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Abstract

The signature transform, which is defined in terms of iterated path integrals of
all orders, provides a faithful representation of the group of tree-reduced geometric
rough paths. While the signature coefficients are known to decay factorially fast,
the coefficients of the logarithimic signature generically only possess geometric
decay. It was conjectured by T. Lyons and N. Sidorova [20] that the only tree-
reduced paths with bounded variation (BV) whose logarithmic signature can have
infinite radius of convergence are straight lines. This conjecture was confirmed
in the same work for certain types of paths and the general BV case remains
unsolved.

The aim of the present article is to develop a deeper understanding towards
the Lyons-Sidorova conjecture. We prove that, if the logarithmic signature has
infinite radius of convergence, the signature coefficients must satisfy an infinite
system of rigid algebraic identities defined in terms of iterated integrals along
complex exponential one-forms. These iterated integral identities impose strong
geometric constraints on the underlying path, and in some special situations,
confirm the conjecture.

As a non-trivial application of our integral identities, we prove a strengthened
version of the conjecture, which asserts that if the logarithmic signature of a
BV path has infinite radius of convergence over all sub-intervals of time, the
underlying path must be a straight line.

Our methodology relies on Cartan’s path development onto the complex
semisimple Lie algebras slm(C). The special root patterns of slm(C) allow one
to project the infinite-dimensional Baker-Campbell-Hausdorff (BCH) formula in
a very special finite dimensional manner to yield meaningful quantitative rela-
tions between BCH-type singularities and the vanishing of certain iterated path
integrals.
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1 Introduction
The signature transform (or simply the signature) of a multidimensional continuous
path γ : [0, T ]→ Rd with bounded variation (BV) is the formal tensor series

S(γ) ≜
(
1, γT − γ0,

∫
0<s<t<T

dγs ⊗ dγt, · · · ,
∫
0<t1<···<tn<T

dγt1 ⊗ · · · ⊗ dγtn , · · ·
)
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defined by the global iterated path integrals of all orders. This path transformation was
originally introduced by the geometer K.T. Chen [9] in the 1950s to study the topology
of loop spaces over manifolds. The signature transform plays a fundamental role in
Lyons’ rough path theory as well as its broad applications to problems in stochastic
analysis and more recently, in machine learning. Its theoretical importance partly
comes from the signature uniqueness theorem, which asserts that every rough path is
uniquely determined by its signature up to tree-like equivalence (cf. [8, 16, 3]). A
probabilistic counterpart of this theorem was obtained by Chevyrev-Lyons [10]. The
monographs [14, 19] contain excellent exposition on the mathematical theory of the
signature transform and some applications to stochastic analysis are discussed e.g. in
[1, 18, 21]. Some recent applications of signature-based methods in machine learning
are contained e.g. in [11, 24, 27] (and references therein).

While the signature encodes essential geometric information about the underlying
path, it contains a lot of algebraic redundancies since different components of the signa-
ture are related by some universal algebraic constraints (the shuffle product formula).
An effective way of removing such algebraic dependencies is to pass to the so-called
logarithmic signature transform. The two objects are naturally isomorphic, however,
it was a deep theorem of Chen [7] that the logarithmic signature is a free Lie series
and thereby does not contain algebraic relations among its components. This leads to
dimension-reduction from a practical viewpoint. An important motivation for study-
ing the logarithmic signature is related to the study of controlled differential equations,
which will be elaborated further in Section 1.1 below. In recent years, methods based
on the logarithmic signature have also been developed to study various problems in
machine learning (cf. [12, 29] and references therein).

Analytic properties of the signature and logarithmic signature are very different
on the other hand. It is well-known (which is rather trivial in the BV case) that the
signature components decay factorially fast with respect to the degree. However, it is
highly non-trivial that components of the logarithmic signature generically only possess
geometric decay. This is like the infinite dimensional analogue of the elementary fact
that the exponential function ez is entire while the logarithmic function log(1+ z) only
has a finite radius of convergence (R.O.C.). Understanding such a property, even just
in the BV case, is still an unsolved open problem in rough path theory.

1.1 Motivation: a conjecture of T. Lyons and N. Sidorova

The logarithmic signature arises naturally when one attempts to solve a controlled
differential equation (CDE) using the so-called log-ODE method. Consider the following
CDE

dXt =
d∑

i=1

Vi(Xt)dγ
i
t, 0 ⩽ t ⩽ T (1.1)

on a differentiable manifold M , where V1, · · · , Vd are smooth vector fields on M and
γt is a smooth Rd-valued path. At a formal level, the flow of diffeomorphisms on M
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induced by (1.1) admits a “logarithm” in the Lie algebra L(V1, · · · , Vd) of smooth vector
fields generated by the Vi’s. Such a logarithm can be explicitly expressed in terms of
the logarithmic signature of γ.

To elaborate this, let W be a smooth vector field on M . We use exp(W ) to denote
the diffeomorphism given by the time-one map of the flow induced by W . In other
words,

exp(W ) :M →M, exp(W )x = y1

where (yt)0⩽t⩽1 solves the ODE

ẏt = W (yt), y0 = x.

The solution at time T to the CDE (1.1) can formally be expressed as

XT = exp
(∑

I

ΛI(γ)V[I]
)
(x). (1.2)

Here the summation is taken over all words I = (i1, · · · , in) where n ⩾ 1 and ij ∈
{1, · · · , d}. The numbers ΛI(γ) are the logarithmic signature coefficients of γ; one has

logS(γ) =
∑

I=(i1,··· ,in)

ΛI(γ)[ei1 , [ei2 , · · · , [ein−1 , ein ] · · · ]].

The vector fields V[I] are defined by V[I] ≜ [Vi1 , [Vi2 , · · · , [Vin−1 , Vin ]]]. The relation (1.2)
is often known as the Chen-Strichartz formula (cf. [1, 28]).

However, the formula (1.2) is only formal and it requires additional analytic as-
sumptions on logS(γ) and the vector fields Vi to make it precise. It is accurate if γ is
a straight line or if the Lie algebra L(V1, · · · , Vd) is nilpotent (in both cases, the series
(1.2) becomes a finite sum). In general, one expects that the series (1.2) should con-
verge if the “size” of the vector fields is within the R.O.C. of logS(γ). This makes the
R.O.C. for the logarithmic signature a natural object of study. However, it is still un-
clear how one can make such intuition mathematically precise. In practice, one usually
applies a truncated version of (1.2) over a partition of [0, T ] to obtain an approximating
solution (numerical scheme) and tries to prove convergence when the mesh size is sent
to zero (cf. [1, 13]).

Cartan’s path development

There is a simple yet useful situation where the analysis can be made very precise. Let
G be a matrix Lie group with Lie algebra g. Let V = (V1, · · · , Vd) be d left invariant
vector fields on G. The Lie algebra L(V1, · · · , Vd) is now a sub-algebra of g. One can
prove that the series (1.2) is convergent if ∥V ∥ < R.O.C. of logS(γ), where certain
matrix norms has to be taken and fixed. It is known from [10] that the R.O.C. is strictly
positive and in particular, the series (1.2) is always convergent (in the current Lie group
setting) as long as the vector fields Vi are “small enough”. The resulting solution Xt
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to the CDE (1.1) defines a path in the Lie group G which is known as Cartan’s path
development of γ in G. If γ is a straight line, say γt = tw (w ∈ Rd, t ∈ [0, T ]), the
formula (1.2) is well-defined for all left invariant vector fields. The solution Xt is just
the one-parameter subgroup defined by

Xt = exp(t
d∑

i=1

wiVi),

where exp is now the exponential map for G. This aligns with the fact that logS(γ)
has infinite R.O.C.

Initiated by the celebrated work of Lyons-Sidorova [20], it has been widely believed
that straight lines are the only (tree-reduced) BV paths whose logarithmic signatures
can have infinite R.O.C. The logic in Lyons-Sidorova’s argument can be summarised as
follows. Suppose that logS(γ) has infinite R.O.C. Then the end point XT of Cartan’s
development of γ into any Lie group always admits a logarithm, namely, XT is always
an element in the image of the exponential map. In other words, if one is able to
construct a special Cartan’s development such that XT turns out to be outside Im exp,
this immediately suggests that logS(γ) only has finite R.O.C. Of course, this method
requires the use of (non-compact) Lie groups with non-surjective exponential map (e.g.
the special linear group SL2(R)). Lyons and Sidorova [20] proved the above claim for
two special classes of paths based on such a geometric viewpoint: paths which are
strictly increasing in one particular direction (what they called 1-monotone paths) and
a generic class of piecewise linear paths (which they called non-double paths). They
conjecturered that the claim should be true in the most general BV setting. To the
best of our knowledge, this problem remains unsolved.

1.2 Summary of main results and novelty

The main goal of the present article is to study the aforementioned Lyons-Sidorova
(LS) conjecture in depth. Although we have not resolved the conjecture in its full
generality, in what follows we summarise our main findings and disucss the novelty of
our work.

Main results. The general philosophy of our results is that having infinite R.O.C. for
the logarithmic signature leads to rigid algebraic constraints on signature coefficients
and thus geometric constraints on the underlying path.

(A) The very first (and important) comment is that the conjecture turns out to be a
conjugacy class property. As a result, it needs to be modified accordingly (for otherwise,
it cannot be true in its original form). See Section 2.2 (in particular, Proposition 2.6)
below for the details.

(B) Our first main result is that if the logarithmic signature of a non-closed path has
infinite R.O.C., the path has to satisfy a specific type of line integral identities. Such
integral identities naturally lead to geometric constraints on the underlying path, and
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in certain special situations, yield the conclusion of the conjecture. See Section 3 below
for the precise formulation.

(C) Our second main result is a strengthened version of the conjecture which holds in
the most general BV setting. More precisely, we prove that if the logarithmic signature
of an arbitrary BV path has infinite R.O.C. over any time interval [s, t], the path must
live on a straight line. This result is a non-trivial application of Theorem 3.1 together
with fine analysis of path-geometry based on winding number considerations. See
Section 4 below for more details.

(D) Our last main result is the higher order extension of (B). We show that if the
logarithmic signature of a non-closed path has infinite R.O.C., the path has to satisfy an
infinite system of specific iterated integral identities. These iterated integral identities
impose much stronger geometric constraints on the path than the line integral identities
given by Theorem 3.1 do. In particular, they allow one to handle paths that cannot
be detected by Theorem 3.1 (cf. Example 5.6 below).

Novelty. Apart from the nature of the aforementioned main results, an important
aspect of novelty in the current work is the methodology we develop. The original
technique of Lyons-Sidorova [20] has a geometric nature; they studied the geometric
behaviour of the lifted path in the Lie group and showed that the lifted path will
eventually leave the image of the exponential map under some very special choice of
Cartan’s development.

We also work with Cartan’s development as a starting point, however, our method
is very different in nature to the one developed in [20]. Essentially, the finiteness
of R.O.C. property is closely related to how the Baker-Campbell-Hausdorff (BCH)
formula exhibits singularity properties in a certain sense. This problem is already
quite delicate in the simplest case of a piecewise linear path with two edges, say v, w
(which corresponds to the classical BCH formula for log evew). The Lyons-Sidorova
conjecture can be viewed as an infinite dimensional version of singularity analysis for
the BCH formula.

A main novelty of the current work is that such singularity properties can be studied
through Cartan’s developments into complex semisimple Lie algebras. It turns out that
the special root patterns of semisimple Lie algebras allows one to project the infinite
dimensional BCH formula in a very special (finite dimensional) manner, so that one
can perform singularity analysis at various explicit and quantitative levels.

Our approach thus has a strong algebraic nature in contrast to Lyons-Sidorova’s
geometric perspective. Stated in vague terms, after performing suitable Cartan’s devel-
opemnt at the Lie algebra level, the logarithmic signature logS(γ) is transformed into
linear combinations of products between certain path functionals, say Sm(a1, · · · , am)
(defined through iterated path integrals) and meromorphic functions, say ϕ(a1, · · · , am)
(arising from the Hausdorff series). If logS(γ) has infinite R.O.C., its Cartan’s devel-
opment must define an entire function. As a consequence, at the singularities of the
function ϕ(a1, · · · , am) one must have Sm(a1, · · · , am) = 0. This is precisely how the
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integral identities in our main theorems arise.

Cartan’s development was first used by Hambly-Lyons [16] for studying the sig-
nature uniqueness problem in the BV setting. Such a method was used in various
works related to the study of (both deterministic and random) rough paths and their
signatures (see e.g. [2, 6, 10, 22]). The use of Cartan’s development at the logarithmic
signature level first appeared in [4] for the study of signature asymptotics for pure
rough paths.

1.3 Further questions

There are a few basic questions which naturally arise from the current work but remain
to be answered.

1. The strengthened LS conjecture is proved in Theorem 4.1 for BV paths only. It
is reasonable to expect that for weakly geometric rough paths, the logarithmic
signature has infinite R.O.C. over all time intervals [s, t] if and only if the path
is a pure rough path, i.e. the exponential of a line segment in the space of Lie
polynomials. Is such an extension true?

2. It is not particularly clear what exact geometric constraints are imposed on the
path by Theorems 5.1, 6.5 and whether they eventually lead to the conclusion
that the path is conjugate to a line segment. We expect that there is still a
non-trivial gap which requires deeper analysis and new ideas.

3. Theorems 5.1, 6.5 only hold for non-closed paths, which is indeed a limitation of
the current analysis. Can one extend the current approach to the case when the
underlying path is a loop? The modified LS conjecture in the context of loops
takes a particularly elegant form: the logarithmic signature of a tree-reduced,
closed, BV path γ has infinite R.O.C. if and only if γ is constant.

4. Let ξ ∈ G((V )) be a group-like element. What are the exact analytic conditions
on ξ so that ξ is the signature of a BV path over V ? At the signature level, having
exact factorial decay seems to be the natural analytic constraint on ξ. However, at
the logarithmic signature level one encounters the finiteness of R.O.C. property.
Are these two analytic properties related to each other and how do they yield a
suitable characterisation of the image of the signature transform?

2 The logarithmic signature transform
In this section, we review the background materials. In particular, we discuss several
basic properties of the signature and logarithmic signature transforms where most
details can be found in [14, 19]. We also recall the precise formulation of the Lyons-
Sidorova conjecture from [20], which provides the main source of motivation for the
current work.
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2.1 Definitions and basic properties

Let V be a finite dimensional normed vector space over K = R or C. We define the
infinite tensor algebra

T ((V )) ≜
∞∏
n=0

V ⊗n

where V ⊗0 ≜ K as a convention. Addition in T ((V )) is defined component-wisely and
multiplication is defined by

(ξ ⊗ η)n ≜
n∑

k=0

ξk ⊗ ηn−k, n ⩾ 0

where ξ = (ξ0, ξ1, · · · ), η = (η0, η1, · · · ) are given tensor series. This makes T ((V )) into
an associative K-algebra with unit 1 ≜ (1, 0, 0, · · · ). Elements in T ((V )) are known as
formal tensor series over V. We use

πn : T ((V ))→ V ⊗n, π(n) : T ((V ))→
n⊕

k=0

V ⊗k

to denote the canonical projections.
Any tensor series of the form ξ = (1, ξ1, ξ2, · · · ) has a multiplicative inverse given

by

ξ−1 =
∞∑
n=0

(−1)n(ξ − 1)⊗n.

The above series is well-defined since the summation is locally finite (i.e. the projection
onto the m-th component for each fixed m only involves finitely many nonzero terms).

There are two basic operations over T ((V )) that will be important to us. To define
them, let us introduce two subspaces:

T0((V )) ≜ {ξ = (ξ0, ξ1, · · · ) ∈ T ((V )) : ξ0 = 0}, T1((V )) ≜ {ξ ∈ T ((V )) : ξ0 = 1}.

The exponential and logarithmic transforms are defined by

e(·) : T0((V ))→ T1((V )), eξ ≜
∞∑
n=0

1

n!
ξ⊗n;

log(·) : T1((V ))→ T0((V )), log ξ ≜
∞∑
n=1

(−1)n−1

n
(ξ − 1)⊗n.

It can be shown that these two functions are inverse to each other. It is also easy to
see that (eξ)−1 = e−ξ.
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Definition 2.1. Let γ : [0, T ]→ V be a continuous path with bounded variation. The
signature transform of γ (or simply the signature) is the formal tensor series defined
by

S(γ) ≜
(
1, γT − γ0,

∫
0<s<t<T

dγs ⊗ dγt, · · · ,
∫
0<t1<···<tn<T

dγt1 ⊗ · · · ⊗ dγtn , · · ·
)
,

where the path integrals are defined in the Lebesgue-Stieltjes sense. The tensor series
logS(γ) is known as the logarithmic signature of γ.

One can also consider the signature S(γ)s,t over [s, t] ⊆ [0, T ] by replacing the above
iterated integrals with the ones over [s, t]. It is easily check that

S(γ)s,u = S(γ)s,t ⊗ S(γ)t,u ∀s ⩽ t ⩽ u ∈ [0, T ]. (2.1)

This is known as Chen’s identity. Stated in a more general form, one has

S(α ⊔ β) = S(α)⊗ S(β),

where α⊔β means the concatenation between the two paths α, β. It can also be shown
that S(←−γ ) = S(γ)−1 where ←−γ denotes the reversal of γ.

Algebraic properties

There are universal algebraic dependencies among different signature components,
which are precisely described by the so-called shuffle product formula:

Xm ⊗Xn =
∑

σ∈P(m,n)

Pσ(X
m+n) ∀m,n ∈ N. (2.2)

Here Xm is the m-th component of S(γ). P(m,n) denotes the set of (m,n)-shuffles,
i.e. the set of permutations σ of order m+ n satisfying

σ(1) < · · · < σ(m), σ(m+ 1) < · · · < σ(m+ n).

Given any permutation σ, the operator Pσ is the linear transformation over V ⊗(m+n)

induced by
Pσ(v1 ⊗ · · · ⊗ vm+n) ≜ vσ(1) ⊗ · · · ⊗ vσ(m+n).

The set of permutations of order m is denoted as Sm.

Definition 2.2. A tensor series ξ = (1, ξ1, ξ2, · · · ) ∈ T1((V )) is group-like if it satisfies
the relation (2.2) (with Xn replaced by ξn). The space of group-like elements is denoted
as G((V )).
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An important reason for considering the logarithmic signature is that there are no
algebraic dependencies among its components, because it takes values in the “free” Lie
algebra. This is the content of the celebrated Chen’s theorem. To state this theorem,
we first define

L((V )) ≜
∞∏
n=1

Ln(V ) ⊆ T0((V ))

where L1(V ) ≜ V and

Ln+1(V ) ≜ [Ln(V ), V ] ≜ Span
{
[ξ, v] : ξ ∈ Ln(V ), v ∈ V

}
for all n ⩾ 1. Here [·, ·] is the commutator defined by [ξ, η] ≜ ξ⊗η−η⊗ ξ. Elements in
L((V )) are formal Lie series and elements in ⊕n

k=1Lk(V ) are Lie polynomials of degree
n. Chen’s theorem is stated as follows (cf. [7, 26]).

Theorem 2.3. A tensor series ξ ∈ T1((V )) is group-like if and only if log ξ ∈ L((V )).

One can also consider truncated versions of signatures and logarithmic signatures.
Let T (N)(V ), G(N)(V ) and L(N)(V ) be the truncations up to level N (i.e. taking the
first N components) of the previous infinite dimensional spaces. The tensor product
and Lie bracket restrict to these truncated spaces in the obvious way.

Analytic properties

We also need to deal with analytic properties of the signature. For this purpose, we
need to consider suitable tensor norms on the tensor product spaces. From now on,
we assume that V ⊗n is equipped with a given norm ∥ · ∥n. The norms {∥ · ∥n} are
admissible in the sense that

∥ξ ⊗ η∥m+n ⩽ ∥ξ∥m∥η∥n ∀m,n ∈ N

and
∥Pσ(ξ)∥n = ∥ξ∥n ∀ξ ∈ V ⊗n, σ ∈ Sn.

An explicit example is the Hilbert-Schmidt tensor norm on V ⊗n induced by an Eu-
clidean (or Hermitian if K = C) metric on V . What plays a basic role in rough path
theory is the so-called projective norm.

Definition 2.4. The projective tensor norm of ξ ∈ V ⊗n is defined by

∥ξ∥n;proj ≜ inf
{∑

j

|vj1|V · · · |vjn|V
}
,

where the infimum is taken over all possible representations of ξ as linear combinations
of tensor monomials:

ξ =
∑
j

vj1 ⊗ · · · ⊗ vjn, vji ∈ V.
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Throughout the rest of this article, we will be exclusively using the projective tensor
norm. For simplicity, we will also omit the subscripts if no confusion will be caused.

The signature transform can be defined for arbitrary rough paths. Let p ⩾ 1 be a
given fixed number. A p-rough path is a continuous functional

X·,· = (1, X1
·,·, · · · , X [p]

·,· ) : ∆T ≜ {(s, t) : 0 ⩽ s ⩽ t ⩽ T} → T ([p])(V )

such that
Xs,u = Xs,t ⊗Xt,u ∀s ⩽ t ⩽ u ∈ [0, T ]

and X has finite p-variation in the sense that

ωX ≜ ∥X∥pp-var ≜
[p]∑
i=1

sup
P

∑
tl∈P

∥X i
tl−1,tl

∥p/i <∞, (2.3)

where the supremum is taken over all finite partitions P of [0, T ]. A p-rough path X is
weakly geometric if it takes values in G([p])(V ). Sometimes we just call γ : [0, T ] → V
a rough path over V but its precise meaning is the multi-level functional X (γ is the
first level component of X).

Let X be a p-rough path. According to Lyons’ extension theorem (cf. [23]), there
exists a unique extension of X·,· to a functional

S(X)·,· = (1, X1
·,·, · · · , Xn

·,·, · · · ) : ∆T → T ((V )),

such that Chen’s identity (2.1) holds for S(X)·,· in T ((V )) and its truncation up to
any level n ⩾ [p] has finite p-variation in T (n)(V ). The functional S(X)·,· is called
the signature path of X. The tensor series S(X)0,T (respectively, logS(X)0,T ) is the
signature (respectively, logarithmic signature) of X. If X is weakly geometric, it can
be shown that its signature path takes values in G((V )).

An important analytic property of the signature is its rapid decay with respect
to the degree. More precisely, there exists a universal number β > 0, such that the
following estimate

∥Xn
0,T∥ ⩽

ω
n/p
X

β · (n/p)!
∀n ⩾ 1 (2.4)

holds for all p-rough paths. Here (n/p)! ≜ Γ(n/p+1) where Γ(·) is the Gamma function.
When p = 1, X is just a classical path in V with bounded variation and (2.4) follows
trivially from the triangle inequality. The estimate (2.4) for the general rough paths is
contained as part of Lyons’ extension theorem.

2.2 The Lyons-Sidorova conjecture

To state the main question of our study, we first introduce the following definition.
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Definition 2.5. Let ξ = (ξ0, ξ1, · · · ) ∈ T ((V )) be a given tensor series. Its radius of
convergence (R.O.C.) is the radius of convergence for the power series

Pξ(z) ≜
∞∑
n=0

∥ξn∥zn

in the standard real analysis sense.

The factorial decay (2.4) of signature shows that the signature of a rough path
always has infinite R.O.C. However, a highly non-trivial fact is that the logarithmic
signature (generically) only decays geometrically fast and should thus have a finite
R.O.C. Consider a line segment γt = tv (0 ⩽ t ⩽ 1) in V. It is immediate that
logS(γ) = v and thus logS(γ) has infinite R.O.C. It was conjectured by T. Lyons
and N. Sidorova [20] that these are the only tree-reduced BV paths whose logarithmic
signatures can have infinite R.O.C.

The Lyons-Sidorova (LS) Conjecture. The logarithmic signature of a continuous,
tree-reduced BV path γ has infinite R.O.C. if and only if γ is a line segment.

In their original work [20], the conjecture was confirmed for two special classes of paths:
1-monotone paths and non-double piecewise linear paths. The general BV case is still
an unsolved open problem in rough path theory.

Before developing our main results, the very first comment we shall make is that
the LS conjecture needs to be modified to reflect the following simple observation.

Proposition 2.6. Let X,Y be given rough paths. Then logS(X) has infinite R.O.C.
if and only if logS(Y ⊔X ⊔

←−
Y) has infinite R.O.C.

Proof. Let us prove a more general claim. Suppose that l ∈ T0((V )) and g1, g2 are
signatures (of certain rough paths). Then l has infinite R.O.C. if and only if g1⊗ l⊗ g2
has infinite R.O.C.

To prove this claim, since g1, g2 are signatures, one knows from Lyons’ factorial
decay estimate (2.4) that

∥πn(gi)∥ ⩽
C · ωn/p

(n/p)!
∀n ⩾ 1, i = 1, 2. (2.5)

Here C, p, ω are suitable constants depending on the underlying paths defining g1, g2.
Let us denote l′ ≜ g1 ⊗ l ⊗ g2. Then one has

πn(l
′) =

n∑
k=1

n−k∑
r=0

πr(g1)⊗ lk ⊗ πn−k−r(g2),

where lk ≜ πk(l). Since the tensor norms are admissible, one finds that

∥πn(l′)∥ ⩽ C2

n∑
k=1

n−k∑
r=0

ωr/p

(r/p)!

ω(n−k−r)/p(
(n− k − r)/p

)
!
∥lk∥.
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We now apply the following so-called neo-classical inequality (cf. [17]):

m∑
i=0

1

(i/p)!
(
(m− i)/p

)
!
⩽

p2m/p

(m/p)!
∀m ∈ N, p ⩾ 1. (2.6)

It follows that

∥πn(l′)∥ ⩽ C2p

n∑
k=1

(2ω)(n−k)/p(
(n− k)/p

)
!
∥lk∥. (2.7)

Let ρ > 0 be given fixed. Since l has infinite R.O.C., there exists K > 0 such that
∥lk∥ ⩽ ρk for all k > K. Therefore, one has from (2.7) that

∥πn(l′)∥ ⩽ C2p
( K∑

k=1

(2ω)(n−k)/p(
(n− k)/p

)
!
∥lk∥+

n∑
k=K+1

(2ω)(n−k)/p(
(n− k)/p

)
!
ρk
)

⩽ C2p
( K∑

k=1

(2ω)(n−k)/p(
(n− k)/p

)
!
∥lk∥+ ρn

∞∑
k=0

(2ωρ−p)k/p

(k/p)!

)
for all n > K. When n is sufficiently large, one can ensure that

K∑
k=1

(2ω)(n−k)/p(
(n− k)/p

)
!
∥lk∥ < ρn

and thus

∥πn(l′)∥ ⩽ C2p
(
1 +

∞∑
k=0

(2ωρ−p)k/p

(k/p)!

)
ρn.

This shows that
lim
n→∞
∥πn(l′)∥1/n ⩽ ρ.

Since ρ is arbitrary, one concludes that l′ has infinite R.O.C.
In the context of the proposition, one takes

l = logS(X), g1 = S(Y), g2 = S(
←−
Y) = g−11 .

The crucial observation is that

S(Y ⊔X ⊔
←−
Y) = g1 ⊗ el ⊗ g−11 = eg1⊗l⊗g

−1
1

which implies that
logS(Y ⊔X ⊔

←−
Y) = g1 ⊗ l ⊗ g−11 .

The result follows from the above claim since g1 is a signature.

13



Proposition 2.6 shows that the logarithmic signature of any path that is conjugate
to a line segment must have infinite R.O.C. Here we say that a path β is conjugate to
γ if β = α ⊔ γ ⊔←−α for some path α. This result suggests that having finite R.O.C. is
a property of conjugate classes. This naturally leads to the following modification of
the LS conjecture.

Modified LS Conjecture. The logarithmic signature of a continuous, tree-reduced
BV path has infinite R.O.C. if and only if it is conjugate to a line segment.

Remark 2.7. Since V is finite dimensional, the property of having infinite / finite
R.O.C. does not depend on the specific choices of the (admissible) tensor norms.

Remark 2.8. It was proved by Chevyrev-Lyons [10] that the logarithmic signature of
any rough path always has positive R.O.C.

3 First order integral identities
In this section, we establish our first main result:

Infinite R.O.C. for log signature =⇒ A special type of line integral identities.

Although we could formulate the theorem in a more general form, the result is es-
sentially stated in terms of two-dimensional projections. To make the statement as
simple as possible, we will just (and always) assume that γt = (xt, yt)0⩽t⩽1 is a weakly
geometric rough path over R2. In this section, we only work with non-closed paths
(i.e. γ1 ̸= γ0). In particular, we impose the following normalisation conditions:

x0 = y0 = 0, x1 = 1. (3.1)

Note that γ is the first level component of the actual rough path which will not be
referred to. The main result of this section is stated as follows.

Theorem 3.1. Let γ be a weakly geometric rough path over R2 which satisfies the
normalisation condition (3.1). Suppose that logS(γ) has infinite R.O.C. Then one has∫ 1

0

e2kπi·xtdyt = 0 (3.2)

for all nonzero integers k.

Remark 3.2. If the condition x1 = 1 is dropped (still assuming x1 ̸= 0), the conclusion
(3.2) should be replaced by

∫ 1

0
e2kπixt/x1dyt = 0. For a general path over V , the result is

formulated in terms of arbitrary projections of γ onto two-dimensional subspaces of V
where (xt, yt) are the coordinates of the projected path with respect to a suitable basis.

14



Remark 3.3. If one assumes additionally that y1 = 0, then (3.2) holds for all k ∈ Z.
In this case, one has

∫ 1

0
f(xt)dyt = 0 for all smooth, 1-periodic functions f . This

result is stronger than the one obtained by Lyons-Sidorova’s method in [20]; the latter
established the integral property (3.2) for k ∈ 2Z + 1 which is difficult to be extended
to cover even k’s using their method.

A more general (and useful) formulation of Theorem 3.1 is given as follows.

Theorem 3.4. Under the assumptions of Theorem 3.1, suppose further that y1 = 0.
Then one has ∫ 1

0

Φ(dγt) = 0 (3.3)

for all smooth one-forms Φ(x, y) = f(x, y)dx + g(x, y)dy on R2 which satisfy the fol-
lowing two conditions:

(i) Φ(x+ 1, y) = Φ(x, y) for all x, y ∈ R;

(ii)
∫ 1

0
f(x, y)dx = 0 for all y ∈ R.

To prove Theorem 3.4, we first present a basic lemma.

Lemma 3.5. Let A : R2 → R2 be a linear map, where R2 is equipped with the standard
Euclidean norm. Let Â : (R2)

⊗n → (R2)
⊗n be the unique linear map such that

Â (v1 ⊗ · · · ⊗ vn) = Av1 ⊗ · · · ⊗ Avn.

Then one has
∥Â (w) ∥ ⩽ ∥A∥nop∥w∥

for all w ∈ (R2)
⊗n
. Here ∥A∥op denotes the operator norm of A and the tensor products

are all equipped with the projective tensor norm.

Proof. Suppose that w admits a representation given by

w =
N∑
j=1

vj1 ⊗ · · · ⊗ vjn. (3.4)

Then one has

∥Â (w) ∥ =
∥∥ N∑

j=1

Â
(
vj1 ⊗ · · · ⊗ vjn

)∥∥ ⩽
∥∥ N∑

j=1

A
(
vj1
)
⊗ · · · ⊗ A

(
vjn
) ∥∥

⩽
N∑
j=1

∥∥A (
vj1
) ∥∥ · · · ∥∥A (

vjn
) ∥∥

⩽
N∑
j=1

∥∥A∥∥n

op

∥∥vj1∥∥ · · · ∥∥vjn∥∥.
Taking infimum over all

{
vj1, . . . , v

j
n

}N

j=1
satisfying (3.4) gives the Lemma.
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Proof of Theorem 3.4. Let γ be a path satisfying γ0 = (0, 0) and γ1 = (1, 0). Suppose
that logS(γ) has infinite R.O.C. One knows from Theorem 3.1 that

∫ 1

0
e2kπixsdys = 0

for all k ∈ Z. Given k ∈ Z \ {0} and λ ∈ R, we define

γ̂s =

(
1 λ

2kπ

0 1

)(
xs
ys

)
. (3.5)

Note that the n-th component of logS (γ̂) is obtained by applying Â to the n-th
component of logS (γ) (A is the transform defined by the matrix in (3.5)). According
to Lemma 3.5, logS (γ̂) has infinite R.O.C. with respect to the projective tensor norm.
The new path γ̂ also satisfies γ̂0 = (0, 0) and γ̂1 = (1, 0). As a result, one has∫ 1

0

e2kπixs+λiysdys =

∫ 1

0

e2kπix̂sdŷs = 0 (3.6)

for k ∈ Z \ {0} and λ ∈ R. It is plain to check that (3.6) holds when k = 0 (and thus
for all k ∈ Z and λ ∈ R).

Now let
K1 ≜ inf {yt : t ∈ [0, 1]} , K2 ≜ sup {yt : t ∈ [0, 1]}

and recall S1 is the topological circle obtained by identifying the points 0 with 1 on
[0, 1]. Note that the set of functions

S =
{
e2kπix+λiy : k ∈ Z, λ ∈ R

}
separate points on the compact space S1× [K1, K2] and its linear span is a sub-algebra
of continuous functions. By the Stone-Weierstrass theorem, one knows that SpanS
that is dense in C (S1 × [K1, K2] ,C). Since g →

∫ 1

0
g (xs, ys) dys is continuous with

respect to the uniform norm, one concludes that
∫ 1

0
g(xs, ys)dys = 0 for any continuous

function g(x, y) that is 1-periodic in the x-variable. This gives the desired integral
condition for the dy-integral.

To prove the corresponding relation for the dx-integral, let k ∈ Z \ {0} and λ ∈
R \ {0}. Using integration by parts, one finds that

0 =

∫ 1

0

e2kπixs+λiysdys =
1

λi

∫ 1

0

e2kπixsdeλiys

=
1

λi

(
e2kπixs+λiys|10 − 2kπi

∫ 1

0

e2kπixs+λiysdxs
)

=− k

λ

∫ 1

0

e2kπixs+λiysdxs.

Since k ̸= 0, one obtains that ∫ 1

0

e2kπixs+λiysdxs = 0. (3.7)
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The continuity of the integral as a function of λ implies that the relation (3.7) holds
for all k ∈ Z \ {0} and λ ∈ R. By exactly the same Stone-Weierstrass argument,
one concludes that

∫ 1

0
f(xs, ys)dxs = 0 for any continuous function f(x, y) which is

1-periodic in x and satisfies
∫ 1

0
f(x, y)dx = 0 for every y ∈ R (the latter constraint

appears since the relation (3.7) excludes the zero Fourier mode).
Now the proof of Theorem 3.4 is complete.

3.1 Two immediate applications

The line integral condition (3.2) (or more generally, (3.3)) implicitly leads to rigid
geometric constraints on the underlying path, and in some special situations, confirms
the LS conjecture. We use one class of examples to illustrate this point. A more
inspiring application of Theorem 3.4 on path-geometry is given in Section 4 below
where a strengthened version of the LS conjecture is proved.

Proposition 3.6. Let γt = (xt, yt) be a two-dimensional, continuous BV path satisfying
the assumptions in Theorem 3.4. Suppose further that 0 ⩽ xt ⩽ 1 and γ is non-self-
intersecting. Then there exists ε ∈ R such that γ = (εe2) ⊔ e1 ⊔ (−εe2), where {e1, e2}
is the canonical basis of R2.

Proof. Suppose on the contrary that γ is not of the form (εe2) ⊔ e1 ⊔ (−εe2). Then
there exist two points z = (x1, y1) and w = (x2, y2) such that 0 < x1, x2 < 1, y1 = y2
and z ∈ Imγ, w /∈ Imγ. One can choose a small δ > 0, such that by defining

Uδ ≜ {(x, y) : |x− x1| ∨ |y − y1| < δ}, Vδ ≜ {(x, y) : |x− x2| ∨ |y − y2| < δ}

one has Uδ ∩ Vδ = ∅ and Vδ ∩ Imγ = ∅.
By using the argument in [3], one can construct a smooth one-form φ which is

compactly supported in Uδ such that
∫ 1

0
φ(dγt) ̸= 0. We define the one-form ψ by

ψ(x, y) =

{
φ(x, y), (x, y) ∈ Uδ;

−φ(x− x2 + x1, y), (x, y) ∈ Vδ.

It is clear that ψ is a smooth one-form supported in Uδ ∩ Vδ and satisfies∫ 1

0

f(x, y)dx = 0

for all y ∈ R, where f(x, y) denotes the dx-coefficient of ψ. Let Φ denote the 1-periodic
extension of ψ (in the x-direction). It follows that Φ satisfies Properties (i), (ii) in
Theorem 3.4 but ∫ 1

0

Φ(dγt) =

∫ 1

0

φ(dγt) ̸= 0.

This leads to a contradiction. Therefore, γ = (εe2) ⊔ e1 ⊔ (−εe2) for some ε ∈ R.
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Remark 3.7. The above argument fails if the image of γ is not contained in the strip
0 ⩽ x ⩽ 1, since the geometry of γ outside the strip may affect the line integral against
the one-form Φ constructed before in an unexpected way. It is possible to replace this
geometric assumption by another kind of geometric restriction. But we will not pursue
such discussions here.

Another application of Theorem 3.1 is the Brownian motion case. This is an im-
portant example due to its basic role in the study of stochastic differential equations.

Proposition 3.8. Let Bt be a standard d-dimensional Brownian motion over [0, 1].
Then with probability one, its logarithmic (Stratonovich) signature has finite R.O.C.

Proof. It is obvious that one only needs to prove the claim for the first two components
of Bt, say (Xt, Yt). According to Theorem 3.1 (see also Remark 3.2), one only needs
to show that ∫ 1

0

sin(2πXt/X1)dYt ̸= 0 a.s.

This can be obtained by proving the stronger claim that the random variable Z ≜∫ 1

0
cos(2πXt/X1)dYt admits a density with respect to the Lebesgue measure on R.
We use Malliavin’s calculus to prove such a claim. We assume that (Xt, Yt) are

realised on the canonical path space. To prove the claim, it suffices to show that the
Malliavin derivative DZ ̸= 0 a.s. (cf. [25]). Let h be any Cameron-Martin path
(i.e. absolutely continuous with L2-derivative). Explicit calculation together with
integration by parts shows that the Malliavin derivative of Z along the direction h is
given by

DhZ =

∫ 1

0

[2π(U1 − Ut)

X1

− 2πV

X2
1

+ sin
(2πXt

X1

)]
dht,

where

Ut ≜
∫ t

0

cos
(2πXt

X1

)
dYt, V ≜

∫ 1

0

Xt cos
(2πXt

X1

)
dYt.

We now choose

ht ≜
∫ t

0

[2π(U1 − Us)

X1

− 2πV

X2
1

+ sin
(2πXs

X1

)]
ds.

It follows that

DhZ =

∫ 1

0

[2π(U1 − Ut)

X1

− 2πV

X2
1

+ sin
(2πXt

X1

)]2
dt.

The above integral is nonzero with probability one, for otherwise the integrand would
be identically zero which is clearly not the case. Therefore, DZ ̸= 0 a.s.
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3.2 Proof of Theorem 3.1

The fundamental idea behind our proof of Theorem 3.1, as well as its higher order
extensions (cf. Theorem 5.1 and Theorem 6.5 below), is based on the notion of Cartan’s
path development. Stated conceptually, we “develop” the logarithmic signature into
a suitably chosen (complex) Lie algebra g, so that the Lie structure of g “projects”
the logarithmic signature logS(γ) in a very special way to yield products between
certain explicit meromorphic functions and line integrals along γ (e.g. see the relation
(3.18) below). If logS(γ) has infinite R.O.C., its development must produce an entire
function. As a result, the line integral must have zeros matching the singularities of
the meromorphic function. This will naturally lead to the line integral condition (3.2)
at the discrete locations k ∈ Z\{0}.

3.2.1 The Baker-Campbell-Hausdorff formula

Let {e1, e2} be the standard basis of R2. Our analysis relies crucially on the considera-
tion of the path γ̃ ≜ γ ⊔←−e1 as a starting point (here ⊔ means concatenation). Clearly,
the following relation holds on T ((R2)):

eL(γ) = eL̃(γ) ⊗ ee1 , (3.8)

where L(γ), L̃(γ) denote the logarithmic signatures of γ, γ̃ respectively. Our next step
is to apply the Baker-Campbell-Hausdorff (BCH) formula to the right hand side of
(3.8), so that one can write

eL̃(γ) ⊗ ee1 = eB(L̃(γ),e1), (3.9)

where the BCH functional

B(ξ, η) = ξ + η +
1

2
[ξ, η] +

1

12
[ξ, [ξ, η]]− 1

12
[η, [ξ, η]] + · · ·

can be expressed in terms of commutators in a universal way.
We now recall the precise definition of the BCH functional B(·, ·). Let v, w be two

letters and let V be the vector space generated by them. The quantity B(v, w) is the
Lie series defined by the following formula:

B(v, w) =
∞∑
n=1

Hn(v, w) ∈ T ((V )). (3.10)

Here

H1(v, w) ≜
∞∑

m=0

Bm

m!
(adw)

m(v), (3.11)

where {Bm} are the Bernoulli numbers defined by the expansion

z

ez − 1
=

∞∑
m=0

Bm

m!
zm
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and
adw(v) ≜ [w, v] ≜ w ⊗ v − v ⊗ w.

To define the higher order terms Hn, we first recall the definition of a derivation. A
linear operator D : T ((V ))→ T ((V )) is called a derivation if

D(ξ ⊗ η) = D(ξ)⊗ η + ξ ⊗D(η).

Now let H1(v, w)∂w denote the derivation induced by

(H1(v, w)∂w)(v) ≜ 0, (H1(v, w)∂w)(w) ≜ H1(v, w).

Then the functional Hn(v, w) is defined by

Hn(v, w) ≜
1

n!

(
H1(v, w)∂w

)n
(w). (3.12)

It is clear that the partial degree of v in Hn(v, w) is n. The series Hn will be referred
to as the n-th Hausdorff series.

To summarise, one obtains from the relations (3.8) and (3.9) that

L(γ) = B(L̃(γ), e1) ∈ L((R2)). (3.13)

Note that here B(L̃(γ), e1) is defined through the substitution (v, w)↔ (L̃(γ), e1) and
applying the tensor product structure over T ((R2)). We remark that B(L̃(γ), e1) is a
well-defined Lie series in L((R2)). This is clear from the observation that the series

∞∑
n=1

Hn(L̃(γ), e1)

is locally finite, i.e. its projection onto the truncated tensor algebra only involves
finitely many Lie polynomials arising from the above series.

3.2.2 An adjoint representation of signature

We now present a basic formula for the signature S(γ) on which our analysis is largely
based.

Lemma 3.9. Let S(γ) be the signature of γ. Then one has

S(γ) =
( ∞∑

n=0

∫
0<t1<···<tn<1

ext1ade1 (e2)⊗ · · · ⊗ extnade1 (e2)dyt1 · · · dytn
)
⊗ ee1 , (3.14)

where

eadξ(η) ≜
∞∑

m=0

(adξ)
m

m!
(η).
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In particular,

L̃(γ) ≜ log
( ∞∑

n=0

∫
0<t1<···<tn<1

ext1ade1 (e2)⊗ · · · ⊗ extnade1 (e2)dyt1 · · · dytn
)

is a Lie series.

Proof. The signature path t 7→ S(γ)0,t satisfies the differential equation

dS(γ)0,t = S(γ)0,t ⊗ (e1dxt + e2dyt).

Let Ct ≜ S(γ)0,t ⊗ e−xte1 . Then Ct satisfies the differential equation

dCt = Ct ⊗ exte1 ⊗ e2 ⊗ e−xte1dyt.

The result follows from the relation that

exte1 ⊗ e2 ⊗ e−xte1 = extade1 (e2).

Since L̃(γ) is the logarithmic signature of γ⊔←−e1 , it is clear that L̃(γ) is a Lie series.

3.2.3 Basic notions on Cartan’s path development

Based on the representation (3.14), a fundamental idea in our analysis is to perform
Cartan’s path development in such a way that e2 is mapped into certain (combinations
of) eigenspaces of e1. This will enable one to evaluate extade1 (e2) in an explicit way
(within the new Lie algebra). Before introducing such constructions, we first recall
basic notions on Cartan’s path development.

Definition 3.10. A (Cartan’s) path deveopment over R2 is a pair (g, F ) where g is a
finite dimensional complex Lie algebra and F : R2 → g is a real linear map.

We always assume that g is embedded in the matrix algebra M = Mat(N,C) for
some N . The space R2 is complexified into C2 in the canonical way and so is F. All
algebraic relations are understood over the complex field. Working over C rather than
R is an important point in our analysis.

The linear map F admits a unique extension to an algebra homomorphism

F̂ : T (C2) ≜
∞⊕
n=0

(C2)⊗n →M. (3.15)

The restriction of F̂ on Lie polynomials over C2 defines a Lie homomorphism, which
is the unique extension of F to a Lie homomorphism from the free Lie algebra over C2

to g. It should be noted that F̂ is not always well-defined on T ((C2)) (formal tensor
series) or on L((C2)) (formal Lie series). The extension of F̂ to these spaces requires
analytic consideration. In what follows, we always fix a matrix norm onM.
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Definition 3.11. Let ξ ∈ T ((C2)) be a given tensor series. We say that F̂ (ξ) exists
and write ξ ∈ D(F̂ ), if lim

N→∞
F̂
(
π(N)ξ

)
exists inM.

Let γ be a weakly geometric rough path over C2. Since S(γ) has infinite R.O.C., it
is obvious that S(γ) ∈ D(F̂ ). In addition, if L(γ) ≜ logS(γ) has infinite R.O.C., one
also has L(γ) ∈ D(F̂ ). In general, F̂ (L(γ)) always exists when F is “sufficiently small”.

Corollary 3.12. Let γ be a weakly geometric rough path over C2. Then there exists
δ > 0 such that for any path development (g, F ) with ∥F∥C2→M < δ, one has L(γ) ∈
D(F̂ ). In particular, under the previous setting L̃(γ) ∈ D(F̂ ) provided that the operator
norm of F is small enough (recall that L̃(γ) is the logarithmic signature of γ ⊔←−e1 ).

Proof. According to [10], it is enough to choose δ =
(
2∥γ∥p-var

)−1 where p is the
roughness of γ.

Remark 3.13. The use of path development in the literature, which also justifies its
name, has a geometric nature. Given a pair (g, F ), there is a canonical way of “lifting”
any Euclidean path γ in R2 to a corresponding path Γ taking values in a Lie group
whose Lie algebra is g. It turns out that one can study geometric and signature-related
properties of the original path γ from the lifted path Γ. The viewpoint we shall take in
this work is however quite different. We work with path developments at the Lie algebra
level instead of considering the actual lifted path in the group. Our technique thus has
an algebraic flavour in contrast to the geometric viewpoints taken in earlier works.

3.2.4 A two-dimensional development

To prove Theorem 3.1, we are going to choose a specific path development. Namely,
we take g to be the two-dimensional complex Lie algebra generated by (two symbols)
A,D under the Lie structure [A,D] = D. For each λ ∈ C, we define the development
map Fλ : C2 → g to be the linear map induced by

Fλ(e1) ≜ λA, Fλ(e2) = D.

A formal calculation

We first show at a formal level how the choice of such a development enables one to
prove Theorem 3.1. Recall that F̂λ is the induced algebra homomorphism on tensors
and also Lie homomorphism on Lie elements. By applying F̂λ on both sides of (3.13)
one finds that

eF̂λ(L(γ)) = eB(F̂λ(L̃(γ)),λA) formally
=⇒ F̂λ(L(γ)) = B(F̂λ(L̃(γ)), λA). (3.16)
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According to Lemma 3.9 and the construction of Fλ, one has

eF̂λ(L̃(γ)) = F̂λ

(
eL̃(γ)

)
=
∞∑
n=0

∫
0<t1<···<tn<1

ext1adλA(D) · · · extnadλA(D)dyt1 · · · dytn

=
∞∑
n=0

∫
0<t1<···<tn<1

eλ(xt1+···+xtn )Dndyt1 · · · dytn

=
∞∑
n=0

Dn

n!

( ∫ 1

0

eλxtdyt
)n

= exp
(
D

∫ 1

0

eλxtdyt
)
.

This formally implies that

F̂λ(L̃(γ)) = D

∫ 1

0

eλxtdyt. (3.17)

By substituting (3.17) into (3.16), one finds that

F̂λ(L(γ)) = B
(
D

∫ 1

0

eλxtdyt, λA
)
.

Next, recall from (3.10) that B =
∑

n⩾1Hn. The crucial observation is that

Hn

(
D

∫ 1

0

eλxtdyt, λA
)
= 0 ∀n ⩾ 2

and

H1

(
D

∫ 1

0

eλxtdyt, λA
)
=

( ∞∑
m=0

Bm

m!
λm

)
·
( ∫ 1

0

eλxtdyt
)
D,

both being consequences of the relation [A,D] = D. As a result, one arrives at the
following relation:

F̂λ(L(γ)) =
( ∞∑
m=0

Bm

m!
λm

)
·
( ∫ 1

0

eλxtdyt
)
D. (3.18)

Now suppose that L(γ) has infinite R.O.C. Then the left hand side of (3.18) defines a
g-valued entire function (as a function of λ ∈ C). On the other hand, the power series∑∞

m=0
Bm

m!
λm defines the meromorphic function ϕ(λ) = λ

eλ−1 on C that has isolated
singularities at λ = 2kπi (k ∈ Z\{0}). This forces

∫ 1

0
eλxtdyt = 0 at these singularities

λ = 2kπi. The conclusion of Theorem 3.1 thus follows.

Proof of Theorem 3.1

The above argument is only formal, since one cannot directly pass F̂ into the BCH
function B without analytical considerations, and to justify this one needs to apply
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truncations and then pass to the limit. This is only a technical matter which we now
make precise.

Let g be the Lie algebra of 2× 2 upper triangular matrices over C with zero trace.
Using the previous notation, one can take

A =

(
1/2 0
0 −1/2

)
, D =

(
0 1
0 0

)
so that g = Span{A,D} and [A,D] = D. We consider the path development defined
by

Fλ,µ(e1) ≜ λA, Fλ,µ(e2) ≜ µD (λ, µ ∈ C).

According to Corollary 3.12, there exists δ > 0 such that

L̃(γ) ∈ D(F̂λ,µ) ∀λ, µ : |λ| ∨ |µ| < δ.

In other words, the limit

F̂λ,µ

(
L̃(γ)

)
= lim

N→∞
F̂λ,µ

(
π(N)L̃(γ)

)
(3.19)

exists for all such λ, µ.
On the other hand, recall from the normalisation (3.1) that the x-increment of

γ̃ ≜ γ ⊔ ←−e1 is zero. In particular, L̃(γ) does not contain the e1-component. After
applying the development F̂λ,µ, one can thus write

F̂λ,µ

(
π(N)L̃(γ)

)
= CN(λ, µ)D (3.20)

for some CN(λ, µ) ∈ C. The function (λ, µ) 7→ CN(λ, µ) is clearly entire on C2 for every
fixed N . The relation (3.19) then implies that CN(λ, µ) is convergent as N → ∞ for
small λ, µ, whose limit with no surprise should coincide with (3.17) if one were able to
take µ = 1.

Lemma 3.14. One has

F̂λ,µ

(
L̃(γ)

)
= lim

N→∞
CN(λ, µ)D = µ

( ∫ 1

0

eλxtdyt
)
D, |λ| ∨ |µ| < δ.

Proof. By applying F̂λ,µ to the signature of γ̃ and using Lemma 3.9, one obtains that

F̂λ,µ

(
eL̃(γ)

)
= exp

(
µ
( ∫ 1

0

eλxtdyt
)
D
)
, ∀λ, µ ∈ C.

Note that there is no convergence issue at the signature level due to its factorial decay.
When λ, µ is small, one also has

F̂λ,µ

(
eL̃(γ)

)
= eF̂λ,µ(L̃(γ)).
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For each fixed λ with |λ| < δ, both of the functions

G(µ) ≜ F̂λ,µ(L̃(γ)), H(µ) ≜ µ
( ∫ 1

0

eλxtdyt
)
D

are analytic in µ for |µ| < δ. In addition, the relation (3.20) shows thatG(µ) ∈ Span{D}
and thus G(µ) is commutative for different µ’s. Since G and H coincide when µ = 0,
a standard power series argument shows that

eG(µ) = eH(µ) for |µ| < δ =⇒ G(µ) = H(µ) for |µ| < δ.

The result thus follows.

On the other hand, by using Lemma 3.14 one can also compute CN(λ, µ) explicitly.

Lemma 3.15. For any λ, µ ∈ C, one has

CN(λ, µ) = µ
N−1∑
j=0

( ∫ 1

0

xjt
j!
dyt

)
λj. (3.21)

Proof. It suffices to establish the relation for small λ, µ, since both sides of the identity
define entire functions in (λ, µ) ∈ C2. To this end, note that the logarithmic signature
L̃(γ) admits a unique decomposition

L̃(γ) =
∞∑
j=0

cjad
j
e1
(e2) + L′,

where L′ consists of those tensor components with at least two e2’s. After applying
F̂λ,µ, one finds that

CN(λ, µ) = µ

N−1∑
j=0

cjλ
j

for all small λ, µ. According to Lemma 3.14, the λ-power series of F̂λ,µ(L̃(γ)) (for fixed
µ) is given by

µD

∞∑
j=0

λj

j!

∫ 1

0

xjtdyt.

By comparing coefficients, one finds that

cj =
1

j!

∫ 1

0

xjtdyt

and the result thus follows.

25



Proof of Theorem 3.1. Suppose that L(γ) has infinite R.O.C. Then L(γ) ∈ D(F̂λ,µ) for
all λ, µ ∈ C. It follows from the relation (3.13) that

lim
N→∞

F̂λ,µ

(
π(N)B(L̃(γ), e1)

)
= F̂λ,µ(L(γ)) ∈ g ⊆M.

According to the definition (3.10) of B, one has

π(N)B(L̃(γ), e1) = π(N)

∞∑
n=1

Hn(L̃(γ), e1) =
N∑

n=1

π(N)Hn(π
(N)L̃(γ), e1).

Note that the right hand side only contains finitely many terms from the expansion of
Hn. Due to the relations (3.20) and [A,D] = D, it is easily seen that

Hn

(
F̂λ,µ

(
π(N)L̃(γ)

)
, λA

)
= 0 ∀n ⩾ 2.

As a result, according to the formulas (3.11) and (3.21) one finds that

F̂λ,µ

(
π(N)B(L̃(γ), e1)

)
= D

N−1∑
m=0

Bm

m!
λmCN−m(λ, µ) = µD

N−1∑
m=0

Bm

m!
λm

N−m−1∑
j=0

∫ 1

0

xjt
j!
dyt.

By taking N →∞, one arrives at the identity

F̂λ,µ(L(γ)) = µD · lim
N→∞

N−1∑
m=0

Bm

m!
λm

N−m−1∑
j=0

λj

j!

∫ 1

0

xjtdyt.

Note that the above limit exists for all λ, µ ∈ C.
The next observation is that the expression

N−1∑
m=0

Bm

m!
λm

N−m−1∑
j=0

λj

j!

∫ 1

0

xjtdyt =
N−1∑
r=0

( r∑
l=0

Bl

l!(m− l)!

∫ 1

0

xr−lt dyt
)
λr

is precisely the partial sum of the power series defined by expanding the product

( ∞∑
m=0

Bm

m!
λm

)( ∞∑
j=0

λj

j!

∫ 1

0

xjtdyt
)
.

For fixed µ ∈ C and |λ| < 2π, both of the above power series are absolutely convergent,
yielding that

F̂λ,µ

(
L(λ)

)
= µD ·

( ∞∑
m=0

Bm

m!
λm

)( ∞∑
j=0

λj

j!

∫ 1

0

xjtdyt
)
=

λµ

eλ − 1
D ×

∫ 1

0

eλxtdyt.

Therefore,

(eλ − 1)F̂λ,µ

(
L(γ)

)
= µD · λ

∫ 1

0

eλxtdyt
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for fixed µ ̸= 0 and all λ with |λ| < 2π. Now observe that both sides are entire functions
in λ (since L(γ) has infinite R.O.C.). As a result, the same identity holds for all λ ∈ C.
By taking λ = 2kπi with k ∈ Z\{0}, one concludes that∫ 1

0

e2kπi·xtdyt = 0,

hence giving the desired integral property (3.2).

4 A strengthened version of the LS conjecture
In this section, we prove a strengthened version of the LS conjecture: having infinite
R.O.C. for the logarithmic signature over all sub-intervals of time implies that the
underlying path must live on a straight line.

Theorem 4.1. Let γ : [0, 1] → Rd be a continuous path with bounded variation. Sup-
pose that logS(γ)s,t has infinite R.O.C. for all [s, t] ⊆ [0, 1]. Then γt = γ0 + f(t) · v⃗
for some real-valued function f : [0, 1]→ R and some fixed vector v⃗ ∈ Rd.

Our main strategy of proving Theorem 4.1 can be summarised as follows. It is
based on non-trivial applications of Theorem 3.4 together with winding number con-
siderations.

1. We may assume d = 2 and parametrise the path γ at unit speed. Let s be
an arbitrary point at which γ is differentiable and choose a time T > s that is
sufficiently close to s. We normalise (i.e. rescale and rotate) the path γ|[s,T ] to
obtain a new path β which starts at (0, 0) and ends at (1, 0). Since |γ′s| = 1
and T ≈ s, in the rescaled picture the new path β stays inside a cone region
{(x, y) : x ∈ [0, 1], |y| < cx} for some small number c.

2. For each (x, y) ∈ R2, let w(x, y) denote the winding number of the path β̃ ≜
β ⊔←−e1 around the point (x, y). Since the path β satisfies the generalised integral
condition (3.3), one can show that the function (x, y) 7→ w(x, y) depends only
on y. As a result, w(x, y) has to vanish identically (because for any (x, y) inside
the cone there is some (x′, y) at the same level which is outside the cone and the
winding number of β̃ around that point is obviously zero). This further implies
that β is the line segment e1 in the weak sense that the line integrals along β and
e1 are identical for any smooth one-form. Transferring back to the original path
γ, one concludes that γ|[s,T ] is a line segment in the above weak sense. Call this
line L.

3. The path γ[T,1] has to be entirely contained in L and we prove this by contra-
diction. If this is not true, there exists a time t > T such that γt /∈ L. By
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normalising the path γ|[s,t] to a new path ζ which starts from the origin and ends
at (1, 0), the line L is transformed to another line L′ which is not horizontal.
Draw a tiny ball B1 centered at the mid-point of L′|[s,T ] and make a copy B2

at the same vertical so that B2 ∩ L′|[s,T ] = ∅. This is possible since L′ is not
horizontal.

4. Choose an arbitrary one-form Ψ supported on B1 whose line integral along L′|[s,T ]

is non-zero. Modify its values onB2 to obtain a new one-form Φ which satisfies the
two conditions of Theorem 3.4. The conclusion of Point 2 and the construction
of Φ implies that ∫ t

s

Φ(dζu) =

∫ T

s

Ψ(dL′u) ̸= 0.

This contradicts the conclusion of Theorem 3.4 since the logarithmic signature
of ζ has infinite R.O.C. Therefore, γ|[T,1] has to be contained in the line L. Since
the differentiable point s is arbitrary and T ≈ s, this implies that the entire path
γ lives on a single well-defined straight line.

The rest of this section is devetoed to the proof of Theorem 4.1.

4.1 An application of the integral condition to winding number

In this subsection, we derive a simple application of the generalised line integral con-
dition (3.3) to the winding number. Such a property will play a key role in our proof
of Theorem 4.1.

Let γ : [0, 1]→ C be a continuous BV path such that γ0 = γ1. Given (x, y) /∈ γ [0, 1],
the winding number of γ around (x, y) is defined by

η (γ, (x, y)) ≜
1

2πi

∫
1

γt − (x+ yi)
dγt. (4.1)

The winding number of γ = (γ1, γ2) : [0, 1]→ R2 is defined as the winding number of
the path t 7→ γ1t + iγ2t . We will use the following properties of the winding number.

1. If there is a simply-connected set K such that γ [0, 1] ⊆ K, then η (γ, (x, y)) = 0
for all (x, y) /∈ K. This is a consequence of Cauchy’s theorem.

2. Let R : R2 → R2 be a rotation and λ ∈ R\ {0}. Then

η (λR (γ) , (x, y)) = η
(
γ, λ−1R−1 (x, y)

)
.

This follows from the definition (4.1) of winding number.

3. (Green’s theorem for self-intersecting paths) For any smooth functions f, g : R2 →
R, one has∫

R2

(∂xf (x, y) + ∂yg (x, y)) η (γ, (x, y)) dxdy =

∫
fdys − gdxs.
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In addition, the function
(x, y)→ η (γ, (x, y)) .

is square integrable with respect to the Lebesgue measure on R2. This fact can
be found in [5, Theorem 15] and references therein.

Let γ : [0, 1] → R2 be a continuous BV path such that γ0 = (0, 0) and γ1 = (1, 0).
Recall that γ̃ ≜ γ ⊔←−e1 and we parametrise it on [0, 1]. More precisely, it is defined by

γ̃t ≜

{
γ2t, t ∈ [0, 1/2]

γ1 − (γ1 − γ0) (2t− 1), t ∈ [1/2, 1].

Suppose that the generalised line integral condition (3.3) holds for γ. Then the same
condition also holds for γ̃. This is due to the facts that (3.3) holds for both γ and
β ≜ [t 7→ (1− t, 0)] and that∫

Φ (dγ̃) =

∫
Φ (dγ) +

∫
Φ (dβ) .

We now state the main application of (3.3) to the winding number.

Lemma 4.2. Let γ be a continuous BV path such that γ0 = (0, 0), γ1 = (1, 0) and

γ [0, 1] ⊆ [0, 1]× R,

with γt ∈ {1} × R if and only if t = 1. Let η be the winding number of γ̃ around the
point (x, y). Suppose that γ satisfies the generalised line integral condition (3.3). Then
for (x, y) ∈ (0, 1)× R\γ̃ [0, 1], one has

η (γ̃, (x, y)) =

∫ 1

0

η (γ̃, (v, y)) dv.

Proof. Let g be a smooth function satisfying g (x+ 1, y) = g (x, y) and define f (x, y) ≜
g (x, y) −

∫ 1

0
g (t, y) dt. Write γt = (xt, yt). According to the integral condition (3.3),

one has ∫ 1

0

g (xs, ys) dxs −
∫ 1

0

( ∫ 1

0

g(t, ys)dt
)
dxs = 0.

It follows from Green’s theorem for self-intersecting paths that∫
R2

∂g

∂y
(x, y) η (γ̃, (x, y)) dxdy =

∫
R2

( ∫ 1

0

∂g

∂y
(t, y) dt

)
η (γ̃, (x, y)) dxdy. (4.2)

Since γ̃ [0, 1] ⊆ [0, 1] × R and η (γ̃, (x, y)) = 0 for all (x, y) /∈ [0, 1] × R, the relation
(4.2) can be rewritten as∫

R

∫ 1

0

∂g

∂y
(x, y) η (γ̃, (x, y)) dxdy =

∫
R

∫ 1

0

∂g

∂y
(t, y)

( ∫ 1

0

η (γ̃, (x, y)) dx
)
dtdy,
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or equivalently,∫
R

∫ 1

0

∂g

∂y
(x, y)

[
η (γ̃, (x, y))−

∫ 1

0

η (γ̃, (t, y)) dt
]
dxdy = 0. (4.3)

Let h be a smooth function such that h (x+ 1, y) = h (x, y) . By applying the relation
(4.3) to the function g (x, y) ≜

∫ y

0
h (x, t) dt, one finds that∫

R

∫ 1

0

h (x, y)
[
η (γ̃, (x, y))−

∫ 1

0

η (γ̃, (t, y)) dt
]
dxdy = 0.

Now fix any (x0, y0) ∈ (0, 1) × R\γ̃ [0, 1] and let (hε)ε>0 be a standard mollifier.
Define

h̃ε(x, y) ≜ hε((x, y)− (x0, y0))

and modify it to be 1-periodic in x. Then one has∫
R

∫ 1

0

hε ((x, y)− (x0, y0))

(
η (γ̃, (x, y))−

∫ 1

0

η (γ̃, (t, y)) dt

)
dxdy = 0.

By taking ε→ 0, it follows that

η (γ̃, (x0, y0))−
∫ 1

0

η (γ̃, (t, y0)) dt = 0.

The result follows since (x0, y0) is arbitrary.

4.2 A zero winding lemma

Due to the conditions in Theorem 3.4, it is necessary to rescale and rotate a path γ
so that it satisfies γ0 = (0, 0) and γ1 = (1, 0). We first introduce such a normalising
operation.

Definition 4.3. Let γ : [0, T ] → R2 be a BV path and let s < t be two fixed times
such that γs ̸= γt. We define the associated normalisation operator As,t by

As,t(x) ≜
1

|γt − γs|
Rs,t (x− γs) , x ∈ R2.

Here Rs,t : R2 → R2 denotes the rotation that maps γt − γs to (|γt − γs| , 0). We use
As,tγ to denote the path [s, t] ∋ u 7→ As,t(γu).

In this subsection, we will prove the following key result. As usual, we use Ãs,tγ
to denote the path As,tγ ⊔←−e1 (we also assume that it is parametrised on [s, t]). Recall
that η(Ãs,tγ, (x, y)) is the winding number of Ãs,tγ around the point (x, y).
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Proposition 4.4. Let γ : [0, K]→ R2 be a continuous BV path which is parametrised
at unit speed. Suppose that logS(γ)u,v has infinite R.O.C. on all time intervals [u, v] ⊆
[0, K]. Let s be a given fixed time at which γ is differentiable and let ε ∈ (0, 1/6]. Let
T ∈ (s,K] be chosen such that

|γt − γs − γ′s (t− s)| ⩽ ε (t− s) , (4.4)∣∣∣∣∣∣γt − γs
t− s

∣∣∣− 1
∣∣∣ ⩽ ε

for all t ∈ (s, T ] and that |γt − γs| < |γT − γs| for all s ∈ (t, T ). Then one has

η
(
Ãs,Tγ, (x, y)

)
= 0

for all (x, y) ∈ (0, 1)× R\(Ãs,Tγ)[s, T ].

The proof of Prposition 4.4 relies on the following key observation which asserts
that the path As,Tγ lies inside a cone region.

Lemma 4.5. Let γ, s, T, ε be as in Proposition 4.4. Then

(As,Tγ) [s, T ] ⊆
{
(x, y) : |y| < 2ε

1− 3ε
x
}
.

Proof. By using (4.4), one has∣∣∣∣ 1

|γT − γs|
Rs,T (γt − γs)−

Rs,Tγ
′
s

|γT − γs|
(t− s)

∣∣∣∣ ⩽ ε
(t− s)
|γT − γs|

and hence
|As,T (γt)−As,T (γ

′
s) (t− s)| ⩽ ε

(t− s)
|γT − γs|

.

In particular, by taking t = T and dividing the equation by T − s, one obtains that∣∣∣∣ 1

T − s
(1, 0)−As,T (γ

′
s)

∣∣∣∣ ⩽ ε
1

|γT − γs|
.

Therefore,∣∣∣ (As,Tγ)t − (t− s)
( 1

T − s
, 0
)∣∣∣

⩽
∣∣(As,Tγ)t −As,T (γ

′
s) (t− s)

∣∣+ ∣∣∣( 1

T − s
(1, 0)− (As,Tγ)

′
s

)
(t− s)

∣∣∣
⩽

2ε (t− s)
(1− ε) (T − s)

.
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Let us use x1 to denote the first coordinate of x ∈ R2 and similarly for x2. Then one
has ∣∣∣ (As,Tγ)

1
t −

t− s
T − s

∣∣∣ ⩽ 2ε (t− s)
(1− ε) (T − s)

,∣∣ (As,Tγ)
2
t

∣∣ ⩽ 2ε (t− s)
(1− ε) (T − s)

.

Note that for ε ∈ (0, 1/6], the first inequality implies that

t− s ⩽
(As,Tγ)

1
t

1− 2ε
1−ε

(T − s)

and therefore ∣∣(As,Tγ)
2
t

∣∣ ⩽ 2ε

1− 3ε
(As,Tγ)

1
t .

This shows that As,Tγ lies in the desired cone region.

Proof of Proposition 4.4. By Lemma 4.5, one has(
Ãs,Tγ

)
[s, T ] ⊆

{
(x, y) : |y| < 2ε

1− 3ε
x
}
=: C.

As a consequence of Property 1 for the winding number,

η
(
Ãs,Tγ, (x, y)

)
= 0 (4.5)

for all (x, y) /∈ C. Now suppose that

(x, y) ∈ C
⋂(

(0, 1)× R\(Ãs,Tγ)[s, T ]
)
.

There exists some x′ ∈ (0, x) such that (x′, y) /∈ C. According to Lemma 4.2, one
concludes that

η
(
Ãs,Tγ, (x, y)

)
= η

(
Ãs,Tγ, (x

′, y)
)
= 0.

The result of the proposition thus follows.

The following result is an immediate application of Proposition 4.4. It shows that
infinite R.O.C. for the logarithmic signature implies that the path contains a line
segment in a weak sense.

Lemma 4.6. Let γ : [0, K]→ R2 be a continuous BV path with unit speed parametri-
sation. Let s be a point at which γ is differentiable. Let T ∈ (s,K] be chosen such
that ∣∣γt − γs − γ′s(t− s)∣∣ ⩽ 1

6
(t− s),

∣∣∣∣∣∣γt − γs
t− s

∣∣∣− 1
∣∣∣ ⩽ 1

6

for all t ∈ (s, T ] and
|γt − γs| < |γT − γs|
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for all t ∈ (s, T ). Suppose that logS (γ) has infinite R.O.C. on the interval [s, T ].
Then the following two statements hold true.

(i) One has
η (γ̃, (x, y)) = 0

for all (x, y) ∈ (0, 1)× R\γ̃ [s, T ]. Here γ̃ ≜ γ|[s,T ] ⊔ (γs − γT ).
(ii) Let L be the line segment joining γs to γT (also parametrised on [s, T ]). Then for
any smooth one-form Φ(x, y) = f(x, y)dx+ g(x, y)dy, one has∫ T

s

Φ (dγv) =

∫ T

s

Φ (dLv) .

Proof. (i) This follows from Proposition 4.4, Ãs,Tγ = As,T γ̃ (up to reparametrisation) ,
that As,T is a composition of rotation and scaling, as well as Property 2 for the winding
number which describes how the winding number behaves under rotation and scaling.

(ii) According to Green’s Theorem for self-intersecting paths,∫
Φ (dγ̃v) =

∫
R2

(∂f
∂x

+
∂g

∂y

)
η (γ̃, (x, y)) dxdy.

It follows from Part (i) that
∫
Φ (dγ̃v) = 0, or equivalently,∫ T

s

Φ (dγv) =

∫ T

s

Φ (dLv) .

This proves the desired claim.

4.3 Proof of Theorem 4.1

In this subsection, we develop the proof of Theorem 4.1. We first state a technical
lemma.

Lemma 4.7. Let γ : [τ1, τ2]→ R2 be a continuous BV path. There exist δ1, δ2, r ∈ (0, 1)
such that the following properties hold true. Let a < b < d be elements of [τ1, τ2] such
that γa ̸= γb

|γb − γc| < δ1 |γb − γa| .

for all c ∈ [b, d].

(i) One has

|Aa,d(γb)−Aa,d(γc)| <
δ1

1− δ1
, |Aa,d(γc)− (1, 0)| < 2δ1

1− δ1
(4.6)

for all c ∈ [b, d];
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(ii) One has

Aa,d(ma,b) ⊆
(1
2
− δ1/2

1− δ1
,
1

2
+

δ1/2

1− δ1

)
× R (4.7)

and
B
(
Aa,d(ma,b), r

)⋃
B
(
Aa,d(ma,b)− (δ2, 0), r

)
⊆ (0, 1)× R, (4.8)

where ma,b ≜ (γa + γb)/2 and B(x, r) denotes the ball centered at x with radius r;

(iii) The four sets

Aa,dγ|[b,d], Aa,dγ|[b,d] − (1, 0), B
(
Aa,d(ma,b), r

)
, B

(
Aa,d(ma,b)− (δ2, 0), r

)
are disjoint.

(iv) Let La,b denote the straight line joining Aa,d(γa) and Aa,d(γb). Suppose that La,b

is not horizontal. Then

B
(
Aa,d(ma,b)− (δ2, 0), r

)⋂
La,b = ∅. (4.9)

Proof. (i) Note that Aa,dγ is well-defined since

|γd − γa| ⩾ |γb − γa| − |γb − γd| ⩾ (1− δ1)|γb − γa| > 0.

Now for all c ∈ [b, d], one has

|Aa,d(γb)−Aa,d(γc)| =
|γb − γc|
|γd − γa|

<
δ1 |γb − γa|

|γb − γa| − |γd − γb|
⩽

δ1
1− δ1

and

|Aa,d(γc)− (1, 0)| = |Aa,d(γc)−Aa,d(γd)|

⩽ |Aa,d(γb)−Aa,d(γc)|+ |Aa,d(γb)−Aa,d(γd)| <
2δ1

1− δ1
.
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The desired estimate (4.6) thus follows.

(ii) The relation (4.7) follows since

Aa,d(ma,b) =
1

2

(
Aa,d(γa) +Aa,d(γb)

)
=
1

2

(
Aa,d(γb)−Aa,d(γd)

)
+

1

2
Aa,d(γd)

=
1

2

(
Aa,d(γb)−Aa,d(γd)

)
+

1

2
(1, 0) .

and one also knows from (4.6) that∣∣Aa,d(γb)−Aa,d(γd)
∣∣ ⩽ δ1

1− δ1
.

As a result of (4.7), one can obviously make (4.8) valid by choosing δ1, δ2, r to be small
enough.

(iii) According to (i),

Aa,dγ|[b,d] ⊆ B
(
(1, 0) ,

2δ1
1− δ1

)
,

Aa,dγ|[b,d] − (1, 0) ⊆ B
(
(0, 0) ,

2δ1
1− δ1

)
,

and by (ii),

Aa,d(ma,b) ⊆
(1
2
− δ1/2

1− δ1
,
1

2
+

δ1/2

1− δ1

)
× R.

The claim thus follows if one takes δ1, δ2, r to be sufficiently small so that the three
sets (1

2
− δ1/2

1− δ1
,
1

2
+

δ1/2

1− δ1

)
× R, B

(
(1, 0) ,

2δ1
1− δ1

)
, B

(
(0, 0) ,

2δ1
1− δ1

)
are disjoint.

(iv) Since La,b is not horizontal and Aa,d(ma,b) ∈ La,b, one knows that

Aa,d(ma,b)− (δ2, 0) /∈ La,b.

By further reducing r if necessary, one can ensure that the relation (4.9) holds.

Next, by using Lemma 4.7 we prove a key lemma that is needed for the later proof
of Theorem 4.1.

Lemma 4.8. Let γ : [0, K]→ R2 be a continuous BV path with unit speed parametri-
sation. Suppose that logS (γ) has infinite R.O.C. on all sub-intervals [u, v] ⊆ [0, K].
Let s, T be chosen fixed as in Lemma 4.6. Then one has

γ [T,K] ⊆ {γs + λ(γT − γs) : λ ∈ R} .
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Proof. Let us denote the straight line {γs + λ(γT − γs) : λ ∈ R} by l. Define

T ∗ = sup {t ∈ [T,K] : γ [T, t] ⊆ l} .

Suppose on the contrary that T ∗ < K. We will reach a contradiction by considering
the following two cases.

Case 1: γT ∗ ̸= γs.

There exists t > T ∗ such that γt /∈ l and t is chosen to be close enough to T ∗ so
that

|γu − γT ∗| < δ1 |γT ∗ − γs|

for all u ∈ [T ∗, t] (with δ1 to be specified later). By choosing a = s, b = T ∗, d = t in
Lemma 4.7, one can find δ1, δ2, r > 0 such that the four closed sets

As,tγ|[T ∗,t], As,tγ|[T ∗,t] − (1, 0), B
(
As,t(ms,T ∗), r

)
, B

(
As,t(ms,T ∗)− (δ2, 0), r

)
are all disjoint, where ms,T ∗ ≜ (γs + γT ∗)/2. The same lemma shows that

B
(
As,t(ms,T ∗), r

)⋃
B
(
As,t(ms,T ∗)− (δ2, 0), r

)
⊆ (0, 1)× R,

and since γt /∈ l, Ls,T ∗ cannot be horizontal so one also knows that

B
(
As,t(ms,T ∗)− (δ2, 0), r

)⋂
Ls,T ∗

= ∅. (4.10)

Here Ls,T ∗ denotes the line segment joining the origin to As,t(γT ∗). In what follows, we
assume that Ls,T ∗ is parametrised on [s, T ∗].

Let Ψ be a smooth one-form supported on B(As,t(ms,T ∗), r) such that∫ T ∗

s

Ψ
(
dLs,T ∗

v

)
= 1. (4.11)

Such a Ψ clearly exists. Let us define

Φ (x, y) =


Ψ(x, y) , (x, y) ∈ B (As,t(ms,T ∗), r) := B1

−Ψ(x+ δ2, y) , (x, y) ∈ B
(
As,t(ms,T ∗)− (δ2, 0) , r

)
:= B2,

0, (x, y) ∈ (0, 1)× R\ (B1 ∪B2)

Φ (x mod1, y) , (x, y) /∈ (0, 1)× R\ (B1 ∪B2) .

Note that the smooth one-form Φ satisfies the two conditions in Theorem 3.4. One can
now write∫ t

s

Φ
(
d [As,tγ]v

)
=

∫ T

s

Φ
(
d [As,tγ]v

)
+

∫ T ∗

T

Φ
(
d [As,tγ]v

)
+

∫ t

T ∗
Φ
(
d [As,tγ]v

)
.
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According to Lemma 4.6, one has∫ T

s

Φ (d[As,tγ]v) =

∫ T

s

Φ
(
dLs,T ∗

v

)
.

Since Φ = 0 on (0, 1)× R\ (B1 ∪B2) and As,tγ|[T ∗,t] is disjoint from B1 ∪ B2, one sees
that ∫ t

T ∗
Φ
(
d [As,tγ]v

)
= 0.

In addition, since γ [T, T ∗] ⊆ l one also knows that∫ T ∗

T

Φ
(
d [As,tγ]v

)
=

∫
Φ
(
dLs,T ∗

v

)
.

Therefore, one concludes that∫ t

s

Φ (d[As,tγ]v) =

∫ T ∗

s

Φ
(
dLs,T ∗

v

)
.

Note that Ls,T ∗ is disjoint from B2. By the construction of Φ, the last integral is thus
also equal to the same integral along Ψ whose value is 1 ̸= 0 (cf. 4.11). This leads to
a contradiction to the generalised line integral condition (3.3) in Theorem 3.4.

Case 2: γT ∗ = γs.

In this case, γT ̸= γT ∗ because γT ̸= γs. Then there exists t > T ∗ such that γt /∈ l
and t is close enough to T ∗ so that

|γu − γT ∗| < δ1 |γT ∗ − γT |

for all u ∈ [T ∗, t] (with δ1 to be specified later). By choosing a = T, b = T ∗, d = t in
Lemma 4.7, one can now proceed in exactly the same way as in Case 1 to construct a
one-form Φ which satisfies the two conditions in Theorem 3.4 but∫ t

T

Φ(d[AT,tγ]v) = 1 ̸= 0.

This again contradicts the generalised integral condition (3.3).
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The proof of Theorem 4.1 can be easily reduced to the two-dimensional situation
which we first handle.

Theorem 4.9. Let γ : [0, 1] → R2 be a continuous BV path. Suppose that logS(γ)s,t
has infinite R.O.C. for all s < t ∈ [0, 1]. Then γt = f(t) · v⃗ for some real-valued
function f : [0, 1]→ R and some fixed vector v⃗ ∈ R2.

Proof. By Appendix B in the arXiv version of [2], there exist a K ∈ [0,∞), a non-
decreasing function L : [0, 1] → [0, K] and γ̂ : [0, K] → R2 such that γ̂L(·) = γ·
and γ̂ is Lipschitz continuous with unit speed. Since the signature is invariant under
reparametrisation, one knows that logS (γ̂)s,t has infinite R.O.C. for all s < t ∈ [0, K].
Let

τ = sup {t : γ̂′u = 0 for almost all u ∈ [0, t]} .

Given ε > 0, there exist a differentiable point s ∈ [τ, τ + ε/2) and a sequence (tn)
∞
n=1

such that tn ↓ s and γ̂s ̸= γ̂tn for all n. Let δ ∈ (0, ε/2) be chosen such that∣∣γ̂u − γ̂s − γ̂′s(u− s)∣∣ ⩽ 1

6
(u− s),

∣∣∣∣∣∣ γ̂u − γ̂s
u− s

∣∣∣− 1
∣∣∣ ⩽ 1

6

whenever |u− s| < δ. Take N to be such that |tN − s| < δ and let

T = inf {u ⩾ s : γ̂u = γ̂tN} .

Clearly, the numbers s, T satisfy the assumptions of Lemma 4.8. According to Lemma
4.8, one knows that

γ̂ [T,K] ⊆ {γ̂s + λ(γ̂T − γ̂s) : λ ∈ R} =: lε

and in particular, γ̂[τ + ε,K] ⊆ lε. Since this is true for all ε > 0, the straight lines
{lε}ε>0 are clearly consistent and thus all identical. Let us call this line l. It follows
that γ̂[τ,K] ⊆ l. Since γ̂′t = 0 for almost all t ∈ [0, τ ], one has γ̂t = γ̂τ for all t ∈ [0, τ ].
As a result, γ̂[0, K] ⊆ l. This provides that γ̂ (and thus γ) lives on a straight line.

Proof of Theorem 4.1. Suppose that γt = (x1t , x
2
t , · · · , xdt ) and assume that γ0 = 0.

The conclusion is trivial if the image of γ is a single point. Otherwise, let us assume
that x1t is not identically zero. For each i ̸= 1, the logarithmic signature of the path
γit ≜ (x1t , x

i
t) has infinite R.O.C. on [s, t] for all s < t ∈ (0, 1). By Theorem 4.9, one

has γit = fi(t)(ai, bi) for some real-valued function fi(t) and some vector (ai, bi) with
a ̸= 0. It is clear that x1t = fi(t)ai and thus γit = x1t · (1, ci) where ci ≜ bi/ai. It follows
that γt = x1t · (1, c2, · · · , cd). This completes the proof of the theorem.

38



5 Second order integral identities
We continue to assume that γ : [0, 1]→ R2 is a weakly geometric rough path satisfying
the normalisation condition (3.1). In Section 3, we showed that if the logarithmic
signature of γ has infinite R.O.C., the path γ must satisfy the line integral condition
(3.2). In this and the next sections, by using the method of Cartan’s path development
we will show that γ has to satisfy an infinite system of iterated integral identities where
the relation (3.2) appears to be the first level of them.

To better illustrate the essential idea, it is helpful to first discuss the derivation of
second order iterated integral identities. This is our main goal in the current section
and the main result is stated as follows.

Theorem 5.1. Suppose that logS(γ) has infinite R.O.C. Then the following identity

(1− cosh b)

∫
0<s<t<1

(
e2kπi·xs+b(xt−xs) − e2kπi·xt+b(xs−xt)

)
dysdyt

+ (sinh b)
( ∫ 1

0

ebxsdys
)( ∫ 1

0

e(2kπi−b)xsdys
)
= 0 (5.1)

holds true for all k ∈ Z\{0} and b ∈ C.

5.1 A second order extension of the line integral condition

In contrast to the line integral condition (3.2), Theorem 5.1 yields a continuum family
of integral identities from which one can extract various information. The following
result is a consequence of Theorem 5.1 which can be viewed as a second order extension
of (3.2).

Corollary 5.2. Under the assumption of Theorem 5.1, one has∫
0<s<t<1

(
e2πi(pxs+qxt) − e2πi(pxt+qxs)

)
dysdyt = 0 (5.2)

for all p, q ∈ Z\{0} with p+ q ̸= 0.

Proof. Let us denote

φ(b) ≜
∫
0<s<t<1

(
e2kπi·xs+b(xt−xs) − e2kπi·xt+b(xs−xt)

)
dysdyt

and

ψ(b) ≜
( ∫ 1

0

ebxsdys
)( ∫ 1

0

e(2kπi−b)xsdys
)
.

Differentiating (5.1) with respect to b gives that

− sinh b · φ(b) + (1− cosh b)φ′(b) + cosh b · ψ(b) + sinh b · ψ′(b) = 0. (5.3)
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By further differentiating (5.3) and taking b = 2lπi, one obtains that

−φ(2lπi) + 2ψ′(2lπi) = 0.

Now suppose that l ̸= k and l ̸= 0. The line integral condition (3.2) yields that

ψ′(2lπi) =
( ∫ 1

0

xse
2lπi·xsdys

)( ∫ 1

0

e2(k−l)πi·xsdys
)

−
( ∫ 1

0

e2lπi·xsdys
)( ∫ 1

0

xse
2(k−l)πi·xsdys

)
= 0.

As a result, one concludes that

φ(2lπi) =

∫
0<s<t<1

(
e2(k−l)πi·xs+2lπi·xt − e2(k−l)πi·xt+2lπi·xs

)
dysdyt = 0.

This gives the desired identity (5.2) with p = k − l and q = l.

Remark 5.3. The line integral identity (3.2) is also a consequence of Theorem 5.1.
Indeed, let k be a nonzero even integer in (5.1). By taking b = kπi in the relation
(5.3), one finds that

0 = ψ(kπi) =
( ∫ 1

0

ekπixsdys
)2

= 0 ⇐⇒
∫ 1

0

ekπixsdys = 0.

This is exactly the previous line integral identity (3.2) since k is even.

Remark 5.4. According to (3.2), one has∫
0<s<t<1

(
e2πi(pxs+qxt) + e2πi(pxt+qxs)

)
dysdyt =

( ∫ 1

0

e2πipxsdys
)( ∫ 1

0

e2πiqxtdyt
)
= 0.

In particular, the relation (5.2) can also be rewritten as∫
0<s<t<1

e2πi(pxs+qxt)dysdyt = 0

for all p, q ∈ Z\{0} with p+ q ̸= 0.

Remark 5.5. The information encoded by the condition (5.1) is larger than the one
encoded in (5.2). For instance, by further differentiating (5.3) and setting b = 0 one
obtains that

−φ(0) + ψ(0) + ψ′(0) = 0. (5.4)

Note that ψ(0) = 0 as a consequence of (3.2). Therefore, the relation (5.4) becomes

−
∫
0<s<t<1

(
e2kπi·xs − e2kπi·xt

)
dysdyt − y1

∫ 1

0

xse
2kπi·xsdys = 0.
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After simplification, this can be rewritten as the following identity:∫ 1

0

yte
2kπi·xtdyt − y1

∫ 1

0

xte
2kπi·xtdyt = 0.

This new identity cannot be implied by (3.2) or (5.2). One can also show by a similar
type of calculation that ∫

0<s<t<1

eπi(pxs+qxt)dysdyt = 0

for all odd integers p, q with p+ q ̸= 0, as a consequence of Theorem 5.1.

Example 5.6. We use one example to illustrate the usefulness of the second order
integral identity (5.2). Consider the following piecewise linear path defined by a “Figure
Eight” trajectory:

Here A is the origin, B = (1/2, 0), C = (1, 0) and

−→
BD =

(1
4
,
1

4

)
,

−→
BE =

(
0,

1

4

)
,

−→
BG =

(
0,−1

4

)
,

−→
BF =

(
− 1

4
,−1

4

)
.

The path γ is defined by

I0 → I1 → I2 → I3 → I4 → I5,

where I1 (respectively, I3) denotes the loop BDEB (respectively, BEDB) and I2
(respectively, I4) denotes the loop BFGB (respectively, BGFB). Explicit calculation
shows that ∫

0<s<t<1

e2πixs+4πixtdysdyt ≈ −0.05− 0.08i ̸= 0.

Therefore, one concludes from Corollary 5.2 and Remark 5.4 that logS(γ) has finite
R.O.C. Note that this example cannot be handled by Theorem 3.4; it is easily seen
that ∫ 1

0

Φ(dγt) =

∫
I0∪I5

Φ(dγt) = 0

for any Φ satisfying the conditions in that theorem.

In the following subsections, we develop the proof of Theorem 5.1. The key insight
is to make use of path developments into complex semisimple Lie algebras.
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5.2 Homogeneous projection formulae

Our strategy relies on certain tensor projections as a starting point. We first define
these operations. Let {e1, e2} be the standard basis of R2.

Definition 5.7. For each m ⩾ 1, we define Dm : T ((R2)) → T ((R2)) to be linear
operator induced by

Dm(ej1 ⊗ · · · ⊗ ejn) ≜

{
ej1 ⊗ · · · ⊗ ejn , #{l : jl = 2} = m;

0, otherwise.

In other words, Dm projects a tensor series onto the sub-series whose components have
precisely m of e2’s.

Suppose that γ is a two-dimensional weakly geometric rough path whose logarithmic
signature L ≜ logS(γ) has infinite R.O.C. It is easy to see thatDmL has infinite R.O.C.
for all m ⩾ 1. As we will show, the main philosophy is that

DmL has infinite R.O.C. =⇒ suitable m-th order iterated integral identities.

When m = 1, this gives back the line integral condition (3.2). Theorem 5.1 follows
from the consideration of D2L. The higher order iterated integral identities we will
derive in Section 6 are based on the consideration of general DmL (m ⩾ 3).

In order to prove Theorem 5.1, we first derive the expressions of D1L and D2L,
leaving the more general situation to Section 6. This is contained in the lemma below.
Recall that {Bm} are the Bernoulli numbers arising from the first Hausdorff series H1

(cf. (3.11)).

Lemma 5.8. The following formulae for D1L and D2L hold true:

D1L =
∞∑

m=0

Bm

m!
adm

e1

( ∫ 1

0

extade1 (e2)dyt
)

(5.5)

and

D2L =
1

2

∞∑
m=0

Bm

m!
adm

e1

( ∫
0<s<t<1

[
exsade1 (e2), e

xtade1 (e2)
]
dysdyt

)
+

1

2

∑
m,l⩾0

BmBl

m!l!

m∑
k=1

adk−1
e1

([
adl

e1
(

∫ 1

0

exsade1 (e2)dys), ad
m−k
e1

(

∫ 1

0

extade1 (e2)dyt)
])
.

(5.6)

Proof. Let L̃ denote the logarithmic signature of γ̃ ≜ γ ⊔←−e1 . Recall from (3.13) that

L = B(L̃, e1) =
∞∑
n=1

Hn(L̃, e1).
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By applying projections D1 and D2 to both sides, one finds that

D1L = H1(D1L̃, e1), D2L = H1(D2L̃, e1) +H2(D1L̃, e1). (5.7)

Here we used the fact that the first level of L̃ does not contain the e1-component (due
to the normalisation (3.1)).

We first compute D1L̃ and D2L̃. Recall from Lemma 3.9 that

eL̃ =
∞∑
n=0

∫
0<t1<···<tn<1

ext1ade1 (e2)⊗ · · · ⊗ extnade1 (e2)dyt1 · · · dytn

= 1 + L̃+
1

2
L̃⊗2 + · · · = 1 + (D1L̃+D2L̃+ · · · ) + 1

2
(D1L̃+D2L̃+ · · · )⊗2 + · · · .

By applying Di (i = 1, 2) to both sides, one finds that

D1L̃ =

∫ 1

0

extade1 (e2)dyt (5.8)

and

D2L̃ =

∫
0<s<t<1

exsade1 (e2)⊗ extade1 (e2)dysdyt −
1

2
D1L̃⊗D1L̃

=
1

2

∫
0<s<t<1

[
exsade1 (e2), e

xtade1 (e2)
]
dysdyt. (5.9)

Next, we compute the Hausdorff series H1 and H2. According to the definition (3.11)
of H1, one has

H1(DiL̃, e1) =
∞∑

m=0

Bm

m!
adm

e1
(DmL̃) (i = 1, 2). (5.10)

Respectively, the formula (3.12) for Hn (with n = 2) yields that

H2(D1L̃, e1) =
1

2

(
H1

∂

∂e1

)
H1(D1L̃, e1)

=
1

2

∞∑
m=0

Bm

m!

(
H1

∂

∂e1

)(
adm

e1
(D1L̃)

)
=

1

2

∞∑
m=0

Bm

m!

m∑
k=1

adk−1
e1
◦ adH1(D1L̃,e1)

◦ adm−k
e1

(D1L̃)

=
1

2

∑
m,l⩾0

BmBl

m!l!

m∑
k=1

adk−1
e1

([
adl

e1
(D1L̃), ad

m−k
e1

(D1L̃)
])
. (5.11)

After substituting the expressions (5.8) and (5.9) into (5.10) and (5.11), the lemma
follows from the relation (5.7).
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Recapturing Theorem 3.1 through the D1-projection

The formula (5.5) easily recovers Theorem 3.1. Indeed, by taking the development

Fλ : e1 7→ A, e2 7→ D with Lie structure [A,D] = λD. (5.12)

The relation (5.5) yields

F̂λ

(
D1L

)
=

∞∑
m=0

Bm

m!
λm

( ∫ 1

0

eλxtdytD
)
=

λ

eλ − 1
×
( ∫ 1

0

eλxtdyt
)
D.

Since the left hand side defines an entire function in λ ∈ C, one must have∫ 1

0

e2kπi·xtdyt = 0 ∀k ∈ Z\{0}. (5.13)

Of course, this argument is essentially the same as our earlier proof of Theorem 3.1.
An interesting point is that in the D1L case, one can achieve more by showing

that the line integral condition (3.2) is also sufficient for D1L to have infinite R.O.C.
Indeed, one can rewrite (5.5) as

D1L =
∞∑

m,p=0

Bm

m!p!
adm+p

e1
(e2)

∫ 1

0

xptdyt =
∞∑

N=0

( N∑
m=0

Bm

m!(N −m)!

∫ 1

0

xN−mt dyt
)
adN

e1
(e2).

Since the Lie polynomials adN
e1
(e2) (N ⩾ 0) all have different degrees and

C1∥adN
e1
(e2)∥ ⩽ 2N ,

one has for every λ > 0 that

F (λ) ≜
∞∑

N=0

∥πN+1(D1L)∥λN

⩽
∞∑

N=0

∣∣ N∑
m=0

Bm

m!(N −m)!

∫ 1

0

xN−mt dyt
∣∣λN2N :=

∞∑
N=0

|cN |(2λ)N . (5.14)

Observe that
∞∑

N=0

cN(2λ)
N =

(∑
m

Bm

m!
(2λ)m

)(∑
p

1

p!

∫ 1

0

xptdyt
)
=

2λ

e2λ−1
×
∫ 1

0

e2λxtdyt.

Now suppose that the line integral condition (3.2) holds. Then the function

z 7→ z

ez − 1
×

∫ 1

0

ezxtdyt

is entire. As a result, the power series
∑
N⩾0

cNz
N has infinite R.O.C. and so does∑

N⩾0

|cN |zN . In view of (5.14), this implies that D1L has infinite R.O.C.

To summarise, one has obtained the following neat result.
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Proposition 5.9. Let γ : [0, 1] → R2 be a weakly geometric rough path satisfying
the normalisation condition (3.1). Then D1 logS(γ) has infinite R.O.C. if and only if∫ 1

0
e2kπixtdyt = 0 for all nonzero integers k.

5.3 Complex semisimple Lie algebras

In order to prove Theorem 5.1, one needs to investigate the D2-projection. Our method
relies on path developments into a particular type of Lie algebras: complex semisimple
Lie algebras. We first provide a quick review on relevant concepts.

Definition 5.10. A (finite dimensional) complex Lie algebra g is said to be semisimple
if it can be decomposed into a direct sum g ∼= g1 ⊕ · · · ⊕ gr, where each gi is a simple
Lie subalgebra in the sense that it does not contain non-trivial proper ideals.

A key concept in semisimple Lie theory is the notion of Cartan subalgebras. Let g
be a complex semisimple Lie algebra.

Definition 5.11. A Cartan subalgebra h of g is a subspace which satisfies the following
two properties:

(i) h is a maximal abelian subalgebra;

(ii) adH ∈ End(g) is diagonalisable (over C) for each H ∈ h.

It is well known that a Cartan subalgebra always exists and is unique up to conjuga-
tion in g. Let h be a Cartan subalgebra of g. Given any representation ρ : g→ End(W )
over a finite dimensional complex vector space W, all elements of h are simultaneously
diagonalisable when they are viewed as linear transformations over W. As a result, W
admits a decomposition into common h-eigenspaces. To be precise, a complex linear
functional µ ∈ h∗ is said to be a weight for ρ if the subspace

W µ ≜ {w ∈ W : ρ(H)(w) = µ(H)w ∀h ∈ h} (5.15)

is non-trivial. There are at most finitely many weights for ρ due to finite dimension-
ality and their collection is denoted as Π(ρ). The space W admits a decomposition
(simultaneous diagonalisation)

W =
⊕

µ∈Π(ρ)

W µ,

where for each H ∈ h, W µ is an eigenspace of ρ(H) with eigenvalue µ(H) (µ ∈ Π(ρ)).
The above general consideration, being applied to the adjoint representation ad :

g → End(g), gives the so-called root space decomposition of g. Let α ∈ h∗. Similar to
(5.15) we define the subspace

gα ≜ {X ∈ g : adH(X) = α(H)X ∀H ∈ h}.

It is readily checked that g0 = h and [gα, gβ] ⊆ gα+β for all α, β ∈ h∗. A complex linear
functional α ∈ h∗ is called a root of g with respect to h if it is a weight for the adjoint
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representation (i.e. if gα ̸= {0}). In this case, gα is called the root space associated
with α. It is clear that there are at most finitely many roots of g.

Theorem 5.12 (Root Space Decomposition). Let ∆ be the set of all nonzero roots
with respect to a given Cartan subalgebra h. Then g can be written as the direct sum

g = h+
∑
α∈∆

gα. (5.16)

In this decomposition, one has dim gα = 1 for each α ∈ ∆. Moreover, if α, β, α+β ∈ ∆
then [gα, gβ] = gα+β.

The following basic example will play an essential role in the proof of Theorem 5.1
(and more significantly, of Theorem 6.5 below).

Example 5.13. Let g = sln(C) be the Lie algebra of n× n matrices over C with zero
trace. A Cartan subalgebra h can be taken as the subspace of diagonal matrices in g.
One has dim h = n− 1. For each 1 ⩽ i ⩽ n, let µi ∈ h∗ be the linear functional defined
by taking the i-th diagonal entry of H ∈ h. Then the set of nonzero roots is given by

∆ = {λij ≜ µi − µj : 1 ⩽ i ̸= j ⩽ n}.

Respectively, the root spaces are given by

gλij = C · Eij, (i ̸= j)

where Eij denotes the matrix whose (i, j)-entry is one and all other entries are zero.

5.4 Proof of Theorem 5.1 through sl3(C)-development

A nice feature about the root space decomposition is that the adjoint actions by
elements of the Cartan subalgebra are simultaneously diagonalised into root spaces
(eigenspaces). In particular, if one applies a path development into a complex semisim-
ple Lie algebra with e1 being mapped into a Cartan element, the formulae (5.5, 5.6) for
D2L could potentially be projected along suitable root spaces to yield scalar equations
similar to the one obtained in (3.18). This will allow one to treat D2L as a scalar entire
function and to obtain suitable integral conditions in a similar fashion as in the proof
of Theorem 3.1.

To make this idea precise, let g be a complex semisimple Lie algebra with root space
decomposition (5.16). We consider a path development F : C2 → g induced by

e1 7→ A, e2 7→ D

where A,D are chosen to be such that

A ∈ h, D =
∑
α∈∆

cαEα ∈
∑
α∈∆

gα.
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Here Eα is a generator of gα (recall that dim gα = 1) and cα ∈ C. Under such a
development, one has

F̂
([
exsade1 (e2), e

xtade1 (e2)
])

=
∑

α,β∈∆

cαcβe
α(A)xs+β(A)xt [Eα, Eβ].

A crucial point is that [Eα, Eβ] ̸= 0 if α + β ∈ ∆ and one can also make α(A), β(A)
arbitrary by varying A.

Proof of Theorem 5.1. As the simplest non-trivial example, in what follows we choose
g = sl3(C). According to Example 5.13, the Cartan subalgebra h consists of diagonal
matrices in g and the roots are given by

λij(H) = Hii −Hjj, H ∈ h. (1 ⩽ i ̸= j ⩽ 3)

Let a, b be two given complex numbers. We construct a path development Fa,b : C2 → g
by specifying

e1 7→ A ≜

 2a+b
3

0 0
0 b−a

3
0

0 0 −a+2b
3

 , e2 7→ D ≜ E12 + E23 =

 0 1 0
0 0 1
0 0 0

 .

In particular, one has

D ∈ gλ12 + gλ2,3 ; λ12(A) = a, λ23(A) = b; [E12, E23] = E13 ∈ gλ13 .

It follows that

F̂a,b

([
exsade1 (e2), e

xtade1 (e2)
])

=
[
eaxsE12 + ebxsE23, e

axtE12 + ebxtE23

]
=

(
eaxs+bxt − eaxt+bxs

)
E13.

According to the formula (5.10) for H1(D2L̃, e1), one finds that

F̂a,b

(
H1(D2L̃, e1)

)
=

1

2

∞∑
m=0

Bm

m!
adm

A

( ∫
0<s<t<1

(
eaxs+bxt − eaxt+bxs

)
dysdyt

)
E13

=
1

2

∞∑
m=0

Bm

m!
(a+ b)m

∫
0<s<t<1

(
eaxs+bxt − eaxt+bxs

)
dysdyt · E13

=
1

2
· a+ b

ea+b − 1
·
∫
0<s<t<1

(
eaxs+bxt − eaxt+bxs

)
dysdyt · E13.
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Similarly, by using the formula (5.11) for H2(D1L̃, e1) one has

F̂a,b

(
H2(D1L̃, e1)

)
=
1

2

∫ 1

0

∫ 1

0

dysdyt ×
∑
m,l⩾0

BmBl

m!l!
·

m∑
k=1

adk−1
A

[
aleaxsE12 + blebxsE23, a

m−keaxtE12 + bm−kebxtE23

]
=
1

2

∫ 1

0

∫ 1

0

dysdyt ×
∑
m,l⩾0

BmBl

m!l!

×
m∑
k=1

(
albm−keaxs+bxt − am−kbleaxt+bxs

)
(a+ b)k−1 · E13.

After evaluating the summations explicitly, one finds that

F̂a,b

(
H2(D1L̃, e1)

)
=

1

2

( (a+ b)(eb − ea)
(ea+b − 1)(ea − 1)(eb − 1)

− b− a
(ea − 1)(eb − 1)

)
×

( ∫ 1

0

eaxtdyt
)( ∫ 1

0

ebxtdyt
)
E1,3.

Consequently,

F̂a,b(D2L) = F̂a,b(H1(D2L̃, e1)) + F̂a,b(H2(D1L̃, e1))

=
1

2
E1,3 ×

( a+ b

ea+b − 1
·
∫
0<s<t<1

(
eaxs+bxt − eaxt+bxs

)
dysdyt

+
( (a+ b)(eb − ea)
(ea+b − 1)(ea − 1)(eb − 1)

− b− a
(ea − 1)(eb − 1)

( ∫ 1

0

eaxtdyt
)( ∫ 1

0

ebxtdyt
))
.

By multiplying (ea − 1)(eb − 1)(ea+b − 1) on both sides, one obtains that

(ea − 1)(eb − 1)(ea+b − 1)F̂a,b(D2L)

=
1

2
E13 ×

(
(a+ b)(ea − 1)(eb − 1)

∫
0<s<t<1

(
eaxs+bxt − eaxt+bxs

)
dysdyt

+
(
(a+ b)(eb − ea)− (b− a)(ea+b − 1)

)( ∫ 1

0

eaxtdyt
)( ∫ 1

0

ebxtdyt
))
. (5.17)

Under the assumption that D2L has infinite R.O.C., the left hand side of (5.17)
defines an entire function in (a, b) ∈ C2. Let k ∈ Z\{0} be given fixed and let a, b ∈ C
satisfy a+ b = 2kπi. Then (5.17) becomes

0 = 2kπiE13 ×
(
(1− cosh b)

∫
0<s<t<1

(
e2kπi·xs+b(xt−xs) − e2kπi·xt+b(xs−xt)

)
dysdyt

+ (sinh b)
( ∫ 1

0

e(2kπi−b)xtdyt
)( ∫ 1

0

ebxtdyt
))
.
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Since k ̸= 0, one concludes the desired integral identity (5.1). This completes the proof
of Theorem 5.1.

Remark 5.14. It is certainly possible to use other types of complex semisimple Lie
algebras in the above analysis. We are not sure if the use of other root structures would
lead to new integral identities that are not covered by (5.1).

6 Higher order iterated integral identities
In this section, we establish the higher order counterpart of Corollary 5.2. To state our
main theorem, we first introduce the following definitions.

Definition 6.1. A finite sequence of numbers (a1, · · · , am) is said to be non-degenerate
if it does not contain zero consecutive sums, i.e. if

aj + aj+1 + · · ·+ ak ̸= 0

for all 1 ⩽ j ⩽ k ⩽ m.

Definition 6.2. Let γ : [0, 1] → R2 be a weakly geometric rough path. For each
m ⩾ 1, we define an analytic function Sγ

m : Cm → C in the following way. Given
a1, · · · , am ∈ C, let B : [0, 1]→ Cm be the path defined by

Bt ≜
m∑
j=1

( ∫ t

0

eajxsdys
)
ej

where {e1, · · · , em} denotes the standard basis of Cm. We define Sγ
m(a1, · · · , am) to be

the coefficient of the logarithmic signature of B with respect to the tensor e1⊗· · ·⊗em,
i.e.

Sγ
m(a1, · · · , am) ≜

(
logS(B)

)(1,··· ,m)
.

Example 6.3. By explicit calculation, one finds that

Sγ
1 (a) =

∫ 1

0

eaxsdys, S
γ
2 (a, b) =

1

2

∫
0<s<t<1

(
eaxs+bxt − ebxs+axt

)
dysdyt

and

Sγ
3 (a, b, c) =

∫
0<s<t<r<1

(1
3
eaxs+bxt+cxr − 1

6
eaxs+cxt+bxr − 1

6
ebxs+axt+cxr

− 1

6
ebxs+cxt+axr − 1

6
ecxs+axt+bxr +

1

3
ecxs+bxt+axr

)
dysdytdyr.

Remark 6.4. One can consider a general d-dimensional path

Bt ≜
d∑

i=1

( ∫ t

0

epixsdys
)
ei

It is not difficult to see that the logarithmic signature coefficient of B with respect to
ei1 ⊗ · · · ⊗ eim is given by Sγ

m(pi1 , · · · , pim).

49



Our main theorem of this section is stated as follows. As before, we assume that
γ : [0, 1]→ R2 is a weakly geometric rough path satisfying the normalisation condition
(3.1).

Theorem 6.5. Suppose that logS(γ) has infinite R.O.C. Then one has

Sγ
m(a1, · · · , am) = 0

for all m ⩾ 1 and all non-degenerate sequences (a1, · · · , am) satisfying aj ∈ 2πiZ for
each j.

Remark 6.6. When m = 1, 2, Theorem 6.5 reduces to Theorem 3.1 and Corollary 5.2
respectively. It is possible to establish higher order versions of the stronger Theorem
5.1. However, since the general formulae become significantly more involved we decide
not to pursue this generality.

Inspired by the second order case, our strategy for proving Theorem 6.5 will be
based on path developments into slm+1(C). The general spirit is not-so-different from
the second order argument. However, the underlying algebraic structure becomes much
subtler and the argument involves several non-trivial combinatorial considerations.

In the following subsections, we develop the proof of Theorem 6.5 in a precise
mathematical way. We will continue to use the notation introduced in Section 5.

6.1 A Chen-Strichartz type formula for DmL̃

Recall that L̃ is the logarithmic signature of the path γ̃ ≜ γ ⊔ ←−e 1 and Dm is the
projection operator defined in Definition 5.7. As a starting point, we first derive an
explicit formula for DmL̃ which generalises (5.8, 5.9). Throughout the rest, we use ∆m

to denote the standard simplex 0 < t1 < · · · < tm < 1.

Proposition 6.7. For any m ⩾ 1, one has

DmL̃ =
∑
σ∈Sm

(−1)e(σ)

m2
(
m−1
e(σ)

) ∫
∆m

[
e
xtσ(1)

ade1 (e2),[
· · ·

[
e
xtσ(m−1)

ade1 (e2), e
xtσ(m)

ade1 (e2)
]
· · ·

]]
dyt1 · · · dytm . (6.1)

Here we define
e(σ) ≜ #{j = 1, · · · ,m− 1 : σ(j) > σ(j + 1)}

for each permutation σ ∈ Sm.

Proof. Consider the path

Γt ≜
∫ t

0

exsade1 (e2)dys ∈ W ≜ T ((C2)).
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Its signature is given by

S(Γ) = 1+
∞∑

m=1

∫
∆m

dΓt1 ⊠ · · ·⊠ dΓtm ∈ T ((W )),

where ⊠ denotes another tensor product that is independent of ⊗. According to the
Chen-Strichartz formula (cf. [15, Theorem 3.27]), one has

logS(Γ) =
∞∑

m=1

∑
σ∈Sm

(−1)e(σ)

m2
(
m−1
e(σ)

) ∫
∆m

Jextσ(1)
ade1 (e2), J· · ·

Jextσ(m−1)
ade1 (e2), e

xtσ(m)
ade1 (e2)K · · ·KKdyt1 · · · dytm ∈ L((W )),

where J·, ·K denotes the commutator for ⊠. Now recall from Lemma 3.9 that the
signature of γ̃ is given by the formula 3.14 (without the last ee1-term). By applying
the algebra homomorphism ⊠ 7→ ⊗ as well as the projection Dm to the above relation,
the left hand side becomes DmL̃ and the right hand side is precisely (6.1).

6.2 slm+1(C)-development of the logarithmic signature

Our next step is to show that the logarithmic signature coefficients Sγ
m(a1, · · · , am) (cf.

Definition 6.2) can be realised through suitable path developments. Let us formulate
this fact in a slightly more general setting. Suppose that p1, · · · , pd ∈ C are given fixed
numbers. We define the path

Bt ≜
d∑

j=1

( ∫ t

0

epjxsdys
)
ej ∈ Cd. (6.2)

Let m ⩾ 1 and I = (i1, · · · , im) ∈ {1, · · · , d}m be a given fixed word. We consider
the path development F : C2 → slm+1(C) (cf. Example 5.13 for the relevant notation)
induced by

FI(e1) ≜ A ∈ h, FI(e2) ≜ E12 + E23 + · · ·+ Em,m+1, (6.3)

where the Cartan element A is chosen to satisfy

[A,Ek,k+1] = pikEk,k+1, k = 1, · · · ,m. (6.4)

It is a simple linear algebra exercise to see that such an FI exists. Recall from Section
3.2.3 that the induced homomorphisms at the tensor and Lie series levels are both
denoted as F̂I . The main result for this part stated as follows.

Proposition 6.8. One has

F̂I(DmL̃) = (logS(B))IE1,m+1, (6.5)

where (·)I denotes the coefficient of a tensor series over Cd with respect to the monomial
ei1 ⊗ · · · ⊗ eim .
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Our proof of Proposition 6.8, which has a combinatorial nature, reveals a surprising
connection between two very different Lie structures (slm+1(C) and free Lie algebra).
As we will see, they are connected through a shuffle product relation. We first intro-
duce some notation that is needed for the proof and then establish two key lemmas
connecting the two sides with a specific shuffle product relation. The identity (6.5) will
thus follow easily.

Some notation

(i) Suppose that (w1, · · · , wm) and (wm+1, · · · , wm+n) are two given words. We define
their shuffle product by

(w1, · · · , wm)� (wm+1, · · · , wm+n) ≜
∑

σ∈P(m,n)

(wσ−1(1), · · · , wσ−1(m+n)).

By definition, it is obvious that

aw� bu = a(w� bu) + b(aw� u) (6.6)

for all letters a, b and words w,u.

(ii) Let aj ∈ C be given numbers. The notation (eap , · · · , eaq) simply represents a word
and for given times sj we define

(eap , · · · , eaq)(sp, · · · , sq) ≜ exp
(
apxsp + · · ·+ aqxsq

)
.

The tensor product between two words is simply defined by concatenation. The Lie
bracket [ea, eb] is defined by

[ea, eb] ≜ (ea, eb)− (eb, ea).

When acting on a pair of times (s, t), one has

[ea, eb](s, t) ≜ (ea, eb)(s, t)− (eb, ea)(s, t) = eaxs+bxt − ebxs+axt .

(iii) Let a1, · · · , am ∈ C be given fixed. We introduce the word notation

(eap ,
↗
· · ·, eaq) ≜


(eap , eap+1 , · · · , eaq), if p ⩽ q;

1, if p = q + 1;

0, if p > q,

and

(eap ,
↘
· · ·, eaq) ≜


(eap , eap−1 , · · · , eaq), if p ⩾ q;

1, if p = q − 1;

0, if p < q.

Here 1 means the multiplicative unit (for both concatenation and shuffle product) and
0 means the empty word whose (tensor or shuffle) product with any other word is still
0. In other words, conventionally one has

1�w = w� 1 = w, 0�w = w� 0 = 0.
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Expression of F̂I(DmL̃) in terms of a shuffle identity

The first key lemma is related to computing the development of a generic term in the
formula (6.1) for DmL̃. Recall that the development FI is defined by (6.3) where A is
chosen according to (6.4) and aj = pij .

Lemma 6.9. For any k = 1, · · · ,m− 1, one has[
e
xtσ(m−k)

adA(FI(e2)),
[
· · ·

[
e
xtσ(m−1)

adA(FI(e2)), e
xtσ(m)

adA(FI(e2))
]]]

=
∑
j

m−1∑
i=1

(−1)j+k−i−1(((eaj , ↗· · ·, eai−1)� (eaj+k ,
↘
· · ·, eai+2))

⊗ [eai , eai+1 ]
)
(tσ(m−k), · · · , tσ(m))Ej,j+k+1. (6.7)

Here the Lie bracket is taken in slm+1(C) and we adopt the convention that Ep,q = 0 if
p, q ⩽ 0 or ⩾ m+ 2.

Proof. We prove the claim by induction on k. Let us denote the right hand side of (6.7)
by G(k). For the base step k = 1, by the definition of FI one has[

e
xtσ(m−1)

adA(FI(e2)), e
xtσ(m)

adA(FI(e2))
]

=
[
e
xtσ(m−1)

adA(E12 + · · ·+ Em,m+1), e
xtσ(m)

adA(E12 + · · ·+ Em,m+1)
]

=
[ m∑

j=1

e
ajxtσ(m−1)Ej,j+1,

m∑
k=1

e
akxtσ(m)Ek,k+1

]
. (6.8)

By using the explicit commutator relation

[Eij, Ekl] = δjkEil − δilEkj, (6.9)

one easily finds that the right hand side of (6.8) equals

m−1∑
i=1

(
e
aixtσ(m−1)e

ai+1xtσ(m) − eai+1xtσ(m−1)e
aixtσ(m)

)
Ei,i+2

=
m−1∑
i=1

[eai , eai+1 ](tσ(m−1), tσ(m))Ei,i+2 = G(1).

This concludes the base step.
Now suppose that the claim is true for k ⩽ n. By using the induction hypothesis,
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one can write[
e
xtσ(m−n−1)adAFI(e2),

[
e
xtσ(m−n)

adA(FI(e2))

· · ·
[
e
xtσ(m−1)

adA(FI(e2)), e
xtσ(m)

adA(FI(e2))
]]]

=
∑
j

m−1∑
i=1

(−1)j+n−i−1[ea1xtσ(m−n−1)E12 + · · ·+ e
amxtσ(m−n−1)Em,m+1,

(
((eaj ,

↗
· · ·, eai−1)� (eaj+n ,

↘
· · ·, eai+2))⊗ [eai , eai+1 ]

)
(tσ(m−n), · · · , tσ(m))Ej,j+n+1

]
.

Again by applying the commutator relation (6.9) and adjusting the j-index, the above
expression is equal to

∑
j

m−1∑
i=1

(−1)j+n−i(eaj ⊗ ((eaj+1 ,
↗
· · ·, eai−1)� (eaj+n+1 ,

↘
· · ·, eai+2))⊗ [eai , eai+1 ]

)
+
(
eaj+n+1 ⊗ ((eaj ,

↗
· · ·, eai−1)� (eaj+n ,

↘
· · ·, eai+2))⊗ [eai , eai+1 ]

)
(tσ(m−n−1), · · · , tσ(m))Ej,j+n+2

=
∑
j

m−1∑
i=1

(−1)j+n−i(((eaj , ↗· · ·, eai−1)� (eaj+n+1 ,
↘
· · ·, eai+2))⊗ [eai , eai+1 ]

)
(tσ(m−n−1), · · · , tσ(m))Ej,j+n+2 = G(n+ 1),

where the first equality follows from the relation (6.6). This completes the induction
step.

Computation of (logS(B))I

Before stating the second key lemma, we derive a general formula for basic Lie elements
which may be of independent interest. We consider the tensor algebra T ((Cd)). Let
J = (j1, · · · , jm) be a given word. We define

e[J ] ≜ [ej1 , [ej2 , · · · [ejm−1 , ejm ]]], eJ ≜ ej1 ⊗ · · · ⊗ ejm

respectively. Given a word K = (k1, · · · , kr) ⊆ (1, · · · ,m), we denote

JK ≜ (jk1 , · · · , jkr),
←−
JK ≜ (jkr , · · · , jk1).

As a convention, we also set e∅ ≜ 1 and
←−
∅ ≜ ∅.

Lemma 6.10. For any word J = (j1, · · · , jm), one has

e[J ] =
∑

K⊆(1,··· ,m−2)

(−1)|K|eJ\(JK ,jm−1,jm) ⊗ [ejm−1 , ejm ]⊗ e←−
JK
. (6.10)
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Proof. We prove the claim by induction. The case when m = 2 is obvious. Suppose
that the claim is true for any word with length ⩽ m− 1 and let J = (j1, · · · , jm). By
the induction hypothesis, one has

e[J ] =[ej1 , e[J ′]] (J ′ ≜ J\{j1})

=
∑

K⊆(2,··· ,m−2)

(−1)|K|e(j1,J ′)\(J ′
K ,jm−1,jm) ⊗ [ejm−1 , ejm ]⊗ e←−

J ′
K

−
∑

K⊆(2,··· ,m−2)

(−1)|K|eJ ′\(J ′
K ,jm−1,jm) ⊗ [ejm−1 , ejm ]⊗ e←−−−−−

(j1,J ′
K)

=
∑

L⊆(1,··· ,m−2)

(−1)|L|eJ\(JL,jm−1,jm) ⊗ [ejm−1 , ejm ]⊗ e←−
JL

The last equality follows from the observation that the two sums in the second last
equality correspond to the cases 1 /∈ L and 1 ∈ L respectively.

We are now able to establish the second key lemma for the proof of Proposition
6.8. This connects the logarithmic signature coefficient (logS(B))I with the same kind
of shuffle product identity appearing in Lemma 6.9. Recall that Bt is the path in Cd

defined by (6.2) with given p1, · · · , pd ∈ C. To ease notation, we write

dBJ
tσ ≜ dBj1

tσ(1)
· · · dBjm

tσ(m)
.

We denote πI : T ((Cd))→ C as the projection map which extracts the coefficient of a
tensor with respect to eI .

Lemma 6.11. For any word I = (i1, · · · , im), one has

πI
( ∑
J :|J |=m

∫
∆m

dBJ
tσe[J ]

)
=

m−1∑
i=1

(−1)m−1−i
∫
∆m

(
((ea1 ,

↗
· · ·, eai−1)� (eam ,

↘
· · ·, eai+2))

⊗ [eai , eai+1 ]
)
(tσ(1), · · · , tσ(m))dyt1 · · · dytm , (6.11)

where aj ≜ pij (j = 1, · · · ,m).

Proof. According to Lemma 6.10, one has

πI(e[J ])eI =
∑

K⊆(1,··· ,m−2)

(−1)|K|πI
(
eJ\(JK ,jm−1,jm) ⊗ [ejm−1 , ejm ]⊗ e←−

JK

)
. (6.12)

Let K = (k1, · · · , kr) ⊆ (1, · · · ,m− 2) be given fixed. For any word J with length m,
one has

πI
(
eJ\(JK ,jm−1,jm) ⊗ [ejm−1 , ejm ]⊗ e←−

JK

)
̸= 0
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if and only if
(J\(JK , jm−1, jm), jm−1, jm,

←−
JK) = I

or
(J\(JK , jm−1, jm), jm, jm−1,

←−
JK) = I.

The first (respectively, second) case comes with a plus (respectively, minus) sign arising
from the Lie bracket. As a result, the word J in the first case is uniquely determined
by

J = ( · · · im · · · im−1 · · · im−r+1 · · · im−r−1 im−r )
· · · k1 · · · k2 · · · kr · · · m− 1 m

(6.13)

where the “· · · ” positions are filled by (i1, · · · , im−r−2) in its natural order. Respectively,
the word J in the second case is determined by swapping im−r−1, im−r in the last two
positions in (6.13). We denote these two uniquely determined words by J1(K) and
J2(K) respectively.

It follows from the above computation that∑
J :|J |=m

∫
∆m

dBJ
tσπI(e[J ]) =

∑
K⊆(1,··· ,m−2)

(−1)|K|
∫
∆m

(
dB

J1(K)
tσ − dBJ2(K)

tσ

)
.

From the explicit shapes of J1(K), J2(K), it is not hard to see that the above expression
is precisely equal to

m−2∑
r=0

(−1)r
∫
∆m

(
((ea1 ,

↗
· · ·, eam−r−2)� (eam ,

↘
· · ·, eam−r+1))

⊗ [eam−r−1 , eam−r ]
)
(tσ(1), · · · , tσ(m))dyt1 · · · dytm .

The desired relation follows from the change of indices i ≜ m− 1− r.

We are now in a position to finish the proof of Proposition 6.8.

Proof of Proposition 6.8. According to Proposition 6.7 and Lemma 6.9 with k = m−1,
one has

F̂I(DmL̃) =
∑
σ∈Sm

(−1)e(σ)

m2
(
m−1
e(σ)

) m−1∑
i=1

(−1)m−i−1∫
∆m

(
((ea1 ,

↗
· · ·, eai−1)� (eam ,

↘
· · ·, eai+2))

⊗ [eai , eai+1 ]
)
(tσ(1), · · · , tσ(m))dyt1 · · · dytmE1,m+1. (6.14)

On the other hand, the Chen-Strichartz formula gives that

logS(B) =
∞∑

m=1

∑
σ∈Sm

(−1)e(σ)

m2
(
m−1
e(σ)

) ∑
J :|J |=m

∫
∆m

dBJ
tσe[J ]. (6.15)
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It follows from (6.15) and Lemma 6.11 that the right hand side of (6.14) is precisely
(logS(B))IE1,m+1. This completes the proof of the proposition.

We conclude this part by presenting a general formula for the development of DkL̃,
which will be important to us later on. Recall that Sγ

m is the analytic function defined
by Definition 6.2. Throughout the rest, we will omit the superscript γ for simplicity.

Corollary 6.12. Let a1, · · · , am ∈ C be given fixed numbers. Consider the slm+1(C)-
development defined by (6.3) where A ∈ h is chosen to be such that [A,Ek,k+1] =
akEk,k+1 for all k = 1, · · · ,m. Then one has

F̂ (DkL̃) =
m−k+1∑
j=1

Sk(aj, · · · , aj+k−1)Ej,j+k (6.16)

for all k = 1, · · · ,m.

Proof. The case when k = m is just Proposition 6.7 applied to the path

Bt ≜
( ∫ t

0

ea1xsdys, · · · ,
∫ t

0

eamxsdys
)
∈ Cm

with the word I = (1, · · · ,m). For a general k, the same argument as the proof of
Lemma 6.9 gives that

F̂ (DkL̃) =
∑
σ∈Sk

(−1)e(σ)

k2
(
k−1
e(σ)

) m−k+1∑
j=1

m−1∑
i=1

(−1)j+k−i

∫
∆k

(
((eaj ,

↗
· · ·, eai−1)� (eaj+k−1 ,

↘
· · ·, eai+2))

⊗ [eai , eai+1 ]
)
(tσ(1), · · · , tσ(k))dyt1 · · · dytkEj,j+k. (6.17)

In view of Lemma 6.11, after a change of indices l ≜ i − j + 1 the right hand side of
(6.17) is precisely

m−k+1∑
j=1

Sk(aj, · · · , aj+k−1)Ej,j+k.

The relation (6.16) thus follows.

6.3 Proof of Theorem 6.5

Our proof of Theorem 6.5 is based on a key lemma regarding the analyticity of path
developments for the Hausdorff series. Since its proof has a rather involved combina-
torial nature, we decide to only state this analyticity lemma here and then use it to
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complete the proof of Theorem 6.5. In Section 6.4 below, we will give the proof of this
key lemma.

Recall that the n-th Hausdorff series Hn is defined by (3.12). In our context, we
need to consider a more specific series which is defined in terms of the homogeneous
projections of L̃.

Definition 6.13. Let n ⩾ 1 and k1, · · · , kn ⩾ 1 be given fixed. We define

Hn(k1, · · · , kn) ≜
1

n!

(
H1(k1)∂e1

)
◦ · · · ◦

(
H1(kn)∂e1

)
(e1),

where we used the shorthand notationH1(ki) ≜ H1(DkiL̃, e1). It is clear thatHn(k1, · · · , kn)
depends only on the vector K ≜ (k1, · · · , kn) and we will thus also use the alternative
shorthand notation HK .

Remark 6.14. In the above definition, we view DkiL̃ as a fixed symbol and the deriva-
tion H1(kj)∂e1 does not act on it. As a result, Hn(k1, · · · , kn) is expressed as a formal
Lie series over the n+1 independent symbols {e1, Dk1L̃, · · · , DknL̃}. It is then regarded
as a Lie series over R2 through the substitution DkiL̃ ∈ L((⟨e1, e2⟩)).

Lemma 6.15. Let N ⩾ 2 be a given fixed integer. Suppose that Sn(a1, · · · , an) = 0
for all n ⩽ N − 1 and all non-degenerate sequences (a1, · · · , an) with aj ∈ 2πiZ. Let
(b∗1, · · · , b∗N) be a fixed non-degenerate sequence with bj ∈ 2πiZ. Given w ∈ C, we
define the path development Fw : C2 → slN+1(C) by

Fw(e1) ≜ Aw, Fw(e2) ≜ E12 + · · ·+ EN,N+1, (6.18)

where Aw ∈ h is chosen to satisfy

[Aw, Ek,k+1] = (b∗k + w)Ek,k+1 (k = 1, · · · , N). (6.19)

Then for any vector K = (k1, · · · , kn) satisfying |K| = N, n ⩾ 2 or |K| ⩽ N − 1, n ⩾ 1
and any j = 1, · · · , N, there exists a meromorphic function ΨK,j : C|K| → C (i.e. the
quotient of two holomorphic functions) in |K| complex variables, such that

F̂w(HK) =
∑
j

ΨK,j(b
∗
j + w, · · · , b∗j+|K|−1 + w)Ej,j+|K|

and the function w 7→ ΨK,j(b
∗
j + w, · · · , b∗j+|K|−1 + w) is analytic in a neighbourhood

of w = 0 for all (K, j). Here F̂w is the induced Lie homomorphism on L((C2)) (cf.
(3.15)).

Now we prove Theorem 6.5 presuming the correctness of Lemma 6.15.

Proof of Theorem 6.5. We argue by induction on the lengthm of the sequence (a1, · · · , am).
The cases when m = 1, 2 are just Theorem 3.1 and Corollary 5.2 respectively. Sup-
pose that the claim is true for all non-degenerate sequences with length ⩽ N − 1. Let
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(b∗1, · · · , b∗N) be a non-degenerate sequence with b∗j ∈ 2πiZ for all j. Our goal is to show
that SN(b

∗
1, · · · , b∗N) = 0.

First of all, by using the degree N version of (5.7) one finds that

DNL = DN

( ∞∑
n=1

Hn(L̃, e1)
)
= H1(N) +

N∑
n=2

∑
k1+···+kn=N

Hn(k1, · · · , kn). (6.20)

Given w ∈ C, let Fw : C2 → slN+1(C) denote the path development defined by (6.18)
under the condition (6.19). By applying F̂w to both sides of (6.20), one finds that

F̂w(DNL) =H1(F̂w(DN L̃), A) +
N∑

n=2

∑
k1+···+kn=N

F̂w(Hn(k1, · · · , kn))

=SN(b
∗
1 + w, · · · , b∗N + w)ϕ(b∗1 + · · ·+ b∗N +Nw)E1,N+1

+
N∑

n=2

∑
k1+···+kn=N

F̂w(Hn(k1, · · · , kn)).

The second equality follows from Corollary 6.12 and the definition (3.11) of H1, where
ϕ(z) ≜ z

ez−1 . Since the induction hypothesis holds for all non-degenerate sequences
with length < N , one can apply Lemma 6.15 to conclude that the function

w 7→ F̂w(Hn(k1, · · · , kn))

is analytic near w = 0. Note that w 7→ F̂w(DNL) is also an analytic function (on the
whole space C due to the infinite R.O.C. for DNL). It follows that the function

w 7→ SN(b
∗
1 + w, · · · , b∗N + w)ϕ(b∗1 + · · ·+ b∗N +Nw)

must be analytic near w = 0. Recall that b∗ ≜ b∗1 + · · · + b∗N is a nonzero integer
multiple of 2πi and is thus a pole of ϕ. As a consequence, the function w 7→ SN(b

∗
1 +

w, · · · , b∗N + w) must vanish at w = 0. In other words, one has SN(b
∗
1, · · · , b∗N) = 0,

which completes the induction step.

6.4 The analyticity lemma

It remains to prove the analyticity lemma which will be the main task of this subsection.

6.4.1 A recursive formula for the Hausdorff series

Our strategy relies on induction on the total degree |K| of the vector K = (k1, · · · , kn).
For this purpose, we shall derive a recursive formula for computing Hn(k1, · · · , kn)
in terms of “symmetrised products” of Hm’s (m < n). We first define such type of
products.
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Definition 6.16. Let A1, · · · , Ar, e1, v be given symbols. We define the linear operator

A1∂e1⊗̂s · · · ⊗̂sAr∂e1 : T ((⟨e1, v⟩))→ T ((⟨e1, v, A1, · · · , Ar⟩))

in the following way. Let f1 ⊗ · · · ⊗ fN be a given monomial where fi = e1 or v. We
first define

A1∂e1⊗̂ · · · ⊗̂Ar∂e1(f1 ⊗ · · · ⊗ fN)

≜
∑

f1 ⊗ · · · ⊗ fi1−1 ⊗ A1 ⊗ fi1+1 ⊗ · · · ⊗ fir−1 ⊗ Ar ⊗ fir+1 ⊗ · · · ⊗ fN ,

where the summation is taken over all r-subsets {i1, · · · , ir} with fij = e1. In other
words, the action is given by replacing r e1’s by (A1, · · · , Ar) and summing over all such
possibilities. The definition is extended to the tensor algebra T ((⟨e1, v⟩)) by linearity.
We then set

A1∂e1⊗̂s · · · ⊗̂sAr∂e1 ≜
∑
σ∈Sr

Aσ(1)∂e1⊗̂ · · · ⊗̂Aσ(r)∂e1 .

The following simple property of the operator A1∂e1⊗̂s · · · ⊗̂sAr∂e1 will be useful to
us.

Lemma 6.17. One has

A1∂e1⊗̂s · · · ⊗̂sAr∂e1(ad
l
e1
(v))

=
∑
σ∈Sr

∑
ξ1+···+ξr+1=l−r

adξ1
e1
◦ adAσ(1)

◦ adξ2
e1
◦ · · · ◦ adξr

e1
◦ adAσ(r)

◦ adξr+1
e1

(v)

for any l ⩾ r ⩾ 1.

Proof. This follows by induction on r based on Definition 6.16 (one first treats the
case when l = r by induction and then the case when l ⩾ r follows by another step of
induction from cases (l − 1, r) and (l − 1, r − 1)).

To get some feeling about the shape of Hn(k1, · · · , kn), we first look at the small-n
cases.

Example 6.18. We have seen the computation for H2 in (5.11). Let us consider the
case when n = 3. By definition, one has

H3(k1, k2, k3)

=
1

3!

(
H1(k1)∂e1

)(∑
l

Bl

l!
(H1(k2)∂e1)(ad

l
e1
(Dk3L̃))

)
=

1

3!

(
H1(k1)∂e1

)(∑
l

Bl

l!

∑
ξ1+ξ2=l−1

adξ1
e1
◦ adH1(k2) ◦ adξ2

e1
(Dk3L̃)

)
=

1

3!

∑
τ∈S2

∑
l

Bl

l!

∑
ξ1+ξ2+ξ3=l−2

adξ1
e1
◦ adH1(kτ(1))◦ad

ξ2
e1
◦ adH1(kτ(2)) ◦ ad

ξ3
e1
(Dk3L̃)

+
2!

3!

∑
l

Bl

l!

∑
ξ1+ξ2=l−1

adξ1
e1
◦ adH2(k1,k2) ◦ adξ2

e1
(Dk3L̃).
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A crucial observation is that the above expression can be rewritten in terms of the
symmetrised tensor product in Definition 6.16. In fact, according to Lemma 6.17 one
has

H3(k1, k2, k3) =
1

3!

(
(H1(k1)∂e1)⊗̂s(H1(k2)∂e1)

)(
H1(k3)

)
+

2!

3!

(
H2(k1, k2)∂e1

)
(H1(k3)).

Our aim is to generalise the above formula to arbitrary Hn(k1, · · · , kn).

To state the recursive formula for general Hn(k1, · · · , kn), we need to introduce one
more definition to ease notation.

Definition 6.19. Let P = {I1, · · · , Ir} be a given (unordered) partition of {1, · · · , n}
(i.e. Ip ̸= ∅, Ip ∩ Iq = ∅ for p ̸= q and ∪Ip = {1, · · · , n}). We define

ĤP (k1, · · · , kn) ≜ HK1∂e1⊗̂s · · · ⊗̂sHKr∂e1 ,

where Ip = (ip1 < · · · < iplp) and Kp ≜ (kip1 , · · · , kiplp ) (p = 1, · · · , r).

The main recursive formula for Hn(k1, · · · , kn) is stated as follows.

Proposition 6.20. For any n ⩾ 1 and k1, · · · , kn ⩾ 1, one has

Hn(k1, · · · , kn) =
∑

P={I1,··· ,Ir}

l1! · · · lr!
n!

ĤP (k1, · · · , kn−1)(H1(kn)),

where the summation is taken over all (unordered) partitions {I1, · · · , Ir} of the set
{1, · · · , n− 1} and ls denotes the cardinality of Is (s = 1, · · · , r).

Proof. We prove the claim by induction on n. To simplify notation, we get rid of the
factorials by setting H̄n ≜ n!Hn and ˆ̄HP ≜ l1! · · · lr!ĤP . The base case n = 1 is clear.
Suppose that the claim is true for H̄n−1. By the definition of Hn(k1, · · · , kn) and the
induction hypothesis, one has

H̄n(k1, · · · , kn) = (H1(k1)∂e1)
(
H̄n−1(k2, · · · , kn)

)
= (H1(k1)∂e1)

[∑
P

( ˆ̄HP (k2, · · · , kn−1)(H1(kn))
)]
, (6.21)

where the summation is taken over all partitions of {2, · · · , n− 1}.
Given any such partition P = {I1, · · · , Ir}, by using Lemma 6.17 (and the notation

in Definition 6.19) one can write

ˆ̄HP (k2, · · · , kn−1)(H1(kn))

=
∑
τ∈Sr

∑
l

Bl

l!

∑
ξ1+···+ξr+1=l−r

adξ1
e1
◦ adH̄Kτ(1)

◦ adξ2
e1
◦

· · · ◦ adH̄Kτ(r)
◦ adξr+1

e1
(DknL̃).
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As a derivation, the outer H1(k1)∂e1 action in (6.21) will either apply to the ade1 ’s or
to the H̄Kτ(i)

’s. The former case yields

ˆ̄H{1}⊕P (k1, · · · , kn−1)(H1(kn))

where {1}⊕P is the partition {{1}, I1, · · · , Ir} of {1, · · · , n− 1}, while the latter case
yields

r∑
s=1

ˆ̄H{I1,··· ,{1}∪Is,··· ,Ir}(k1, · · · , kn−1)(H1(kn))

where {I1, · · · , {1} ∪ Is, · · · , Ir} is the partition of {1, · · · , n− 1} obtained by adding
the element “1” into Is. As a consequence, one finds that

H̄n(k1, · · · , kn) =
∑

P={I1,··· ,Ir}

[ ˆ̄H{1}⊕P (k1, · · · , kn−1)(H1(kn))

+
r∑

s=1

ˆ̄H{I1,··· ,{1}∪Is,··· ,Ir}(k1, · · · , kn−1)(H1(kn))
]
.

The right hand side is exactly the sum of ˆ̄HQ(k1, · · · , kn−1)(H1(kn)) over all possible
partitions of {1, · · · , n−1}. Indeed, any such partition Q corresponds to a partition P
of {2, · · · , n− 1} together with a specific way of adding the element “1” (either outside
P or into one of the members of P ) and vice versa. This completes the induction
step.

6.4.2 A combinatorial identity

The following combinatorial identity plays a key role in the proof. It allows one to
express certain quotients defined by non-consecutive sums of a sequence in terms of
consecutive sums.

Lemma 6.21. Let 0 ⩽ s ⩽ R be given fixed and let {ck}1⩽k⩽R+1 be a given sequence
of numbers. Then one has

∑
η∈T (s,R−s)

1

c
η−1(2)

η−1(2)c
η−1(3)

η−1(2) · · · c
η−1(R+1)

η−1(2)

=
( s∏
k=1

csk
)−1( R+1∏

k=s+2

cks+2

)−1
. (6.22)

Here T (s, R− s) denotes the collection of permutations η ∈ SR+1 such that

η(s+ 1) = 1; η(s) < · · · < η(1); η(s+ 2) < · · · < η(R + 1). (6.23)

We also denote

c
η−1(k)

η−1(2) ≜ cη−1(2) + cη−1(3) + · · ·+ cη−1(k), c
q
p ≜ cp + cp+1 + · · ·+ cq, (6.24)

and conventionally we set c01 = cR+1
R+2 = 1.
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Proof. The case when R = 2, 3 can be checked explicitly. Suppose that the claim
is true for R − 1. Let 0 ⩽ s ⩽ R and {ck}1⩽k⩽R+1 be given . By the definition of
η ∈ T (s, R− s), either η(1) = R + 1 or η(R + 1) = R + 1. One can thus write∑

η∈T (s,R−s)

1

c
η−1(2)

η−1(2)c
η−1(3)

η−1(2) · · · c
η−1(R+1)

η−1(2)

=
∑

η:η(1)=R+1

+
∑

η:η(R+1)=R+1

.

According to the induction hypothesis,

∑
η:η(1)=R+1

1

c
η−1(2)

η−1(2)c
η−1(3)

η−1(2) · · · c
η−1(R+1)

η−1(2)

=
1

(cs1 + cR+1
s+2 )

×
( s∏
k=2

csk
)−1( R+1∏

k=s+2

cks+2

)−1
and similarly

∑
η:η(1)=R+1

1

c
η−1(2)

η−1(2)c
η−1(3)

η−1(2) · · · c
η−1(R+1)

η−1(2)

=
1

(cs1 + cR+1
s+2 )

×
( s∏
k=1

csk
)−1( R∏

k=s+2

cks+2

)−1
.

It is easily seen that the sum of the above two expressions is equal to the right hand
side of (6.22).

6.4.3 Proof of Lemma 6.15

We are now in a position to develop the precise proof of Lemma 6.15. We first recall
the standing assumptions of the lemma which will be imposed throughout the rest of
this subsection.

Assumption (AN−1). Let N ⩾ 2 be given fixed. We assume that Sm(a1, · · · , am) = 0
for all m ⩽ N − 1 and all non-degenerate sequences (a1, · · · , am) with aj ∈ 2πiZ.

Now let (b∗1, · · · , b∗N) be a given fixed non-degenerate sequence with b∗j ∈ 2πiZ. For
each w ∈ C, we consider the path development Fw into slN+1(C) defined by (6.18,
6.19). Recall that F̂w is the induced Lie homomorphism F̂w on L((C2)).

We are going to prove Lemma 6.15 by induction on the degree |K| = k1 + · · ·+ kn
of the vector K = (k1, · · · , kn). To be precise, we assume as the induction hypothesis
that for any vector K with degree |K| < k ⩽ N and j = 1, · · · , N , there exists a
meromorphic function ΨK,j in |K| variables such that

F̂w(HK) =
∑
j

ΨK,j(b
∗
j + w, · · · , b∗j+|K|−1 + w)Ej,j+|K|. (6.25)

In addition, the function

w 7→ ΨK,j(b
∗
j + w, · · · , b∗j+|K|−1 + w)

is analytic near w = 0. We want to prove the same assertion for any vector K =
(k1, · · · , kn) of degree |K| = k. Here we should emphasise that n ⩾ 2 if k = N and
n ⩾ 1 if k < N .
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We first consider the easier case when n = 1 and k < N . According to Corollary
6.12 and the H1-formula (3.11), one has

F̂w(H1(k)) =
∑
l

Bl

l!
adl

A

(
F̂w(DkL̃)

)
=

∑
j

Sk(b
∗
j + w, · · · , b∗j+k−1 + w)

∑
l

Bl

l!
(b∗j + · · ·+ b∗j+k−1 + kw)lEj,j+k

=
∑
j

Sk(b
∗
j + w, · · · , b∗j+k−1 + w)ϕ(b∗j + · · ·+ b∗j+k−1 + kw)Ej,j+k.

Since k < N , one knows from Assumption (AN−1) that Sk(b
∗
j , · · · , b∗j+k−1) = 0. On

the other hand, w = 0 is a simple pole of the function ϕ(b∗j + · · ·+ b∗j+k−1 + kw). As a
result, the function

Ψ(k),j(w) ≜ Sk(b
∗
j + w, · · · , b∗j+k−1 + w)ϕ(b∗j + · · ·+ b∗j+k−1 + kw)

is analytic at w = 0. This proves the assertion in the current case.

We now focus on the more difficult case when n ⩾ 2 (k ⩽ N). According to
Proposition 6.20, it suffices to prove the following claim.

Claim. Let K1, · · · , Kr be given vectors (of positive integers) and let n0 ⩾ 1 be such
that |Kr|+ · · ·+ |K1|+ n0 = k ⩽ N . Then one can write

F̂w

(
HKr∂e1⊗̂s · · · ⊗̂sHK1∂e1(H1(n0))

)
=

∑
j

ΦK1,··· ,Kr,n0,j(b
∗
j + w, · · · , b∗j+k−1 + w)Ej,j+k, (6.26)

where the ΦK1,··· ,Kr,n0,j’s are suitable meromorphic functions in k variables whose one-
dimensional reductions

w 7→ ΦK1,··· ,Kr,n0,j(b
∗
j + w, · · · , b∗j+k−1 + w)

are all analytic near w = 0.

By using Lemma 6.17, the H1-formula (3.11) and Corollary 6.12, one can first
rewrite the left hand side of (6.26) as

F̂w

(
HKr∂e1⊗̂s · · · ⊗̂sHK1∂e1(H1(n0))

)
=
∞∑
l=0

Bl

l!

∑
σ∈Sr

∑
ξ0+ξ1+···+ξr=l−r

adξr
A ◦ adF̂w(HKσ(r)

) ◦ ad
ξr−1

A

◦ · · · ◦ adξ1
A ◦ adF̂w(HKσ(1)

) ◦ ad
ξ0
A

(
F̂w(Dn0L̃)

)
. (6.27)

The main effort is to evaluate the above summation over the ξi’s by using the induction
hypothesis on the F̂w(HKσ(j)

)’s (note that |Kσ(j)| < k). We first state the key lemma
for this purpose and then explain the heavy notation involved.
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Lemma 6.22. Let L1, · · · , Lr be given vectors of positive integers and let n0 ⩾ 1.
Suppose that |L1|+ · · ·+ |Lr|+ n0 = k ⩽ N. Then one has∑

ξ0+ξ1+···+ξr=l−r

adξr
A ◦ adF̂w(HLr )

◦ · · · ◦ adξ1
A ◦ adF̂w(HL1

) ◦ ad
ξ0
A

(
F̂w(Dn0L̃)

)
=

∑
i

r+1∑
µ=1

Θi
Lµ−1,··· ,L1,n0

· (bi+nµ−1
0 −1

i )l+1−µ

∑
I∈Wµ,r

(−1)ε(I)ΨLµ,r
p,q

I,nµ−1
0

·

b
nµ,r
p,q

(iµ),n
µ−1
0

b
nµ,r
p,q

(iµ,iµ+1),n
µ−1
0

· · · bn
µ,r
p,q

I,nµ−1
0

Ei−|nµ,r
p |,i+nµ−1

0 +|nµ,r
q |. (6.28)

Here Wµ,r denotes the set of words I = (iµ, iµ+1, · · · , ir) ∈ {±1}r−µ+1. Given such
a word I, the vector p denotes the subword of (µ, · · · , r) which records the locations
of −1’s in I and q ≜ (µ, · · · , r)\p. The quantity ε(I) denotes the length of p (i.e.
number of −1’s in I). The function Θi

Lµ−1,··· ,L1,n0
is defined by

Θi
Lµ−1,··· ,L1,n0

≜ ΘLµ−1,··· ,L1,n0,i(bi, bi+1, · · · , bi+k−1),

where ΘLµ−1,··· ,L1,n0,i is a suitable meromorphic function in m complex variables (m ≜
n0 + |L1|+ · · ·+ |Lµ−1|) whose shape depends on (L1, · · · , Lµ−1), n0 and i. The family
{Θi

L1,··· ,Lµ−1,n0
} of functions satisfy the following property: for any integer i, 1 ⩽ ν ⩽ r

and any sequence of vectors V = (V1, · · · , Vr), under the one-dimensional reduction
bj ≜ b∗j + w the function

w 7→
∑
σ∈Sν

Θi
Vσ(ν),··· ,Vσ(1),n0

(6.29)

is analytic near w = 0 and vanishes at w = 0. When µ = 1, the function Θi
Lµ−1,··· ,L1,n0

depends only on n0 and i. As a convention, if µ = r + 1 the summation
∑

I∈W(µ,r) in
(6.22) is set to be one and |nµ,r

p | = |nµ,r
q | ≜ 0 .

Remark 6.23. The functions Θi
Vν ,··· ,V1,n0

may be singular at w = 0; it is their sym-
metrisation (6.29) which will eliminate the possible singularity.

Explanation of notation

Here we explain the notation involved in the expression (6.28).

(i) Let L ≜ (L1, · · · , Lr) and ni ≜ |Li| (1 ⩽ i ⩽ r). Given 0 ⩽ i ⩽ j ⩽ r, we set
nj
i ≜ ni + ni+1 + · · · + nj. For each 1 ⩽ µ ⩽ r, we set nµ,r ≜ (nµ, · · · , nr). Let

p = (p1, · · · , pl) be a given subword of nµ,r and q ≜ nµ,r\p = (q1, · · · , qm). Elements
in p,q are arranged in the natural order. We write

nµ,r
p ≜ (np1 , · · · , npl), n

µ,r
q ≜ (nq1 , · · · , nqm)
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respectively and set |nµ,r
p | ≜ np1 + · · ·+ npl .

(ii) Given i ⩽ j, we define bji ≜ bi + bi+1 + · · · + bj. We always use ΨL,j to denote a
function in |L| variables whose shape depends on a given vector L and a number j.
We write

Ψj
L ≜ ΨL,j(bj, bj+1, · · · , bj+|K|−1).

Here bj ≜ b∗j + w is viewed as a function of w.

(iii) Let L, ni, µ, p,q be given as in Part (i). Let I = (iµ, iµ+1, · · · , ir) be a given word
with ij = ±1. Denote s (respectively, t) as the number of −1’s (respectively, 1’s) in I.
Suppose that s ⩽ l and t ⩽ m. We define

b
nµ,r
p,q,

I,nµ−1
0

≜ bi−1i−np1−···−nps
+ b

i+nµ−1
0 +nq1+···+nqt−1

i+nµ−1
0

. (6.30)

and

Ψ
Lµ,r
p,q

I,nµ−1
0

≜Ψ
i−np1
Lp1

Ψ
i−np1−np2
Lp2

· · ·Ψi−np1−···−nps

Lps

×Ψ
i+nµ−1

0
Lq1

Ψ
i+nµ−1

0 +q1
Lq2

· · ·Ψi+nµ−1
0 +q1+···+qt−1

Lqt
. (6.31)

Remark 6.24. The superscripts in b and Ψ mean that the movement steps are taken
from the word nµ,r, where the indices p and q record backward and forward index
movements with sizes npj and nqk respectively. The subscript µ means that the index
gap between the initial backward and forward movements is nµ

0(= n0+n1+ · · ·+nµ). In
other words, the backward movement starts from index i−1 and the forward movement
starts from i+nµ

0 . In the above definitions, i is fixed and is not reflected in the notation.

Remark 6.25. The quantities b
nµ,r
p,q,

I,nµ−1
0

and Ψ
Lµ,r
p,q

I,nµ−1
0

depend on the word I only through
the numbers s, t (numbers of ∓1’s respectively).

Proof of Lemma 6.22

Consider the following slightly more general claim which depends on the positive integer
r.

Claim P(r): The following representation holds∑
ξ0+ξ1+···+ξr=v

adξr
A ◦ adF̂w(HLr )

◦ · · · ◦ adξ1
A ◦ adF̂w(HL1

) ◦ ad
ξ0
A

(
F̂w(Dn0L̃)

)
=

∑
i

r+1∑
µ=1

Θi
Lµ−1,··· ,L1,n0

· (bi+nµ−1
0 −1

i )v+r+1−µ

∑
I∈Wµ,r

(−1)ε(I)ΨLµ,r
p,q

I,nµ−1
0

·

b
nµ,r
p,q

(iµ),n
µ−1
0

b
nµ,r
p,q

(iµ,iµ+1),n
µ−1
0

· · · bn
µ,r
p,q

I,nµ−1
0

Ei−|nµ,r
p |,i+nµ−1

0 +|nµ,r
q | (6.32)
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for any sequence of vectors L = (L1, · · · , Lr) and v ∈ N. Here the functions {Θi
Lµ−1,··· ,L1,n0

}
satisfy the properties stated in Lemma 6.22.

Note that the result of Lemma 6.22 follows immediately by taking v = l − r. We now
prove the claim P(r) by induction on r.

Step 1: Base case.

For the base case r = 1, one first recalls from Corollary 6.12 that

F̂w(Dn0L̃) =
∑
i

Si
n0
Ei,i+n0

where Si
n0

≜ Sn0(bi, bi+1, · · · , bi+n0−1). Therefore, one has

adξ0
A (F̂w(Dn0L̃)) =

∑
i

Si
n0
(bi+n0−1

i )ξ0Ei,i+n0 . (6.33)

Next, recall that the assumption (6.25) is valid since we are under the induction step
for proving of the main Lemma 6.15 (all the Lj’s are assumed to satisfy |Lj| < k where
k is defined in the Claim (6.26)). In particular, one has

F̂w(HL1) =
∑
j

Ψj
L1
Ej,j+n1 (6.34)

where Ψj
L1

are analytic near w = 0. It follows from (6.33, 6.34) that

adF̂w(HL1
) ◦ ad

ξ0
A

(
F̂w(Dn0L̃)

)
=

∑
i

Si
n0
· (bi+n0−1

i )ξ0
∑
j

Ψj
L1
[Ej,j+n1 , Ei,i+n0 ].

There are at most two j-cases to make the above Lie bracket nonzero: j = i− n1 and
j = i+ n0. The former case is interpreted as a “backward movement” while the latter
is a “forward movement”. In other words, one can write

adF̂w(HL1
) ◦ ad

ξ0
A

(
F̂w(Dn0L̃)

)
=

∑
i

Si
n0
(bi+n0−1

i )ξ0
(
Ψi−n1

L1
Ei−n1,i+n0 −Ψi+n0

L1
Ei,i+n0+n1

)
.

The additional adξ1
A -action yields that

adξ1
A ◦ adF̂w(HL1

) ◦ ad
ξ0
A

(
F̂w(Dn0L̃)

)
=

∑
i

Si
n0
(bi+n0−1

i )ξ0
[
Ψi−n1

L1
· (bi+n0−1

i−n1
)ξ1Ei−n1,i+n0

−Ψi+n0
L1
· (bi+n0+n1−1

i )ξ1Ei,i+n0+n1

]
.

Now we perform the summation over ξ0 + ξ1 = v by using the elementary formula∑
ξ0+ξ1=v

xξ0yξ1 =
yv+1 − xv+1

y − x
. (6.35)
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This gives that∑
ξ0+ξ1=v

adξ1
A ◦ adF̂w(HL1

) ◦ ad
ξ0
A

(
F (Dn0L̃)

)
=

∑
i

Si
n0

Ψi−n1
L1

bi−1i−n1

[
(bi+n0−1

i−n1
)v+1 − (bi+n0−1

i )v+1
]
Ei−n1,i+n0

−
∑
i

Si
n0

Ψi+n0
L1

bi+n0+n1−1
i+n0

[
(bi+n0+n1−1

i )v+1 − (bi+n0−1
i )v+1

]
Ei,i+n0+n1

=
∑
i

Si
n0
(bi+n0−1

i )v+1
(
−

Ψi−n1
L1

bi−1i−n1

Ei−n1,i+n0 +
Ψi+n0

L1

bi+n0+n1−1
i+n0

Ei,i+n0+n1

)
+
∑
i

[(
Si+n1
n0

Ψi
L1

bi+n1−1
i

− Si
n0

Ψi+n0
L1

bi+n0+n1−1
i+n0

)
(bi+n0+n1−1

i )v+1
]
Ei,i+n0+n1 , (6.36)

where the last line follows from a change of indices i − n1 ↔ i. The desired identity
(6.32) thus follows by taking Θi

n0
≜ Si

n0
(µ = 1) and

Θi
L1,n0

≜
(
Si+n1
n0

Ψi
L1

bi+n1−1
i

− Si
n0

Ψi+n0
L1

bi+n0+n1−1
i+n0

)
(bi+n0+n1−1

i ). (6.37)

The function Θi
L1,n0

is analytic near w = 0 since the sequence (b∗1, · · · , b∗N) is non-
degenerate (the denominators appearing in (6.37) are nonzero near w = 0). It is clear
that both Θi

n0
and Θi

L1,n0
vanishes at w = 0 due to the presence of the Sn0-terms (cf.

Assumption (AN−1)).

Step 2: Evaluation of (6.32) based on induction hypothesis.

Now suppose that Claim P(r − 1) is true and we want to prove Claim P(r). Let
(L1, · · · , Lr) be a given sequence of vectors and let v ⩾ 0. By applying (6.25) and
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Claim P(r − 1) to v − ξr, one finds that∑
ξ0+···+ξr−1+ξr=v

adξr
A ◦ adF̂w(HLr )

◦ adξr−1

A ◦ · · · ◦ adF̂w(HL1
) ◦ ad

ξ0
A

(
F̂w(Dn0L̃)

)
=

v∑
ξr=0

adξr
A

([∑
j

Ψj
Lr
Ej,j+nr ,

∑
ξ0+···+ξr−1=v−ξr

ad
ξr−1

A ◦ adF̂w(HLr−1
)◦

· · · ◦ adξ1
A ◦ adF̂w(HL1

) ◦ ad
ξ0
A

(
F̂w(Dn0L̃)

)])
=

v∑
ξr=0

∑
i

r∑
µ=1

Θi
Lµ−1,··· ,L1,n0

·
∑

I∈Wµ,r−1

(−1)ε(I)ΨLµ,r−1
p,q

I,nµ−1
0

·Ψi−|nµ,r−1
p |−nr

Lr

b
nµ,r−1
p,q

(iµ),n
µ−1
0

· · · bn
µ,r−1
p,q

I,nµ−1
0

×
(
b
i+nµ−1

0 −1
i

)v−ξr+r−µ(
b
i+nµ−1

0 +|nµ,r−1
q |−1

i−|nµ,r−1
p |−nr

)ξr
Ei−|nµ,r−1

p |−nr,i+nµ−1
0 +|nµ,r−1

q | (6.38)

−
v∑

ξr=0

∑
i

r∑
µ=1

Θi
Lµ−1,··· ,L1,n0

·
∑

I∈Wµ,r−1

(−1)ε(I)ΨLµ,r−1
p,q

I,nµ−1
0

·Ψi+nµ−1
0 +|nµ,r−1

q |
Lr

b
nµ,r−1
p,q

(iµ),n
µ−1
0

· · · bn
µ,r−1
p,q

I,nµ−1
0

×
(
b
i+nµ−1

0 −1
i

)v−ξr+r−µ(
b
i+nµ−1

0 +|nµ,r−1
q |+nr−1

i−|nµ,r−1
p |

)ξr
Ei−|nµ,r−1

p |,i+nµ−1
0 +|nµ,r−1

q |+nr
. (6.39)

Just like the base case, one performs the summation over ξr in (6.38) and (6.39) re-
spectively. This gives that

v∑
ξr=0

(
b
i+nµ−1

0 −1
i

)v−ξr+r−µ(
b
i+nµ−1

0 +|nµ,r−1
q |−1

i−|nµ,r−1
p |−nr

)ξr
= (b

i+nµ−1
0 −1

i )r−µ ×

(
b
i+nµ−1

0 +|nµ,r−1
q |−1

i−|nµ,r
(p,r)
|

)v+1 −
(
b
i+nµ−1

0 −1
i

)v+1

b
nµ,r
(p,r),q

(I,−1),nµ−1
0

(6.40)

and respectively,

v∑
ξr=0

(
b
i+nµ−1

0 −1
i

)v−ξr+r−µ(
b
i+nµ−1

0 +|nµ,r−1
q |+nr−1

i−|nµ,r−1
p |

)ξr
= (b

i+nµ−1
0 −1

i )r−µ ×

(
b
i+nµ−1

0 +|nµ,r
(q,r)
|−1

i−|nµ,r
p |

)v+1 −
(
b
i+nµ−1

0 −1
i

)v+1

b
nµ,r
p,(q,r)

(I,1),nµ−1
0

. (6.41)
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By substituting (6.40, 6.41) into (6.38, 6.39) respectively, one can write∑
ξ0+···ξr−1+ξr=v

adξr
A ◦ adF̂w(HLr )

◦ · · · ◦ adξ1
A ◦ adF̂w(HL1

) ◦ ad
ξ0
A

(
F̂w(Dn0L̃)

)

=
∑
i

r∑
µ=1

Θi
Lµ−1,··· ,L1,n0

(b
i+nµ−1

0 −1
i )v+r+1−µ

∑
I∈Wµ,r

(−1)ε(I)ΨLµ,r
p,q

I,nµ−1
0

b
nµ,r
p,q

(iµ),n
µ−1
0

· · · bn
µ,r
p,q

I,nµ−1
0

× Ei−|nµ,r
p |,i+nµ−1

0 +|nµ,r
q | −

∑
i

r∑
µ=1

Θi
Lµ−1,··· ,L1,n0

(b
i+nµ−1

0 −1
i )r−µ

∑
I∈Wµ,r

(−1)ε(I)ΨLµ,r
p,q

I,nµ−1
0

b
nµ,r
p,q

(iµ),n
µ−1
0

· · · bn
µ,r
p,q

I,nµ−1
0

(
b
i+nµ−1

0 +|nµ,r
q |

i−|nµ,r
p |

)v+1
Ei−|nµ,r

p |,i+nµ−1
0 +|nµ,r

q |

=: I + J. (6.42)

Now we define

Θj
Lr,··· ,L1,n0

≜−
(
b
j+nr

0
j

) r∑
µ=1

∑
i,I:i−|nµ,r

p |=j

Θi
Lµ−1,··· ,L1,n0

× (b
i+nµ−1

0 −1
i )r−µ

(−1)ε(I)ΨLµ,r
p,q

I,nµ−1
0

b
nµ,r
p,q

(iµ),n
µ−1
0

· · · bn
µ,r
p,q

I,nµ−1
0

. (6.43)

It follows that
J =

∑
j

Θj
Lr,··· ,L1,n0

(b
j+nr

0−1
j )vEj,j+nr

0
.

This is regarded as the term corresponding to µ = r + 1 in the induction claim P(r)
(cf. (6.32) and the I-term corresponds to the summation

∑r
µ=1 in the claim (6.32)). It

is clear from its expression that Θj
Lr,··· ,L1 ,n0

is a meromorphic function in the complex
variables (bj, bj+1, · · · ) (before the one-dimensional reduction bj = b∗j + w).

Step 3: Analyticity of the symmetrisation of J .

To finish the proof, it remains to show that the function∑
σ∈Sr

Θj
L(σ(r)),··· ,L(σ(1)),n0

is (as a function of w) analytic near w = 0. To this end, it is convenient to use the
original expression of J defined in (6.42). Equivalently, we aim at showing that the
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slN+1(C)-valued function

∑
σ∈Sr

J =−
∑
i

r∑
µ=1

∑
σ∈Sr

∑
I∈Wµ,r

Θi
Lσ(µ−1),··· ,Lσ(1),n0

(b
i+(nσ)µ−1

0 −1
i )r−µ

×
(−1)ε(I)Ψ(Lσ)µ,rp,q

I,(nσ)µ−1
0

b
(nσ)µ,rp,q

(iµ),(nσ)µ−1
0

· · · b(n
σ)µ,rp,q

I,(nσ)µ−1
0

(
b
i+(nσ)µ−1

0 +|(nσ)µ,rq |−1
i−|(nσ)µ,r

p |

)v+1

× Ei−|(nσ)µ,rp |,i+(nσ)µ−1
0 +|(nσ)µ,r

q | (6.44)

is analytic near w = 0. Here Lσ ≜ (Lσ(1), · · · , Lσ(r)) and respectively, we denote
nσ ≜ (nσ(1), · · · , nσ(r)) and (nσ)µ−10 ≜ n0 + nσ(1) + · · ·+ nσ(µ−1).

Let i and µ be given fixed. The first crucial observation is that any permutation
σ ∈ Sr can be written as

σ = τ ◦ (ζ ⊗ θ),

where τ is a (µ− 1, r + 1− µ)-shuffle, ζ is a permutation over {1, · · · , µ− 1} and θ is
a permutation over {µ, · · · , r}. In this way, the summation over σ and I in (6.44) can
be rewritten as∑

τ∈P(µ−1,r+1−µ)

∑
ζ∈S{1,··· ,µ−1}

Θi
Lτ◦ζ(µ−1),··· ,Lτ◦ζ(1),n0

(b
i+(nτ◦ζ)µ−1

0 −1
i )r−µ

×
r+1−µ∑
s=0

(−1)s
∑

θ∈S{µ,··· ,r}

∑
I∈Wµ,r:|p|=s

Ψ
(Lτ◦θ)µ,rp,q

I,(nτ◦ζ)µ−1
0

b
(nτ◦θ)µ,r

p,q

(iµ),(nτ◦ζ)µ−1
0

· · · b(n
τ◦θ)µ,r

p,q

I,(nτ◦ζ)µ−1
0

×
(
b
i+(nτ◦ζ)µ−1

0 +|(nτ◦θ)µ,rq |−1
i−|(nτ◦θ)µ,rp |

)v+1
Ei−|(nτ◦θ)µ,r

p |,i+(nτ◦ζ)µ−1
0 +|(nτ◦θ)µ,r

q |. (6.45)

It is important to note that the expression in the last two lines depends only on τ and
is independent of ζ, since

(nτ◦ζ)µ−10 ≜ n0 + nτ(ζ(1)) + · · ·+ nτ(ζ(µ−1)) = n0 + nτ(1) + · · ·+ nτ(µ−1).

Let us denote the summation over (θ, I) in (6.45) by Ts,τ . It follows that

(6.45) =
∑

τ∈P(µ−1,r+1−µ)

(b
i+(nτ )µ−1

0 −1
i )r−µ

r+1−µ∑
s=0

(−1)sTs,τ

×
∑

ζ∈S{1,··· ,µ−1}

Θi
Lτ◦ζ(µ−1),··· ,Lτ◦ζ(1),n0

.

According to the induction hypothesis P(r − 1), the function∑
ζ∈S{1,··· ,µ−1}

Θi
Lτ◦ζ(µ−1),··· ,Lτ◦ζ(1),n0
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is (as a function of w) analytic near w = 0 and vanishes at w = 0.
Now our task is reduced to showing that the function Ts,τ is analytic near w = 0

for any fixed s and τ . To ease notation, we will temporarily write

n̄0 ≜ (nτ )µ−10 , L̄ ≜ (Lτ(µ), · · · , Lτ(r)), n̄ ≜ (nτ(µ), · · · , nτ(r)).

Given a permutation θ ∈ S{µ,··· ,r}, we denote

L̄θ ≜ (L̄θ(µ), · · · , L̄θ(r)) = (Lτ(θ(µ)), · · · , Lτ(θ(r)))

and respectively,

n̄θ ≜ (n̄θ(µ), · · · , n̄θ(r)) = (nτ(θ(µ)), · · · , nτ(θ(r))).

Under the above simplified notation, our target Ts,τ is defined by

Ts,τ ≜
∑

θ∈S{µ,··· ,r}

∑
I∈Wµ,r:|p|=s

Ψ
(L̄θ)µ,rp,q

I,n̄0

b
(n̄θ)µ,rp,q

(iµ),n̄0
· · · b(n̄

θ)µ,r
p,q

I,n̄0

×
(
b
i+n̄0+|(n̄θ)µ,rq |−1
i−|(n̄θ)µ,r

p |

)v+1
Ei−|(n̄θ)µ,rp |,i+n̄0+|(n̄θ)µ,rq | (6.46)

The next crucial observation is that the set of words I ∈ Wµ,r with precisely s
number of−1’s is in one-to-one correspondence with the set P(s;µ, r) of (s, r+1−µ−s)-
shuffles over {µ, · · · , r}, i.e. permutations ρ ∈ S{µ,··· ,r} satisfying

ρ(µ) < ρ(µ+ 1) < · · · < ρ(µ+ s− 1), ρ(µ+ s) < · · · < ρ(r).

Indeed, given ρ ∈ P(s;µ, r) one can define

Iρ = (iµ, · · · , ir) : iρ(j) =

{
−1, j = µ, · · · , µ+ s− 1;

1, j = µ+ s, · · · , r.

In this way, p = (ρ(µ), · · · , ρ(µ + s − 1)) and q = (ρ(µ + s), · · · , ρ(r)). Using this
correspondence, one can write

Ts,τ =
∑

θ∈S{µ,··· ,r}

∑
ρ∈P(s;µ,r)

Ψ
(L̄θ◦ρ)µ,rp̄,q̄

Iρ,n̄0

b
(n̄θ◦ρ)µ,r

p̄,q̄

(iµ),n̄0
· · · b(n̄

θ◦ρ)µ,rp̄,q̄

Iρ,n̄0

×
(
b
i+n̄0+|(n̄θ◦ρ)µ,r

q̄ |−1
i−|(n̄θ◦ρ)µ,r

p̄ |

)v+1
Ei−|(n̄θ◦ρ)µ,rp̄ |,i+n̄0+|(n̄θ◦ρ)µ,r

q̄ |. (6.47)

Here p̄ ≜ (µ, · · · , µ + s − 1) and q̄ ≜ (µ + s, · · · , r) are the two canonical subwords
which are both independent of ρ. Recall from Remark 6.25 that the function Ψ

(L̄θ◦ρ)µ,r
p̄,q̄

Iρ,n̄0

depends on Iρ only through the numbers of ∓1’s in it. In particular, one has

Ψ
(L̄θ◦ρ)µ,rp̄,q̄

Iρ,n̄0
= Ψ

(L̄θ◦ρ)µ,rp̄,q̄

Ī,n̄0
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for all ρ ∈ P(s;µ, r) where

Ī = (−1, · · · ,−1︸ ︷︷ ︸
s

, 1, · · · , 1︸ ︷︷ ︸
r+1−µ−s

).

With this observation in mind, the point is that one can now exchange the summations
in (6.47), and after doing so, since the θ-summation is a full symmetrisation one could
just replace θ ◦ ρ by θ (ignoring the role of ρ). In other words, one has

Ts,τ =
∑

ρ∈P(s;µ,r)

∑
θ∈S{µ,··· ,r}

Ψ
(L̄θ)µ,r

p̄,q̄

Ī,n̄0

b
(n̄θ)µ,r

p̄,q̄

(iµ),n̄0
· · · b(n̄

θ)µ,rp̄,q̄

Iρ,n̄0

×
(
b
i+n̄0+|(n̄θ)µ,r

q̄ |−1
i−|(n̄θ)µ,rp̄ |

)v+1
Ei−|(n̄θ)µ,rp̄ |,i+n̄0+|(n̄θ)µ,rq̄ |

=
∑

θ∈S{µ,··· ,r}

Ψ
(L̄θ)µ,rp̄,q̄

Ī,n̄0
·
(
b
i+n̄0+|(n̄θ)µ,r

q̄ |−1
i−|(n̄θ)µ,rp̄ |

)v+1

×
[ ∑
ρ∈P(s;µ,r)

1

b
(n̄θ)µ,rp̄,q̄

(iµ),n̄0
· · · b(n̄

θ)µ,r
p̄,q̄

Iρ,n̄0

]
Ei−|(n̄θ)µ,rp̄ |,i+n̄0+|(n̄θ)µ,rq̄ |.

where we changed the order of summation back to reach the last equality.
It remains to show that for every fixed θ, the summation

Ts,τ ;θ ≜
∑

ρ∈P(s;µ,r)

1

b
(n̄θ)µ,r

p̄,q̄

(iµ),n̄0
· · · b(n̄

θ)µ,r
p̄,q̄

Iρ,n̄0

defines an analytic function near w = 0. The third crucial observation is that Ts,τ ;θ
is precisely in the form of Lemma 6.21. To see this point, let us shift the indices
{µ, · · · , r} back to the standard form {1, · · · , R} (R ≜ r + 1− µ). Namely, we denote

n̂ ≜ (n̂1, · · · , n̂R), n̂i ≜ n̄θ(µ+i−1); p̂ ≜ (1, · · · , s), q̂ ≜ (s+ 1, · · · , R).

In addition, any shuffle ρ ∈ P(s;µ, r) corresponds to some ρ̂ ∈ P(s, R − s) in the
obvious way (and also at the level of words I ↔ Îρ). As a result, one can rewrite

Ts,τ ;θ =
∑

ρ̂∈P(s,R−s)

1

b
n̂1,R
p̂,q̂

(̂i1),n̄0
· · · b

n̂1,R
p̂,q̂

Îρ,n̄0

We define the sequence of numbers {cj}1⩽j⩽R+1 in the following way:

b
i−

∑s−1
j=1 n̂j−1

i−
∑s

j=1 n̂j
· · · bi−n̂1−1

i−n̂1−n̂2
bi−1i−n̂1

bi+n̄0−1
i b

i+n̄0+n̂s+1−1
i+n̄0

· · · b
i+n̄0+

∑R
j=s+1 n̂j−1

i+n̄0+
∑R−1

j=s+1 n̂j

c1 · · · cs−1 cs cs+1 cs+2 · · · cR+1.
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Note that there is a one-to-one correspondence between P(s, R − s) and T (s, r − s)
(cf. Lemma 6.21 for its definition) given by

ρ̂ 7→ η :
(
η(1), η(2), · · · , η(s), η(s+ 1), η(s+ 2), · · · , η(R + 1)

)
≜

(
(ρ̂(s) + 1, ρ̂(s− 1) + 1, · · · , ρ̂(1) + 1, 1, ρ̂(s+ 1) + 1, · · · , ρ̂(R) + 1).

It is then readily checked that

b
n̂1,R
p̂,q̂

(̂i1),n̄0
· · · b

n̂1,R
p̂,q̂

Î,n̄0
= c

η−1(2)

η−1(2)c
η−1(3)

η−1(2) · · · c
η−1(R+1)

η−1(2) ,

where the right hand side is defined by (6.24). According to Lemma 6.21, one concludes
that ∑

ρ̂∈P(s,R−s)

1

b
n̂1,R
p̂,q̂

(̂i1),n̄0
· · · b

n̂1,R
p̂,q̂

Î,n̄0

=
( s∏
k=1

csk
)−1( R+1∏

k=s+2

cks+2

)−1
. (6.48)

By the definition of cj, it is apparent that both csk and cks+2 are certain consecutive sums
of the bj’s. In particular, (6.48) is of the form 1

b
t1
s1
···btmsm

for suitable s1 ⩽ t1, · · · , sm ⩽ tm.

Since the base point (b∗1, · · · , b∗N) is assumed to be non-degenerate, it follows that the
function Ts,τ ;θ (as a function of w) is analytic near w = 0.

The proof of the induction step is now complete.

Completing the proof of Lemma 6.15

We have obtained from (6.27) and Lemma 6.22 that

F̂w

(
HKr∂e1⊗̂s · · · ⊗̂sHK1∂e1(H1(n0))

)
=

∑
l

Bl

l!

∑
i

r+1∑
µ=1

∑
σ∈Sr

Θi
Kσ(µ−1),··· ,Kσ(1),n0

(
b
i+(nσ)µ−1

0 −1
i

)l+1−µ

∑
I∈Wµ,r

(−1)ε(I)Ψ(Kσ)µ,r
p,q

I,(nσ)µ−1
0

b
(nσ)µ,rp,q

(iµ),(nσ)µ−1
0

· · · b(n
σ)µ,rp,q

I,(nσ)µ−1
0

Ei−|(nσ)µ,r
p |,i+(nσ)µ−1

0 +|(nσ)µ,rq |. (6.49)

The argument for proving the analyticity of (6.49) near w = 0 is identical to the
analysis in Step 3 of the proof of Lemma 6.22. The key idea, the same as before, is to
write any permutation σ ∈ Sr as σ = τ ◦ (ζ⊗θ) where τ ∈ P(µ−1, r+1−µ), ζ ∈ Sµ−1
and θ ∈ S{µ,··· ,r}. This allows one to split the σ-action in (6.22) into permutations over
the {1, · · · , µ− 1} and {µ, · · · , r} parts separately. By exactly the same analysis as in
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Step 3 of the proof of Lemma 6.22, one finds that

F̂w

(
HKr∂e1⊗̂s · · · ⊗̂sHK1∂e1(H1(n0))

)
=

∑
i

r+1∑
µ=1

∑
τ∈P(µ−1,r+1−µ)

(
b
i+(nτ )µ0−1
i

)1−µ
ϕ
(
b
i+(nτ )µ−1

0
i

)
×

( ∑
ζ∈Sµ−1

Θi
Kτ◦ζ(µ−1),··· ,Kτ◦ζ(1),n0

)
· Ξi

Kτ(µ),··· ,Kτ(1),(n
τ )µ−1

0
. (6.50)

Here

Ξi
Kτ(µ),··· ,Kτ(r),(n

τ )µ−1
0

≜
∑

θ∈S{µ,··· ,r}

∑
I∈Wµ,r:|p|=s

(−1)ε(I)Ψ(Kτ◦θ)µ,rp,q

I,(nτ )µ−1
0

b
(nτ◦θ)µ,rp,q

(iµ),(nτ )µ−1
0

· · · b(n
τ◦θ)µ,r

p,q

I,(nτ )µ−1
0

Ei−|(nτ◦θ)µ,rp |,i+(nτ )µ−1
0 +|(nσ)µ,rq |

for 1 ⩽ µ ⩽ r and as a convention

Ξi
Kτ(µ),··· ,Kτ(r),(n

τ )µ−1
0

≜ Ei,i+nr
0

if µ = r + 1. The function Ξi
Kτ(µ),··· ,Kτ(r),(n

τ )µ−1
0

is an slN+1(C)-valued analytic function
near w = 0 for the same reason leading to the analyticity of Ts,τ as before (cf. (6.46)).
The analyticity of (6.50) near w = 0 thus follows from the facts that

(i) w = 0 is a simple pole for the function

ϕ
(
b
i+(nτ )µ−1

0
i

)
= ϕ(b∗i + · · ·+ b∗

i+(nτ )µ−1
0 −1 + (nτ )µ−10 w);

(ii) the function ∑
ζ∈Sµ−1

Θi
Kτ◦ζ(µ−1),··· ,Kτ◦ζ(1),n0

vanishes at w = 0.

This show that F̂w

(
HKr∂e1⊗̂s · · · ⊗̂sHK1∂e1(H1(n0))

)
is an slN+1(C)-valued analytic

function near w = 0. The proof of Lemma 6.15 is now complete.
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