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Abstract

The signature transform, which is defined in terms of iterated path integrals of
all orders, provides a faithful representation of the group of tree-reduced geometric
rough paths. While the signature coefficients are known to decay factorially fast,
the coefficients of the logarithimic signature generically only possess geometric
decay. It was conjectured by T. Lyons and N. Sidorova [20] that the only tree-
reduced paths with bounded variation (BV) whose logarithmic signature can have
infinite radius of convergence are straight lines. This conjecture was confirmed
in the same work for certain types of paths and the general BV case remains
unsolved.

The aim of the present article is to develop a deeper understanding towards
the Lyons-Sidorova conjecture. We prove that, if the logarithmic signature has
infinite radius of convergence, the signature coefficients must satisfy an infinite
system of rigid algebraic identities defined in terms of iterated integrals along
complex exponential one-forms. These iterated integral identities impose strong
geometric constraints on the underlying path, and in some special situations,
confirm the conjecture.

As a non-trivial application of our integral identities, we prove a strengthened
version of the conjecture, which asserts that if the logarithmic signature of a
BV path has infinite radius of convergence over all sub-intervals of time, the
underlying path must be a straight line.

Our methodology relies on Cartan’s path development onto the complex
semisimple Lie algebras sl,,,(C). The special root patterns of sl,,(C) allow one
to project the infinite-dimensional Baker-Campbell-Hausdorff (BCH) formula in
a very special finite dimensional manner to yield meaningful quantitative rela-
tions between BCH-type singularities and the vanishing of certain iterated path
integrals.
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1 Introduction

The signature transform (or simply the signature) of a multidimensional continuous
path 7 : [0,7] — R? with bounded variation (BV) is the formal tensor series

S(v) = (1,97 — 70,/

0<s<t<T
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defined by the global iterated path integrals of all orders. This path transformation was
originally introduced by the geometer K. T. Chen [9] in the 1950s to study the topology
of loop spaces over manifolds. The signature transform plays a fundamental role in
Lyons’ rough path theory as well as its broad applications to problems in stochastic
analysis and more recently, in machine learning. Its theoretical importance partly
comes from the signature uniqueness theorem, which asserts that every rough path is
uniquely determined by its signature up to tree-like equivalence (cf. [8, 16, 3]). A
probabilistic counterpart of this theorem was obtained by Chevyrev-Lyons [10]. The
monographs [14, 19] contain excellent exposition on the mathematical theory of the
signature transform and some applications to stochastic analysis are discussed e.g. in
[1, 18, 21|. Some recent applications of signature-based methods in machine learning
are contained e.g. in [11, 24, 27| (and references therein).

While the signature encodes essential geometric information about the underlying
path, it contains a lot of algebraic redundancies since different components of the signa-
ture are related by some universal algebraic constraints (the shuffle product formula).
An effective way of removing such algebraic dependencies is to pass to the so-called
logarithmic signature transform. The two objects are naturally isomorphic, however,
it was a deep theorem of Chen [7] that the logarithmic signature is a free Lie series
and thereby does not contain algebraic relations among its components. This leads to
dimension-reduction from a practical viewpoint. An important motivation for study-
ing the logarithmic signature is related to the study of controlled differential equations,
which will be elaborated further in Section 1.1 below. In recent years, methods based
on the logarithmic signature have also been developed to study various problems in
machine learning (cf. [12, 29] and references therein).

Analytic properties of the signature and logarithmic signature are very different
on the other hand. It is well-known (which is rather trivial in the BV case) that the
signature components decay factorially fast with respect to the degree. However, it is
highly non-trivial that components of the logarithmic signature generically only possess
geometric decay. This is like the infinite dimensional analogue of the elementary fact
that the exponential function e* is entire while the logarithmic function log(1+ z) only
has a finite radius of convergence (R.0.C.). Understanding such a property, even just
in the BV case, is still an unsolved open problem in rough path theory.

1.1 Motivation: a conjecture of T. Lyons and N. Sidorova

The logarithmic signature arises naturally when one attempts to solve a controlled
differential equation (CDE) using the so-called log-ODE method. Consider the following
CDE

d
dX, =) Vi(X)dy, 0<t<T (1.1)

i=1
on a differentiable manifold M, where V7, --- ,V; are smooth vector fields on M and

7 is a smooth R%valued path. At a formal level, the flow of diffeomorphisms on M



induced by (1.1) admits a “logarithm” in the Lie algebra £(V1, - - -, V4) of smooth vector
fields generated by the V;’s. Such a logarithm can be explicitly expressed in terms of
the logarithmic signature of ~.

To elaborate this, let W be a smooth vector field on M. We use exp(W) to denote
the diffeomorphism given by the time-one map of the flow induced by W. In other
words,

exp(W): M — M, exp(W)x =y

where (y;)o<t<1 solves the ODE

Y = W(yt), Yo = T.

The solution at time 7" to the CDE (1.1) can formally be expressed as

Xr=exp (> A(7)Viy) (). (1.2)

I
Here the summation is taken over all words I = (i1,--- ,i,) where n > 1 and i; €
{1,---,d}. The numbers A;(7) are the logarithmic signature coefficients of +; one has

log 5(7) - Z AI(’Y)[ei17 [61'27 T [einfu ein] e ]]

I:(i1,'~~ 7in)

The vector fields Vjz are defined by Vig £ [Vi,, [Viys -+, [Vi,_1» Viu]l]- The relation (1.2)
is often known as the Chen-Strichartz formula (cf. [1, 28]).

However, the formula (1.2) is only formal and it requires additional analytic as-
sumptions on log S(y) and the vector fields V; to make it precise. It is accurate if v is
a straight line or if the Lie algebra £(V4, -, Vy) is nilpotent (in both cases, the series
(1.2) becomes a finite sum). In general, one expects that the series (1.2) should con-
verge if the “size” of the vector fields is within the R.O.C. of log S(y). This makes the
R.O.C. for the logarithmic signature a natural object of study. However, it is still un-
clear how one can make such intuition mathematically precise. In practice, one usually
applies a truncated version of (1.2) over a partition of [0, T'] to obtain an approximating
solution (numerical scheme) and tries to prove convergence when the mesh size is sent
to zero (cf. [1, 13]).

Cartan’s path development

There is a simple yet useful situation where the analysis can be made very precise. Let
G be a matrix Lie group with Lie algebra g. Let V' = (Vi,--- | V}) be d left invariant
vector fields on G. The Lie algebra £(Vi,--- | Vy) is now a sub-algebra of g. One can
prove that the series (1.2) is convergent if ||V|| < R.O.C. of log S(v), where certain
matrix norms has to be taken and fixed. It is known from [10] that the R.O.C. is strictly
positive and in particular, the series (1.2) is always convergent (in the current Lie group
setting) as long as the vector fields V; are “small enough”. The resulting solution X
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to the CDE (1.1) defines a path in the Lie group G which is known as Cartan’s path
development of v in G. If 7 is a straight line, say v = tw (w € R4t € [0,77]), the
formula (1.2) is well-defined for all left invariant vector fields. The solution X; is just
the one-parameter subgroup defined by

d
X; = exp(t Z w'V;),

i=1

where exp is now the exponential map for G. This aligns with the fact that log S(v)
has infinite R.O.C.

Initiated by the celebrated work of Lyons-Sidorova [20], it has been widely believed
that straight lines are the only (tree-reduced) BV paths whose logarithmic signatures
can have infinite R.O.C. The logic in Lyons-Sidorova’s argument can be summarised as
follows. Suppose that log S(7) has infinite R.O.C. Then the end point X of Cartan’s
development of v into any Lie group always admits a logarithm, namely, X7 is always
an element in the image of the exponential map. In other words, if one is able to
construct a special Cartan’s development such that X turns out to be outside Im exp,
this immediately suggests that log S(+y) only has finite R.O.C. Of course, this method
requires the use of (non-compact) Lie groups with non-surjective exponential map (e.g.
the special linear group SLy(R)). Lyons and Sidorova |20] proved the above claim for
two special classes of paths based on such a geometric viewpoint: paths which are
strictly increasing in one particular direction (what they called 1-monotone paths) and
a generic class of piecewise linear paths (which they called non-double paths). They
conjecturered that the claim should be true in the most general BV setting. To the
best of our knowledge, this problem remains unsolved.

1.2 Summary of main results and novelty

The main goal of the present article is to study the aforementioned Lyons-Sidorova
(LS) conjecture in depth. Although we have not resolved the conjecture in its full
generality, in what follows we summarise our main findings and disucss the novelty of
our work.

Main results. The general philosophy of our results is that having infinite R.O.C. for
the logarithmic signature leads to rigid algebraic constraints on signature coefficients
and thus geometric constraints on the underlying path.

(A) The very first (and important) comment is that the conjecture turns out to be a
conjugacy class property. As a result, it needs to be modified accordingly (for otherwise,
it cannot be true in its original form). See Section 2.2 (in particular, Proposition 2.6)
below for the details.

(B) Our first main result is that if the logarithmic signature of a non-closed path has
infinite R.O.C., the path has to satisfy a specific type of line integral identities. Such
integral identities naturally lead to geometric constraints on the underlying path, and



in certain special situations, yield the conclusion of the conjecture. See Section 3 below
for the precise formulation.

(C) Our second main result is a strengthened version of the conjecture which holds in
the most general BV setting. More precisely, we prove that if the logarithmic signature
of an arbitrary BV path has infinite R.O.C. over any time interval [s,t], the path must
live on a straight line. This result is a non-trivial application of Theorem 3.1 together
with fine analysis of path-geometry based on winding number considerations. See
Section 4 below for more details.

(D) Our last main result is the higher order extension of (B). We show that if the
logarithmic signature of a non-closed path has infinite R.O.C., the path has to satisty an
infinite system of specific iterated integral identities. These iterated integral identities
impose much stronger geometric constraints on the path than the line integral identities
given by Theorem 3.1 do. In particular, they allow one to handle paths that cannot
be detected by Theorem 3.1 (cf. Example 5.6 below).

Novelty. Apart from the nature of the aforementioned main results, an important
aspect of novelty in the current work is the methodology we develop. The original
technique of Lyons-Sidorova [20] has a geometric nature; they studied the geometric
behaviour of the lifted path in the Lie group and showed that the lifted path will
eventually leave the image of the exponential map under some very special choice of
Cartan’s development.

We also work with Cartan’s development as a starting point, however, our method
is very different in nature to the one developed in [20]. Essentially, the finiteness
of R.O.C. property is closely related to how the Baker-Campbell-Hausdorff (BCH)
formula exhibits singularity properties in a certain sense. This problem is already
quite delicate in the simplest case of a piecewise linear path with two edges, say v, w
(which corresponds to the classical BCH formula for loge’e®). The Lyons-Sidorova
conjecture can be viewed as an infinite dimensional version of singularity analysis for
the BCH formula.

A main novelty of the current work is that such singularity properties can be studied
through Cartan’s developments into complex semisimple Lie algebras. 1t turns out that
the special root patterns of semisimple Lie algebras allows one to project the infinite
dimensional BCH formula in a very special (finite dimensional) manner, so that one
can perform singularity analysis at various explicit and quantitative levels.

Our approach thus has a strong algebraic nature in contrast to Lyons-Sidorova’s
geometric perspective. Stated in vague terms, after performing suitable Cartan’s devel-
opemnt at the Lie algebra level, the logarithmic signature log S(7y) is transformed into
linear combinations of products between certain path functionals, say Sp.(a1, -, am)
(defined through iterated path integrals) and meromorphic functions, say ¢(aq, -+ , a,)
(arising from the Hausdorff series). If log S(7) has infinite R.O.C., its Cartan’s devel-
opment must define an entire function. As a consequence, at the singularities of the
function ¢(ay,--- ,a,) one must have S,,(ai, - ,a,) = 0. This is precisely how the



integral identities in our main theorems arise.

Cartan’s development was first used by Hambly-Lyons [16] for studying the sig-
nature uniqueness problem in the BV setting. Such a method was used in various
works related to the study of (both deterministic and random) rough paths and their
signatures (see e.g. |2, 6, 10, 22]). The use of Cartan’s development at the logarithmic
signature level first appeared in [4] for the study of signature asymptotics for pure
rough paths.

1.3 Further questions

There are a few basic questions which naturally arise from the current work but remain
to be answered.

1. The strengthened LS conjecture is proved in Theorem 4.1 for BV paths only. It
is reasonable to expect that for weakly geometric rough paths, the logarithmic
signature has infinite R.O.C. over all time intervals [s, t] if and only if the path
is a pure rough path, i.e. the exponential of a line segment in the space of Lie
polynomials. Is such an extension true?

2. It is not particularly clear what exact geometric constraints are imposed on the
path by Theorems 5.1, 6.5 and whether they eventually lead to the conclusion
that the path is conjugate to a line segment. We expect that there is still a
non-trivial gap which requires deeper analysis and new ideas.

3. Theorems 5.1, 6.5 only hold for non-closed paths, which is indeed a limitation of
the current analysis. Can one extend the current approach to the case when the
underlying path is a loop? The modified LS conjecture in the context of loops
takes a particularly elegant form: the logarithmic signature of a tree-reduced,
closed, BV path v has infinite R.O.C. if and only if ~ is constant.

4. Let £ € G((V)) be a group-like element. What are the exact analytic conditions
on & so that £ is the signature of a BV path over V7 At the signature level, having
exact factorial decay seems to be the natural analytic constraint on £. However, at
the logarithmic signature level one encounters the finiteness of R.O.C. property.
Are these two analytic properties related to each other and how do they yield a
suitable characterisation of the image of the signature transform?

2 The logarithmic signature transform

In this section, we review the background materials. In particular, we discuss several
basic properties of the signature and logarithmic signature transforms where most
details can be found in [14, 19]. We also recall the precise formulation of the Lyons-
Sidorova conjecture from [20], which provides the main source of motivation for the
current work.



2.1 Definitions and basic properties

Let V' be a finite dimensional normed vector space over K = R or C. We define the
infinite tensor algebra

vy = [ve"

where V20 £ KK as a convention. Addition in T'((V)) is defined component-wisely and
multiplication is defined by

E@n), = ka ® M-, 120
k=0

where £ = (&y,&1,--+), n = (1m0, M, -+ ) are given tensor series. This makes T'((V')) into
an associative K-algebra with unit 1 £ (1,0,0,---). Elements in T'((V)) are known as
formal tensor series over V. We use

T s T((V)) = VE, 7™ T((V)) — é Vok

to denote the canonical projections.
Any tensor series of the form £ = (1,£1,&,--+) has a multiplicative inverse given
by

o0

E1=Y -1

n=0
The above series is well-defined since the summation is locally finite (i.e. the projection
onto the m-th component for each fixed m only involves finitely many nonzero terms).
There are two basic operations over T'((V')) that will be important to us. To define
them, let us introduce two subspaces:

To((V)) 2 {6 = (L. &) € T((V)) : & =0}, Ti((V)) 2 {€ € T((V)) : & = 1}

The exponential and logarithmic transforms are defined by

O T(V) S T(V)), £ 2 Y e

lo5() : Tu((V) = To(V)). toge 23" TN e qyen,

It can be shown that these two functions are inverse to each other. It is also easy to
see that (¢f)~ = e7¢.



Definition 2.1. Let v : [0,7] — V be a continuous path with bounded variation. The
signature transform of v (or simply the signature) is the formal tensor series defined

by

S(v) = (L,yr — %7/

0<s<t<T

0<ty1 <<t <T

where the path integrals are defined in the Lebesgue-Stieltjes sense. The tensor series
log S(7) is known as the logarithmic signature of ~.

One can also consider the signature S(v)s over [s,t] C [0, 7] by replacing the above
iterated integrals with the ones over [s,t]. It is easily check that

SWsu =515t ® S(Vew Vs <t<uel0,T]. (2.1)
This is known as Chen’s identity. Stated in a more general form, one has
St f) = S(a) ® S(P),

where a/LI 5 means the concatenation between the two paths «, 5. It can also be shown
that S(5) = S(7)~" where & denotes the reversal of ~.

Algebraic properties

There are universal algebraic dependencies among different signature components,
which are precisely described by the so-called shuffle product formula:

X"@X"= > P(X™") VmneN. (2.2)

oc€P(m,n)

Here X™ is the m-th component of S(vy). P(m,n) denotes the set of (m,n)-shuffles,
i.e. the set of permutations ¢ of order m + n satisfying

ol)<---<a(m), o(m+1)<---<a(m+n).

Given any permutation o, the operator P, is the linear transformation over V®(m+n)

induced by
Pa(Ul R & Um+n) 2 Vo(1) @ -+ & Vo(mn)-

The set of permutations of order m is denoted as S,,,.
Definition 2.2. A tensor series & = (1,&1,&,--+) € T1((V)) is group-like if it satisfies

the relation (2.2) (with X™ replaced by &,). The space of group-like elements is denoted
as G((V)).



An important reason for considering the logarithmic signature is that there are no
algebraic dependencies among its components, because it takes values in the “free” Lie
algebra. This is the content of the celebrated Chen’s theorem. To state this theorem,
we first define

L(V) & ] £a(V) S To((V))

where £;(V) £V and
L1 (V) E[L,(V), V] £ Span{[¢,v] : £ € L (V),v eV}

for all n > 1. Here [-, -] is the commutator defined by [¢,7] = £ ® 1 —n® €. Elements in
L((V)) are formal Lie series and elements in &}_, L(V') are Lie polynomials of degree
n. Chen’s theorem is stated as follows (cf. [7, 26]).

Theorem 2.3. A tensor series & € T1((V)) is group-like if and only if log& € L((V)).

One can also consider truncated versions of signatures and logarithmic signatures.
Let TM(V), GM(V) and L) (V) be the truncations up to level N (i.e. taking the
first N components) of the previous infinite dimensional spaces. The tensor product
and Lie bracket restrict to these truncated spaces in the obvious way.

Analytic properties

We also need to deal with analytic properties of the signature. For this purpose, we
need to consider suitable tensor norms on the tensor product spaces. From now on,
we assume that V" is equipped with a given norm || - [|,. The norms {|| - ||} are
admissible in the sense that

1€ @ llmin < [Elmlnlln Ym,neN

and
1P ()lln = IElln VEEVE", 0 €S,

An explicit example is the Hilbert-Schmidt tensor norm on V®" induced by an Eu-
clidean (or Hermitian if K = C) metric on V. What plays a basic role in rough path
theory is the so-called projective norm.

Definition 2.4. The projective tensor norm of & € V™" is defined by

1€llnspros = inf { D[]l -+~ [oalv )
j

where the infimum is taken over all possible representations of £ as linear combinations
of tensor monomials:

E=> v, veV
J

10



Throughout the rest of this article, we will be exclusively using the projective tensor
norm. For simplicity, we will also omit the subscripts if no confusion will be caused.

The signature transform can be defined for arbitrary rough paths. Let p > 1 be a
given fixed number. A p-rough path is a continuous functional

X, =0X, o XP)Y A & {(5,8) : 0< s <t ST = TE(V)

such that
Xs,u = Xs,t & Xt,u Vs < t < u e [O,T]

and X has finite p-variation in the sense that

7]

wx é HXHp-var Zsup Z H tl 1, tl |p/l < o0, (23)

tiEP

where the supremum is taken over all finite partitions P of [0,7]. A p-rough path X is
weakly geometric if it takes values in G(PD (V). Sometimes we just call v : [0,T] — V
a rough path over V' but its precise meaning is the multi-level functional X (7 is the
first level component of X).

Let X be a p-rough path. According to Lyons’ extension theorem (cf. [23]), there
exists a unique extension of X.. to a functional

S(X).. = (X', X" ) Ap = T((V),

such that Chen’s identity (2.1) holds for S(X).. in T'((V)) and its truncation up to
any level n > [p] has finite p-variation in 7™ (V). The functional S(X).. is called
the signature path of X. The tensor series S(X)or (respectively, log S(X)or) is the
signature (respectively, logarithmic signature) of X. If X is weakly geometric, it can
be shown that its signature path takes values in G((V)).

An important analytic property of the signature is its rapid decay with respect
to the degree. More precisely, there exists a universal number 5 > 0, such that the
following estimate
w;/p

B (n/p)!

holds for all p-rough paths. Here (n/p)! = I'(n/p+1) where I'(+) is the Gamma function.
When p = 1, X is just a classical path in V' with bounded variation and (2.4) follows
trivially from the triangle inequality. The estimate (2.4) for the general rough paths is
contained as part of Lyons’ extension theorem.

1 X6.7] <3 Vn > 1 (2.4)

2.2 The Lyons-Sidorova conjecture

To state the main question of our study, we first introduce the following definition.

11



Definition 2.5. Let & = (&y,&1,--+) € T((V)) be a given tensor series. Its radius of
convergence (R.O.C.) is the radius of convergence for the power series

oo
23 iz
n=0

in the standard real analysis sense.

The factorial decay (2.4) of signature shows that the signature of a rough path
always has infinite R.O.C. However, a highly non-trivial fact is that the logarithmic
signature (generically) only decays geometrically fast and should thus have a finite
R.O.C. Consider a line segment 7, = tv (0 < t < 1) in V. It is immediate that
log S(v) = v and thus log S(y) has infinite R.O.C. It was conjectured by T. Lyons
and N. Sidorova [20] that these are the only tree-reduced BV paths whose logarithmic
signatures can have infinite R.O.C.

The Lyons-Sidorova (LS) Conjecture. The logarithmic signature of a continuous,
tree-reduced BV path ~ has infinite R.O.C. if and only if v is a line segment.

In their original work [20], the conjecture was confirmed for two special classes of paths:
1-monotone paths and non-double piecewise linear paths. The general BV case is still
an unsolved open problem in rough path theory.

Before developing our main results, the very first comment we shall make is that
the LS conjecture needs to be modified to reflect the following simple observation.

Proposition 2.6. Let X, Y be given rough paths. Then log S(X) has infinite R.O.C.
if and only if log S(Y LU X U ?) has infinite R.O.C.

Proof. Let us prove a more general claim. Suppose that [ € Ty((V)) and g1, go are
signatures (of certain rough paths). Then [ has infinite R.O.C. if and only if g1 ® [ ® g
has infinite R.O.C.

To prove this claim, since gy, go are signatures, one knows from Lyons’ factorial
decay estimate (2.4) that

C - n/P .
17 (g0)[] < /o)l Yn>1,i=1,2 (2.5)

Here C,p,w are suitable constants depending on the underlying paths defining g1, go.
Let us denote I’ 2 g; ® [ ® g,. Then one has

n n—k

) =Y m(g1) ® b @ Tk (g2).

k=1 r=0
where [, £ 7,(1). Since the tensor norms are admissible, one finds that

n nzk o r/p w(n—k=")/p

[l (I 0222 (r/p)! —r)/p)!

=

k|-

12



We now apply the following so-called neo-classical inequality (cf. [17]):

f: L < P YmeN, p>1 (2.6)
2 G ((m— i)~ (m/p)] p2l '
It follows that oy
, "L (2w) k)P
Imalt) < €2p 30 2y, (2.7)

— ((n—k)/p)!

Let p > 0 be given fixed. Since [ has infinite R.O.C., there exists K > 0 such that
|lk]| < p* for all k > K. Therefore, one has from (2.7) that

K n
(2w (n k /p (2w>(n_k)/p
[l (1 z: il + > ")

k=1 (n k)/ ) k=K+1 ((n o k)/p)!
5 (2w) =R/ k/p
Z ((i 5/ |lk |+ p" Z

for all n > K. When n is sufficiently large, one can ensure that

K (n—k)/p
Z |lk|| <p"
k=1
and thus )
- (2wp~P)k p
()| 1 +
Ima(t)] < €1+ 3 5 e

This shows that o
T |1 ()] < p.

n—oo

Since p is arbitrary, one concludes that [’ has infinite R.O.C.
In the context of the proposition, one takes

I =log S(X), g1 = S(Y), go = S(Y) = g .
The crucial observation is that
S(YuXxu ?) =01 ® e ® gl_l — 6g1®l®91_1

which implies that
logS(YI_IXI_I?) =Rl

The result follows from the above claim since ¢; is a signature. O

13



Proposition 2.6 shows that the logarithmic signature of any path that is conjugate
to a line segment must have infinite R.O.C. Here we say that a path 8 is conjugate to
vyif f=alU~yU & for some path «. This result suggests that having finite R.O.C. is
a property of conjugate classes. This naturally leads to the following modification of
the LS conjecture.

Modified LS Conjecture. The logarithmic signature of a continuous, tree-reduced
BV path has infinite R.O.C. if and only if it is conjugate to a line segment.

Remark 2.7. Since V is finite dimensional, the property of having infinite / finite
R.0.C. does not depend on the specific choices of the (admissible) tensor norms.

Remark 2.8. It was proved by Chevyrev-Lyons [10] that the logarithmic signature of
any rough path always has positive R.O.C.

3 First order integral identities
In this section, we establish our first main result:
Infinite R.O.C. for log signature = A special type of line integral identities.

Although we could formulate the theorem in a more general form, the result is es-
sentially stated in terms of two-dimensional projections. To make the statement as
simple as possible, we will just (and always) assume that v, = (x4, y;)o<i<1 18 a weakly
geometric rough path over R?. In this section, we only work with non-closed paths
(i.e. 71 # 7). In particular, we impose the following normalisation conditions:

ZL’():yQ:O, T =1. (31)

Note that v is the first level component of the actual rough path which will not be
referred to. The main result of this section is stated as follows.

Theorem 3.1. Let v be a weakly geometric rough path over R?* which satisfies the
normalisation condition (3.1). Suppose that log S(v) has infinite R.O.C. Then one has

1
/ e dy, = () (3.2)
0
for all nonzero integers k.

Remark 3.2. If the condition x1 = 1 is dropped (still assuming x1 # 0), the conclusion

(8.2) should be replaced by fol e?kmiz/rigy, — 0. For a general path over V, the result is
formulated in terms of arbitrary projections of v onto two-dimensional subspaces of V'
where (x4,y;) are the coordinates of the projected path with respect to a suitable basis.

14



Remark 3.3. If one assumes additionally that y; = 0, then (3.2) holds for all k € Z.
In this case, one has folf(xt)dyt = 0 for all smooth, 1-periodic functions f. This
result is stronger than the one obtained by Lyons-Sidorova’s method in [20]; the latter
established the integral property (3.2) for k € 27 + 1 which is difficult to be extended
to cover even k’s using their method.

A more general (and useful) formulation of Theorem 3.1 is given as follows.

Theorem 3.4. Under the assumptions of Theorem 3.1, suppose further that y, = 0.
Then one has

/ " d(d) = 0 (33)

for all smooth one-forms ®(z,y) = f(z,y)dx + g(z,y)dy on R? which satisfy the fol-
lowing two conditions:
(i) ®(x + 1,y) = ®(z,y) for all x,y € R;
(ii) fol f(z,y)dx =0 for all y € R.
To prove Theorem 3.4, we first present a basic lemma.

Lemma 3.5. Let A: R* — R? be a linear map, where R? is equipped with the standard
Euclidean norm. Let A : (R2)®" — (R2)®" be the unique linear map such that

~

Ay @ ®@uy,) = Avy ® -+ - ® Avy,.

Then one has

1A (w) [ < [ AN, llwl]

for allw € (R?)®" . Here || Allop denotes the operator norm of A and the tensor products
are all equipped with the projective tensor norm.

Proof. Suppose that w admits a representation given by

N
w:Zvj@{)---@vZL. (3.4)
j=1
Then one has
A N N . N
A I=]]Y_ Al e ou)|[ <[> A@) e oA@) |
=1 i—1
N ’
<A@ |- llA () |
=1
JN | |
< 2_lAlG el -l
j=1
Taking infimum over all {v{, e ,U%};\;l satisfying (3.4) gives the Lemma. O
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Proof of Theorem 3.4. Let v be a path satisfying 7o = (0,0) and 7, = (1,0). Suppose
that log S(v) has infinite R.O.C. One knows from Theorem 3.1 that fol e2kmis dy = 0
for all k € Z. Given k € Z\ {0} and X € R, we define

- #)G)

Note that the n-th component of log S (%) is obtained by applying A to the n-th
component of log S (7) (A is the transform defined by the matrix in (3.5)). According
to Lemma 3.5, log S (%) has infinite R.O.C. with respect to the projective tensor norm.
The new path 4 also satisfies 49 = (0,0) and 4; = (1,0). As a result, one has

1 1
/ e2kmizs+Xiys dys = / €2k7ri§csd:gs =0 (36)
0 0

for k € Z\ {0} and A € R. It is plain to check that (3.6) holds when k = 0 (and thus
for all k € Z and X € R).
Now let
K, £inf{y, :t€0,1]}, Ky =sup{y, :t €[0,1]}

and recall S! is the topological circle obtained by identifying the points 0 with 1 on
[0,1]. Note that the set of functions

S = {€2k7rix+/\iy keZ, e R}

separate points on the compact space S! x [K7, K] and its linear span is a sub-algebra
of continuous functions. By the Stone-Weierstrass theorem, one knows that SpanS
that is dense in C (S! x [K, K3, C). Since g — folg (xs,ys) dys is continuous with
respect to the uniform norm, one concludes that fol g(xs, ys)dys = 0 for any continuous
function g(z,y) that is 1-periodic in the z-variable. This gives the desired integral
condition for the dy-integral.

To prove the corresponding relation for the da-integral, let k € Z \ {0} and X\ €
R\ {0}. Using integration by parts, one finds that

1

1 1
O — e2k7rixs+)\iysdys S e2k7rixsd€/\iys
0 A 0

1 o ot L
S (62k7ruc5+)\7,y5 1 2]{7.” €2k:7rza:5+/\zy5 dl’s)
Al 0
0
E [t L
- _ 62k7rmts+)\zysdxs.
A Jo

Since k # 0, one obtains that
1 . .
/ eZhmiTs FAWs (10— ), (3.7)
0
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The continuity of the integral as a function of A implies that the relation (3.7) holds
for all k € Z \ {0} and A € R. By exactly the same Stone-Weierstrass argument,
one concludes that fol f(xs,ys)dzs = 0 for any continuous function f(x,y) which is

1-periodic in x and satisfies fol f(z,y)dz = 0 for every y € R (the latter constraint
appears since the relation (3.7) excludes the zero Fourier mode).
Now the proof of Theorem 3.4 is complete.

3.1 Two immediate applications

The line integral condition (3.2) (or more generally, (3.3)) implicitly leads to rigid
geometric constraints on the underlying path, and in some special situations, confirms
the LS conjecture. We use one class of examples to illustrate this point. A more
inspiring application of Theorem 3.4 on path-geometry is given in Section 4 below
where a strengthened version of the LS conjecture is proved.

Proposition 3.6. Let vy, = (x4, ;) be a two-dimensional, continuous BV path satisfying
the assumptions in Theorem 3.4. Suppose further that 0 < x; < 1 and v is non-self-
intersecting. Then there exists € € R such that v = (gez) U ey Ll (—eeq), where {e;,es}
is the canonical basis of R2.

Proof. Suppose on the contrary that 7 is not of the form (cey) Ll ey LI (—eeq). Then
there exist two points z = (z1,¥1) and w = (22,y2) such that 0 < 1,20 < 1, y1 = ¥
and z € Im~y, w ¢ Im7y. One can choose a small § > 0, such that by defining

Us = {(z,y) s lr —aa| VIy =l <0} Vs & {(2,9) : Jo — 22| V |y — yo| <3}

one has Us N V5 = () and Vs N Im~y = (.
By using the argument in [3]|, one can construct a smooth one-form ¢ which is
compactly supported in Us such that fol o(dy;) # 0. We define the one-form 1) by

oy @), (z,y) € Us;
Y(x,y) {—gp(:ﬁ—fﬂ2+$1yy)a (x,y) € V.

It is clear that v is a smooth one-form supported in Us N Vs and satisfies

/0 f(z,y)dx =0

for all y € R, where f(x,y) denotes the dz-coefficient of 1. Let ® denote the 1-periodic
extension of ¢ (in the z-direction). It follows that ® satisfies Properties (i), (ii) in
Theorem 3.4 but

/01 (dy) = /01 p(dy) # 0.

This leads to a contradiction. Therefore, v = (cey) Lley LI (—eeq) for some e € R. [
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Remark 3.7. The above argument fails if the image of v is not contained in the strip
0 < x <1, since the geometry of v outside the strip may affect the line integral against
the one-form ® constructed before in an unexpected way. It is possible to replace this
geometric assumption by another kind of geometric restriction. But we will not pursue
such discussions here.

Another application of Theorem 3.1 is the Brownian motion case. This is an im-
portant example due to its basic role in the study of stochastic differential equations.

Proposition 3.8. Let B; be a standard d-dimensional Brownian motion over [0, 1].
Then with probability one, its logarithmic (Stratonovich) signature has finite R.O.C.

Proof. 1t is obvious that one only needs to prove the claim for the first two components
of By, say (X;,Y;). According to Theorem 3.1 (see also Remark 3.2), one only needs
to show that

1
/ sin(27X:/X1)dY; # 0 a.s.
0

This can be obtained by proving the stronger claim that the random variable Z =
fol cos(2m X,/ X1)dY; admits a density with respect to the Lebesgue measure on R.
We use Malliavin’s calculus to prove such a claim. We assume that (X, Y;) are
realised on the canonical path space. To prove the claim, it suffices to show that the
Malliavin derivative DZ # 0 a.s. (cf. [25]). Let h be any Cameron-Martin path
(i.e. absolutely continuous with L2-derivative). Explicit calculation together with
integration by parts shows that the Malliavin derivative of Z along the direction A is

given by
Von(Uy—U) 27V 2m X,
D, 7 = — in (——)|dh
h /0 [ X, X12 —i—sm( X, )} ts
Where t 27TXt 1 27TXt
U, é/ cos dy;, Vé/ X, cos dY;.
t ; ( X, ) t ; t ( X, ) t
We now choose
Loon(U - U, 27V 21X
A 1 S . s
ht:/o [ X — e +sm( X )}ds.

It follows that

Lorn(Up—U,) 27V . 21Xy 42
D7 = — + dt.
" /0 | X, X2 sin ( X, )

The above integral is nonzero with probability one, for otherwise the integrand would
be identically zero which is clearly not the case. Therefore, DZ # 0 a.s. [
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3.2 Proof of Theorem 3.1

The fundamental idea behind our proof of Theorem 3.1, as well as its higher order
extensions (cf. Theorem 5.1 and Theorem 6.5 below), is based on the notion of Cartan’s
path development. Stated conceptually, we “develop” the logarithmic signature into
a suitably chosen (complex) Lie algebra g, so that the Lie structure of g “projects”
the logarithmic signature log S(y) in a very special way to yield products between
certain explicit meromorphic functions and line integrals along 7 (e.g. see the relation
(3.18) below). If log S() has infinite R.O.C., its development must produce an entire
function. As a result, the line integral must have zeros matching the singularities of
the meromorphic function. This will naturally lead to the line integral condition (3.2)
at the discrete locations k € Z\{0}.

3.2.1 The Baker-Campbell-Hausdorff formula

Let {e1, ez} be the standard basis of R?. Our analysis relies crucially on the considera-
tion of the path 4 £ ~ LI & asa starting point (here Ll means concatenation). Clearly,
the following relation holds on T'((R?)):

el = L) & e, (3.8)

where L(v), L(7) denote the logarithmic signatures of 7,4 respectively. Our next step
is to apply the Baker-Campbell-Hausdorff (BCH) formula to the right hand side of
(3.8), so that one can write

L) @ o1 = BEM ) (3.9)

where the BCH functional

B(&,m) = 4+ + 56+ 5[6 (6 nl] = 5l 6] +

can be expressed in terms of commutators in a universal way.

We now recall the precise definition of the BCH functional B(-,-). Let v,w be two
letters and let V' be the vector space generated by them. The quantity B(v,w) is the
Lie series defined by the following formula:

w) =Y H,(v,w) € T((V)). (3.10)
Here o
A B,
Hy(v,w) & Z—‘(ad )™ (v), (3.11)

where {B,,} are the Bernoulli numbers defined by the expansion
RO
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and
ady,(v) £ [w,v] Ew v —v @ w.

To define the higher order terms H,,, we first recall the definition of a derivation. A
linear operator © : T'((V)) — T((V)) is called a derivation if

DE@n) =) @n+ED([n).
Now let H;(v,w)d,, denote the derivation induced by
(Hy(v,w)0,)(v) £ 0, (Hi(v,w)0,)(w) = Hy(v,w).

Then the functional H, (v, w) is defined by
1 n
H,(v,w) = —'(Hl(v,w)(?w) (w). (3.12)
n!

It is clear that the partial degree of v in H,(v,w) is n. The series H,, will be referred
to as the n-th Hausdorff series.
To summarise, one obtains from the relations (3.8) and (3.9) that

L(y) = B(L(7),e1) € L((R?)). (3.13)

Note that here B(L(7),e;) is defined through the substitution (v,w) < (L(7),e;) and

applying the tensor product structure over T'((R?)). We remark that B(L(7),e1) is a
well-defined Lie series in £((R?)). This is clear from the observation that the series

" H(E().e)

is locally finite, i.e. its projection onto the truncated tensor algebra only involves
finitely many Lie polynomials arising from the above series.

3.2.2 An adjoint representation of signature

We now present a basic formula for the signature S(+) on which our analysis is largely
based.

Lemma 3.9. Let S(v) be the signature of 7y. Then one has

o0

S(y) = (Z/o e"17%1 (69) @ + -+ ® €71 (e9)dyy, -+ - dyp, ) @ €, (3.14)

n—p Y 0<t1 < <tp<1

ey 2 30 )
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In particular,

o0

f/(y) 2 log (Z/ eTt1ade; (62) R ® e%tnade (ez)dytl . dytn)
0<t1 < <tn<l

n=0
1s a Lie series.

Proof. The signature path ¢t — S(7)o, satisfies the differential equation
dS(7)or = S(7)os ® (erdw, + eadyy).
Let C; £ S(7)o; ® e~¢1. Then C; satisfies the differential equation
dC; = C; ® €™t ® eg ® e “*dy;.
The result follows from the relation that
e ® ey ® e = e"tder (o).

Since L(7) is the logarithmic signature of yLI&] | it is clear that L(v) is a Lie series. [

3.2.3 Basic notions on Cartan’s path development

Based on the representation (3.14), a fundamental idea in our analysis is to perform
Cartan’s path development in such a way that e, is mapped into certain (combinations
of ) eigenspaces of e;. This will enable one to evaluate e***d1(ey) in an explicit way
(within the new Lie algebra). Before introducing such constructions, we first recall
basic notions on Cartan’s path development.

Definition 3.10. A (Cartan’s) path deveopment over R? is a pair (g, F') where g is a
finite dimensional complex Lie algebra and F' : R? — g is a real linear map.

We always assume that g is embedded in the matrix algebra M = Mat(N, C) for
some N. The space R? is complexified into C? in the canonical way and so is F. All
algebraic relations are understood over the complex field. Working over C rather than
R is an important point in our analysis.

The linear map F' admits a unique extension to an algebra homomorphism

F.T(C*) 2 é(@)m — M. (3.15)

n=0

The restriction of £ on Lie polynomials over C? defines a Lie homomorphism, which
is the unique extension of F' to a Lie homomorphism from the free Lie algebra over C?
to g. It should be noted that F is not always well-defined on T'((C?)) (formal tensor
series) or on £((C?)) (formal Lie series). The extension of F' to these spaces requires
analytic consideration. In what follows, we always fix a matrix norm on M.
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Definition 3.11. Let £ € T((C?)) be a given tensor series. We say that F(&) eists
and write & € D(F), if A}im F (7€) exists in M.
—00

Let v be a weakly geometric rough path over C2. Since S(7) has infinite R.O.C., it
is obvious that S(v) € D(F'). In addition, if L(7) £ log S(7) has infinite R.O.C., one
also has L(7) € D(F). In general, F'(L(7)) always exists when F' is “sufficiently small”.

Corollary 3.12. Let v be a weakly geometric rough path over C2. Then there exists
6 > 0 such that for any path development (g, F') with ||F||cz,p < 0, one has L(v) €

D(F). In particular, under the previous setting L(y) € D(F) provided that the operator
norm of F is small enough (recall that L(v) is the logarithmic signature of I &1 ).

Proof. According to [10], it is enough to choose § = (2|]’y|]p_var)_1 where p is the
roughness of ~. O]

Remark 3.13. The use of path development in the literature, which also justifies its
name, has a geometric nature. Given a pair (g, F'), there is a canonical way of “lifting”
any Euclidean path v in R? to a corresponding path T' taking values in a Lie group
whose Lie algebra is g. It turns out that one can study geometric and signature-related
properties of the original path v from the lifted path T'. The viewpoint we shall take in
this work is however quite different. We work with path developments at the Lie algebra
level instead of considering the actual lifted path in the group. Our technique thus has
an algebraic flavour in contrast to the geometric viewpoints taken in earlier works.

3.2.4 A two-dimensional development

To prove Theorem 3.1, we are going to choose a specific path development. Namely,
we take g to be the two-dimensional complex Lie algebra generated by (two symbols)
A, D under the Lie structure [A, D] = D. For each A € C, we define the development
map F) : C2 — g to be the linear map induced by

F,\(el) £ )\A, F/\(62> =D.

A formal calculation

We first show at a formal level how the choice of such a development enables one to
prove Theorem 3.1. Recall that F\ is the induced algebra homomorphism on tensors
and also Lie homomorphism on Lie elements. By applying F) on both sides of (3.13)
one finds that

L0 = BENLMA) CHY f 1)y = BF\(L(7)), AA). (3.16)
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According to Lemma 3.9 and the construction of F), one has

o0

eFA(ﬂ(’Y)) — F)\ (efz("f)) — Z/ emtlad)\A (D) . el‘tnad)\A (D)dytl - dytn
0 Y O0<t1<<tn<l

n—=
o

B Z / M) D™dyy, - - - dys,
0V 0<t; <<t <1

;’ Dn 1 " 1
= Z—'(/ e)‘””tdyt) = exp (D/ e’\“dyt).
n=0 - 0 0
This formally implies that
1
=D / et dy,. (3.17)
0

By substituting (3.17) into (3.16), one finds that

F\(L(Y)) :B(D/0 eMidyy, AA).

Next, recall from (3.10) that B =} _, H,. The crucial observation is that

1
Hn(D/ e)‘“dyt,)\A) =0 Vn=>2
0

and
o = Sy D
H,(D tdy, NA) = R o
(D [ o) = (320 ([ )
both being consequences of the relation [A, D] = D. As a result, one arrives at the

following relation:

00 1
_ _m Azt
_ Zm /Oe dy,) D. (3.18)

m=0

Now suppose that L(~y) has infinite R.O.C. Then the left hand side of (3.18) defines a
g-valued entire function (as a function of A € C). On the other hand, the power series
> o ZmA™ defines the meromorphic function ¢(\) = on C that has isolated

m=0 >\ 1
singularities at A = 2kmi (k € Z\{0}). This forces fol e*tdy; = 0 at these singularities
A = 2kmi. The conclusion of Theorem 3.1 thus follows.

Proof of Theorem 3.1

The above argument is only formal, since one cannot directly pass F' into the BCH
function B without analytical considerations, and to justify this one needs to apply
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truncations and then pass to the limit. This is only a technical matter which we now
make precise.

Let g be the Lie algebra of 2 x 2 upper triangular matrices over C with zero trace.
Using the previous notation, one can take

(7 ) o=(30)

so that g = Span{A, D} and [A, D] = D. We consider the path development defined
by
F)\’”(el) = )\A, F)\’N(QQ) = MD ()\,/L € C)

According to Corollary 3.12, there exists ¢ > 0 such that
L(v) € D(Fy,) WA s [V [u] <.
In other words, the limit

B(L0) = Jim By (+V L) (3.19)

N—oo

exists for all such A, p.

On the other hand, recall from the normalisation (3.1) that the z-increment of
5 & 40U & is zero. In particular, [~/(7) does not contain the e;-component. After
applying the development F \u, One can thus write

Fyu(m™L(y)) = Cn (A, ) D (3.20)

for some Cy(\, 1) € C. The function (A, i) — Cn (A, i) is clearly entire on C? for every
fixed N. The relation (3.19) then implies that Cx(\, ) is convergent as N — oo for
small A, 1, whose limit with no surprise should coincide with (3.17) if one were able to
take p = 1.

Lemma 3.14. One has
1
Fyu(L(v)) = Jim Cx(A m)D = p / Ady) D, AV |ul < 6.
o0 0

Proof. By applying F )\ to the signature of 4 and using Lemma 3.9, one obtains that

- 1
ﬁv}\“u(eL(’Y)) = exp (M(/ e)wtdyt)l))7 V/\,,U, e C.
0

Note that there is no convergence issue at the signature level due to its factorial decay.
When A, i is small, one also has

(€20 = ePruEo),
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For each fixed A with |\| < ¢, both of the functions

1
1 / eMtdy,) D
0

are analytic in p for |u| < 4. In addition, the relation (3.20) shows that G(u) € Span{D}
and thus G(u) is commutative for different u’s. Since G and H coincide when p = 0,
a standard power series argument shows that

(>

G(p) = Fau(L(v)), H(p)

e = W) for |u| <6 = G(n) = H(p) for |u| < 0.

The result thus follows. O
On the other hand, by using Lemma 3.14 one can also compute Cx(\, pt) explicitly.

Lemma 3.15. For any \, u € C, one has

N—-1 1 5
€T .
CN()‘»N):NZ(/ j—fdyt)M (3.21)
j=0 YO0

Proof. Tt suffices to establish the relation for small A, i, since both sides of the identity
define entire functions in (A, ;) € C2. To this end, note that the logarithmic signature
L(7) admits a unique decomposition

L(y) =) cjad] (ex) + L,

Jj=0

where L' consists of those tensor components with at least two es’s. After applying
F, ,,, one finds that

N-1
Cn(A p) = Z ;N
=0

for all small A, yu. According to Lemma 3.14, the A-power series of A,M(E(V)) (for fixed

) is given by
=0 J Jo

By comparing coefficients, one finds that

1 [t
c;i=— [ xldy
J ]|/0 t

and the result thus follows. O
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Proof of Theorem 3.1. Suppose that L(7) has infinite R.O.C. Then L(v) € D(F),,) for
all A, u € C. It follows from the relation (3.13) that

lim £, (7Y B(L(7),e1)) = Fau(L(7)) € g C M.

N—oo

According to the definition (3.10) of B, one has

MB(L(v) ZH (L(y),e1) = Y 7N H, (7™M L(v),e1).

Note that the right hand side only contains finitely many terms from the expansion of
H,,. Due to the relations (3.20) and [A, D] = D, it is easily seen that
Hy(Fy (7™M L(7)), M) =0 Yn > 2

As a result, according to the formulas (3.11) and (3.21) one finds that

. B - 2
(V) Zmm Zmam ot
Py (e B(L DZ 2Ny (0 ) = MD;WA g / by,
By taking N — oo, one arrives at the identity
. N—-m—1 \ 1
Fyu(L(7) = pD - lim z S5 [y

Note that the above limit exists for all A, u € C.
The next observation is that the expression

Nl N—m—1 T

m N B g .
Z—)\ Z /xtdyt Zm/o 5y, A

m=0 r=0 =0

is precisely the partial sum of the power series defined by expanding the product

(T [ i)

For fixed i € C and |A| < 27, both of the above power series are absolutely convergent,
yielding that

n - B m > N r A 1 "
B (L) = D= (Y2 5 (35 | ddy) = N /0 Ay,
m=0 3=0

Therefore,



for fixed p # 0 and all A with |A\| < 27. Now observe that both sides are entire functions
in A (since L(7y) has infinite R.O.C.). As a result, the same identity holds for all A € C.
By taking A = 2kmi with k& € Z\{0}, one concludes that

1
/ e2km’-xtdyt — 0’
0

hence giving the desired integral property (3.2).

4 A strengthened version of the LS conjecture

In this section, we prove a strengthened version of the LS conjecture: having infinite
R.O.C. for the logarithmic signature over all sub-intervals of time implies that the
underlying path must live on a straight line.

Theorem 4.1. Let v : [0,1] — R? be a continuous path with bounded variation. Sup-
pose that log S(7)s+ has infinite R.O.C. for all [s,t] C [0,1]. Then v = vo + f(t) - U
for some real-valued function f :[0,1] — R and some fived vector 7 € RY.

Our main strategy of proving Theorem 4.1 can be summarised as follows. It is
based on non-trivial applications of Theorem 3.4 together with winding number con-
siderations.

1. We may assume d = 2 and parametrise the path + at unit speed. Let s be
an arbitrary point at which ~ is differentiable and choose a time 1" > s that is
sufficiently close to s. We normalise (i.e. rescale and rotate) the path 7|j 7 to
obtain a new path S which starts at (0,0) and ends at (1,0). Since |y.] = 1
and T & s, in the rescaled picture the new path [ stays inside a cone region
{(z,y) : x €[0,1], |y| < cz} for some small number c.

2. For each (z,y) € R, let w(x,y) denote the winding number of the path j £
B L& around the point (x,y). Since the path [ satisfies the generalised integral
condition (3.3), one can show that the function (z,y) — w(x,y) depends only
on y. As a result, w(z,y) has to vanish identically (because for any (z,y) inside
the cone there is some (2/,y) at the same level which is outside the cone and the
winding number of 3 around that point is obviously zero). This further implies
that [ is the line segment e; in the weak sense that the line integrals along 5 and
e are identical for any smooth one-form. Transferring back to the original path

7, one concludes that | 7 is a line segment in the above weak sense. Call this
line L.

3. The path ~7,1; has to be entirely contained in L and we prove this by contra-
diction. If this is not true, there exists a time ¢ > T such that v, ¢ L. By
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normalising the path 7|; 4 to a new path ¢ which starts from the origin and ends
at (1,0), the line L is transformed to another line L’ which is not horizontal.
Draw a tiny ball B; centered at the mid-point of L'|js ) and make a copy B
at the same vertical so that B, N L[ = 0. This is possible since L’ is not
horizontal.

4. Choose an arbitrary one-form W supported on B; whose line integral along L’|(s 7
is non-zero. Modify its values on By to obtain a new one-form ® which satisfies the
two conditions of Theorem 3.4. The conclusion of Point 2 and the construction
of ® implies that

/ B(dg,) = / " war) #0.

This contradicts the conclusion of Theorem 3.4 since the logarithmic signature
of ¢ has infinite R.O.C. Therefore, ;71 has to be contained in the line L. Since
the differentiable point s is arbitrary and T' & s, this implies that the entire path
v lives on a single well-defined straight line.

The rest of this section is devetoed to the proof of Theorem 4.1.

4.1 An application of the integral condition to winding number

In this subsection, we derive a simple application of the generalised line integral con-
dition (3.3) to the winding number. Such a property will play a key role in our proof
of Theorem 4.1.

Let 7 : [0, 1] — C be a continuous BV path such that vy = v,. Given (z,y) ¢ 7|0, 1],
the winding number of ~ around (z,y) is defined by

n (v, (z,y) 2 L/#)d%. (4.1)

271 x +yi

The winding number of v = (y*,+?) : [0, 1] — R? is defined as the winding number of
the path ¢t — v} +iy2. We will use the following properties of the winding number.

1. If there is a simply-connected set K such that v[0,1] C K, then n (v, (z,y)) =0
for all (z,y) ¢ K. This is a consequence of Cauchy’s theorem.

2. Let R:R?* — R? be a rotation and A\ € R\ {0}. Then

NAR®), (.y) =1 (1.2 R 7 (2.9)).
This follows from the definition (4.1) of winding number.

3. (Green’s theorem for self-intersecting paths) For any smooth functions f, g : R? —
R, one has

/R? <8J:f (ZL’,y) + ayg (5573/))77 (77 (l‘,y)) dftdy = /fdys - gdx&
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In addition, the function
(@,y) = n (v, (z,y)).

is square integrable with respect to the Lebesgue measure on R2. This fact can
be found in |5, Theorem 15| and references therein.

Let v : [0,1] — R? be a continuous BV path such that v = (0,0) and v, = (1,0).
Recall that 4 £ v U & and we parametrise it on [0, 1]. More precisely, it is defined by

- 2 ) e telo.1/2
= M= (=) 2—1), tell/2,1]

Suppose that the generalised line integral condition (3.3) holds for . Then the same
condition also holds for 4. This is due to the facts that (3.3) holds for both ~ and
B = [t (1—1t,0)] and that

Je@n=[e@+ [ows.

We now state the main application of (3.3) to the winding number.
Lemma 4.2. Let v be a continuous BV path such that vy = (0,0), v1 = (1,0) and
v10,1] € [0,1] x R,

with v, € {1} x R if and only if t = 1. Let n be the winding number of 4 around the
point (x,y). Suppose that v satisfies the generalised line integral condition (3.3). Then

for (z,y) € (0,1) x R\¥[0, 1], one has

n@ﬂwDZAn@@mmu

AL

Proof Let g be a smooth function satisfying g (x + 1,y) = g (z,y) and define f (z,y)
fo (t,y)dt. Write v, = (x4,y;). According to the integral condition (3.3),

/01 9 (s, ys) dus — /01 (/01 g(t,ys)dt)dz, = 0.

It follows from Green’s theorem for self-intersecting paths that

R2§j<x y)n (7, (z, y))d:cdy—/R2 /ay y)dt)n (7, (z,y)) dady.  (4.2)

Since 7 [0,1] € [0,1] x R and 7 (%, (x,y)) = 0 for all (z,y) ¢ [0,1] x R, the relation
(4.2) can be rewritten as

// (z,9)n (3, (x,y) dxdy—// /n(ﬁ,(ff,y))dx)dtdy,
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or equivalently,

[ ] e btem - [ 066 d]dedy =o. (43)

Let h be a smooth function Such that h(x+1,y) = h(z,y). By applying the relation
(4.3) to the function g (x,y) fo (z,t)dt, one finds that

[ [ hen 6o - [ oG aidsy =o

Now fix any (zo,¥0) € (0,1) x R\¥[0,1] and let (h.).., be a standard mollifier.
Define

Ba(xay) = hé((xay) - (370,?/0))

and modify it to be 1-periodic in z. Then one has

/R/O1 he ((z,y) — (20, Y0)) (77 (7, (z,9)) — /O1 n (3, (t,y)) dt) dzdy = 0.

By taking ¢ — 0, it follows that

n (3, (20, 0)) — / 05 (£ o)) d = 0.

The result follows since (zg, yo) is arbitrary. O

4.2 A zero winding lemma

Due to the conditions in Theorem 3.4, it is necessary to rescale and rotate a path
so that it satisfies 79 = (0,0) and v; = (1,0). We first introduce such a normalising
operation.

Definition 4.3. Let v : [0,7] — R? be a BV path and let s < ¢ be two fixed times
such that v, # .. We define the associated normalisation operator As,; by

1
As,t(x) S WRs,t (x—7s), w€ R2.

Here R, : R? — R? denotes the rotation that maps v, — s to (| — 7|, 0). We use
Ay to denote the path [s,t] 3 u — Ag (7).

In this subsection, we will prove the following key result. As usual, we use A, Y
to denote the path A,y L & (we also assume that it is parametrised on [s,t]). Recall
that 7(A, 7, (z,y)) is the winding number of A,y around the point (z,y).
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Proposition 4.4. Let v : [0, K] — R? be a continuous BV path which is parametrised
at unit speed. Suppose that log S(7y),., has infinite R.O.C. on all time intervals [u,v] C
0, K]. Let s be a given fized time at which v is differentiable and let € € (0,1/6]. Let
T € (s, K] be chosen such that

e — % (t —s)[<e(t—s), (4.4)

1‘5

for allt € (s,T] and that |y —s| < |yr —7s| for all s € (t,T). Then one has
n(As 7y, (x,y)) =0

for all (z,y) € (0,1) x R\(As17)[s, T].

The proof of Prposition 4.4 relies on the following key observation which asserts
that the path A, 7y lies inside a cone region.

Lemma 4.5. Let v,s,T, e be as in Proposition 4.4. Then

(A 571 € { @9) s byl < 1o )

1— 3¢
Proof. By using (4.4), one has
R 1. t—s
- B ] <2
|7T_75| |’7T_’78| |7T_75|
and hence
/ (t - 5)
|Asr () = Asr(75) (E = 8)| S e
|7T - '75|

In particular, by taking ¢ = T" and dividing the equation by 7" — s, one obtains that

1
|'7T - ’75|‘

(1,0) = Asr(7)| <€

1
T—s

Therefore,

[ (Aorm), — (¢ = 5) (7.0))

< ‘(A&T’y)t — Asr(7,) (t = 3)| - ‘ (T

2e (t —s)
S (=) (T—s)

1

— S

(1,0) = (Aur), ) (= )|
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Let us use x! to denote the first coordinate of z € R? and similarly for 2. Then one
has

“A“”;_;:y\w1%§&?ﬂy

) 2e (t — s)
‘ (As7); } S (1—e)(T—s)

Note that for € € (0,1/6], the first inequality implies that

A1),
tos < Bt
1_ 2
1—¢
and therefore 5
2 € 1
< .
‘(AS,T’.}/)t’ ~ 1 — 38 (AS’T’}/)t
This shows that A v lies in the desired cone region. O

Proof of Proposition 4.4. By Lemma 4.5, one has

- 2e
s ,T) C { ) s lyl < } =:C
(Asry)ls, TV € (@9) : yl < 7@
As a consequence of Property 1 for the winding number,

n(As v, (7,y)) =0 (4.5)

for all (x,y) ¢ C. Now suppose that

(.y) € C[)((0,1) x R\(Az7)[s, T)).

There exists some 2/ € (0,z) such that (z/,y) ¢ C. According to Lemma 4.2, one
concludes that

(A, (2,9)) = n(Asr, (', y)) = 0.
The result of the proposition thus follows. O

The following result is an immediate application of Proposition 4.4. It shows that
infinite R.O.C. for the logarithmic signature implies that the path contains a line
segment in a weak sense.

Lemma 4.6. Let v : [0, K] — R? be a continuous BV path with unit speed parametri-
sation. Let s be a point at which v is differentiable. Let T € (s, K] be chosen such

that
7t - 73

1‘<1
t—s =6

(t=s), |

1
e ==t —9)| < 5

forallt € (s,T] and
|’Yt - ’Ys| < |’YT - ’}/s|
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for all t € (s,T). Suppose that log S () has infinite R.O.C. on the interval [s,T).
Then the following two statements hold true.

(i) One has
n (% (z,y)) =0

fO’f’ (lll (xay) € (07 1) X R\:}/ [SaT]' H€7“6 5/ é WI[S,T] L ('75 - ’YT)

(ii) Let L be the line segment joining s to yr (also parametrised on [s,T]). Then for
any smooth one-form ®(z,y) = f(z,y)dx + g(x,y)dy, one has

/ST<1><d%>=/ST<I><dLU>.

Proof. (i) This follows from Proposition 4.4, AS,TV = A, 77 (up to reparametrisation) ,
that A, r is a composition of rotation and scaling, as well as Property 2 for the winding
number which describes how the winding number behaves under rotation and scaling.

(ii) According to Green’s Theorem for self-intersecting paths,

Jowio= [ G+ 506 @) dody

It follows from Part (i) that [ ® (d¥,) = 0, or equivalently,

/f@(dmz/qudf;v).

This proves the desired claim. O

4.3 Proof of Theorem 4.1

In this subsection, we develop the proof of Theorem 4.1. We first state a technical
lemma.

Lemma 4.7. Lety : [11, 2] — R? be a continuous BV path. There exist dy, 2,7 € (0,1)
such that the following properties hold true. Let a < b < d be elements of [Ty, 2| such

that ’ya 7é 71;
o — Vel <017 — Yal -

for all c € [b,d].
(i) One has

201
1—0;

(4.6)

| Aaa() — Aaa(ve)| < , [Aaa(e) = (1,0)] <

_a
1—0;
for all ¢ € [b,d];
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(i1) One has

162 1 62
c(=— - .
Avalmas) < (3 1_51,2+1_51)><R (4.7)

and

B(Aaa(map),r) | ) B(Aaa(map) — (62,0),7) € (0,1) x R, (4.8)
where mgp = (Y4 + ) /2 and B(x,r) denotes the ball centered at x with radius ;
(iii) The four sets

AoVl Aaa¥lpa — (1,0), B(Aga(map),r), B(Aaa(map) — (62,0),7)

are disjoint.

(iv) Let L*® denote the straight line joining Ay a(Va) and Aya(v). Suppose that L
s not horizontal. Then

B(Aad(may) — (52,0),7) (L = (4.9)

0 1/2 1

Proof. (i) Note that A, 4v is well-defined since

1Ya = Yal = 1% — Yal = |76 — val = (1 = 61)|% — 7al > 0.

Now for all ¢ € [b, d], one has

|’7b_’}/c| < 61 |’Yb_7a| < 51

|Aa,d(7b) - Aa,d(/yc)| — RS
Ve —Yal 1 —Yal = va—wl ~ 1—01

and
’Aa,d(%) —(1,0)] = |Aa,d(%) - Aa,d('yd)‘

26
< [ Aaa(m) = Aaa(Ve) + [Aaa(m) — Asa(ra)] < ——

1—0;
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The desired estimate (4.6) thus follows.
(ii) The relation (4.7) follows since

Aa,d(ma,b) - (Aa,d(’}/a) + Aa,d(/yb))
(Aaa(1) = Aaa(ya)) +

(Aa,d(%) — Aa,d(w)) +

Aa,d(%z)

(1,0).

NI RN RN
N — DN —

and one also knows from (4.6) that

o1

|Aa,d(%) — Aa,d(’m)‘ < 15,

As a result of (4.7), one can obviously make (4.8) valid by choosing d;, do, 7 to be small
enough.

(iii) According to (i),

Aaa¥|pa € B((LO), 201 >,

1—4
20
Asarlng = (1,0) € B((0,0), 775).

and by (ii),

1 6/2 1 6/2
C(=-— - .
Avalmas) < (3 1__51,2+1_51)><R

The claim thus follows if one takes d1,ds,7 to be sufficiently small so that the three
sets

(5- L5+ 22 ) xr p(00). 25 5(0.0.12%)

are disjoint.
(iv) Since L™’ is not horizontal and A, 4(m. ;) € L, one knows that
Aaa(may) = (52,0) ¢ L.
By further reducing r if necessary, one can ensure that the relation (4.9) holds. ]

Next, by using Lemma 4.7 we prove a key lemma that is needed for the later proof
of Theorem 4.1.

Lemma 4.8. Let 7 : [0, K] — R? be a continuous BV path with unit speed parametri-
sation. Suppose that log S () has infinite R.O.C. on all sub-intervals [u,v] C [0, K].
Let s, T be chosen fixed as in Lemma 4.6. Then one has

V[T, K] € {ys + A(yr — %) - A € R}
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Proof. Let us denote the straight line {vs + A(yr — 7s) : A € R} by [. Define
T =sup{te[T,K]|:~[T,t] Cl}.

Suppose on the contrary that 7" < K. We will reach a contradiction by considering
the following two cases.

Case 1: vy« # 7.

There exists ¢t > T* such that 7, ¢ [ and ¢ is chosen to be close enough to T* so
that

|’7u — Y| < 51 |7T* - /YS|

for all w € [T*,t] (with §; to be specified later). By choosing a = s,b = T*,d =t in
Lemma 4.7, one can find 91, d2, 7 > 0 such that the four closed sets

As,t'y

[T* 1] As,t’Y‘[T*,t] - (17 0)7 B(As,t(ms,T*>,r)7 B(-As,t(ms,T*) - (527 0)77”)

are all disjoint, where mg - 2 (v + y7+)/2. The same lemma shows that

B(Asi(mar).r) | B(Ase(mar) — (52,0),7) € (0,1) x R,

and since v, ¢ [, L>T" cannot be horizontal so one also knows that

B(‘A'Svt(msyT*) - (627 0)7 7a) m LsyT* = @ (410)
Here L*>T" denotes the line segment joining the origin to A, ;(y7+). In what follows, we

assume that L®7" is parametrised on [s, T*].
Let ¥ be a smooth one-form supported on B(A;(msr+),7) such that

-
/ U(dLy™) = 1. (4.11)

Such a W clearly exists. Let us define

U (z,y), (z,y) € B(Asi(msr+),r) := By
B (z,y) = VU (x+d,y), (zr,y)€ B(As,t(msvT*) — (92,0) ,r) = By,
0, (2,9) € (0,1) x R\ (B U By)
¢ (r modl,y), (z,y) ¢ (0,1) xR\ (B U By).

Note that the smooth one-form ® satisfies the two conditions in Theorem 3.4. One can
Nnow write

/S 0 (d[Ayn],) = /Sch(d[As,t’ﬂv)nL /TT*(D(d[AS,n]vM / i(I)(d Al,).
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According to Lemma 4.6, one has

/sT P (d[Asiv]o) = /ST(p(de],T*)‘

Since ® = 0 on (0,1) x R\ (By U By) and A, ;7|74 is disjoint from B; U By, one sees

that .
[ (@A) <o
T*

In addition, since « [T, T*] C [ one also knows that

/T* O (d[An],) = / B(ars™).

T

Therefore, one concludes that

/S t P (d[As]v) = / " O(dLsT").

Note that L*7" is disjoint from B,. By the construction of ®, the last integral is thus
also equal to the same integral along W whose value is 1 # 0 (cf. 4.11). This leads to
a contradiction to the generalised line integral condition (3.3) in Theorem 3.4.

S (1,0)
t

Case 2: yp« = ;.

In this case, yr # v+ because yp # 7. Then there exists t > T such that v, ¢ [
and t is close enough to T™ so that

Yu — Yr+| < 61 |y — V7]

for all u € [T*,t] (with 0; to be specified later). By choosing a = T,b = T*,d =t in
Lemma 4.7, one can now proceed in exactly the same way as in Case 1 to construct a
one-form ® which satisfies the two conditions in Theorem 3.4 but

[ otaral) =140

T

This again contradicts the generalised integral condition (3.3). O
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The proof of Theorem 4.1 can be easily reduced to the two-dimensional situation
which we first handle.

Theorem 4.9. Let v : [0,1] — R? be a continuous BV path. Suppose that log S(7)s+
has infinite R.O.C. for all s < t € [0,1]. Then v, = f(t) - U for some real-valued
function f:]0,1] — R and some fized vector v € R2.

Proof. By Appendix B in the arXiv version of [2], there exist a K € [0,00), a non-
decreasing function L : [0,1] — [0,K] and 4 : [0, K] — R? such that 4., = ~.
and 4 is Lipschitz continuous with unit speed. Since the signature is invariant under
reparametrisation, one knows that log S (), , has infinite R.O.C. for all s < t € [0, K.
Let

7 =sup{t: 4, =0 for almost all u € [0,¢]}.

0o
n=1

Given € > 0, there exist a differentiable point s € [1,7 4 €/2) and a sequence (t,)
such that t,, | s and 45 # 4, for all n. Let 0 € (0,£/2) be chosen such that

Vu_'ys
u—Ss

. . . 1
5 = 3 = il = 5)| < <(u =), -1 <z

whenever |u — s| < d. Take N to be such that |ty — s| < J and let
T=inf{u>s:9% =%}

Clearly, the numbers s, T" satisfy the assumptions of Lemma 4.8. According to Lemma
4.8, one knows that

AT, K] C{As + XAr —9s) : A€ R} =: 1,

and in particular, 4[r + ¢, K] C l.. Since this is true for all ¢ > 0, the straight lines
{l:}c>0 are clearly consistent and thus all identical. Let us call this line [. It follows
that 4[r, K| C [. Since 4; = 0 for almost all ¢ € [0, 7], one has 4, = 4, for all ¢t € [0, 7].
As a result, 4[0, K] C [. This provides that 4 (and thus ) lives on a straight line.

]

Proof of Theorem 4.1. Suppose that v, = (zf,2?,--- ,z¢) and assume that vy = 0.

The conclusion is trivial if the image of 7 is a single point. Otherwise, let us assume
that x! is not identically zero. For each i # 1, the logarithmic signature of the path
78 £ (2}, 2%) has infinite R.O.C. on [s,t] for all s < ¢ € (0,1). By Theorem 4.9, one
has 7! = fi(t)(a;, b;) for some real-valued function f;(t) and some vector (a;,b;) with
a # 0. It is clear that o} = f;(t)a; and thus 7/ = 2} - (1, ¢;) where ¢; = b;/a;. It follows
that v = 2} - (1, ¢, -+, ¢q). This completes the proof of the theorem. ]
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5 Second order integral identities

We continue to assume that v : [0, 1] — R? is a weakly geometric rough path satisfying
the normalisation condition (3.1). In Section 3, we showed that if the logarithmic
signature of v has infinite R.O.C., the path 7 must satisfy the line integral condition
(3.2). In this and the next sections, by using the method of Cartan’s path development
we will show that v has to satisfy an infinite system of iterated integral identities where
the relation (3.2) appears to be the first level of them.

To better illustrate the essential idea, it is helpful to first discuss the derivation of
second order iterated integral identities. This is our main goal in the current section
and the main result is stated as follows.

Theorem 5.1. Suppose that log S(v) has infinite R.O.C. Then the following identity

(1 — cosh b) /O< » (€2k7rz'-:rs+b(xz—xs) . e2k7ri-:rt+b(xs—xt)>dysdyt

1 1
+ (Sinhb)(/ ebxsdys)(/ eRTINTs gy ) = () (5.1)

0 0

holds true for all k € Z\{0} and b € C.

5.1 A second order extension of the line integral condition

In contrast to the line integral condition (3.2), Theorem 5.1 yields a continuum family
of integral identities from which one can extract various information. The following
result is a consequence of Theorem 5.1 which can be viewed as a second order extension

of (3.2).

Corollary 5.2. Under the assumption of Theorem 5.1, one has
/ (627ri(pxs+qzt) . e?ﬂ'i(pxt—i-qxs))dysdyt -0 (52)
0<s<t<1

for all p,q € Z\{0} with p+ q # 0.

Proof. Let us denote
¢<b) é / (€2krm'~xs+b(xt—xs) . €2k7ri~xt+b(xs—xt))dysdyt
0<s<t<1

and . )
w(b) A (/ ebxs dys) ( / e(2k:7rifb):tS dys) )
0 0

Differentiating (5.1) with respect to b gives that

—sinhb - p(b) + (1 — coshb)y'(b) + cosh b - 1(b) + sinh b - ¢’ (b) = 0. (5.3)
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By further differentiating (5.3) and taking b = 2i7i, one obtains that
—p(2lmi) + 2¢'(2l7i) = 0.

Now suppose that [ # k and [ # 0. The line integral condition (3.2) yields that
w/<2lﬂ"l> _ (/ xSGle-:psdys) (/ e2(14:7l)7rz-zS dys>
0 0
. (/ €2lm~1‘sdys) (/ xSGQ(k—l)szs dys) —0.
0 0
As a result, one concludes that
@(2[7’(’2) _ / (62(k—l)7ri-xs+2l7ri-a:t . 62(k—l)7ri~xt+2l7ri~:55)dysd,yt = 0.
0<s<t<1

This gives the desired identity (5.2) with p =k — [ and ¢ = [. ]

Remark 5.3. The line integral identity (3.2) is also a consequence of Theorem 5.1.
Indeed, let k be a nonzero even integer in (5.1). By taking b = kmi in the relation

(5.3), one finds that

1 1
0= (kmi) = (/ ek”“’sdysy =0 < / M dy, = 0.
0 0

This is exactly the previous line integral identity (3.2) since k is even.

Remark 5.4. According to (3.2), one has

/ (ePritpetam) g 2riretans)) gy dy, = (/
0<s<t<1

0

1

1
627ripa:5 dys) (/ 627riqzt dyt) — 0
0

In particular, the relation (5.2) can also be rewritten as

/ 627ri(prs+qxt)dysdyt =0
0<s<t<1

for all p,q € Z\{0} with p+ q # 0.

Remark 5.5. The information encoded by the condition (5.1) is larger than the one
encoded in (5.2). For instance, by further differentiating (5.3) and setting b = 0 one
obtains that

—(0) +¥(0) +¢(0) = 0. (5.4)
Note that 1(0) = 0 as a consequence of (3.2). Therefore, the relation (5.4) becomes

1
_/ (62k7rz~acs o 62k7rz'act)dysdyt — / ZESGka.IdeS =0.
0<s<t<1 0
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After simplification, this can be rewritten as the following identity:

1 1
/ ytekaz-zt dyt — / xt€2km-xt dyt = 0.
0 0

This new identity cannot be implied by (3.2) or (5.2). One can also show by a similar
type of calculation that

/ e Prsta) gy dy, = ()
0<s<t<l1
for all odd integers p,q with p+ q # 0, as a consequence of Theorem 5.1.

Example 5.6. We use one example to illustrate the usefulness of the second order
integral identity (5.2). Consider the following piecewise linear path defined by a “Figure
Eight” trajectory:

E, D

N
S
Gy &
to
Q

Ak

F G
Here A is the origin, B = (1/2,0), C' = (1,0) and
— 11 — 1 — 1 — 1 1
BD = (-,- BE = (0, - BG = (0, —- BF =(——,—).
(4’4)’ ( ’4)7 ( ’ 4)’ ( 4’ 4)
The path v is defined by

IO—>11—>]2—>I3—>I4—>[5,

where I; (respectively, I3) denotes the loop BDEB (respectively, BEDB) and I
(respectively, I;) denotes the loop BFGB (respectively, BGF B). Explicit calculation
shows that

/ 627rioc5+47rixtdysdyt ~ —0.05 — 0.08i # 0.
0<s<t<1

Therefore, one concludes from Corollary 5.2 and Remark 5.4 that log S(v) has finite
R.O.C. Note that this example cannot be handled by Theorem 3.4; it is easily seen

that )
/ P (dv) = / ®(dv) =0
0 IgUI5

for any ® satisfying the conditions in that theorem.

In the following subsections, we develop the proof of Theorem 5.1. The key insight
is to make use of path developments into complex semisimple Lie algebras.
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5.2 Homogeneous projection formulae

Our strategy relies on certain tensor projections as a starting point. We first define
these operations. Let {e;, es} be the standard basis of R2

Definition 5.7. For each m > 1, we define D,, : T((R?)) — T((R?)) to be linear
operator induced by

e, R---Qe,, l:5, =2} =m;
D(ej, ® - ®e;) =< gur 74 ]l‘ } ;
0, otherwise.
In other words, D,,, projects a tensor series onto the sub-series whose components have
precisely m of ey’s.

Suppose that v is a two-dimensional weakly geometric rough path whose logarithmic
signature L = log S() has infinite R.O.C. It is easy to see that D,, L has infinite R.O.C.
for all m > 1. As we will show, the main philosophy is that

D,, L has infinite R.O.C. = suitable m-th order iterated integral identities.

When m = 1, this gives back the line integral condition (3.2). Theorem 5.1 follows
from the consideration of DyL. The higher order iterated integral identities we will
derive in Section 6 are based on the consideration of general D,,L (m > 3).

In order to prove Theorem 5.1, we first derive the expressions of DL and DsL,
leaving the more general situation to Section 6. This is contained in the lemma below.
Recall that {B,,} are the Bernoulli numbers arising from the first Hausdorff series H;
(cf. (3.11)).

Lemma 5.8. The following formulae for DL and Dy L hold true:

DL = Z—adm / "1 (e5)dy; ) (5.5)

2 m'
m=0
1 BmBl Zm k—1 1 ! zsade, m—k ! ztade,
+§ml>0 m'l‘ — a'del ([adel( 0 € (62>dy8)’ade1 ( 0 € <e2)dyt)])

(5.6)

Proof. Let L denote the logarithmic signature of 7 £ vy U & . Recall from (3.13) that

L=DB(L,e) = iHn(i e1)
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By applying projections D, and D5 to both sides, one finds that
DlL = Hl(le/, el), DQL = Hl(DQ.Z, e1) + HQ(D1E781). (57)

Here we used the fact that the first level of L does not contain the e;-component (due
to the normalisation (3.1)). .
We first compute DL and Dy L. Recall from Lemma 3.9 that

e}

eL = E / extladcl (e2) R R® eztnadcl (e2>dyt1 e dytn
0 J0<ti < <tn <1
T 1 7 ®2 T T 1 T T ®2
:1+L+§L +---:1+(D1L+D2L+---)+§(D1L+D2L+---) 4o

By applying D; (i = 1,2) to both sides, one finds that

1
Dli:/ 1 (eg)dy, (5.8)
0
and

~ 1 ~ ~
DgL _ / exsadel (eQ) ® eCCtadel (eQ)dysdyt _ —DlL ® DlL
0<s<t<1 2

1

= 5 / [6:I:sadel (62)’ e:vtadel (62>] dysdyt (59)
0<s<t<1

Next, we compute the Hausdorff series H; and Hs. According to the definition (3.11)

of Hy, one has
- > B -
Hy(DiL,e) = —tad(Dnl) (i=12). (5.10)
m=0 ’

Respectively, the formula (3.12) for H,, (with n = 2) yields that

I <= B~ I
- 5 Z W Z ad§1 ' © adHl(le/,el) © adel k(DlL)

1 < BB <~ o
=3 £ ad ([adl, (D1 D), adg H(DIL)]). (511)

After substituting the expressions (5.8) and (5.9) into (5.10) and (5.11), the lemma
follows from the relation (5.7). O
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Recapturing Theorem 3.1 through the D;-projection
The formula (5.5) easily recovers Theorem 3.1. Indeed, by taking the development

F\ ey — A ey — D with Lie structure [A, D] = AD. (5.12)
The relation (5.5) yields
R ~ B 1 A\ 1
[5\(DiL) = ;WW(/O eMtdy D) = S (/O eMtdy,) D.

Since the left hand side defines an entire function in A € C, one must have

1
/ ekt dy, = 0 Yk € Z\{0}. (5.13)
0

Of course, this argument is essentially the same as our earlier proof of Theorem 3.1.

An interesting point is that in the D;L case, one can achieve more by showing
that the line integral condition (3.2) is also sufficient for D, L to have infinite R.O.C.
Indeed, one can rewrite (5.5) as

00 B . 1 e N 1 .
DiL= 3 e e | tan - S Zom, e / £ "y, )ad? (es).
m,p= m=

Since the Lie polynomials adl (e;) (N > 0) all have different degrees and
Cilladg, (e2)]| < 27,

one has for every A > 0 that

£ llmna(DiD)AY

N=0
o) N 1 oo
<D __Bn o "y | AV2V =3 en](20)Y. (5.14)
m!|(N —m)! J, ™
N=0 m=0 N=0
Observe that
00 1
> w0 = (3 2o s / ) = s % [ P
N=0 m 0

Now suppose that the line integral condition (3.2) holds. Then the function

5 1
Z X e“"dy,
GZ - 1 0

is entire. As a result, the power series > cy2z" has infinite R.O.C. and so does
N>0
S~ len|ZN. In view of (5.14), this implies that DL has infinite R.O.C.
NZ>0
To summarise, one has obtained the following neat result.
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Proposition 5.9. Let v : [0,1] — R? be a weakly geometric rough path satisfying
the normalisation condition (3.1). Then D log S(7y) has infinite R.O.C. if and only if

fol e2kmizedy, = 0 for all nonzero integers k.

5.3 Complex semisimple Lie algebras

In order to prove Theorem 5.1, one needs to investigate the Do-projection. Our method
relies on path developments into a particular type of Lie algebras: complex semisimple
Lie algebras. We first provide a quick review on relevant concepts.

Definition 5.10. A (finite dimensional) complex Lie algebra g is said to be semisimple
if it can be decomposed into a direct sum g = g, @ - - - @ g,, where each g; is a simple
Lie subalgebra in the sense that it does not contain non-trivial proper ideals.

A key concept in semisimple Lie theory is the notion of Cartan subalgebras. Let g
be a complex semisimple Lie algebra.

Definition 5.11. A Cartan subalgebra b of g is a subspace which satisfies the following
two properties:

(i) b is a maximal abelian subalgebra;

(ii) adg € End(g) is diagonalisable (over C) for each H € b.

It is well known that a Cartan subalgebra always exists and is unique up to conjuga-
tion in g. Let h be a Cartan subalgebra of g. Given any representation p : g — End(W)
over a finite dimensional complex vector space W, all elements of h are simultaneously
diagonalisable when they are viewed as linear transformations over W. As a result, W
admits a decomposition into common h-eigenspaces. To be precise, a complex linear
functional p € h* is said to be a weight for p if the subspace

WHE{weW: p(H)(w) =pu(H)w Yh € h} (5.15)

is non-trivial. There are at most finitely many weights for p due to finite dimension-
ality and their collection is denoted as II(p). The space W admits a decomposition
(simultaneous diagonalisation)

W= w,

rell(p)

where for each H € b, W is an eigenspace of p(H) with eigenvalue u(H) (u € I(p)).

The above general consideration, being applied to the adjoint representation ad :
g — End(g), gives the so-called root space decomposition of g. Let « € h*. Similar to
(5.15) we define the subspace

g* 2 {X cg:ady(X)=a(H)X VH € h}.

It is readily checked that g° = b and [g®, g°] C g**# for all o, 8 € h*. A complex linear
functional o € bh* is called a root of g with respect to b if it is a weight for the adjoint
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representation (i.e. if g* # {0}). In this case, g* is called the root space associated
with a. It is clear that there are at most finitely many roots of g.

Theorem 5.12 (Root Space Decomposition). Let A be the set of all nonzero roots
with respect to a given Cartan subalgebra . Then g can be written as the direct sum

g=b+> g* (5.16)

a€cA

In this decomposition, one has dim g* = 1 for each o € A. Moreover, if a, B,a+ 5 € A
then [g*, ¢°] = g**P.

The following basic example will play an essential role in the proof of Theorem 5.1
(and more significantly, of Theorem 6.5 below).

Example 5.13. Let g = s[,(C) be the Lie algebra of n x n matrices over C with zero
trace. A Cartan subalgebra h can be taken as the subspace of diagonal matrices in g.
One has dimbh =n — 1. For each 1 < i < n, let u; € h* be the linear functional defined
by taking the i-th diagonal entry of H € . Then the set of nonzero roots is given by

A={N; S w—p1<i#j<n}
Respectively, the root spaces are given by
gt =C- Eij, (i # )

where E;; denotes the matrix whose (i, j)-entry is one and all other entries are zero.

5.4 Proof of Theorem 5.1 through sl3(C)-development

A nice feature about the root space decomposition is that the adjoint actions by
elements of the Cartan subalgebra are simultaneously diagonalised into root spaces
(eigenspaces). In particular, if one applies a path development into a complex semisim-
ple Lie algebra with e; being mapped into a Cartan element, the formulae (5.5, 5.6) for
D5 L could potentially be projected along suitable root spaces to yield scalar equations
similar to the one obtained in (3.18). This will allow one to treat Dy L as a scalar entire
function and to obtain suitable integral conditions in a similar fashion as in the proof
of Theorem 3.1.

To make this idea precise, let g be a complex semisimple Lie algebra with root space
decomposition (5.16). We consider a path development F : C?> — g induced by

61)—>A, ey — D

where A, D are chosen to be such that

A€h, D= caE, €Y g%

a€A aEA
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Here E, is a generator of g* (recall that dimg® = 1) and ¢, € C. Under such a
development, one has

F([e7 9 ), o )]) = cacpe 09 B
a,BEA

A crucial point is that [E,, Es] # 0 if a + 3 € A and one can also make a(A), 5(A)
arbitrary by varying A.

Proof of Theorem 5.1. As the simplest non-trivial example, in what follows we choose
g = sl3(C). According to Example 5.13, the Cartan subalgebra b consists of diagonal
matrices in g and the roots are given by

Let a, b be two given complex numbers. We construct a path development F,; : C* — g
by specifying

atb 00 010
e A2 0 X2 0 ,eo DEEy+Ep=1|00 1
0 0 -« 000

3

In particular, one has
D e 9/\12 + 9A2’3; AM2(A) = a, Aas(A) = b; [Erg, Eys] = Er3 € QAB
It follows that

Fa,b( [eazsadel (62), exzadel (62)}) _ [eaxsElz + ebms E23, RS E12 + ebxt Egg]
_ (eaxs+bxt _ 6azt+bIS)E13-

According to the formula (5.10) for Hy(D,L,e;), one finds that

Fop(Hy(Dy Z —adm / (e@rstbme — m b gy dyy ) Erg

0<s<t<1

l\DI»—t

ME%H

B
—'(CL + b)m/ (ea:chrbxt _ eam+bxs)dysdyt . E13
m! 0

0 <s<t<1

atb / +b +b
. . eI TNt — 8Tt dy dyy - Es.
et =1 Jocsaran ( )

N~ N
3
Il
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Similarly, by using the formula (5.11) for Hy(D;L,e;) one has

B,.B
Fab(HQ DlL 61 / / dysdyt X Z m'l'l.

m,[>0

Z adk 1[ l ax;E + bl bx SE23, am—keaztEm + bm_kebxtEgg}

B, B
/ / dysdytx Z m'l'l

m,[>0

m
> Z (albmfkea:terbxt . amfkbleaxﬂrb:ps)(a + b)kfl . E13-

After evaluating the summations explicitly, one finds that

. - 1 (a+b)(e’ —e?) b—a
Fas(Ho(DiLoen)) = o (Cor e — D@ =1~ @@ = 1)

1 1
X (/ e‘““dyt)(/ ebwtdyt)ELg.
0 0

Consequently,
Fup(DoL) = Fyp(H(DsLyer)) + Fup(Ha(DiLyex))

1 a+b
— _El,S X . / eazs—i-bwt . eaazt-l—b:cs dysdyt
2 <ea+b —1 Jocsarct ( )

(a+b)(c—e)  b-a
([ e ([ ea)).

((ea+b —1(er—1)(et—1) (e*—1)(e?t—1

—1)(e atb _ 1) on both sides, one obtains that

+

By multiplying (e® — 1)(e
(e* —1)(e’ — 1)(e*™® — 1)F, 4(DsL)

= 1Elg x ((a+b)(e* —1)(e" — 1)/ (e

2 0<s<t<1
+ ((a+b)(e" —e*) — (b—a)(e*™ — 1))(/0 e“xtdyt)(/o e"tdy,)). (5.17)

Under the assumption that Dy has infinite R.O.C., the left hand side of (5.17)
defines an entire function in (a,b) € C2. Let k € Z\{0} be given fixed and let a,b € C

satisfy a + b = 2kmi. Then (5.17) becomes

axrs+bry ea:ct—l—ba:s)dy dyt
s

0 = 2kmiEL 5 X ((1 — cosh b)/ (e%m'“”b(xt’zs) — e2kmiwetb(zs—a )dysdyt

O<s<t<1

([ i g / ey,
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Since k # 0, one concludes the desired integral identity (5.1). This completes the proof
of Theorem 5.1. 0

Remark 5.14. [t is certainly possible to use other types of complex semisimple Lie
algebras in the above analysis. We are not sure if the use of other root structures would
lead to new integral identities that are not covered by (5.1).

6 Higher order iterated integral identities

In this section, we establish the higher order counterpart of Corollary 5.2. To state our
main theorem, we first introduce the following definitions.

Definition 6.1. A finite sequence of numbers (ay, - - - , a,,) is said to be non-degenerate
if it does not contain zero consecutive sums, i.e. if
aj+aj+1—|—~~—|—ak7é0
forall 1 <j7<k<m.
Definition 6.2. Let v : [0,1] — R? be a weakly geometric rough path. For each

m > 1, we define an analytic function S, : C™ — C in the following way. Given
ap, -+ ,am € C, let B:[0,1] — C™ be the path defined by

m

t
Bté E (/ e“ijdys)ej
0

j=1

where {e1,- - ,e,} denotes the standard basis of C™. We define S), (a1, - ,a,) to be
the coefficient of the logarithmic signature of B with respect to the tensor e; ®- - -®e,,,
ie.

Sh(ar, - ap) 2 (log S(B))" ™.
Example 6.3. By explicit calculation, one finds that

1
1
S?(a) = / eaxsdys’ S;(CL, b) — _/ <6axs+ba:t _ ebxs-‘raa&t)dysdyt
0 0<s<t<1

2
and
S’Y b _ 1 axs-+bxri+cr, 1 axs+cri+br, 1 bxs+axt+cry
1(a,b,c) = (ge — 66 — 66
O<s<t<r<1
1 1 1
. éebxs—i—cmt—&-axr o éecacs—ﬁ-aact—&—ba:r + §€C$S+bxt+m’”)dysdytdyr.

Remark 6.4. One can consider a general d-dimensional path

d

¢
B, £ Z (/ epil'sdys)ei
0

i=1
It is not difficult to see that the logarithmic signature coefficient of B with respect to
€y - Cim is g’L"U@’I’L by SZ’L(puv e 7pim)‘
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Our main theorem of this section is stated as follows. As before, we assume that
v :10,1] — R? is a weakly geometric rough path satisfying the normalisation condition
(3.1).

Theorem 6.5. Suppose that log S(y) has infinite R.O.C. Then one has
S;I(ala e ;am) =0

for all m > 1 and all non-degenerate sequences (ay,--- ,an) satisfying a; € 2wiZ for
each j.

Remark 6.6. When m = 1,2, Theorem 6.5 reduces to Theorem 3.1 and Corollary 5.2
respectively. It is possible to establish higher order versions of the stronger Theorem
5.1. However, since the general formulae become significantly more involved we decide
not to pursue this generality.

Inspired by the second order case, our strategy for proving Theorem 6.5 will be
based on path developments into sl,,1(C). The general spirit is not-so-different from
the second order argument. However, the underlying algebraic structure becomes much
subtler and the argument involves several non-trivial combinatorial considerations.

In the following subsections, we develop the proof of Theorem 6.5 in a precise
mathematical way. We will continue to use the notation introduced in Section 5.

6.1 A Chen-Strichartz type formula for D,,L

Recall that L is the logarithmic signature of the path 5 £ ~ U €1 and D,, is the
projection operator defined in Definition 5.7. As a starting point, we first derive an
explicit formula for D,, L which generalises (5.8, 5.9). Throughout the rest, we use A,,
to denote the standard simplex 0 < t; < --- <t,, < 1.

Proposition 6.7. For any m > 1, one has

i _1)elo) —
DyL="73, %/A [0 (o),

UGSm e(g)

[ [eMom=nr (), ™o ™1 (eg)] -+ ] du, -+ - dys,,. (6.1)

Here we define
6(0>é#{]:17 ,m—l:a(j)>0(j+1)}

for each permutation o € S,,,.

Proof. Consider the path

t
r, 2 / e+der (o) dy, € W £ T((C?)).
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Its signature is given by

r):1+2/ dly, X ---Kdly, € T((W)),
m= Am

where X denotes another tensor product that is independent of ®. According to the
Chen-Strichartz formula (cf. [15, Theorem 3.27|), one has

log S(I Z Z m 1 / [ (0,), - - -

m= 1U€Sm
[e**om— d‘” (ez),e o™ (eg)] - [Ndys, - - - dyr,, € L((W)),

where [-,-] denotes the commutator for M. Now recall from Lemma 3.9 that the
signature of 7 is given by the formula 3.14 (without the last e®'-term). By applying
the algebra homomorphism X — ® as well as the projection D,, to the above relation,
the left hand side becomes D,,L and the right hand side is precisely (6.1). O

6.2 sl,.1(C)-development of the logarithmic signature

Our next step is to show that the logarithmic signature coefficients S} (a1, - - , ay,) (cf.
Definition 6.2) can be realised through suitable path developments. Let us formulate
this fact in a slightly more general setting. Suppose that pq,--- ,pgs € C are given fixed
numbers. We define the path

d t
B, £ Z / e’ dy,)e; € c. (6.2)

Let m > 1 and I = (i1, ,im) € {1,---,d}™ be a given fixed word. We consider
the path development F': C* — sl,,1(C) (cf. Example 5.13 for the relevant notation)
induced by

F[(el) éA c h, F[(GQ) éE12+E23+"'+Em’m+1, (63)

where the Cartan element A is chosen to satisfy
[Aa Ek,k—i—l] - pikEk,k—‘rl? k= 17 T, m. (64)

It is a simple linear algebra exercise to see that such an F; exists. Recall from Section
3.2.3 that the induced homomorphisms at the tensor and Lie series levels are both
denoted as F7. The main result for this part stated as follows.

Proposition 6.8. One has
Fy(DpL) = (log S(B))! By 1, (6.5)

where (-)! denotes the coefficient of a tensor series over C¢ with respect to the monomial
eil ®...®eim‘
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Our proof of Proposition 6.8, which has a combinatorial nature, reveals a surprising
connection between two very different Lie structures (sl,,.;(C) and free Lie algebra).
As we will see, they are connected through a shuffle product relation. We first intro-
duce some notation that is needed for the proof and then establish two key lemmas
connecting the two sides with a specific shuffle product relation. The identity (6.5) will
thus follow easily.

Some notation

(i) Suppose that (wy, -+ ,w,,) and (Wye1, -, Wman) are two given words. We define
their shuffle product by
(wla"' 7wm) L (merla"' 7wm+n> = Z (wa—l(l)y"' 7wa—1(m+n))'
oc€P(m,n)

By definition, it is obvious that
aw W bu = a(w W bu) + b(aw L 1) (6.6)
for all letters a, b and words w, u.

(ii) Let a; € C be given numbers. The notation (e®,-- -, e®) simply represents a word
and for given times s; we define

(e, e (8, Sq) £ exp (apxsp +o aqxsq).

The tensor product between two words is simply defined by concatenation. The Lie
bracket [e?, €’] is defined by

[ea’eb] L (ea’eb) . ( b’ea>‘
When acting on a pair of times (s,t), one has

[e®, €®)(s,1) = (e, €")(5,t) — (€%, e™) (s, t) = e tbrt  ghrstame,

(iii) Let aq,--- ,a, € C be given fixed. We introduce the word notation
((eap7€ap+1’_” 7€aq)a lfpgqa
(e, ey £ 41, ifp=q+1;
L0, if p > q,
and
((eap7€ap—1’... 76041)’ 1fp>q’
(eap"\“"eaq) = 1, ifp:q_l;
L0, if p <q.

Here 1 means the multiplicative unit (for both concatenation and shuffle product) and
0 means the empty word whose (tensor or shuffle) product with any other word is still
0. In other words, conventionally one has

luw=wwl=w, Oluw=wi10=0.
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Expression of F;(D,,L) in terms of a shuffle identity

The first key lemma is related to computing the development of a generic term in the
formula (6.1) for D,,L. Recall that the development Fj is defined by (6.3) where A is
chosen according to (6.4) and a; = p,;.

Lemma 6.9. For any k=1,--- ,m — 1, one has

[e*toon 0™ (Fy(ea)), [+ [e7tm0 ™ (Fr(e)), €77 ™ (Fr(e2))]]]
- Z Z(_l)j+k_i_l (((eajv /7 €a¢_1) L (eaﬂ*k’ \’ eai+2>>

@ [, € ]) (botm—tys++ » Lotm) Bk (6.7)

Here the Lie bracket is taken in sl,,11(C) and we adopt the convention that E, , = 0 if
p,q<0or=m+2.

Proof. We prove the claim by induction on k. Let us denote the right hand side of (6.7)
by G(k). For the base step k = 1, by the definition of F one has

[t (Fy (eg)), €"fotm ™4 (Fy (e2))]
= [ext"(m*l)adA(Em + ot Brn), €70 A (B 4 Eppms1)]

m m

= [Z %% (m—1) Ej,j—&-l; Z Tt (m) Ek,k—&-l} . (6.8)

J=1 k=1
By using the explicit commutator relation
[Eijs Eri] = 6B — 6aLyj, (6.9)

one easily finds that the right hand side of (6.8) equals

m—1
(eaixt"(’"*l) et to(m) — 1P (m—1) ¥t (m) ) Eiito
i—1
m—1
= > _[e", " (taon-1): tom)) Eiire = G(1).
i—1

This concludes the base step.
Now suppose that the claim is true for £ < n. By using the induction hypothesis,
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one can write
[exto(m—n—l)adA F](GQ), [emta(m—n)adA (F](CQ))
[y ), 4 )] ]

itn—i—1T _a1x Am T
= E E (=1)7 [ Wom-n-1) g+ -+ e ™ omon-DF 1,

(((eaj, /’ eaz‘—l) LLI (ea]'-‘rn’ \‘" eaz’+2)) ® [eai’ eaz‘+1])
(ta(m—n)u e 7tU(m)>Ej,j+n+1} .

Again by applying the commutator relation (6.9) and adjusting the j-index, the above
expression is equal to

5 Sy (e L (e e 0 )

N

7 eaifl) Ll (eajﬁLn? RN

_|_ (eaj+n+1 ® ((ea]" AR
(tU(mfnfl)y e 7t0(m))E'aj+n+2

m—1
= DD (e, ey e ) @ e, )
7 =1

(tcr (m—n—1); """ 7t0(m))Ej,j+n+2 = G(n + 1)7

eai+2)) ® [eaz" eai+1])

where the first equality follows from the relation (6.6). This completes the induction
step. ]

Computation of (log S(B))!

Before stating the second key lemma, we derive a general formula for basic Lie elements
which may be of independent interest. We consider the tensor algebra T'((C%)). Let
J = (j1, -+ ,Jm) be a given word. We define

e[J] = [e]da [ejzv T [e.janl’ejm]]]’ €y = €)1 IR €im
respectively. Given a word K = (ky,--- ,k.) C (1,--- ,m), we denote
Jk = (jkw"' 7-]kr)7 K é (jkm"' 7jk1)-

F
0 =0.
Lemma 6.10. For any word J = (j1,-- ,Jm), one has

. A
As a convention, we also set ey = 1 and

e= >, (“D"enuinrim @ €€ @ e (6.10)
KC(1,-,m—2)
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Proof. We prove the claim by induction. The case when m = 2 is obvious. Suppose
that the claim is true for any word with length < m — 1 and let J = (ji, -+ ,Jm). By
the induction hypothesis, one has

ey =leji, el (I = IN\{i})

KC(2,+ ;m—2)

= > CDMesn i) @ [ 5] ® e

= Z (_1)|L|eJ\(JLajm—17jm) & [ejm717 ejm] & efﬂ
LC(1, ;m—2)

The last equality follows from the observation that the two sums in the second last
equality correspond to the cases 1 ¢ L and 1 € L respectively. O

We are now able to establish the second key lemma for the proof of Proposition
6.8. This connects the logarithmic signature coefficient (log S(B))! with the same kind
of shuffle product identity appearing in Lemma 6.9. Recall that B, is the path in C?
defined by (6.2) with given py,--- ,ps € C. To ease notation, we write

J A J Jm

dB; = dBt;m -dBT

We denote 77 : T((C?)) — C as the projection map which extracts the coefficient of a
tensor with respect to e;.

Lemma 6.11. For any word I = (i1, ,i;), one has
(Y [ Bl
J:|J|=m Am
m—1 . N
= (_1)m11/ (<<€a17 Y eaiil) L (eama B eai+2))
i=1 Am
® [e™, eai+1]) (ta(1)7 T vta(m))dyh S dy,, (6.11)

where a; épij (j=1,---,m).

Proof. According to Lemma 6.10, one has

mileper = > (=DM (enug i iin @ € 1] ® o). (6.12)
KC(1,- m—2)

Let K = (ky,--- ,k.) C(1,---,m — 2) be given fixed. For any word J with length m,
one has

7TI (eJ\(Jvam—lva) ® [ejm—17ejm] ® eﬂ) 7é 0
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if and only if -
(INIKs Jm—15 Jm)s Jmn—1 Jms Jic) = 1

or —
(I\(T5es Jmn—15Jm)s Jms Jm—1, i) = 1.

The first (respectively, second) case comes with a plus (respectively, minus) sign arising
from the Lie bracket. As a result, the word J in the first case is uniquely determined
by

J= ( o m o dme1 o dmertl o Gmere1 Gmer )
[ k, eer m—1 m (6.13)
where the “- - -7 positions are filled by (i1, - - - , 4—,—2) in its natural order. Respectively,

the word J in the second case is determined by swapping ¢, 1, %m_ in the last two
positions in (6.13). We denote these two uniquely determined words by J;(K) and
Jo(K) respectively.

It follows from the above computation that

Ji|J|=m KC(1,+ m—2) m

From the explicit shapes of J;(K), Jo(K), it is not hard to see that the above expression
is precisely equal to

Z(_l)r/A (((em’ /’ eam_r—z) LLJ (eam, \‘7 eam_T"'l))

r=0

® [eam_r_la eam_r]) (to(1)7 e 7t0(m)>dyt1 e dytm'
The desired relation follows from the change of indices i £ m — 1 — r. O
We are now in a position to finish the proof of Proposition 6.8.

Proof of Proposition 6.8. According to Proposition 6.7 and Lemma 6.9 with &k = m—1,
one has

R . —1)e@ T2 ,
FDD) = 3 Sy 31
e(0)

0ESM i=1
[ Dy w e, )
Am
® [eai7 eaH—l]) (ta(l)v e 7t0'(m))dyt1 e dytmEl,m—i-l- (614)
On the other hand, the Chen-Strichartz formula gives that

log S(B ZZ Z / dB; e (6.15)

m=10€Sn eo J|J|
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It follows from (6.15) and Lemma 6.11 that the right hand side of (6.14) is precisely
(log S(B))!E1 m+1. This completes the proof of the proposition.
O

We conclude this part by presenting a general formula for the development of DiL,
which will be important to us later on. Recall that S}, is the analytic function defined
by Definition 6.2. Throughout the rest, we will omit the superscript v for simplicity.

Corollary 6.12. Let ay,--- ,a,, € C be given fized numbers. Consider the sl,,1(C)-
development defined by (6.3) where A € b is chosen to be such that [A, Eyxi1] =

ar By g+1 for allk =1,--- ,m. Then one has
~ m—k-+1
F(DpL) = Y Splag,--- s azin-1)Ejon (6.16)
j=1

forallk=1,---,m

Proof. The case when k = m is just Proposition 6.7 applied to the path

t t
Y T S
0 0

with the word I = (1,---,m). For a general k, the same argument as the proof of
Lemma 6.9 gives that

e(o) M= k+1m—1

RO = 5 Gy 2 e

€Sk j=1 =1

/ (((eaj’ .Z.’ ea‘i—l) LLJ (ea]ﬁLk*l? .\.‘.7 eai+2))
Ag
@ [, € ) (tor)s o) )Ayn, - Ay, i o (6.17)

In view of Lemma 6.11, after a change of indices | £ ¢ — j + 1 the right hand side of

(6.17) is precisely
m—k+1

> Selag,- i) Ejjn

The relation (6.16) thus follows. O

6.3 Proof of Theorem 6.5

Our proof of Theorem 6.5 is based on a key lemma regarding the analyticity of path
developments for the Hausdorff series. Since its proof has a rather involved combina-
torial nature, we decide to only state this analyticity lemma here and then use it to
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complete the proof of Theorem 6.5. In Section 6.4 below, we will give the proof of this
key lemma.

Recall that the n-th Hausdorff series H,, is defined by (3.12). In our context, we
need to consider a more specific series which is defined in terms of the homogeneous
projections of L.

Definition 6.13. Let n > 1 and kq,--- ,k, > 1 be given fixed. We define
1

n!

Hy(ky,o o k) & — (Hy(k1)0e,) © - 0 (Hi(kn)Oe, ) (1),

where we used the shorthand notation H; (k;) = Hl(Dkif}, ep). It is clear that H,, (ky,--- , ky)
depends only on the vector K = (k;,--- , k,) and we will thus also use the alternative
shorthand notation Hp .

Remark 6.14. In the above definition, we view Dkii as a fived symbol and the deriva-
tion Hi(k;)0e, does not act on it. As a result, H,(ky,--- ,ky) is expressed as a formal
Lie series over the n+1 independent symbols {e1, Dy, L, - - - , Dy, L}. It is then regarded

as a Lie series over R? through the substitution Dy, L € L(((e1,e2))).

Lemma 6.15. Let N > 2 be a given fized integer. Suppose that S,(ai, - ,a,) =0
for alln < N — 1 and all non-degenerate sequences (ay,--- ,a,) with a; € 2wiZ. Let
(b7,---,by) be a fized non-degenerate sequence with b; € 2miZ. Given w € C, we
define the path development F,, : C* — sly,1(C) by

F(e1) £ Ay, Fu(ex) £ Erg+ -+ + Exnya, (6.18)
where A,, € b is chosen to satisfy
[Aw, Ep ] = (0 + 0) B (k=1,--- N). (6.19)

Then for any vector K = (kq,- -+ , ky) satisfying |K| = N,n>2 or |[K|< N—1,n>1
and any j = 1,--- | N, there exists a meromorphic function Wi ; : CIEl = C (i.e. the
quotient of two holomorphic functions) in |K| complex variables, such that

Fu(Hi) = Wi (05 +w, - b5y g+ w) By
j

and the function w — Wy ;(b5 +w, - >b;+|K|71 + w) is analytic in a neighbourhood
of w = 0 for all (K,j). Here F, is the induced Lie homomorphism on L((C?)) (cf.
(3.15)).

Now we prove Theorem 6.5 presuming the correctness of Lemma 6.15.

Proof of Theorem 6.5. We argue by induction on the length m of the sequence (ay, - - , a,,).
The cases when m = 1,2 are just Theorem 3.1 and Corollary 5.2 respectively. Sup-
pose that the claim is true for all non-degenerate sequences with length < N — 1. Let
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(b1, -+ ,by) be a non-degenerate sequence with b} € 2miZ for all j. Our goal is to show
that Sy (b},--- ,by) =0
First of all, by using the degree N version of (5.7) one finds that

DNL:DN(iO:Hn([Z,el)) :Hl(N)+Z Z Hn(k’l, ,k’n) (620)

n=1 n=2 k1+---+kn=N

Given w € C, let F,, : C* — sly1(C) denote the path development defined by (6.18)
under the condition (6.19). By applying F,, to both sides of (6.20), one finds that

F,(DyL) =H,(F,(DyL), +Z > F (Hp(ky, -+ k)
n=2 ki+--+kn=

=Sn(b] +w,- -+ by +w)p(b] + -+ - + by + Nw)Ey N1

+Z > Fw(Hn(kl,---,k;n)).

n=2 k1+-+kn=

The second equality follows from Corollary 6.12 and the definition (3.11) of H;, where

#(z) = . Since the induction hypothesis holds for all non-degenerate sequences

with length < N, one can apply Lemma 6.15 to conclude that the function

wi— Ey(Hy(ky, - k)

is analytic near w = 0. Note that w — Fw(DNL) is also an analytic function (on the
whole space C due to the infinite R.O.C. for Dy L). It follows that the function

w = Sy(b] +w, -+ by +w)o(b] + -+ -+ by + Nw)

must be analytic near w = 0. Recall that b* = b + --- + by is a nonzero integer
multiple of 27¢ and is thus a pole of ¢. As a consequence, the function w +— Sy (b} +
w, -+, by + w) must vanish at w = 0. In other words, one has Sy(bj,---,by) = 0,

which completes the induction step.
m

6.4 The analyticity lemma

It remains to prove the analyticity lemma which will be the main task of this subsection.

6.4.1 A recursive formula for the Hausdorff series

Our strategy relies on induction on the total degree | K| of the vector K = (kq,- - , k).
For this purpose, we shall derive a recursive formula for computing H, (ki,- - ,kp)
in terms of “symmetrised products” of H,,’s (m < n). We first define such type of
products.
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Definition 6.16. Let A;,--- , A,, e, v be given symbols. We define the linear operator
Alae1®s te ®SAT‘661 : T((<ela /U>)) — T((<€1, v, A17 U 7Ar>>>

in the following way. Let f; ® --- ® fy be a given monomial where f; = e; or v. We
first define

A18e1®"'®Arael(f1®-~®fN)
éZh@'”@fil*l®A1®fi1+1®"'®finl®Ar®fiT+l®"‘®fN,

where the summation is taken over all r-subsets {iq,--- .} with fi, = e1. In other
words, the action is given by replacing r e;’s by (A, - -+ , A,) and summing over all such
possibilities. The definition is extended to the tensor algebra T'(({e1,v))) by linearity.
We then set

4106, B+ BArOey 2 ) Ap(1)06, @ -+ DAy 00,

O'EST

The following simple property of the operator A18e1®s e ®SA,.3€1 will be useful to
us.

Lemma 6.17. One has
A10:, @5+ ©,A4,0c, (ady, (v)
= Z Z adgi oady,, adgf 0---0 adffl” oady,, © adﬁ:“(v)
o€Sr &1+ +rp1=l—1
foranyl>r=>1.
Proof. This follows by induction on r based on Definition 6.16 (one first treats the

case when [ = r by induction and then the case when [ > r follows by another step of
induction from cases (I — 1,r) and (I — 1,r — 1)). O

To get some feeling about the shape of H,(ky,--- , k), we first look at the small-n
cases.

Example 6.18. We have seen the computation for Hy in (5.11). Let us consider the
case when n = 3. By definition, one has
H3<k17 k27 k3)
1

= 5 (Ha(k0)0e,) (D 57 (Hi(k2)e,) (ad, (Di, 1))

— 1!
1 B -
=73 (H1(7f1)3e1) ( Z l—'l Z adgi o ad g, (ky) © adgf(D,%L))

l &1+&e=l-1

1 B -
=5 SN o > add oady,,,))ead$? o ady, ., © ads (D, L)

TESy 1 T & 4Ea+E3=1—2
2! B, & 6 .
+ g Z 7 Z adel © adH2(li<32) © ade1 (DkaL)'
Tl T tba=l-1
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A crucial observation is that the above expression can be rewritten in terms of the
symmetrised tensor product in Definition 6.16. In fact, according to Lemma 6.17 one
has

Hi (s o ) = o (L (0)00 ) Ha 2)02)) (1 Ks)

!

+ a0 (Ho(k1, k2)0e, ) (Hi(ks)).
Our aim is to generalise the above formula to arbitrary H, (ki,--- , ky).
To state the recursive formula for general H,, (ky,- - , k), we need to introduce one

more definition to ease notation.

Definition 6.19. Let P = {[,---,I.} be a given (unordered) partition of {1,--- ,n}
(ie. I, #0, I, NI, =0 for p # q and UL, = {1,--- ,n}). We define

A

HP(kla e 7kn) é HK1861®S e ®SHK7~8617

where I, = (if <. <7 ) andeé(kizlv,--- ki ) (p=1,---,7).

The main recursive formula for H,,(kq,--- , k,) is stated as follows.
Proposition 6.20. For anyn > 1 and ky,--- ,k, > 1, one has
L) -
Hn(’ﬁa"' 7kn) = Z nl HP(kla"' 7kn—1)<H1(kn))7
P={I1, I}
where the summation is taken over all (unordered) partitions {Iy,--- ,I.} of the set

{1,--- ,n— 1} and I denotes the cardinality of Iy (s =1,---,r).

Proof. We prove the claim by induction on n. To simplify notation, we get rid of the
factorials by setting H, £ n!H, and Hp £ [4!--- lT!]:[p. The base case n = 1 is clear.
Suppose that the claim is true for H,_,. By the definition of H,(ky,--- ,k,) and the
induction hypothesis, one has

Hn(k17 toe ’kn) = (Hl(kl)ael)(Hn—l(fi‘?v T 7kn))
= (Hy(k1)0e,) [ Y (Hp(ka, -+ kn1) (Hi(n)))], (6.21)

P

where the summation is taken over all partitions of {2,--- ,n — 1}.
Given any such partition P = {I,--- ,I,}, by using Lemma 6.17 (and the notation
in Definition 6.19) one can write

Hp(kay - k1) (Hi(Kn))

=> > % > adfoady,  oadfo

TE€S, 1 Db A=l
_ E’!‘+1 T
--oadg, : oady ™ (Dy, L).

T(r
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As a derivation, the outer Hy(k;)0,, action in (6.21) will either apply to the ad,,’s or
to the Hy ’s. The former case yields

H{l}@P(kla R kn—1)<H1(kn))

where {1} @ P is the partition {{1},I1,--- , I} of {1,--- ,n— 1}, while the latter case
yields

> Hipyo guporany (ks k1) (Hi (k)

s=1
where {I,--- , {1} U I, -+, I.} is the partition of {1,--- ,n — 1} obtained by adding
the element “1” into I,. As a consequence, one finds that

Hn(kla Ty kn) - Z [ﬁ{l}@PU{;h T 7kn—1)(Hl(kn))
P:{Ilf"Jr}

+ Z H{Jl,..- AUl 1y (R e kn—l)(-Hl(kn))]

s=1

The right hand side is exactly the sum of Hg(ki,- -+, kn_1)(Hi(k,)) over all possible
partitions of {1,--- ,n—1}. Indeed, any such partition () corresponds to a partition P
of {2,--- ,n—1} together with a specific way of adding the element “1” (either outside
P or into one of the members of P) and vice versa. This completes the induction
step. ]

6.4.2 A combinatorial identity

The following combinatorial identity plays a key role in the proof. It allows one to
express certain quotients defined by non-consecutive sums of a sequence in terms of
consecutive sums.

Lemma 6.21. Let 0 < s < R be given fized and let {cx}1<k<ri1 be a given sequence
of numbers. Then one has

S R+1
1 -1 o\l
) 7@ '(3) n L(BH) ([T CIT eie)™ (6.22)
neT(s,R—s) Sn=12)%-1(2) " Ep-1(2) k=1 k=s+2

Here T (s, R — s) denotes the collection of permutations n € Sgy1 such that
nis+1)=1; n(s) <---<n(l); n(s+2) <---<n(R+1). (6.23)

We also denote

-1
Cn,1EI;§ é Cnfl(g) + Cnfl(g) 4+ Cnfl(k;)7 Cg é Cp + Cp+1 + oo+ an (624)

and conventionally we set ¢! = cgié =1.
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Proof. The case when R = 2,3 can be checked explicitly. Suppose that the claim
is true for R — 1. Let 0 < s < R and {cx}i1<k<ri1 be given . By the definition of
neT(s,R—s),either n(1) = R+ 1 or n(R+ 1) = R+ 1. One can thus write

1
@) a3 o (R >+t >

neT(s,R—s) Cn—1(2)%n—1(2) " Ep-1(2) nm(1)=R+1  nm(R+1)=R+1

According to the induction hypothesis,

R+1

1 k —1
Z 712 - 1(3) a LR+ ( +CR+1 Hck H Cor2)
nm(D=R+1 S=12)%1(2) 7T Gm1(2) 1+ Cz) h=s+2
and similarly
1 2 f 1
— s k -
Z n=(2) n1(3) n~H(R+1) (cs +CR+1 Hck H Cs+2) :
nn()=R+1 Cn-12)Cn-12) """ Ep-1(2) 1t ) k=1 k=s+2

It is easily seen that the sum of the above two expressions is equal to the right hand
side of (6.22). O

6.4.3 Proof of Lemma 6.15

We are now in a position to develop the precise proof of Lemma 6.15. We first recall
the standing assumptions of the lemma which will be imposed throughout the rest of
this subsection.

Assumption (Ay_1). Let N > 2 be given fixed. We assume that S,, (a1, ,a,) =0
for all m < N — 1 and all non-degenerate sequences (ay, - - , a,,) with a; € 2miZ.

Now let (b7, -+ ,by) be a given fixed non-degenerate sequence with b} € 2miZ. For
each w € C, we consider the path development F,, into sly,1(C) deﬁned by (6.18,
6.19). Recall that F), is the induced Lie homomorphism F,, on £((C?)).

We are going to prove Lemma 6.15 by induction on the degree |K| =k + -+ k,
of the vector K = (kq,--- , ky). To be precise, we assume as the induction hypothesis
that for any vector K with degree |K| < k < N and j = 1,--- , N, there exists a
meromorphic function Vg ; in |K| variables such that

= > Wiy (0w, B+ W) B (6.25)
In addition, the function

w '_> ‘IJK,](b; +w,"' ,b;f+|K|71 +w)

is analytic near w = 0. We want to prove the same assertion for any vector K =
(k1,--+ ,ky) of degree |K| = k. Here we should emphasise that n > 2 if Kk = N and
n>1litk <N.
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We first consider the easier case when n = 1 and &k < N. According to Corollary
6.12 and the H;-formula (3.11), one has

B . N
Fu(Hi(k)) = Srady (Fu(DyL))
:Zsk(bj+w7"'ab+k |+ w) ZW o U Rw) B
j l

= Z Sk(b; +w, - by +W)O(0] + -+ 0f gy + kW) Ej .

Since k < N, one knows from Assumption (Ay_;) that Sk(b* b5, 1) = 0. On
the other hand, w = 0 is a simple pole of the function ¢(b; + - -- + biip1 + kw). As a
result, the function

U i (w) £ Se(by +w, - b5y +w)p(b + -+ by + kw)
is analytic at w = 0. This proves the assertion in the current case.

We now focus on the more difficult case when n > 2 (k < N). According to
Proposition 6.20, it suffices to prove the following claim.

Claim. Let Ki,--- , K, be given vectors (of positive integers) and let ng > 1 be such
that |K,|+ -+ |Ki| +n9 =k < N. Then one can write

ﬁw (HK,«861®S e ®SHK1861 (Hl('nO)))
= Z Py Ky (b; +tw,- - 7b;+k71 + w)Ej,jJrk’ (6.26)
J
where the @, ... k, n,;’s are suitable meromorphic functions in k variables whose one-
dimensional reductions

w = ¢K1:"'7KT7”O’j<b; tTw,- -, b;k'Jrkfl + w)

are all analytic near w = 0.

By using Lemma 6.17, the H;-formula (3.11) and Corollary 6.12, one can first
rewrite the left hand side of (6.26) as

F (HK ael®s ttt ®SHK1661(H1(”’0)))

Z By Z Z adfT oadp W(Hi,,) )0 adi{"l

| 0€Sy Lottt er=l—r

o---oady o adp, o ad¥ (Fw(DnOfL)). (6.27)

Kg(1))

The main effort is to evaluate the above summation over the &;’s by using the induction
hypothesis on the F,(Hkg,)’s (note that |Ky;)| < k). We first state the key lemma
for this purpose and then explain the heavy notation involved.
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Lemma 6.22. Let Li,---, L, be given vectors of positive integers and let ng > 1.
Suppose that |Ly|+ -+ |L.| +no =k < N. Then one has

Z adi{ o ade(HLr) 0---0 adi1 o ade(HLl) o adif (Fw(DnOI:))
fo+Eat =t

r—+1 ue1
_ }:}: i i+ng = 1\I+1—p
- @L,u—lv"'»LlynO ’ (bl )
i p=1
por
(_1)6(1)\PLP,3 .
Ing
D o Dl (6.28)
IGW‘LJ‘ (iﬂ)vnﬂ_l (1;#71'#_‘_1)77’1,5_1 Ivng_l
Here W, denotes the set of words I = (i, iu41, " i) € {£1}7# Given such
a word I, the vector p denotes the subword of (u,--- ,r) which records the locations

of =1’sin I and q = (u,--- ,7)\p. The quantity (1) denotes the length of p (i.e.
number of —1’s in I). The function @iLH_17___7L17n0 18 defined by

7 L
@Luil,,.. ,JLi,no — @Lu,hm ,Ll,no,i<bi7 bi+17 Tt 7bi+k—1>7

where O, ... L, nei 15 a suitable meromorphic function in m complex variables (m =
no+ |L1| + -+ |L,—1|) whose shape depends on (Ly,--- ,L,_1),no and i. The family
{621,”',[/“717”0} of functions satisfy the following property: for any integeri, 1 <v <r
and any sequence of vectors V.= (Vi,--- V,), under the one-dimensional reduction
b = b; + w the function

W > Oy e (6.29)

O'ESV

1s analytic near w = 0 and vanishes at w = 0. When p =1, the function @iu—17"‘,L17n0
depends only on ng and ©. As a convention, if p = r + 1 the summation Zlew(w) n

(6.22) is set to be one and [nk"| = [nk"| 20 .

Remark 6.23. The functions @iw_,,vl’no may be singular at w = 0; it is their sym-
metrisation (6.29) which will eliminate the possible singularity.

Explanation of notation

Here we explain the notation involved in the expression (6.28).

(i) Let L £ (Ly,--+,L,;) and n; £ |L;] (1 < < 7). Given 0 < i < j < r, we set
n! & n;+niq + - +n;. Foreach 1 < p < 7, we set nt" £ (ny, - ,n,). Let
p = (p1,--- ,p) be a given subword of n*" and q = n*"\p = (¢, - , ¢m). Elements

(2
in p, q are arranged in the natural order. We write

H’S’r £ (npn'" anpz)ﬂ nﬁ’r = (nqn' o 7nqm>

65



i pr| & e
respectively and set [nL7"| = ny, + -+ 0y,

4

(ii) Given ¢ < j, we define bf = b+ b1 + -+ + b;. We always use ¥y, ; to denote a
function in |L| variables whose shape depends on a given vector L and a number j.
We write

WY & Wy (b, bt s bigi-1)-
Here b; £ b; + w is viewed as a function of w.
(iii) Let L, n;, p, p,q be given as in Part (i). Let I = (i,,%441, - , %) be a given word

with i; = £1. Denote s (respectively, t) as the number of —1’s (respectively, 1’s) in 1.
Suppose that s < [ and t < m. We define

bnﬁ:a, N bz:_l i+ng—1+nq1+...+nqt—1 (6 30)
I,n571 T—Np; — - —Npg Z.+n;01,—1 . .
and
\Ingla A‘Ili—npl qji—npl —Npgy \I]i—npl ——npg
],né)hl T T Ly Lpy Ly,
% \I]i+n571\Pi+n571+Q1 L \Iji+n571+q1+-"+qt—1 (6 31>
Lgy La, Lg, ’ ’

Remark 6.24. The superscripts in b and ¥ mean that the movement steps are taken
from the word n*", where the indices p and q record backward and forward index
movements with sizes ny,. and ng, respectively. The subscript p means that the index
gap between the initial backward and forward movements is ny(= no+ny+---+n,). In
other words, the backward movement starts from index 1 —1 and the forward movement
starts from i+nf. In the above definitions, i is fived and is not reflected in the notation.
Remark 6.25. The quantities b;%é",l and \I/?ié},l depend on the word I only through

the numbers s,t (numbers of F1’s respectively).

Proof of Lemma 6.22
Consider the following slightly more general claim which depends on the positive integer

r.

Claim P(r): The following representation holds

Z ad o adp, (g, )00 ads o adp, g, ) © ad (Fw(DnOf/))
Co+Er - tEr=v
r+1

- -1
_ E 2 ] itng —1 v+r+l—p
- @Lufl,m,Ll,no ’ (bl )
i p=1

u,r

(_1)5([)\11Lp,;1 .

Ing—
g : E _\ uri o ou-1 6.32
P e e Dl e (652)

IEW‘U,,T -1 I,’I’Lg_l

. —1 ..
(“’«)7”61 (Zuﬂ;ﬁ—l)yng
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for any sequence of vectors L = (L1, - - - , L,) and v € N. Here the functions {@"Lkh,,_ Lyt
satisfy the properties stated in Lemma 6.22.

Note that the result of Lemma 6.22 follows immediately by taking v =1 —r. We now
prove the claim P(r) by induction on r.

Step 1: Base case.

For the base case r = 1, one first recalls from Corollary 6.12 that
Dng L Z z ,i+ng

where Sfm 2 S, (bisbis1, -+, bigng—1). Therefore, one has

ad§y (Fu(DnoL)) = 3 S5, (0577 Ei i (6.33)

Next, recall that the assumption (6.25) is valid since we are under the induction step
for proving of the main Lemma 6.15 (all the L;’s are assumed to satisfy |L;| < k where
k is defined in the Claim (6.26)). In particular, one has

HLI Z \I/Ll J.j+n1 (634)

where \Ifil are analytic near w = 0. It follows from (6.33, 6.34) that

adﬁw(HL o ad&)( Dn()L Z bz+no 1 EO Z \I/Ll i E; Z+no]

J

There are at most two j-cases to make the above Lie bracket nonzero: j =7 —n; and
j =1+ ng. The former case is interpreted as a “backward movement” while the latter
is a “forward movement”. In other words, one can write

adz, (u, ) o ad% (Fy(Dy,L)) ZSZ B Y (UM By ing — U5 By iingns ) -

The additional ad%-action yields that

i—ny

ad} o adg, ) © ad$} (Fu(Dny L)) Z (bR [T - (0 ) By i

i+ng i+no+n1—1\&;
- \I[Ll '(bi ) Ei,i+no+n1]

Now we perform the summation over & + & = v by using the elementary formula

ZL‘erl

v+1
P e A A—— (6.35)

Eo+&i=v y—=
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This gives that

Y adjoady, y, yoady (F(DyL))
Eo+&1=v

z
z+n0 1\v+1 i+nog—1\v+1
o Z no 11 1 bz ni ) (bz ) ]Ei—nl,i—l—no
bz ni

z+n0

i+no+ni—1\v+1 i+nog—1\v+1
o Z no z+no+n1 Jitno+ni—1 |:(b ) - (bz ) :|Ei,i+no+n1
H—no
—n1 \Iji+n0
o i+ng—1 v+1 Ly L1
Z b ( bz 1 Ez‘—nhi-l—no + bz+no+n1 1Ei,i+n0+n1)
1—n1 i+ng
i+ng
E i+ny Qi Ly i+no+ni—1\o+1] .
+ Sno bz+n1 Titni—1 Sno bz+no+n1 1)(b ) ]EernoJrnlv (636>
i+ng

where the last line follows from a change of indices i — ny <> 7. The desired identity
(6.32) thus follows by taking ©% = S! (u=1) and

\Iji i+ng
7 A i+ny Li i Ly i+ng+ng—1
Linog — (SnO bz+n1—1 S”O bz+n0+n1 1)(b ) (637>
1+ng

The function @il7n0 is analytic near w = 0 since the sequence (bf,---,bYy) is non-
degenerate (the denominators appearing in (6.37) are nonzero near w = 0). It is clear
that both ©}, and ©} , ~vanishes at w = 0 due to the presence of the S, -terms (cf.

Assumption (Ay_1)).
Step 2: Evaluation of (6.32) based on induction hypothesis.

Now suppose that Claim P(r — 1) is true and we want to prove Claim P(r). Let
(Li,-+-,L,) be a given sequence of vectors and let v > 0. By applying (6.25) and
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Claim P(r — 1) to v — &, one finds that

=5
T
3

=

Z adioadﬁw(HLr)oade”l o~~oadpw(HL1)oad§f(
§0+"'+€r71+§'r:7}

- Z ad§ ([ Z U, Ejjin,, > ad ™" o adg, (g, )°

&r=0 ot FHEr_1=v—¢&r
) adil1 o adﬁw(HLl) ) adif (Fw(Dnoi))])

- Z Z Z @Lu 15 Limo 2 : k=t k=1
&=0 i p=1 IeW,u,r—l b(z ),nf)kl e b17n871
(bi-i—ng*l—l)vf&ﬂrrﬁu( i+ngfl+|nq’rfl|—1)£TE
i i—|n5’r71|—nr i—|n“’r71|—nr,i+n0 +|n“’r 4
g

(_1)5(1) \Iijlg . \I,"L";”o

v r )
@i I, n“
D ID DD I A e
=0 1 =1 Iew, _ ’ Lyt ’ 1
&r I Hyr—1 (%u),né‘ I,Tlg

7 Z_|nuﬂ“ 1|

(bi+ng_1—1)v—§r+7‘—u( i+n0_1+|n” 7ﬂ_1|—&-nr—l)§7nE
i—|n’;;’T_1\,i+ng_l+|n'(’i’r_1|+nr'

(6.38)

(6.39)

Just like the base case, one performs the summation over §, in (6.38) and (6.39) re-

spectively. This gives that

v
) DN G R A
i i Jnfg" |,
&r
(bi+n“71+\ng’7'71|71)v+1 . (biJrng*lfl)v—&—l

o bi—i—ng_l—l r—p Z—|n(p r)| i
- ( % ) X "

“(p,7).a

(1,=1)mg "

and respectively,

v
Z (biJrng*lfl)v—fr-‘r?“—u( itnh 4 nk " 1\+nT71)£r
2 i Jnfs )
=
itng " nf oy l=1 vt i+t o1 o1
itnt o1 i (bi—|np " (ar) ) — (bZ 0 )

= (bz ) X nhr

p<qr)

(I,1),nh"
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By substituting (6.40, 6.41) into (6.38, 6.39) respectively, one can write

Z ad oads, g, )o...oadil oadpw(HLl)oadi)(ﬁw(Dnoi))
Sot&r—1+&r=v
(_1)5(])\111‘51:1

T
) 1 -1
_ @Z (b2+n8 —1)v+r+1—u Ing
- Ly—1,+,L1,no\"i nhy w
i =1 .

b .
IGW,,”T (i#),ngfl ITL571

r
. -1
. i i+nf " —l\r—p
X Ez [nf" ,i+n6‘71+\ng’r E :E :@L‘ufl,"',Ll,no(bi )
p=1

i

(_ 1)5(1) \I;Lg£7

Z Inf 1 (bi+n6‘71+|n5‘r )U+1E B
pRE e Vil g g g
1eWy r (Z ) n o In u 1
— 1+ . (6.42)

Now we define

.
J A (pJtng } : 2 : i
@Lry“,LLno - (bj ) @Luﬂ,m,LMLo

p=14.I:i—|nk"|=j

LEG
b 1y, (_1)5(1)\1,[1;(?_1
X (bz ) ng,a n]‘;’a . (643)
b(l ) ntl’ bI ntt
n)sMg 0

It follows that X
+77/r_ v
J = Z@Lr, Lo ® ) B g

This is regarded as the term corresponding to p = r + 1 in the induction claim P(r)
(cf. (6.32) and the I-term corresponds to the summation ) _, in the claim (6.32)). It

is clear from its expression that @JLT,---, Lm0 is a meromorphic function in the complex
variables (b;,bj;1,--+) (before the one-dimensional reduction b; = b} + w).

Step 3: Analyticity of the symmetrisation of J.

To finish the proof, it remains to show that the function

> Ol Lo

UGS’I‘

is (as a function of w) analytic near w = 0. To this end, it is convenient to use the
original expression of J defined in (6.42). Equivalently, we aim at showing that the
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sl 41(C)-valued function

Z J=— Z Z Z Z @Z,‘:U(H_l)’m’LU(IWO(bz+(n”)6‘71_1)r—u

gES, i p=1loeS IeW, r

-1 5(])@(11”)%::1
(-1) Ln7)s " (z'+<nff>g*1+\<n“>sf|—1)v+1

(n?)plq ... p7)pla i—|(n)p"|
(in)s(n)f " Lno)y ™t
X By it o ) (6.44)
is analytic near w = 0. Here L7 £ (Lo(1y, -+ 5 Lo(ry) and respectively, we denote
07 £ (1), 5 M) and (n7)57" 2 ng + g1y + -+ + No(uo1y.

Let ¢ and p be given fixed. The first crucial observation is that any permutation
o € S, can be written as

oc=T10((®0),
where 7 is a (u — 1,7 + 1 — p)-shuffle, ¢ is a permutation over {1,--- , u— 1} and 6 is
a permutation over {yu, - ,7}. In this way, the summation over o and [ in (6.44) can

be rewritten as

i i+(n7O0)E T =1\
Z Z @L‘roc(u—l)»"' Lroc(1y,mo <bz )

TEP(p—1,r4+1—p) CES(1 ... u—13
el (L”’e)ﬁ:?t1
X E (—1)° E E L
- p® )bl no%)p
o

b

-
a
OES iy, ... vy IEW, r:|P|=5 (’iu),(’nTOC)g_l [7(n‘rog)g—1

i+(nTOC)H71+|(nTOG)/»“vT‘_l o1
O imrooyer ) B ey oty arenytn (6.45)

It is important to note that the expression in the last two lines depends only on 7 and
is independent of (, since

(R £ ng + ey + 0+ Rere(uet)) = N0+ Ne(ty + 0 Rrum).

Let us denote the summation over (6, 1) in (6.45) by 7s,. It follows that

i+(”T)H71*1 r— s
(645) = > (B T Y (-1 Tes
TEP(p—1,r+1—p) s=0
X Z @ZLroc(ufl) o Lrogqymo

(&S, )

According to the induction hypothesis P(r — 1), the function

i
Z @Lroc(u—lw'"er°<(1)7”0

CES, ... u—1)
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is (as a function of w) analytic near w = 0 and vanishes at w = 0.
Now our task is reduced to showing that the function 7, is analytic near w = 0
for any fixed s and 7. To ease notation, we will temporarily write

_ mp—1 1 _
g = (n7) s L2 (Leguy, - 5 L))y B2 (Trguys -+ M),

Given a permutation 6 € Sy, ... »}, we denote

L’ £ (Lo, -+ » Lowy) = (Lroguys - Letorry)
and respectively,

0’ £ (), -+ o) = (Ne(o), -+ Nr(o(r)))-

Under the above simplified notation, our target 7, is defined by

\I,(L“’)ﬁ’é
7— é I,ng
5T Z Z (0")pla  p(0%)pla
O0ES .. .y IEW,r:IPI=5 “(i,),70 1,7g
i+no+|(2?)5 " |—1\ v+1
X (0 Gt ) Bioimns om0 (6.46)

The next crucial observation is that the set of words I € W, , with precisely s
number of —1’s is in one-to-one correspondence with the set P(s; u, r) of (s, r+1—pu—s)-
shuffles over {y,--- ,r}, i.e. permutations p € Sy,.... ,} satisfying

plp) <plp+1) < <plp+s—1), plp+s) < <p(r).

Indeed, given p € P(s; u,r) one can define

. SN L Jg=p-pts—1
Ip:(@u7-..7lr>.zp(‘j): 1 ]:ILL_’_S. T

In this way, p = (p(u), -+ ,p(p+s—1)) and q = (p(r + s),- -+, p(r)). Using this
correspondence, one can write

\D(Leop)gg
= > X
n@op) (ﬁeop)g:%
068{;@ -,r} PGP(S,M, ) (’L )’no ) praﬁO
i+nio+|(0%°) 5 "= 1\ v+1
(bi—|(ﬁeop)g”| ) Ez’—|<ﬁ9°p>g”\,i+ﬁo+\<ﬁeop>g”\' (6.47)

Here p £ (y, -+, u+s—1)and q = (u+s,---,7) are the two canonical subwords

PRIV
which are both independent of p. Recall from Remark 6.25 that the function g!Mpa
depends on I, only through the numbers of F1’s in it. In particular, one has

Ip7ﬁ0



for all p € P(s; u,r) where

J = (=1,--+,=1,1,---,1).
—— e N —
s r+l1—p—s

With this observation in mind, the point is that one can now exchange the summations
n (6.47), and after doing so, since the #-summation is a full symmetrisation one could
just replace 6 o p by 6 (ignoring the role of p). In other words, one has

g5
]7ﬁ0
2 2 AL
PEP(s;1,m) 0€S .. b(zu ), A0 1,70
z+no+\( 9)”\ 1yv+1
(bl [(8%)5" ) B moypitno+|(no)4"|
_ Z \Ij@g;g . (bi+ﬁ0+|(ﬁ9)g’r|—1)v+1

Lo i—|(9)g"|

1
X |: Z (ﬁe) g (ﬁe) i ]Ei—|(ﬁ0)gv”'|7i+ﬁo+|(ﬁg)g,r|‘
s B

where we changed the order of summation back to reach the last equality.
It remains to show that for every fixed €, the summation

1
Ay
7;’7—;0 - Z (ﬁe) : o (ﬁe) 5

PEP(s;,7) b(iu)

defines an analytic function near w = 0. The third crucial observation is that 7 ;.
is precisely in the form of Lemma 6.21. To see this point, let us shift the indices
{u,--- 7} back to the standard form {1,--- , R} (R £ r + 1 — p). Namely, we denote

ﬂé(Ah”' aﬁR)a ﬁiéﬁe(l/«-‘ri—l); f)é(]w ,S),qé<8+]_,--' 7R)

In addition, any shuffle p € P(s;pu,r) corresponds to some p € P(s, R — s) in the
obvious way (and also at the level of words I <+ I,). As a result, one can rewrite

1
7;17;9 E , “1.R ALE

n
peP(s,R—s b Ba b P4
PEP( ) 11),n0 Ip,no

We define the sequence of numbers {c¢; }1<j<r+1 in the following way:

. —1 - L R = R N
bl_2§:1 nj—1 L. b’L ny1—1 bz 1 b’i+n7071 bl+7’bo+ns+1—1 . z"'no—i_X:j:s+1 nj—1
1‘72]5,:1 A i—n1—"N2 1—n1 i 1+70 i+ﬁ0+2?:_91+1 7
1 T Cs—1 Cs Cs+1 Cs+2 T CR+1-
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Note that there is a one-to-one correspondence between P(s, R — s) and T (s,r — s)
(cf. Lemma 6.21 for its definition) given by

:5'_>77: (77(1)777(2)7"' 777(5)777(S+1)777(S+2)7"' ’n(R_l_l))
£ ((ps)+1,p(s—1)+1,---, p(1) + 1,1, p(s + 1) + 1,--- , p(R) + 1).

It is then readily checked that

“1,R ~1,R . . .
Ypa . p%pa _ on (2 n7H@3) . nTH(RAL)
biyne " Vime = S1@C1(2) " Cyri)

where the right hand side is defined by (6.24). According to Lemma 6.21, one concludes

that
s R+1

1 - .
> = (I (I )™ (6.48)
pEP(s,R—s) b(z‘:’)“ﬁo e bf?-{;] k=1 k=542

By the definition of ¢;, it is apparent that both ¢; and c* o are certain consecutive sums

of the b;’s. In particular, (6.48) is of the form ———— for suitable s; <ty , 8, < tp.
! bk b5

Since the base point (b7, - ,by) is assumed to be non-degenerate, it follows that the
function 7 ;. (as a function of w) is analytic near w = 0.
The proof of the induction step is now complete.

Completing the proof of Lemma 6.15
We have obtained from (6.27) and Lemma 6.22 that

Fw (HKrae1®s T ®SHK1861 (Hl<n0)))
r+1

B i i+ ()T =1\ I+ 1—p
- Z 7 Z Z Z GKU(ufl)v"' 7Kcr(1)7n0 (bz )
l i p=1oceS,
Ko— M,
(_1)6(1)\1157(”3;);—1
2 D e G LR (6.49)
Wi Uiy, ny ™ L ()

The argument for proving the analyticity of (6.49) near w = 0 is identical to the
analysis in Step 3 of the proof of Lemma 6.22. The key idea, the same as before, is to
write any permutation 0 € S, as 0 = 70 ((®0) where 7 € P(u—1,7+1—p), ¢ € S,—1
and 0 € Sy,... ;3. This allows one to split the o-action in (6.22) into permutations over
the {1,--- ,u— 1} and {y,--- ,r} parts separately. By exactly the same analysis as in
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Step 3 of the proof of Lemma 6.22, one finds that

Fw (HKrael ®s T ®SHK1661(H1(HO)))
r+1

D I MU R

i p=1lreP(p—1,r+1—p)

X E : = 1. .
( @Kro((u—l)v"'1KTOC(1),n0) KT( KT(l),(nT)g ! (6 50)
¢eSu—1

Here

(_1)5(1) (KTOG)g%

—i N Z Z I,(n7)y~
Ky Ko (n)g T (07%pla (7l
0€Su,... 1y IEW, i |p|=5 (iu),(nf)f)‘_l ]7(717')6‘—1
E.

i— |0 it (nT ) ()|
for 1 < pu < r and as a convention

i
Ko

— A
= =B
p)rt 7K7—(r) 7(”7—)5 Z’Z+n0

if 4 = r + 1. The function E;{ Ko (Y is an sy 1(C)-valued analytic function
() B (r) 0

near w = 0 for the same reason leading to the analyticity of 75 . as before (cf. (6.46)).
The analyticity of (6.50) near w = 0 thus follows from the facts that

(i) w = 0 is a simple pole for the function

Qs(bH(nT)GLA) _ gzﬁ(b;k b b

-1
i i+(n7)g_1—1 + (n )'(L)L U)),

(ii) the function

(__)i
Z KTOC<H71)7.“7KT0<(1),WO

CESM,1
vanishes at w = 0.

This show that F, (Hg, 0o, ®s - - - ®sHe, 0o, (Hi(ng))) is an sly41(C)-valued analytic
function near w = 0. The proof of Lemma 6.15 is now complete.
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