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Abstract

Consider a Parabolic Anderson model (PAM) with Gaussian noise that
is white in time and colored in space, where the spatial correlation decays
polynomially with order α. In Euclidean spaces with dimension greater
than 2, it is well-understood that the critical value for α is 2. Specifically,
for α < 2, the second moment of the solution grows exponentially over
time, while for α > 2, there is a phase transition, from the second moment
being uniformly bounded in time to exhibiting exponential growth in time
when the inverse temperature increases. This critical behavior arises from
the fact that in Euclidean space, Brownian motion tends to infinity at a
speed of

√
t.

The present work explores the PAM on a hyperbolic space. Given that
Brownian motion in a hyperbolic space travels at a speed of t, one expects
that α = 1 would be the critical value for the above phenomena. We con-
firm that this intuition is indeed correct. Furthermore, we uncover a novel
phase for α < 1 in which the second moment explodes sub-exponentially,
distinct from the behavior observed in Euclidean space.
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1 Introduction and main results
Let M ≜ Hd denote the d-dimensional space-form of curvature K ≡ −1. We
consider the parabolic Anderson model (PAM) on M{

∂tu(t, x) = ∆u(t, x) + βu(t, x) · ∂2

∂t∂xW (t, x),

u(0, ·) ≡ 1.
(1.1)

in the sense Itô-Walsh [Wa86]. Here ∆ is the hyperbolic Laplacian, β > 0 is the
(inverse) temperature parameter, and W is a time-dependent Gaussian field on
M that is white in time and colored in space with spatial covariance function
f : M ×M → R, i.e.

E
[
W (s, x)W (t, y)

]
= (s ∧ t)f(x, y).

Throughout our discussion, we assume that f is uniformly bounded and vanishes
when the (hyperbolic) distance ρ(x, y) tends to infinity.

Standard Wiener chaos expansion technique shows that the stochastic differ-
ential equation (1.1) has a unique solution which can be written in the mild form
as the solution to the following stochastic integral equation (see, e.g., [BCO25]):

u(t, x) = 1 +

∫ t

0

∫
M

pt−s(x, y)u(s, y)W (ds, dy), (1.2)

where pt(x, y) is the heat kernel on M , and the stochastic integral is understood
in the sense of Itô-Walsh [Wa86].

The parabolic Anderson model arises in a large number of diverse questions
in probability theory and mathematical physics. For example, it gives rise to the
free energy of the directed polymer and to the Cole-Hopf solution of the KPZ
equation [ACQ11, Ka87, KPZ86]; it also has direct connections with the stochas-
tic Burger’s equation [CM94] and Majda’s model of shear-layer flow in turbulent
diffusion [Mj93]. In the last few years, there have been many advances in un-
derstanding numerous fundamental properties of the PAM on flat spaces (e.g.
M = Rd and M = Td), such as intermittency property (see, e.g., [Ch15], [Kh14]
and references tehrein), energy landscape and fluctuation [BQS11, DGK23].

In particular, suppose M = Rd for d ≥ 3 and the covariance function satisfies

f(x, y) = f(x− y) ≍ 1

|x− y|α
(1.3)
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for some α > 0 and all large |x − y|. The second moment of the solution u
exhibits the following large-time behavior (see, e.g., [CK19]):

E-(i) When α < 2, the second moment E
[
u(t, x)2

]
blows up exponentially in

time,
logE

[
u(t, x)2

]
≍ t.

E-(ii) When α > 2, there is phase transition, that is, for all large β one has

logE
[
u(t, x)2

]
≍ t;

whereas E
[
u(t, x)2

]
is uniformly bounded in t for all small β.

Here is a heuristic explanation for why α = 2 is critical. Feynman-Kac formula
for the second moment ([HNS11]) states that

E
[
u(t, x)2

]
= E

[
exp

(
β2

∫ t

0

f(Bs − B̃s)ds
)]

. (1.4)

In the above, the expectation E is taken with respect to the randomness of two
independent Brownian motions B and B̃ starting from the same point x. Note
that Bs − B̃s is a Euclidean Brownian motion; when d ⩾ 3, it is transient and
travels to infinity at a speed of O(

√
s). Hence, if one naively replaces Bs − B̃s

by
√
s for large s in (1.4) and employ (1.3), it is clear that α = 2 is a critical

value: when α > 2 the time integral is uniformly bounded for all t, while when
α < 2 the time integral is infinity when t tends to infinity.

In the hyperbolic space Hd, the Brownian motion is transient in all dimen-
sions and goes to infinity at a speed of O(t). The same heuristic argument above
suggests α = 1 is critical in a hyperbolic space. Naturally, one asks whether
this argument leads to the correct answer. Our analysis in this paper gives an
affirmative answer to this question, and can be summarized in the following
theorems.

Theorem 1.1. Let ρ(x, y) be the hyperbolic distance between x and y on Hd.

(a) Suppose α > 1 and the covariance function f satisfies the following as-
sumption: ∣∣f(x, y)∣∣ ⩽ C

ρ(x, y)α
∀x, y : ρ(x, y) > R (1.5)

with some given constants C,R > 0. Then there exists a constant β0 > 0,
such that

sup
t⩾0,x∈M

E
[
u(t, x)2

]
<∞

for all β ∈ (0, β0).

(b) On the other hand, suppose α < 1 and f satisfies:

f(x, y) ⩾
C

ρ(x, y)α
∀x, y : ρ(x, y) ⩾ R (1.6)

with suitable constants C,R > 0. Then E[u(t, x)2] blows up as t ↑ ∞ for
all β > 0.
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Similarly (to the Euclidean setting), when the inverse temperature β is large
enough, the second moment blows up exponentially independent of the choice
of α.

Theorem 1.2. For any α > 0, there exists β1 > 0 depending on α, such that
for all β > β1 one has

lim
t→∞

1

t
logE[u(t, x)2] > 0. (1.7)

It is clear from the above two theorems that the second moment of the PAM
presents a similar large-time behavior to the Euclidean case as described in E-(i)
and E-(ii), and, as expected, the critical value for α is 1 because a hyperbolic
Brownian motion travels at a speed of O(t) as oppose to O(

√
t) of a Euclidean

Brownian motion. However, our analysis discovers a novel phase transition that
is absent in the Euclidean situation for α < 1.

Theorem 1.3. Let α < 1 and assume that as ρ(x, y) tends to infinity,

f(x, y) ≍ 1

ρ(x, y)α
. (1.8)

Then there exists a β̄0 such that for all β < β̄0, one has

logE[u(t, x)2] ≍ t1−α, as t ↑ ∞.

Theorems 1.2 and 1.3 together show that, unlike the Euclidean case described
in E-(ii), when α < 1 the hyperbolic PAM undergoes a subtle phase transition
in terms of the blow-up rate of its second moment: the second moment blows
up sub-exponentially when β is small, whereas it blows up exponentially when
β is large. As one will see below, this new phenomenon arises because when the
noise intensity is low (small β), the PAM has to pick up the noise from far away
to grow. Since hyperbolic Brownian motions travel to infinity at a much faster
speed than a Euclidean Brownian motion, this together with the decay of the
covariance function (1.8) gives a slower blow-up rate. On the other hand, when
the noise intensity is high (large β), the local environment is already strong
enough to cause an exponential blow-up for the moment.

The significance of the large-time behavior of the second moment can be
tracked back to the so-called L2-region for directed polymers on Zd, in which
the second moment of the (normalized) partition function can be computed
rather explicitly (see, e.g., [Co16]). In the L2-region, the partition function
converges to a positive random variable almost surely and the polymer exhibits
diffusive behavior under the polymer measure. The parabolic Anderson model
is closely connected to the theory of continuum directed polymers, as both share
the same probability law through the polymer partition function. Consequently,
analysis of the second moment of the PAM yields important information about
the statistical properties of continuum polymers. The new phase transition de-
scribed in the last paragraph for hyperbolic PAM raises the natural question
of whether this transition corresponds to new qualitative behaviors of the poly-
mer that are absent in Euclidean geometries. This is a reasonable expectation,
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given the distinct properties of hyperbolic Brownian motion compared to its
Euclidean counterpart. These differences suggest the possibility of novel local-
ization phenomena or fluctuation regimes for the associated polymer measure.
Exploring these potential behaviors in the hyperbolic setting will be a focus of
our future work.

To conclude the introduction of our main results, we would like to make
a comment on the covariance function on hyperbolic spaces with polynomial
decay when ρ(x, y) ↑ ∞,

f(x, y) ≍ 1

ρ(x, y)α
(1.9)

for α > 0. Due to the geometry of hyperbolic spaces, it is not a priori clear
whether such a function exists. Indeed, most known positive definite functions
on hyperbolic spaces decay exponentially fast as ρ(x, y) ↑ ∞ (see, e.g., [BCO25,
BHV09]). In Section 4 below, we give an explicit construction of positive definite
functions satisfying (1.9). As one will see, this construction is non-trivial and
may be of independent interest.
Remark 1.1. In a recent work [BCO25], moment estimates have been studied
for the parabolic Anderson model on Cartan-Hadamard manifolds. The co-
variance function of the noise considered in this work decays exponentially fast
as ρ(x, y) ↑ ∞ and falls under the setting of Theorem 1.1-(a). Therefore, the
transitions discussed in the present paper do not appear in [BCO25].

2 Upper estimates
In this section, we prove Part (a) of Theorem 1.1. We assume that the covariance
function f(x, y) satisfies

|f(x, y)| ⩽ C

ρ(x, y)α

for all x, y with ρ(x, y) > R, where α > 1 and C,R are given positive constants.

2.1 Some basic representations
The analysis of u(t, x) is largely based on its Feynman-Kac representation stated
below. Its proof is standard and is thus omitted.

Proposition 2.1. The solution u(t, x) to the PAM (1.1) is given by

u(t, x) = Ex

[
exp

(
β

∫ t

0

W (ds,Bs)−
1

2
β2

∫ t

0

f(Bs, Bs)ds
)]
, (2.1)

where B is a hyperbolic Brownian motion starting at x that is independent of
W and Ex means taking expectation with respect to B.

An important consequence of Proposition 2.1 is the following representation
of the second moment of u(t, x).
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Lemma 2.1. One has

E
[
u(t, x)2

]
= Ex,x

[
exp

(
β2

∫ t

0

f(Bs, B̃s)ds
)]
. (2.2)

The expectation E on the left hand side is taken with respect to the Gaussian
field W . On the right hand side, B, B̃ are two independent copies of hyperbolic
Brownian motions starting at x (jointly independent of W ) and Ex,x means
taking expectation with respect to them.

Proof. By using the Feynman-Kac representation (2.1), one can write

u(t, x)2 = Ex,x

[
exp

(
βNt(B) + βNt(B̃)− 1

2
β2

∫ t

0

(
f(Bs, Bs) + f(B̃s, B̃s)

)
ds
)]
,

where we set Nt(ω) ≜
∫ t

0
W (ds, ωs) for each fixed path ω in M . Note that Nt(ω)

is a Gaussian martingale with quadratic variation
∫ t

0
f(ωs, ωs)ds (under E). In

addition, given two fixed paths ω1, ω2 in M , the process Nt(ω
1) + Nt(ω

2) is a
Gaussian martingale with quadratic variation

Vt(ω
1, ω2) ≜

∫ t

0

f(w1
s , w

1
s)ds+

∫ t

0

f(w2
s , w

2
s)ds+ 2

∫ t

0

f(w1
s , w

2
s)ds. (2.3)

In particular, one has

E
[
exp

(
βNt(ω

1) + βNt(ω
2)− 1

2
β2Vt(ω

1, ω2)
)]

= 1. (2.4)

It follows from (2.3, 2.4) that

E
[
u(t, x)2

]
= EEx,x

[
exp

(
βNt(B) + βNt(B̃)− 1

2
β2Vt(B, B̃) + β2

∫ t

0

f(Bs, B̃s)ds
)]

= Ex,x

[
E
[
exp

(
βNt(B) + βNt(B̃)− 1

2
β2Vt(B, B̃)

]
exp

(
β2

∫ t

0

f(Bs, B̃s)ds
)]

= Ex,x

[
exp

(
β2

∫ t

0

f(Bs, B̃s)ds
)]
.

This gives the desired relation (2.2).

2.2 Some hyperbolic estimates
We recall two fundamental estimates in hyperbolic geometry. The first one is
about uniform estimates for the heat kernel.

Lemma 2.2. ([DM98, Theorem 3.1]) Let Ht(ρ(x, y)) be the heat kernel on M .
Then one has

Ht(ρ) ≍ t−d/2 exp
(
− (d− 1)2t

4
− ρ2

4t
− (d− 1)ρ

2

)
(1 + ρ+ t)

d−3
2 (1 + ρ) (2.5)

uniformly for ρ ⩾ 0 and t > 0. Here “A ≍ B” means c1B ⩽ A ⩽ c2B with some
universal constants c1, c2 > 0.
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The second estimate is a reversed triangle inequality that is only valid in
hyperbolic geometry.

Lemma 2.3. ([HL10, Lemma 3.4]) Let ∆ABC be a hyperbolic triangle with
geodesic edges a, b, c. Then one has

0 ⩽ b+ c− a ⩽ log
2

1− cosA
. (2.6)

Remark 2.1. Lemma 2.2 shows that the Laplacian has a strictly positive bottom
spectrum λ0 = (d− 1)2/4 and the heat kernel decays like t−3/2e−λ0t as t→∞.
A remarkable point about Lemma 2.3 is that the estimate is uniform in a, b, c
(with the angle A fixed). In particular, when b, c are very large (so is a as a
function of b, c when A is fixed), taking the detour path (b, c) to go from B to C
is not-so-different from directly taking the geodesic path a. These two properties
are both consequences of negative curvature and are drastically different from
the Euclidean situation. Their implications on Brownian motion are contained
in the estimates (2.12, 2.16) below.

2.3 Reduction to a single integral estimate
To prove Theorem 1.1 (a), we begin by applying triangle inequality to the
Feynman-Kac representation (2.2) so that

E
[
u(t, x)2

]
⩽ Ex,x

[
exp

(
β2

∫ ∞

0

|f |(Bt, B̃t)dt
)]

=: I(β). (2.7)

To ease notation, we will assume f ⩾ 0 (otherwise just regard |f | as f). One
has

exp
(
β2

∫ ∞

0

f(Bt, B̃t)dt
)
=

∞∑
n=0

β2n

n!

(∫ ∞

0

f(Bt, B̃t)dt
)n

=

∞∑
n=0

β2n

∫
0<t1<···<tn<∞

n∏
k=1

f(Btk , B̃tk)dt1 · · · dtn.

Note that (Bt, B̃t) can be viewed as the Brownian motion on the product space
M ×M (equipped with the product metric), whose heat kernel is clearly given
by

Pt((x, y), (x
′, y′)) = Ht(ρ(x, x

′))Ht(ρ(y, y
′)).

It follows that

I(β) =

∞∑
n=0

β2n

∫
0<t1<···<tn<∞

∫
(M×M)n

n∏
k=1

f(xk, yk)

× Ptk−tk−1

(
(xk−1, yk−1), (xk, yk)

)
dtdxdy, (2.8)
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where x0 = y0 ≜ x, t0 ≜ 0 and

dt ≜ dt1 · · · dtn, dxdy ≜
n∏

k=1

volM (dxk)volM (dyk).

Let us further denote zk ≜ (xk, yk) to ease notation. By applying a change
of variables sk ≜ tk − tk−1 in (2.8) and noting that each sk has independent
integral range (0,∞), one finds that

I(β) =

∞∑
n=0

β2n

∫
M2

f(z1)
(∫ ∞

0

Pt(z0, z1)dt
)
dz1 × · · · ×

∫
M2

f(zn−1)(∫ ∞

0

Pt(zn−2, zn−1)dt
)
dzn−1

∫
M2

f(zn)
(∫ ∞

0

Pt(zn−1, zn)dt
)
dzn.

(2.9)

Now it becomes clear that the conclusion of Theorem 1.1-(a) will follow directly
from the lemma below.

Lemma 2.4. There exists a positive constant Λ, such that∫
M×M

f(x′, y′)dx′dy′
∫ ∞

0

Pt((x, y), (x
′, y′))dt ⩽ Λ (2.10)

for all (x, y) ∈M ×M.

Proof of Theorem 1.1-(a). Presuming that (2.10) is true, one has from (2.4, 2.7)
that

I(β) ⩽
∞∑

n=0

β2nΛn.

The conclusion thus follows by taking β0 ≜ 1/
√
Λ.

2.4 Proof of Lemma 2.4
It remains to prove Lemma 2.4. Note that the LHS of (2.10) equals∫ ∞

0

Ex,y

[
f(Bt, B̃t)

]
dt,

where Bt, B̃t are independent Brownian motions starting at x, y respectively.
The idea of bounding this integral is very simple; recalling the assumption (1.5)
on the decay rate of f , one basically replaces f(Bt, B̃t) by Cρ(Bt, B̃t)

−α and
applies the approximation ρ(Bt, B̃t) ≈ 2(d − 1)t for all large t. As we will see
below, this is legal since the heat kernel estimate (2.5) forces the radial process
ρ(x,Bt) to behave like (d−1)t with a

√
t-fluctuation, while the reversed triangle

inequality (2.6) forces ρ(Bt, B̃t) ≈ ρ(x,Bt) + ρ(y, B̃t) with high probability.
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We assume without loss of generality that (1.5) holds for all x, y ∈ M (by
enlarging the constant C if necessary). For each t > 1, we will also introduce a
localising event Mt (its precise definition is given by (2.14) below) on which the
distance ρ(Bt, B̃t) can be effectively estimated. One then has the decomposition∫ ∞

0

Ex,y

[
f(Bt, B̃t)

]
dt

⩽ ∥f∥∞ +

∫ ∞

1

Ex,y

[
f(Bt, B̃t);M

c
t

]
dt+

∫ ∞

1

Ex,y

[
f(Bt, B̃t);Mt

]
dt

⩽ ∥f∥∞ + ∥f∥∞
∫ ∞

1

Px,y(M
c
t )dt+ C

∫ ∞

1

Ex,y

[
ρ(Bt, B̃t)

−α;Mt

]
dt. (2.11)

We first analyse the last integral in (2.11), which will also motivate the definition
of Mt. By applying Lemma 2.3 to both triangles ∆BtyB̃t and ∆Btxy, one finds
that

ρ(Bt, B̃t) ⩾ ρ(Bt, y) + ρ(y, B̃t)− log
2

1− cosΨt

⩾ ρ(Bt, x) + ρ(x, y)− log
2

1− cosΦt
+ ρ(y, B̃t)− log

2

1− cosΨt

⩾ ρ(Bt, x) + ρ(y, B̃t)− log
2

1− cosΦt
− log

2

1− cosΨt
. (2.12)

where Φt ≜ ∠Btxy and Ψt ≜ ∠BtyB̃t (both Φt,Ψt ∈ [0, π]), Let us define the
renormalized processes

ξt ≜
ρ(x,Bt)− (d− 1)t√

t
, ηt ≜

ρ(y, B̃t)− (d− 1)t√
t

.

Then (2.12) becomes

ρ(Bt, B̃t) ⩾ 2(d− 1)t+
√
t(ξt + ηt)− log

2

1− cosΦt
− log

2

1− cosΨt
. (2.13)

Let δ be a fixed positive number such that 4δ < 2(d − 1). For each t > 1, we
now introduce the earlier announced event:

Mt ≜
{
min{ξt, ηt} > −δ

√
t, max

{
log

2

1− cosΦt
, log

2

1− cosΨt

}
⩽ δt

}
.

(2.14)
It follows from (2.13) that∫ ∞

1

Ex,y

[
ρ(Bt, B̃t)

−α;Mt

]
dt ⩽

∫ ∞

1

(
(2(d− 1)− 4δ)t

)−α
<∞, (2.15)

since α > 1 by assumption.
Next, we estimate Px,y(M

c
t ). This is done by the following two lemmas (one

for estimating ξt, ηt and the other for Φt,Ψt).
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Lemma 2.5. For any δ > 0, there exists some positive constant K1 such that

Px,y

(
ξt ⩽ −δ

√
t
)
⩽ e−K1t (2.16)

for all t > 1.

Proof. Recall that the volume form under geodesic polar coordinates with re-
spect to x is vol = sinhd−1 ρdρdσ, where ρ is the distance to x and dσ is the
volume form for the unit sphere in TxM . Given any I ⊆ R, by the heat kernel
estimate (2.5) one has

Px,y(ξt ∈ I) = Px,y

(
(ρ(x,Bt)− (d− 1)t)/

√
t ∈ I

)
⩽ C1t

−d/2

∫{
(ρ,σ):

ρ−(d−1)t√
t

∈I
} exp

(
− (d− 1)2t

4
− ρ2

4t
− (d− 1)ρ

2

)
× (1 + ρ+ t)

d−3
2 (1 + ρ) sinhd−1 ρdρdσ

⩽ C2t
−d/2

∫{
(ρ,σ):

ρ−(d−1)t√
t

∈I
} exp

(
− (d− 1)2t

4
− ρ2

4t
+

(d− 1)ρ

2

)
× (1 + ρ+ t)

d−1
2 dρ,

where we have used sinh ρ ⩽ eρ/2 and also integrated out the angular variable
σ. By applying a change of variables r = [ρ− (d− 1)t]

√
t, it is easily seen that

exp
(
− (d− 1)2t

4
− ρ2

4t
+

(d− 1)ρ

2

)
= e−r2/4

and (since t > 1)

t−d/2(1 + ρ+ t)
d−1
2 dρ = t−

d−1
2 (1 + dt+

√
tr)

d−1
2 dr ⩽ (1 + d+ |r|)

d−1
2 dr.

It follows that

Px,y(ξt ∈ I) ⩽ C2

∫
I

(1 + d+ |r|)
d−1
2 e−r2/4dr. (2.17)

In our context, one takes I = (−∞,−δ
√
t]. It is straight forward that the right

hand side of (2.17) is bounded above by e−C3t for some positive C3 that depends
on δ.

Lemma 2.6. There exists a universal constant K2 > 0 such that

Px,y

(
log

2

1− cosΦt
> δt

)
+ Px,y

(
log

2

1− cosΨt
> δt

)
⩽ K2e

−δt/2 (2.18)

for all δ, t > 0.

Proof. Write Bt = (ρ(x,Bt),Θt) in geodesic polar coordinates, where Θt ∈
S1TxM (the unit sphere on TxM) is its angular component. Note that SO(d)
acts on M by isometries (rotations with respect to x leaving x fixed). As a
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result, Θt is a uniform random variable on Sd−1. In addition, given any fixed
direction v ∈ S1TxM , for the same reason the angle between Θt and v follows
a canonical distribution on [0, π] that is independent of v and t (which can of
course be computed explicitly but is not needed here). Let L denote an upper
bound of the density function of this distribution.

Simple algebra shows that

log
2

1− cosΦt
> δt ⇐⇒ sin

Φt

2
< e−δt/2. (2.19)

Since Φt/2 ∈ [0, π/2], one can apply Jordan’s inequality (i.e. sin θ ⩾ 2θ/π for
all θ ∈ [0, π/2]) to see that (2.19) implies Φt < πe−δt/2. But Φt is just the angle
between Θt and the direction of geodesic xy. As a result, one obtains that

Px,y

(
log

2

1− cosΦt
> δt

)
⩽ Lπe−δt/2.

To analyse Ψt, let Θ̃t denote the angular component of B̃t and let Wt be the
direction of the geodesic yBt. Note that Ψt is the angle between Θ̃t and Wt.
Since Θ̃t and Wt are independent (because B and B̃ are), one also has

Px,y

(
log

2

1− cosΨt
> δt

)
= Ex,y

[
Px,y

(
log

2

1− cosΨt
> δt

∣∣Wt

)]
⩽ Ex,y

[
Px,y

(
Ψt < πe−δt/2

∣∣Wt

)]
⩽ Lπe−δt/2.

The desired estimate (2.18) thus follows.

It follows from (2.16, 2.18) that

Px,y(M
c
t ) ⩽ Px,y(ξt ⩽ −δ

√
t) + P(ηt ⩽ −δ

√
t) + Px,y

(
log

2

1− cosΦt
> δt

)
+ Px,y

(
log

2

1− cosΨt
> δt

)
⩽ 2e−K1t +K2e

−δt/2.

By substituting this and (2.15) into (2.11), one arrives at∫ ∞

0

Ex,y

[
f(Bt, B̃t)

]
dt

⩽ ∥f∥∞ +

∫ ∞

1

[
∥f∥∞

(
2e−K1t +K2e

−δt/2
)
+ C

(
(2(d− 1)− 4δ)t

)−α
]
dt.

This is clearly a finite constant that is independent of the starting points x, y.
The proof of Lemma 2.4 is now complete.

3 Lower estimates
In this section, we prove Theorem 1.1-(b), as well as Theorems 1.2 and 1.3.
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3.1 Lower bound for large β

We first prove Theorem 1.2 which asserts that the growth of E[u(t, x)2] is always
eO(t) when the parameter β is large.

Proof of Theorem 1.2. We again use the Feynman-Kac representation (2.2). Let
r > 0 be chosen such that

mf (r) ≜ inf
{
f(y, z) : ρ(y, x) < r/2, ρ(z, x) < r/2

}
> 0,

where x is the common starting point of both Bt and B̃t. Such an r exists since
f(x, x) > 0 (as a variance). Define

σr/2 ≜ inf{t : ρ(Bt, x) > r/2}, σ̃r/2 ≜ inf{t : ρ(B̃t, x) > r/2}.

It follows from (2.2) that

E[u(t, x)2] ⩾ Ex,x

[
exp

(
β2

∫ t

0

f(Bs, B̃s)ds
)
;σr/2 > t, σ̃r/2 > t

]
⩾ exp

(
β2t ·mf (r)

)
Px(σr/2 > t)2 (3.1)

for all t and β. It is well-known that

P(σr/2 > t) ∼ e−λr/2t as t→∞,

where λρ > 0 denotes the principal Dirichlet eigenvalue of −∆ on the geodesic
ball B(x, ρ). In particular, there exist constants Cr, Tr > 0 such that

P(σr/2 > t) ⩾ Cre
−λr/2t ∀t > Tr. (3.2)

By substituting (3.2) into (3.1), one finds that

E[u(t, x)2] ⩾ C2
r exp

(
(β2mf (r)− 2λr/2)t

)
∀t > Tr, β > 0.

This proves the theorem.

We now discuss an Euclidean result in order to compare it with Theorem 1.2.

Proposition 3.1. In the Euclidean case M = Rd, suppose that f(x, y) = F (|x−
y|) where F is a given function satisfying the following estimate:

F (u) ⩾
C

(1 + u)α
∀u ⩾ 0 (3.3)

with given constants C > 0 and α ∈ (0, 2). Then the estimate (1.7) is valid for
all β > 0.

12



Proof. We continue to use the notation introduced in the proof of Theorem 1.2.
In the Euclidean case, the key observation is that λρ = λ1/ρ

2 for all ρ > 0. On
the other hand, by the assumption (3.3) one has

mf (r) ⩾
C

(1 + r)α
.

It follows from (3.1) that

E[u(t, x)2] ⩾ C2
r exp

(( Cβ2

(1 + r)α
− 8λ1

r2
)
t
)

for all t > Tr and β > 0. Given an arbitrary β, since α ∈ (0, 2) one can choose
r sufficiently large so that

Cβ2

(1 + r)α
− 8λ1

r2
> 0.

This implies the growth property (1.7) for every β > 0.

Remark 3.1. The above argument breaks down in the hyperbolic case since

lim
r→∞

2λr/2 =
(d− 1)2

2
> 0, lim

r→0+
2λr/2 = +∞.

For an arbitrary β, one cannot always make β2mf (r)−2λr/2 positive by suitably
choosing r. In fact, one already knows from the upper bound part in Theorem
1.3 that the conclusion of Proposition 3.1 is not true in the hyperbolic space
when α ∈ (0, 1) and β is small.

3.2 Lower bound for α ∈ (0, 1)

In this section, we prove the following more quantitative version of Theorem 1.1-
(b).

Theorem 3.1. Suppose that the covariance function f is nonnegative and sat-
isfies the following estimate:

f(x, y) ⩾
C

ρ(x, y)α
∀x, y : ρ(x, y) ⩾ R (3.4)

with suitable constants C,R > 0 and α ∈ (0, 1). Then there exists a positive
constant K such that

E[u2(t, x)] ⩾ eKβ2t1−α

(3.5)

for all sufficiently large t.

13



3.2.1 The hyperboloid model

Our proof of Theorem 3.1 relies on a simple localisation argument which makes
explicit use of the hyperboloid model. More specifically, we define a Lorentzian
inner product on Rd+1 by

y ∗ z ≜ y1z1 + · · ·+ ydzd − yd+1zd+1

and consider the space

M ≜ {(z1, · · · , zd+1) ∈ Rd+1 : z ∗ z = −1, zd+1 > 0}.

The Lorentzian inner product induces a Riemannian metric on M by restriction,
which makes M into the space-form of curvature K ≡ −1. The hyperbolic
distance between y, z ∈M is computed by the formula

cosh ρ(y, z) = −y ∗ z. (3.6)

In particular, for the base point o ≜ (0, 1) one has

ρ(y, o) = arccosh yd+1.

A useful coordinate system on M is the (geodesic) polar coordinates. Namely,
given ρ > 0 and σ ∈ Sd−1 (the unit sphere on the tangent space ToM), the point
with polar coordinates (ρ, σ) is given by y = expo(ρσ) where expo denotes the
exponential map at o. In other words, y is the location after travelling along
the geodesic from o in the direction σ for a distance of ρ.

We state a simple geometric lemma that will be useful later on.

Lemma 3.1. There exist two subsets A,B ⊆ Sd−1, such that

ρ(y, z) ⩾ max{ρ(y, o), ρ(z, o)}

for all y = (ρ1, σ1), z = (ρ2, σ2) with σ1 ∈ A and σ2 ∈ B.

Proof. According to the relation (3.6), one has

ρ(y, z) ⩾ ρ(y, o) ⇐⇒ y ∗ z ⩽ y ∗ o ⇐⇒
d∑

k=1

ykzk − yd+1zd+1 ⩽ −yd+1. (3.7)

Suppose A,B are two fixed regions on Sd−1 (both having positive spherical
volumes) such that

∠(σ, τ) >
π

2
∀σ ∈ A, τ ∈ B,

where ∠(σ, τ) denotes the angle between Oσ and Oτ (O is the center of Sd−1).
Clearly, a choice of (A,B) exists. Given y = (ρ1, σ1), z = (ρ2, σ2) with σ1 ∈ A

and σ2 ∈ B, one has
∑d

k=1 ykzk ⩽ 0 and −yd+1zd+1 ⩽ −yd+1 since zd+1 ⩾ 1. It
follows from (3.7) that ρ(y, z) ⩾ ρ(y, o) and by symmetric the same inequality
holds with the right hand side replaced by ρ(z, o).

14



3.2.2 Proof of Theorem 3.1

According to Jensen’s inequality and the relation (2.2), one has

E[u2(t, x)] ⩾ exp
(
β2

∫ t

0

Ex,x

[
f(Bs, B̃s)

]
ds
)
. (3.8)

It suffices to lower bound the integral∫ t

0

Ex,x

[
f(Bs, B̃s)

]
ds.

Recall that the pair (Bs, B̃s) is a Brownian motion on the product manifold
M ×M (equipped with the product hyperbolic metric), whose heat kernel is
given by

Ps((x, y), (z, w)) = Hs(ρ(x, z))Hs(ρ(y, w)). (3.9)

It follows from (3.9) that

Ex,x[f(Bs, B̃s)]

=

∫
M×M

f(y, z)Hs(ρ(x, y))Hs(ρ(x, z))volM (dy)volM (dz)

⩾
∫
{(y,z):ρ(y,z)>R}

C1

ρ(y, z)α
Hs(ρ(x, y))Hs(ρ(x, z))volM (dy)volM (dz), (3.10)

where we also used the assumption (3.4) to reach the last inequality.
Now we are going to apply Lemma 3.1 in the hyperboloid model with x = o

(the base point). Writing y = (ρ1, σ1) and z = (ρ2, σ2) in polar coordinates
with respect to o, the lemma shows that

{(y, z) : ρ1 > R, ρ2 > R, σ1 ∈ A, σ2 ∈ B} ⊆ {(y, z) : ρ(y, z) > R}.

It follows from (3.10) that

Ex,x[f(Bs, B̃s)] ⩾ |A| · |B|
∫ ∞

R

∫ ∞

R

C1

(ρ1 + ρ2)α
Hs(ρ1)Hs(ρ2)

× sinhd−1 ρ1 sinh
d−1 ρ2dρ1dρ2, (3.11)

where | · | means taking spherical volume on Sd−1 ⊆ ToM . To further estimate
the right hand side, we localize the double integral (3.11) in the region

ρi − (d− 1)s√
s

∈ [a, b] (i = 1, 2),

where a, b are two fixed numbers. It is clear that ρi > R when s is large. By
applying the hyperbolic heat kernel estimate (2.5) and a change of variables

ρi ←→ ri : ρi = (d− 1)s+ ri
√
s,
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after explicit calculation one finds that the right hand side of (3.11) is further
bounded from below by

C2s
−α

∫ b

a

∫ b

a

e−(r21+r22)/4dr1dr2,

for all large s, where C2 is a positive constant that is independent of s. To
summarise, one concludes that

Ex,x[f(Bs, B̃s)] ⩾ C3s
−α ∀s > s0,

with suitable positive constants C3, s0. By substituting this inequality into (3.8),
one obtains that

E[u2(t, x)] ⩾ exp
(
C3β

2

∫ t

s0

s−αds
)
⩾ exp

(
C4β

2t1−α
)
∀t > s0.

The proof of Theorem 3.1 is thus complete.

3.3 Sharpness of (3.5) for small β
We have seen from Theorem 1.2 that the lower bound (3.5) is not sharp when β
is large (the growth rate is eO(t) in that case). In the following result, we prove
that (3.5) is optimal for small β. This result shows that Proposition 3.1 is not
valid for small β in the hyperbolic setting, which demonstrates a phenomenon
that is not present in the Euclidean situation. Together with Theorem 3.1, one
thus obtains the conclusion of Theorem 1.3.

Theorem 3.2. Suppose that the covariance function f satisfies the following
estimate:

|f(x, y)| ⩽ C

(1 + ρ(x, y))α
∀x, y ∈M, (3.12)

where C > 0 and α ∈ (0, 1) are given parameters. Then there exists a positive
constant β̄0 such that

sup
t⩾1,x∈M

1

t1−α
logE[u(t, x)2] <∞

for every β ∈ (0, β̄0).

Proof. We may just assume that f ⩾ 0 (otherwise, replace f by |f |). According
to Lemma 2.1 (and using the same notation over there), one can write

E[u(t, x)2] =

∞∑
n=0

β2n

n!

∫
[0,t]n

Ex,x

[
f(Bs1 , B̃s1) · · · f(Bsn , B̃sn)

]
ds1 · · · dsn.

(3.13)
To estimate the integral on the right hand side, let δ ∈ (0, 2(d−1)/3) be a fixed
number. For each s > 0, we introduce the event

As ≜
{
ξs > −δ

√
s, ηs > −δ

√
s, log

2

1− cos∠BsxB̃s

⩽ δs
}
,
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where

ξs ≜
ρ(Bs, x)− (d− 1)s√

s
, ηs ≜

ρ(B̃s, x)− (d− 1)s√
s

and ∠BsxB̃s ∈ [0, π] denotes the intersection angle between the geodesics xBs

and xB̃s at x. The main idea is to apply the estimate

f(Bsk , B̃sk) ⩽
C

(1 + ρ(Bsk , B̃sk))
α
⩽

C

(1 + Lsk)α
(3.14)

on the event Ask where L ≜ 2(d − 1) − 3δ, which is a consequence of the
assumption (3.12) and the reverse triangle inequality (2.6). While on the event
Ac

sk
, one simply applies f ⩽ C together with the estimate that

Px,x(A
c
s) ⩽ K1e

−K2s ∀s > 0 (3.15)

for suitable constants K1 > 1, K2 > 0; the last inequality follows from Lemma
2.5 as well as a simple adaptation of Lemma 2.6.

To be more specific, one decomposes the expectation on the right hand side
of (3.13) into

Ex,x

[
f(Bs1 , B̃s1) · · · f(Bsn , B̃sn)

]
=

∑
I⊆{1,··· ,n}

Ex,x

[
f(Bs1 , B̃s1) · · · f(Bsn , B̃sn);

( ⋂
k∈I

Ask

)
∩
( ⋂
l∈Ic

Ac
sl

)]
.

According to the inequality (3.14), one has

Ex,x

[
f(Bs1 , B̃s1) · · · f(Bsn , B̃sn)

]
⩽ Cn

∑
I⊆{1,··· ,n}

∏
k∈I

1

(1 + Lsk)α
Px,x

( ⋂
l∈Ic

Ac
sl

)
.

By integrating this inequality over [0, t]n, one finds that∫
[0,t]n

Ex,x

[
f(Bs1 , B̃s1) · · · f(Bsn , B̃sn)

]
ds1 · · · dsn

⩽ Cn
∑

I⊆{1,··· ,n}

( ∫ t

0

ds

(1 + Ls)α
)|I| ∫

[0,t]|Ic|
Px,x

( ⋂
l∈Ic

Ac
sl

) ∏
l∈Ic

dsl

⩽ Cn
∑

I⊆{1,··· ,n}

( (1 + Lt)1−α

L(1− α)

)|I| ∫
[0,t]|Ic|

Px,x

(
Ac

max{t1,··· ,t|Ic|}
)
dt1 · · · dt|Ic|.

(3.16)

Denoting l ≜ |Ic| to ease notation, the last integral can further be rewritten as∫
[0,t]l

Px,x

(
Ac

max{t1,··· ,tl}
)
dt1 · · · dtl = l!

∫
0<t1<···<tl<t

Px,x(A
c
tl
)dt1 · · · dtl.
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According to (3.15), the last integral is estimated as∫
0<t1<···<tl<t

Px,x(A
c
tl
)dt1 · · · dtl

⩽
∫
0<t1<···<tl<t

K1e
−K2tldt1 · · · dtl

= K1

∫ t

0

tl−1
l

(l − 1)!
e−K2tldtl =

K1

Kl
2

∫ K2t

0

rl−1

(l − 1)!
e−rdr

⩽
K1

Kl
2

Γ(l)

(l − 1)!
=

K1

Kl
2

. (3.17)

By substiting (3.17) back into (3.16) and further into (3.13), one obtains that

E[u(t, x)2] ⩽
∞∑

n=0

(Cβ2)n

n!

n∑
k=0

(
n

k

)( (1 + Lt)1−α

L(1− α)

)k

· (n− k)!
K1

Kn−k
2

= K1

∞∑
n=0

(Cβ2

K2

)n n∑
k=0

1

k!

(K2(1 + Lt)1−α

L(1− α)

)k

= K1

∞∑
k=0

1

k!

(K2(1 + Lt)1−α

L(1− α)

)k ∞∑
n=k

(Cβ2

K2

)n

. (3.18)

It is now clear that as long as

Λβ ≜
Cβ2

K2
< 1 ⇐⇒ β < β̄0 ≜

√
K2

C
,

the right hand side of (3.18) is convergent and is equal to

K1

1− Λβ

∞∑
k=0

1

k!

(K2Λβ(1 + Lt)1−α

L(1− α)

)k

=
K1

1− Λβ
exp

(K2Λβ(1 + Lt)1−α

L(1− α)

)
.

Therefore, one concludes that

E[u(t, x)2] ⩽
K1

1− Λβ
exp

(K2Λβ(1 + Lt)1−α

L(1− α)

)
for all t > 0, provided that β < β̄0. This completes the proof of the theorem.

4 Covariance functions with power decay
On the hyperbolic space M = Hd, the covariance function f(x, y) of a station-
ary Gaussian field (i.e. a Gaussian field with SO+(d, 1)-invariant distribution)
typically decays exponentially as ρ(x, y)→∞. A natural class of such examples
is that ξ(x) =

∫
SO+(d,1)

f(g−1 · x)Ξ(dg) where f : M → R is a smooth function
with suitable decay at infinity and Ξ is the white noise on the isometry group
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SO+(d, 1). Nonetheless, one can construct stationary Gaussian fields on M
whose covariance functions decay with a given power law. This is demonstrated
in Proposition 4.1 below.

We first recall a basic result about non-negative definite kernels (Schoen-
berg’s theorem).

Definition 4.1. Let X be a topological space. A continuous function Ψ : X ×
X → R is conditionally of negative type if it satisfies the following properties:

(i) Ψ(x, x) = 0 for all x ∈ X;

(ii) Ψ(x, y) = Ψ(y, x) for all x, y ∈ X;

(iii) For any n ⩾ 1, x1, · · · , xn ∈ X and any real numbers c1, · · · , cn with∑
ci = 0, one has

n∑
i,j=1

cicjΨ(xi, xj) ⩽ 0.

A continuous function Φ : X × X → C is of positive type if for any n ⩾ 1,
x1, · · · , xn ∈ X and any complex numbers c1, · · · , cn, one has

n∑
i,j=1

cicjΦ(xi, xj) ⩾ 0.

Theorem 4.1 (Schoenberg’s theorem; cf. [BHV09, Theorem C.3.2]). Let X be
a topological space and Ψ : X × X → R be a continuous function. Then the
following statements are equivalent:

(i) Ψ is conditionally of negative type;

(ii) The function e−tΨ is of positive type for every t ⩾ 0.

We now give the construction of stationary Gaussian fields on the hyperbolic
space M , whose covariance functions admit an exact power decay. This justifies
our earlier assumptions on the covariance function.

Proposition 4.1. Let α > 0 be given fixed. Define Ψ(x, y) ≜ log cosh ρ(x, y).
Then the function

Φα(x, y) ≜
∫ 1

0

e−u1/αΨ(x,y)du, x, y ∈M (4.1)

is of positive type and satisfies

lim
ρ(x,y)→∞

ρ(x, y)αΦα(x, y) = αΓ(α)

uniformly in x, y. In particular, Φα defines the covariance function of a sta-
tionary Gaussian field with uniform power decay ρ(x, y)−α as ρ(x, y)→∞.
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Proof. It is known from [BHV09, Theorem 2.11.3] that Ψ is conditionally of
negative type. According to Theorem 4.1, the function (x, y) 7→ e−u1/αΨ(x,y) is
of positive type for every fixed u ∈ [0, 1]. In particular, the function Φα(x, y)
defined by (4.1) is of positive type. To compute its decay rate, by applying a
change of variables v = u1/αΨ one finds that

Φα(x, y) =
α

Ψ(x, y)α

∫ Ψ(x,y)

0

e−vvα−1dv.

It follows that

ρ(x, y)αΦα(x, y) =
αρ(x, y)α

Ψ(x, y)α

∫ Ψ(x,y)

0

e−vvα−1dv → αΓ(α)

as ρ(x, y)→∞. Since Φα(x, y) is a function of ρ(x, y) only, it is clear that any
Gaussian field with covariance function Φα(x, y) is stationary.
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