= E[X0] +
∞∑
k=1

E
[
(Xk −Xk−1)1{σ⩾k}

]
.

To reach the equality (8.31), we used Fubini’s theorem to change the order of sum-
mation which is legal due to the boundedness of Xk −Xk−1 and the integrability
of σ; indeed

∞∑
k=1

∞∑
n=k

E
[
|Xk −Xk−1|1{σ=n}

]
⩽ C

∞∑
k=1

∞∑
n=k

P(σ = n) = C
∞∑
k=1

P(σ ⩾ k) = CE[σ] <∞.

Now the main observation is that

{σ ⩾ k} = {σ ⩽ k − 1}c ∈ Fk−1.

By the martingale property, one has

E
[
(Xk −Xk−1)1{σ⩾k}

]
= 0,

which implies that E[Xσ] = E[X0].
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We now have all the required preliminaries to compute E[τ ] explicitly.
Let Ln denote the total loss of the casino up to the n-th round. Then Mn =

n− Ln and by Proposition 8.8 one has

0 = E[M0] = E[Mτ ] = E[τ ]− E[Lτ ].

On the other hand, from the explicit shape of the string S it is easily found that

Lτ = 2613 + 265 + 26.

Therefore, one obtains that

E[τ ] = E[Lτ ] = 2613 + 265 + 26.

Remark 8.11. It is not hard to obtain the correct value of E[τ ] by formally applying
the optional sampling theorem to the martingale {Mn} at the stopping time τ
(as in the above calculation). The main delicate point here is to justify such a
procedure mathematically, which is not a direct consequence of Theorem 8.3.

Remark 8.12. Although one knows for sure it will appear in finite time, one prob-
ably needs to wait until the end of the universe to see it (even for a string as short
as S)!

8.7.2 Kolmogorov’s law of the iterated logarithm

The second application is Kolmogorov’s law of the iterated logarithm which pro-
vides fine information about the large time behaviour of random walks.

Let {Xn : n ⩾ 1} be an i.i.d. sequence of random variables with mean zero and
unit variance. Define Sn ≜ X1 + · · · +Xn. The central limit theorem Sn/

√
n

d→
N(0, 1) suggests that the magnitude of Sn is roughly of order

√
n when n is large.

The law of the iterated logarithm, which was originally due to Kolmogorov in
1929, provides a precise (pathwise) growth rate of Sn. It asserts that along a
subsequence of time Sn grows like

√
2n log log n as n→ ∞.

Theorem 8.9. With probability one,

lim
n→∞

Sn√
2n log log n

= 1, lim
n→∞

Sn√
2n log log n

= −1. (8.32)

For simplicity, we only consider the special situation where Xn ∼ N(0, 1). The
general case requires more delicate analysis on the moment generating function,
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but the essential idea is similar. The proof is based on Doob’s maximal inequal-
ity and the Borel-Cantelli lemma. We also need the following lower estimate of
the Gaussian tail, which complements the upper bound obtained in Example 2.3
before.

Lemma 8.5. Let Z be a standard normal random variable. Then

P(X1 > x) ⩾
1√
2π

x

1 + x2
e−x2/2 ∀x > 0. (8.33)

Proof. Consider the function f(x) ≜ x−1e−x2/2 (x > 0). One has

f ′(x) = −(1 + x−2)e−x2/2.

By integration from x to ∞, one obtains that

x−1e−x2/2 =

∫ ∞

x

(1 + y−2)e−y2/2dy ⩽ (1 + x−2)

∫ ∞

x

e−y2/2dy.

The lower estimate in (8.33) follows after rearrangement.

We now proceed to prove Theorem 8.9 in the Gaussian context. Suppose that
{Xn} is an i.i.d. sequence of standard normal random variables.

Proof of Theorem 8.9. We only prove the first part of (8.32). The other part
follows by considering −Sn. In what follows, we denote h(m) ≜

√
2m log logm.

For each θ ∈ R, since the function x 7→ eθx is convex, one knows from Proposition
8.1 that eθSm is a submartingale (with respect to the natural filtration of {Xm}).
According to Doob’s maximal inequality (8.9), for all c > 0 one has

P
(
max
k⩽m

Sk > c
)
= P

(
max
k⩽m

eθSk > eθc
)
⩽ e−θcE[eθSm ] = e−θc+θ2m/2, (8.34)

where we used the fact that Sm ∼ N(0,m) to reach the last equality. Since (8.34)
is true for all θ, by optimising the exponent −θc + θ2m/2 (i.e. taking θ = c/m),
one obtains that

P
(
max
k⩽m

Sk > c
)
⩽ exp

(
inf
θ∈R

{−θc+ θ2m/2}
)
= e−

1
2m

c2 ∀m ⩾ 1. (8.35)

The proof of (8.32) consists of two steps: establishing an upper and a matching
lower estimate. We first derive the upper bound. Let K > 1 be a fixed number.
By applying (8.35) to m = Kn and c = Kh(Kn−1), one finds that

P
(
max
k⩽Kn

Sk > cn
)
⩽ (n− 1)−K(logK)−K .
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Since the right hand side yields a convergent series, by the first Borel-Cantelli
lemma one has

P
(
max
k⩽Kn

Sk > cn i.o.
)
= 1.

In other words, with probability one

max
k⩽Kn

Sk ⩽ cn = Kh(Kn−1) ∀n sufficiently large.

Since m 7→ h(m) is increasing, it follows that with probability one

Sk ⩽ Kh(k) ∀ large n and Kn−1 ⩽ k ⩽ Kn. (8.36)

As a result,

lim
k→∞

Sk

h(k)
⩽ K a.s.

Since this is true for each K > 1, by taking K ↓ 1 (along a countable sequence)
one obtains that

lim
k→∞

Sk

h(k)
⩽ 1 a.s. (8.37)

We now turn to establishing a matching lower bound. Let N > 1 and ε ∈ (0, 1)
be given fixed. Consider the event

An ≜
{
SNn+1 − SNn > (1− ε)h(Nn+1 −Nn)

}
.

Note that SNn+1 − SNn ∼ N(0, Nn+1 −Nn). By using the lower bound in (8.33),
one finds that

P(An) = P
(
Z > y

)
⩾

1√
2π

y

y2 + 1
e−y2/2, (8.38)

where Z ∼ N(0, 1) and y ≜ (1 − ε)
√
2 log log(Nn+1 −Nn). Explicit calculation

shows that
e−y2/2 =

1

(n logN + log(N − 1))(1−ε)2
.

In particular, the right hand side of (8.38) yields a divergent series. Since the An’s
are independent, by the second Borel-Cantelli lemma one has P(An i.o.) = 1. In
other words, with probability one

SNn+1 > (1− ε)h(Nn+1 −Nn) + SNn for infinitely many n.
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On the other hand, recall from (8.36) that (with K = 2) Sk ⩾ −2h(k) for all large
k a.s. (why?) Therefore, one finds that

SNn+1 > (1− ε)h(Nn+1 −Nn)− 2h(Nn) for infinitely many n a.s. (8.39)

By explicit calculation,

lim
n→∞

(1− ε)h(Nn+1 −Nn)− 2h(Nn)

h(Nn+1)
= (1− ε)

√
N − 1

N
− 2√

N
.

It follows from (8.39) that

lim
k→∞

Sk

h(k)
⩾ lim

n→∞

SNn+1

h(Nn+1)
⩾ (1− ε)

√
N − 1

N
− 2√

N
a.s.

Taking N → ∞ and ε ↓ 0, one arrives at

lim
k→∞

Sk

h(k)
⩾ 1 a.s. (8.40)

By putting (8.37) and (8.40) together, one obtains the first part of (8.32). The
proof of Theorem 8.9 is thus complete.

8.7.3 Recurrence / Transience of Markov chains

The last application we shall discuss is the study of recurrence / transience prop-
erties of Markov chains. We assume that the reader is familiar with basic concepts
and results from Markov chain theory (cf. [Str05] for an excellent introduction).

Let X = {Xn : n ⩾ 0} be a Markov chain on a countable state space S with
one-step transition probabilities P = (Pij)i,j∈S. Given a function f : S → R, we
define

(Pf)(i) ≜
∑
j∈S

Pijf(j), i ∈ S

provided that the above summation is convergent. We begin with a particularly
useful martingale property associated with X. Such a property plays a funda-
mental role in the study of Markov processes (in particular, in diffusion and SDE
theory).
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Proposition 8.9. Let f : S → R be a given function. Define

Y f
n ≜ f(Xn)− f(X0)−

n−1∑
k=0

(Pf − f)(Xk), Y
f
0 ≜ 0. (8.41)

Suppose that Y f
n is well-defined and integrable for each n. Then {Y f

n } is a mar-
tingale with respect to the natural filtration of X.

Proof. By the definition of Y f
n , one has

E[Y f
n+1|Fn] = E

[
f(Xn+1)− f(X0)−

n∑
k=1

(Pf − f)(Xk)|Fn

]
= E[f(Xn+1)|Fn]− f(X0)−

n∑
k=1

(Pf − f)(Xk)

= Pf(Xn)− f(X0)−
n∑

k=1

(Pf − f)(Xk) (by Markov property)

= f(Xn)− f(X0)−
n−1∑
k=1

(Pf − f)(Xk)

= Y f
n .

The martingale property thus follows.

The essential idea here is that recurrence / transience properties of X is closely
related to the existence of certain superharmonic functions on the state space S.
We first introduce the following key definition.

Definition 8.10. A function f : S → R is said to be P -superharmonic on F ⊆ S
if

(Pf)(i) ≜
∑
j∈S

Pijf(j) ⩽ f(i) ∀i ∈ F,

provided that Pf is well-defined. We simply say that f is P -superharmonic if
F = S.

The proposition below suggests that superharmonicity is naturally connected
with a supermartingale property.
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Proposition 8.10. Let f : S → [0,∞) be a given function such that f(X0) is
integrable.

(i) Suppose that f is P -superharmonic. Then {f(Xn)} is a supermartingale.
(ii) Let F ⊆ S. Define τ ≜ inf{n ⩾ 1 : Xn ∈ F}. Suppose that f is P -
superharmonic outside F . Then one has

E
[
f(Xτ∧n)|X0 = i

]
⩽ f(i) ∀i ∈ F c, n ⩾ 0. (8.42)

Proof. (i) Since f is P -superharmonic, one has

E[f(Xn+1)|Fn] = Pf(Xn) ⩽ f(Xn).

Therefore, {f(Xn)} is a supermartingale.

(ii) Let Yn be defined by (8.41) associated with f . Since {Yn} is a martingale by
Proposition 8.9, so is {Yτ∧n} by Theorem 8.2. As a result, one has

0 = E[Y0] = E[Yτ∧n] = E
[
f(Xτ∧n)− f(X0)−

τ∧n−1∑
k=0

(Pf − f)(Xk)
]
.

It follows that

E[f(Xτ∧n)|X0 = i] = f(i) + E
[ τ∧n−1∑

k=0

(Pf − f)(Xk)|X0 = i
]
.

Since f is P -superharmonic outside F, one knows that

τ∧n−1∑
k=0

(Pf − f)(Xk) ⩽ 0.

The desired inequality (8.42) follows immediately.

The following result provides a simple criterion for the recurrence of X.

Theorem 8.10. Suppose that X is irreducible. Then X is recurrent if and only
if all non-negative P -superharmonic functions are constant.

Proof. Suppose that X is recurrent. Let f ⩾ 0 be a P -superharmonic function
on S. Given i ̸= j ∈ S, define

ρj ≜ inf{n ⩾ 1 : Xn = j}.
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Since X is recurrent, one has

P(ρj <∞|X0 = i) = 1.

On the other hand, Proposition 8.10 (ii) implies that (with F = {j})

E[f(Xρj∧n)|X0 = i] ⩽ f(i) ∀n.

By using Fatou’s lemma, one obtains that

f(j) = E[f(Xρj)|X0 = i] = E
[
lim
n→∞

f(Xρj∧n)|X0 = i
]

⩽ lim
n→∞

E[f(Xρj∧n)|X0 = i] ⩽ f(i).

Since i, j are arbitrary, one concludes that f is a constant function.
Conversely, suppose that X is transient. We define the function G(i, j) on

S × S by

G(i, j) ≜
∞∑
n=0

P n
ij,

where P n
ij ≜ P(Xn = j|X0 = i) is the n-step transition probability from i to j. By

definition, one has

(PG(·, j))(i) =
∑
k∈S

PikG(k, j) =
∑
k∈S

Pik

∞∑
n=0

P n
kj =

∞∑
n=0

∑
k∈S

PikP
n
kj

=
∞∑
n=0

P n+1
ij = G(i, j)− δij ⩽ G(i, j). (8.43)

In particular, for each fixed j ∈ S the function G(·, j) is a non-negative P -
superharmonic function. We claim that G(·, j) is non-constant. Indeed, from
(8.43) one has

(PG(·, j))(j) = G(j, j)− 1 ̸= G(j, j).

In particular, G(·, j) is not P -harmonic (a function f is P -harmonic if Pf = f).
Since any constant function is obviously P -harmonic, one concludes that G(·, j)
must be non-constant.

The following result is a simple application of Theorem 8.10.

Proposition 8.11. Let X be an irreducible Markov chain on a finite state space
S. Then X is recurrent.
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Proof. Let f be a non-negative, P -superharmonic function on S. Then one has∑
j∈S

P n
ijf(j) ⩽ f(i) ∀n ⩾ 1, j ∈ S.

We choose n such that P n
ij > 0 for all i, j ∈ S (this is possible due to irreducibility).

Let i0 ∈ S be such that f(i0) = min
S
f . Then

f(i0) ⩾
∑
j∈S

P n
i0j
f(j) ⩾

∑
j∈S

P n
ijf(i0) = f(i0).

As a result, one must have equality in the above estimate, which implies that
f(j) = f(i0) for all j (since P n

i0j
> 0). In particular, f is a constant function.

According to Theorem 8.10, one concludes that X is recurrent.

Theorem 8.10 indicates that transience can be detected from the existence
of a non-negative, non-constant P -superharmonic function on S. The following
result suggests that recurrence can also be detected from the existence of certain
unbounded, (partially) P -superharmonic functions.

Theorem 8.11. Let j ∈ S be a fixed state. Let {Bm : m ⩾ 1} be an increasing
family of non-empty subsets of S such that j ∈ B0 and for each m, with probability
one X (starting at j) exits Bm in finite time. Suppose that there exists f : S →
[0,∞) which is P -superharmonic on {j}c and

am ≜ inf
i/∈Bm

f(i) → ∞ as m→ ∞.

Then the state j is recurrent.

Proof. Let us define

τm ≜ inf{n ⩾ 1 : Xn /∈ Bm}, ρj ≜ inf{n ⩾ 1 : Xn = j}

and set
ζj,m ≜ ρj ∧ τm = inf{n ⩾ 1 : Xn ∈ {j} ∪Bc

m}.

According to the Proposition 8.10 (ii), one has

f(j) ⩾ Ej[f(Xζj,m∧n)] ⩾ Ej[f(Xζj,m∧n)1{τm⩽n∧ρj}] ⩾ amPj(τm ⩽ n ∧ ρj), (8.44)
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where the subscript j in E,P means that the initial position of X is j. Since
Pj(τm <∞) = 1 by assumption, one has

{τm ⩽ ρj} =
∞⋃
n=1

{τm ⩽ n ∧ ρj} Pj-a.s.

As a result, by taking n→ ∞ in (8.44) one finds that

f(j) ⩾ am · Pj(τm ⩽ ρj).

Since am → ∞, it must be the case that

lim
m→∞

Pj(τm ⩽ ρj) = 0.

As a consequence,

Pj(ρj <∞) ⩾ Pj(ρj < τm) = 1− Pj(τm ⩽ ρj) → 1

as m→ ∞. This gives the recurrence of the state j.

Remark 8.13. One cannot expect that the function f in the theorem is superhar-
monic on the entire S, for otherwise it would also give transience (assuming X is
irreducible) which is absurd.

Remark 8.14. It is possible to study positive / null recurrence by using superhar-
monic functions. But we will not discuss it here.

As an application, we discuss the recurrence / transience of simple random
walks on Zd. Let {e1, · · · , ed} be the canonical basis of Zd.

Definition 8.11. The simple random walk on Zd is the Markov chain on Zd with
one-step transition probabilities (Pxy)x,y∈Zd given by

Pxy ≜

{
1
2d
, if y = x± ei for some i;

0, otherwise.

We first consider the one-dimensional case.

Proposition 8.12. The simple random walk on Z is recurrent.
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Proof. Consider the function f(k) ≜ k. By definition,

Pf(k) =
1

2
(|k + 1|+ |k − 1|).

In particular, when k ̸= 0 one has

Pf(k) = |k| = f(k).

As a result, f is superharmonic outside {0}. Since f(k) → ∞ as |k| → ∞, one
concludes from Theorem 8.11 that the origin is recurrent. By irreducibility, the
entire chain X is recurrent.

Remark 8.15. The function f in the above proof is not superharmonic at the
origin, as seen from

Pf(0) = 1 > 0 = f(0).

Next, we consider the two-dimensional case.

Proposition 8.13. The simple random walk on Z2 is recurrent.

Proof. We define

f(k) ≜

{
log(k21 + k22 − 1/2), k = (k1, k2) ̸= (0, 0);

κ, k = (0, 0),

where κ is a suitable number to be chosen later on (the motivation of this con-
struction comes from the continuous situation; cf. Remark 8.16 for a discussion).
By explicit calculation, one finds that

(Pf − f)(k) =
1

4
log

[(
(k1 + 1)2 + k22 −

1

2

)(
(k1 − 1)2 + k22 −

1

2

)
×

(
k21 + (k2 + 1)2 − 1

2

)(
k21 + (k2 − 1)2 − 1

2

)
/
(
k21 + k22 −

1

2

)4]
for any k /∈ {0, a,b, c,d}, where a,b, c,d are the four neighbouring points of 0.
The reason for imposing this constraint on k is that if k = a,b, c,d, the term
f(0) will appear in the computation of Pf which is clearly not log(−1/2)! To
show that f is P -superharmonic on {0, a,b, c,d}c, one only needs to check that
the expression inside the above logarithm is not greater than 1. But this follows
from explicit calculation:

((k1 ± 1)2 + k22 − 1/2) · (k21 + (k2 ± 1)2 − 1/2)

(k21 + k22 − 1
2
)4

− 1 = − 4(k21 − k22)
2

(k21 + k22 − 1/2)4
⩽ 0.
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Next, we choose κ = f(0) properly so that f is also superharmonic at each of
the four points {a,b, c,d}. By symmetry, one only needs to consider the value of
f at a. The requirement is that

1

4

(
κ+ f(1, 1) + f(2, 0) + f(1,−1)

)
⩽ f(1, 0).

Clearly, a choice of κ satisfying the above inequality can be made. The resulting
function f on Z2 is thus superharmonic on Z2\{0}.

Remark 8.16. The above construction of f is motivated from its continuous coun-
terpart. Indeed, for the function F (x, y) ≜ log(x2 + y2 + a) (a ∈ R) one finds
that

∆F ≜
∂2F

∂x2
+
∂2F

∂y2
=

4a

(x2 + y2 + a)2
,

which is negative when a < 0. The differential operator 1
2
∆ is the generator of

the Brownian motion on R2 (the continuous analogue of the simple random walk).
As an analogue in the discrete situation, one naturally considers functions of this
type, e.g. f(k1, k2) ≜ log(k21 + k22 − 1/2).

Finally, we consider the situation when dimension is three or higher.

Proposition 8.14. The simple random walk on Zd (d ⩾ 3) is transient.

Proof. The key step is the case of dimension three. The higher dimensional case
follows easily from the result in dimension three. We define

fα(k) ≜ (α2 + |k|2)−1/2, k = (k1, k2, k3) ∈ Z3

where α ⩾ 1 is a parameter to be specified later on (in a way such that f is
superharmonic). The construction of fα is again motivated from the continuous
situation (cf. Remark 8.17 for a discussion). By definition, f is superharmonic if
and only if

1

6

3∑
i=1

(
(α2 + |k+ ei|2)−1/2 + (α2 + |k− ei|2)−1/2

)
⩽ (α2 + |k|2)−1/2. (8.45)

Setting M ≜ 1 + α2 + |k|2 and xi ≜ ki/M (i = 1, 2, 3), it is a simple matter of
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algebra that the inequality (8.45) is equivalent to

1

6

3∑
i=1

((M + 2ki
M

)−1/2
+
(M − 2ki

M

)−1/2)
⩽

(M − 1

M

)−1/2

⇐⇒ 1

6

3∑
i=1

(
(1 + 2xi)

−1/2 + (1− 2xi)
−1/2

)
⩽

(
1− 1

M

)−1/2

⇐⇒ 1

6

3∑
i=1

(1 + 2xi)
1/2 + (1− 2xi)

1/2

(1− 4x2i )
1/2

⩽
(
1− 1

M

)−1/2
. (8.46)

To proceed further, we shall make use of the following elementary estimate:

1

2

(
(1 + ξ)1/2 + (1− ξ)1/2

)
⩽ 1− 1

8
ξ2 ∀ξ ∈ [−1, 1]. (8.47)

To prove (8.47), by symmetry it is sufficient to consider ξ ∈ [0, 1]. Define

h(ξ) ≜
1

2

(
(1 + ξ)1/2 + (1− ξ)1/2

)
− 1 +

1

8
ξ2, [0, 1].

Then one has

h′(ξ) =
1

4

(
(1 + ξ)−1/2 − (1− ξ)−1/2

)
+

1

4
ξ,

h′′(ξ) = −1

8

(
(1 + ξ)−3/2 + (1− ξ)−3/2

)
+

1

4
.

Since
(1 + ξ)−3/2 + (1− ξ)−3/2 ⩾ 2 · (1− ξ2)−3/4 ⩾ 2,

one obtains that
h′′(ξ) ⩽ −1

8
× 2 +

1

4
= 0.

Therefore,
h′(ξ) ⩽ h′(0) = 0 =⇒ h(ξ) ⩽ h(0) = 0.

The estimate (8.47) thus follows. It follows from (8.46) and (8.47) that

1

6

3∑
i=1

(1 + 2xi)
1/2 + (1− 2xi)

1/2

(1− 4x2i )
1/2

⩽
1

3

3∑
i=1

1

(1− 4x2i )
1/2

− 1

6
|x|2. (8.48)
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Our next step is to further upper bound the summation on the right hand side
of (8.48). To this end, one first observes that

4x2i =
4k2i

(1 + α2 + |k|2)2
⩽

4k2i
(2 + |k|2)2

(since α ⩾ 1)

⩽
4|k|2

(2 + |k|2)2
⩽ sup

r⩾1

4r

(2 + r)2
=: β2 < 1.

Let us consider the function

f(y) ≜ (1− y)−1/2, y ∈ [0, β2]

and set
g(y) ≜ f(y)− 1− 1

2
y −Ky2

where K is some universal constant to be specified later on. It follows that

g′′(y) =
3

4
(1− y)−5/2 − 2K ⩽

3

4
(1− β2)−5/2 − 2K.

If one chooses
K ≜

3

8
(1− β2)−5/2,

then g′′(y) ⩽ 0 and simple calculus shows that g(y) ⩽ 0. As a result,

(1− 4x2i )
−1/2 ⩽ 1 + 2x2i + 16Kx4i ,

and one thus obtains that

1

3

3∑
i=1

1

(1− 4x2i )
1/2

⩽ 1 +
2

3
|x|2 + C|x|4

where C ≜ 16K
1−4β2 . It follows from (8.48) that

1

6

3∑
i=1

(1 + 2xi)
1/2 + (1− 2xi)

1/2

(1− 4x2i )
1/2

⩽ 1 +
2

3
|x|2 + C|x|4 − 1

6
|x|2. (8.49)

On the other hand, by simple calculus the right hand side of (8.46) admits the
following lower bound: (

1− 1

M

)−1/2
⩾ 1 +

1

2M
. (8.50)
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In view of (8.46), (8.49) and (8.50), in order that fα is superharmonic it is sufficient
to choose α ⩾ 1 such that

1 +
1

2M
⩾ 1 +

2

3
|x|2 + C|x|4 − |x|2

6
.

Recalling that M = 1 + α2 + |k|2, the above inequality is also equivalent to

1

2M
⩾

|k|2

2M2
+
C|k|4

M4
⇐⇒ 2C|k|4 ⩽ (1 + α2)M2. (8.51)

Since M2 ⩾ |k|4, by choosing α satisfying 1 + α2 ⩾ 2C one can ensure that
(8.51) holds. As a consequence, with such a choice of α one concludes that fα is a
non-constant, non-negative superharmonic function on Z3. According to Theorem
8.10, the simple random walk on Z3 is transient.

Finally, we consider higher dimensions. Let Xn = (X1
n, X

2
n, X

3
n, · · · , Xd

n) be
the simple random walk on Zd (d ⩾ 4) and define Yn ≜ (X1

n, X
2
n, X

3
n). Note that

{Yn} is a random walk on Z3 with step distribution

1

2d

3∑
i=1

δei +
(
1− 3

d

)
δ0.

Let {Zn} be the simple random walk on Z3. It is simple algebra that f : Z3 →
[0,∞) is superharmonic for {Yn} if and only if it is superharmonic for {Zn}.
According to Theorem 8.10, {Yn} and {Zn} are both recurrent or transient at
the same time. It then follows from the three dimensional case that {Yn} is
transient. This implies that {Xn} is also transient (since {Xn} recurrent =⇒ {Yn}
recurrent).

Remark 8.17. The construction of fα is also motivated from the its continuous
counterpart. On R3, one checks that the function Fα(x) ≜ (α2+ |x|2)−1/2 satisfies

∆Fα ≜
∂2Fα

∂x21
+
∂2Fα

∂x22
+
∂2Fα

∂x23
= −3α2(α2 + |x|2)−1/2 ⩽ 0.

This motivates the construction of fα as the discrete analogue of Fα. The main
extra difficulty here is that the choice of α making fα superharmonic is not entirely
obvious, due to the more complicated shape of the discrete Laplacian.
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