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Abstract

We establish the second-order moment asymptotics for a parabolic Anderson
model ∂tu = (∆+ξ)u in the hyperbolic space with a regular, stationary Gaussian
potential ξ. It turns out that the growth and fluctuation asymptotics both are
identical to the Euclidean situation. As a result, the solution exhibits the same
moment intermittency property as in the Euclidean case. An interesting point
here is that the fluctuation exponent is determined by a variational problem
induced by the Euclidean (rather than hyperbolic) Laplacian. Heuristically, this
is due to a curvature dilation effect: the geometry becomes asymptotically flat
after suitable renormalisation in the derivation of the second-order asymptotics.
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1 Introduction
This article is the first part of our investigation on the long time behaviour of the
solution u to the parabolic Anderson model (PAM)

∂tu = ∆u+ ξu , u(0, ·) ≡ 1 (1.1)

on the d-dimensional space-form M = Hd with constant negative curvature κ ≡ −1.
Here ξ is a stationary mean-zero Gaussian field on M with smooth correlation and ∆ is
the Laplace-Beltrami operator on M . Our basic motivation is to look for new asymp-
totic behaviour and mechanism that arises from effects of non-Euclidean geometry.

Among several fundamental questions surrounding the study of PAM, our main
goal is to understand the moment (annealed) and almost sure (quenched) asymptotics
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of the solution to (1.1) in large time. The present article studies the annealed situation
and the second part [GX25] (Part II: Quenched Asymptotics) deals with the quenched
situation. Below is a brief summary of our main findings:

Annealed asymptotics. The moment asymptotics turns out to be identical to the
Euclidean situation. In particular, the solution exhibits the same moment intermit-
tency property as in the Euclidean case. A surprising point here is that the fluctuation
exponent is determined by a variational problem associated with the Euclidean (rather
than hyperbolic) Laplacian.

Quenched asymptotics. The growth rate and the exact growth constant are deter-
mined through an explicit optimisation procedure, which are both different from the
Euclidean situation. The almost sure growth is much faster in the hyperbolic case (t5/3
vs t

√
log t) in logarithmic scale) and the solution exhibits a stronger non-Euclidean

localisation mechanism.

In summary, the annealed asymptotics is insensitive to the underlying geometry while
negative curvature (more essentially, the exponential volume growth) plays a crucial
role in the hyperbolic quenched asymptotics.

Annealed asymptotics and intermittency. For every p ⩾ 1, let us denote

mp(t) ≜ E
[
u(t, x)p

]
.

This quantity does not depend on x by the stationarity of ξ. In the present article,
we aim at investigating the behaviour of mp(t) for large t. The long time behaviour
of mp(t) has been extensively investigated in the cases of Rd or Zd for various random
potentials ξ (cf. [Kön16, GK00] and references therein). An important motivation for
studying the moment asymptotics is to understand the intermittency behaviour of the
solution, namely, the main contribution to moments comes from high peaks that are
sparsely distributed in space as t → +∞. Mathematically, this can be captured by
showing that for every p > q, one has

1

p
logmp(t)−

1

q
logmq(t) ≫ 0 (1.2)

as t → +∞. We refer the reader to [GM90, Kön16] for a discussion on intermittency.
It was shown in [GK00] that for a large class of random fields ξ, one has the asymptotic
expansion

logmp(t) = H(pt)− β(pt)
(
χ+ ot(1)

)
(1.3)

to the second order, whereH is the cumulant generating function of the random variable
ξ(0), β is a scaling function related to the law of ξ and satisfies

1 ≪ β(t) ≪ H(t) as t→ +∞ ,

and χ ∈ R is a constant determined by the Laplacian and the law of ξ. In particular,
the moment intermittency property (1.2) holds for a rich class of ξ including Gaussian
potentials.
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Main result. In this article, we show that the moment asymptotics for the solution
to the PAM (1.1) under a stationary, regular Gaussian potential is identical to the
Euclidean situation (1.3) (cf. Theorem 2.1 below for the precise formulation). In
particular, the solution exhibits the same moment intermittency property as in the
Euclidean case. A surprising point here is that the fluctuation exponent χ is also
determined by the Euclidean (rather than hyperbolic Laplacian). This fact is a priori
unclear and a heuristic explanation is given in Section 2.4.1. We will discuss our main
strategy for proving Theorem 2.1 and the underlying difficulties in Section 2.4.2.

Related works in the time-dependent case. There are several related works that
investigate the case of a time-dependent potential in a geometric setting. For instance,
[BCO24] considered the PAM with a time-dependent (white in time and coloured in
space) Gaussian potential on a Cartan-Hadamard manfold, where the authors obtained
well-posedness results as well as moment estimates for the solution. The role of non-
positive curvature (and global geometry) also plays an essential role in the recent work
[CO25] where similar questions as in [BCO24] were investigated. Other works related
to the asymptotic behaviour of PAM with a time-dependent Gaussian potential in
a geometric setting include e.g. [TV02, BOT23, BCH24, COV24]. We should point
out that the case of time-dependent potential is different from the time-independent
case in several fundamental ways (the asymptotic results, methodology and underlying
mechanism have very different nature in these two settings). Here we focus on the
time-independent case and will not comment much on the other situation.

2 Basic notions and statement of the main theorem
In this section, we discuss the problem set-up and state the main theorem of the article.

2.1 The parabolic Anderson model in the hyperbolic space

Let M = Hd be the d-dimensional, complete and simply-connected Riemannian man-
ifold of curvature κ ≡ −1. Let ξ = {ξ(x) : x ∈ M} be a given fixed mean zero,
stationary Gaussian field on M , namely, we assume that

(A1) E[ξ(x)] = 0 for all x ∈M ;

(A2) ξ(g·) d
= ξ(·) for all orientation-preserving isometries g of M .

One can show that (cf. Lemma 2.1 below) the covariance function of ξ defined by

C(x, y) ≜ E[ξ(x)ξ(y)], x, y ∈M

is a function of hyperbolic distance d(x, y). We therefore write C(x, y) = Q(d(x, y)).
We make one further assumption on Q:

(A3) Q is twice continuously differentiable.
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Typical examples of ξ are given by Example 2.1 below. In this article, we consider
the following parabolic Anderson model (PAM) with respect to the above Gaussian
field ξ on M : {

∂tu(t, x) = ∆u(t, x) + ξ(x)u(t, x), (t, x) ∈ (0,∞)×M ;

u(0, ·) ≡ 1.
(2.1)

Here ∆ denotes the Laplace-Beltrami operator on M . Our goal is to compute the exact
asymptotics of the p-th moment (p ⩾ 1) of u(t, x) as t→ ∞ (both leading growth and
fluctuation).

2.2 Some geometric notions and the hyperboloid model

We will frequently use geodesic polar coordinates in our analysis which we shall first
recall. Let o ∈ M be a given fixed base point. It is well-known that the exponential
map expo : ToM → M is a global diffeomorphism. In particular, any point x ̸= o
on M is uniquely written as x = expo(ρσ) with ρ > 0 (the radial component) and
σ ∈ STo(M) ≜ {v ∈ ToM : |v| = 1} (the angular component). Of course o corresponds
to ρ = 0. The parametrisation

expo : (ρ, σ) 7→ x = expo(ρσ)

is known as the geodesic polar chart with respect to o. Given λ > 0 and x ∈ M , we
define the dilation with respect to o

λ · x ≜ expo(λ exp
−1
o x). (2.2)

Using geodesic polar coordinates, this is simply (ρ, σ) 7→ (λρ, σ).
Under geodesic polar chart, the metric tensor, Laplacian and volume form are

respectively given by

ds2 = dρ2 + sinh2 ρdσ2, (2.3)
∆ = ∂2ρ + coth ρ∂ρ + sinh−2 ρ∆σ, (2.4)

vol(dρ, dσ) = sinhd−1 ρdρvol(dσ).

Here dσ2 is the metric tensor, ∆σ is the Laplacian and vol(dσ) is the volume form on
the unit sphere SToM . We use ωd−1 to denote the spherical volume of SToM. More
generally, if the underlying curvature is κ ≡ −α2 (α > 0), then under geodesic polar
coordinates one has

ds2 = dρ2 + α−2 sinh2(αρ)dσ2, (2.5)
∆ = ∂2ρ + α coth(αρ)∂ρ + α2 sinh−2(αρ)∆σ, (2.6)

vol(dρ, dσ) = α−(d−1) sinhd−1(αρ)dρvol(dσ). (2.7)
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The hyperbolic distance function on M is denoted as d(·, ·). The group of orientation-
preserving isometries is denoted as G. For each R > 0, we denote QR ≜ {x ∈ M :
d(x, o) ⩽ R}.

A convenient model of M to perform explicit analysis is the hyperboloid model
which is described as follows. For each α > 0, let us define

Hd
α ≜ {x = (x1, · · · , xd+1)

T : x ∗ x = −α−2, xd+1 > 0} ⊆ Rd+1, (2.8)

where ∗ is the Lorentzian inner product on Rd+1 defined by

x ∗ y ≜
d∑
i=1

xiyi − xd+1yd+1.

The Lorentzian metric restricted to Hd
α becomes positive definite, turning Hd

α into
a d-dimensional, complete and simply-connected Riemannian manifold of curvature
κ ≡ −α2. The space Hd

1 is the hyperboloid model of M . The Riemannian distance
function dα on Hd

α is explicitly determined through the following relation:

x ∗ y = −α−2 cosh
(
αdα(x, y)

)
, x, y ∈ Hd

α. (2.9)

A distinguished base point of Hd
α is chosen to be o = (0, 0, α−1). Geodesics passing

through o are precisely those intersection curves between Hd
α and any two-dimensional

subspace of Rd+1 containing the xd+1-axis.
The group of orientation-preserving isometries for Hd

α is

G = SO+(d, 1) =
{
g ∈ Matd+1(R) : gTJg = J,Ad+1

d+1 > 0
}
,

where J ≜ diag(1, · · · , 1,−1). Here the G-action is just the standard linear action;
in fact G acts simultaneously on every Hd

α and is the group of orientation-preserving
isometries for all these spaces. The isotropy group K with respect to the base point o
(i.e. the subgroup of G leaving o fixed) is the orthogonal group:

K =
{
k ∈ G : k =

(
S 0
0 1

)
with S ∈ SO(d)

}
.

Note that k ∈ K acts on each geodesic sphere

Sr ≜ {x ∈ Hd
1 : d(x, o) = r}

=
{
(x1, · · · , xd+1) : x

2
1 + · · ·+ x2d = sinh2 r, xd+1 = cosh r

}
by spherically rotating the (x1, · · · , xd)T -component by the orthogonal matrix S. It is
well-known that these actions are transitive: for any x, y ∈ Hd

1 (respectively, x, y ∈ Sr)
there exists g ∈ G (respectively, g ∈ K) such that y = gx.
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2.3 Basic properties and a key scaling limit of the Gaussian
field

Here we collect some basic facts about the Gaussian field ξ. We also derive an important
functional arising from suitable scaling limit of ξ, which will appear explicitly in the
fluctuation exponent of the PAM (cf. (2.24)).

To justify its interest, we must first demonstrate the existence of rich examples of
Gaussian fields on M satisfying Assumptions (A1)∼(A3).

Example 2.1. Let Ξ(·) denote the white noise on the isometry group G. In other
words, {Ξ(A) : A ∈ B(G), |A|G < ∞} is a Gaussian family with mean zero and
covariance structure

E[Ξ(A)Ξ(B)] = |A ∩B|G.

Here |A|G ≜
∫
A
dg where dg is a fixed Haar measure on G. Let f be a given smooth

function on M with suitable decay at infinity. Then

ξ(x) ≜
∫
G

f(g−1 · x)Ξ(dg), x ∈M

defines a smooth Gaussian field on M with covariance function

C(x, y) =

∫
G

f(g−1 · x)f(g−1 · y)dg =
∫
G

f(g · x)f(g · y)dg,

where g · x means the action of g ∈ G on x ∈M . It follows that

C(h · x, h · y) =
∫
G

f(g · (h · x))f(g · (h · y))dg

l=gh
=

∫
G

f(l · x)f(l · y)dl = C(x, y)

for all h ∈ G and x, y ∈ G. This shows that the distribution of ξ is invariant under
G-actions.

Lemma 2.1. C(x, y) is a function of d(x, y).

Proof. Let xi, yi ∈M (i = 1, 2) be such that d(x1, y1) = d(x2, y2). Let gi be an isometry
such that gixi = o and set y′i ≜ giyi. Since the Gaussian field ξ is stationary, one has

C(x1, y1) = C(g1x1, g1y1) = C(o, y′1)

and similarly C(x2, y2) = C(o, y′2). By assumption, one has d(o, y′1) = d(o, y′2). As a
result, there is a rotation k ∈ K such that y′2 = ky′1 and o = ko. It follows that

C(o, y′2) = C(ko, ky′1) = C(o, y′1) =⇒ C(x1, y1) = C(x2, y2).

This shows that C(x, y) is a function of distance only.
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As a consequence of Lemma 2.1, one can define Q(r) ≜ C(x, y) for r = d(x, y). We
denote

σ2 ≜ Q(0) = Var[ξ(x)].

It is useful to note that |Q(r)| ⩽ Q(0) for all r ⩾ 0, which is easily seen by the fact
that

E[(ξ(z)± ξ(0))2] = 2Q(0)± 2Q(d(z, o)) ⩾ 0.

In particular, Q′(0) = 0 and Q′′(0) ⩽ 0.

A weak scaling limit of ξ

The Gaussian field ξ possesses a weak scaling limit which plays a key role in deriving
the fluctuation exponent of the PAM. Throughout the result of the article, we define
the cumulant generating function

H(t) ≜ log⟨etξ(z)⟩ = 1

2
σ2t2 (2.10)

and fix two basic scaling parameters:

α(t) ≜ t−1/4, β(t) ≜
t

α2(t)
= t3/2. (2.11)

We define the rescaled Gaussian field ξt by

ξt(x) ≜ α2(t)
(
ξ(α(t) · x)− H(t)

t

)
, t > 0, x ∈M, (2.12)

where α(t) · x is the dilation defined by (2.2).
It is convenient to think of ξt as a field on the space of curvature κt ≡ −α(t)2.

Under the hyperboloid model Hd
α(t), for each w ∈ Hd

α(t) let xw = α(t)−1 · (α(t) × w)

be the corresponding element on M = Hd
1, where × is the actual scalar multiplication.

Then one can identify the field ξt with ξ̂t(w) ≜ ξt(xw) on Hd
α(t).

Lemma 2.2. Under the above identification, the distribution of the Gaussian field ξt
is invariant under isometries.
Proof. Under the hyperboloid model, one has

ξ̂t(w) = α(t)2
[
ξ(α(t)× w)− H(t)

t

]
, w ∈ Hd

α(t).

Recall that the group G = SO+(d, 1) acts by isometries simultaneously on all of the
Hd
α(t)’s. Let g ∈ G be a given isometry. It follows from the stationarity of ξ that

ξ̂t(g × ·) = α(t)2
[
ξ
(
α(t)Id× (g × ·)

)
− H(t)

t

]
= α(t)2

[
ξ
(
g × (α(t)Id× ·)

)
− H(t)

t

]
d
= α(t)2

[
ξ
(
(α(t)Id× ·

)
− H(t)

t

]
= ξ̂t(·).

The result thus follows.
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Given any compact subset K ⊆ M , we use P(K) to denote the set of probability
measures supported on K (equivalently, µ(K) = 1). Let Pc(M) denote the space of
compactly supported probability measures on M . We say that µt ⇒ µ in Pc(M) as
t→ ∞ if there exists a compact set K ⊆M such that µt, µ ∈ P(K) for all t and

lim
t→∞

µt = µ weakly.

Given µ ∈ Pc(M) and f :M → R, we write

(µ, f) ≜
∫
M

f(x)µ(dx).

We define a functional Jt : Pc(M) → R by

Jt(µ) ≜ − 1

β(t)
log⟨eβ(t)(µ,ξt)⟩, t > 0. (2.13)

Simple applications of Jensen’s and Hölder’s inequalities show that Jt is non-negative
and concave.

The following lemma is crucial for the derivation of the fluctuation asymptotics.
Given z, w ∈ M with polar coordinates (ρ1, σ1), (ρ2, σ2) with respect to o, we define
the distance function deu by

d2eu(z, w) ≜ ρ21 + ρ22 − 2ρ1ρ2⟨σ1, σ2⟩ToM .

Note that this is just the Euclidean distance between z and w by treating (ρi, σi) as
their Euclidean polar coordinates.

Lemma 2.3. Suppose that Q(r) is twice continuously differentiable. Then Jt(µ) con-
verges to the functional

J : Pc(M) → [0,∞), J(µ) ≜ −1

4
Q′′(0)

∫
M×M

deu(z, w)
2µ(dz)µ(dw) (2.14)

as t→ ∞ uniformly for all µ ∈ P(K) with K being any given compact subset of M .

Proof. Observe that

(µ, ξ(α(t)·)) =
∫
M

ξ(α(t) · x)µ(dx)

is a mean zero Gaussian variable with variance

Var[(µ, ξ(α(t)·))] =
∫
M×M

Q(d(α(t) · z, α(t) · w))µ(dz)µ(dw).
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According to the definition (2.12) of ξt and the basic scaling relations (2.11), one finds
that

log⟨eβ(t)(µ,ξt)⟩ =t
2

2

∫
M×M

(
Q(d(α(t) · z, α(t) · w))−Q(0)

)
µ(dz)µ(dw)

=
t2

2

∫ 1

0

(1− θ)dθ

∫
M×M

Q′′(θd(α(t) · z, α(t) · w))

× d(α(t) · z, α(t) · w)2µ(dz)µ(dw) , (2.15)

where we have used that Q′(0) = 0. Under the hyperboloid model Hd
1, by writing

z = (ρ1, σ1) and w = (ρ2, σ2) and performing explicit calculation, one has

cosh d(α(t) · z, α(t) · w)− 1 =
1

2
α(t)2deu(z, w)

2 +O(α(t)4) (2.16)

as t→ ∞. Meanwhile, one also knows that

cosh d(α(t) · z, α(t) · w)− 1 =
1

2
d(α(t) · z, α(t) · w)2 +O

(
d(α(t) · z, α(t) · w)4

)
. (2.17)

By equating (2.16) and (2.17), it is immediate to see that

d(α(t) · z, α(t) · w) = α(t)deu(z, w) +O(α(t)2). (2.18)

After substituting (2.18) back into (2.15), one obtains that

log⟨eβ(t)(µ,ξt)⟩ =
(α(t)2

4
Q′′(0)

∫
M×M

deu(z, w)
2µ(dz)µ(dw) +O(α(t)4)

)
t2. (2.19)

The result thus follows by making use of the explicit relations that α(t) = t−1/4 and
β(t) = t3/2 (cf. (2.11)). All the above expansions are easily seen to be uniform with
respect to z, w ∈ K.

Remark 2.1. The functional J does not “feel” the geometry of M and essentially lives in
Euclidean geometry. In fact, from its expression (2.14) one could just regard M ∼= Rn

with deu(z, w) being the usual Euclidean distance.

2.4 Statement of the main result

The main result of the present article is stated as follows.
Theorem 2.1. For any p ⩾ 1, the following second order asymptotics holds true for
the solution u(t, x) to the PAM (2.1):

lim
t→∞

1

β(pt)
log

(
e−H(pt)⟨u(t, o)p⟩

)
= −

√
−Q

′′(0)

2
d, (2.20)

where H(t), β(t) are defined by (2.10), (2.11) respectively and ⟨·⟩ means taking expec-
tation with respect to the ξ-randomness. In other words, the p-th moment of u(t, o)
satisfies the asymptotics

⟨u(t, o)p⟩ = exp
(1
2
σ2p2t2 − d

√
−Q

′′(0)

2
p3/2t3/2(1 + o(1))

)
as t→ ∞. (2.21)
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2.4.1 The Euclidean nature of the fluctuation exponent

We make an important comment on the fluctuation exponent given in (2.20). Let us
first introduce the so-called Donsker-Varadhan functional on the Euclidean space ToM .
This is the functional Seu : Pc(ToM) → [0,+∞] defined by

Seu(ν) ≜


∫
ToM

|∇ϕ|2dx, ν ≪ dx,
dν

dx
= ϕ2 with some ϕ ∈ H1(ToM);

+∞, otherwise.
(2.22)

Here dx is the Lebesgue measure on ToM and H1(ToM) is the standard (1, 2)-Sobolev
space over ToM . Note that if ν is supported on some bounded domain B and Seu(ν) <
∞, then

√
dν/dx ∈ H1

0 (B) (H1 functions vanishing at the boundary ∂B).
What we will actually prove is that

lim
t→∞

1

β(pt)
log

(
e−H(pt)⟨u(t, o)p⟩

)
= −χ (2.23)

where
χ ≜ inf

{
J(µ) + Seu(exp

−1
o µ) : µ ∈ Pc(M)

}
. (2.24)

A remarkable point is that although we are considering the PAM in the hyperbolic
space M , the fluctuation exponent χ given by (2.24) does not “feel” the non-Euclidean
geometry of M . Indeed, it is clear from the expression (2.14) that the functional J
also has an Euclidean nature; it is essentially the same limiting functional J arising in
the Euclidean PAM considered in [GK00] when the Gaussian field is invariant under
Euclidean isometries. As a result, one can directly apply [GK00, Identity (4.6)] to
conclude that χ =

√
−Q′′(0)/2d (cf. Lemma 4.16 below).

Heuristically, the fundamental reason behind this is that the fluctuation asymptotics
arises from a suitable rescaling of the PAM as well as of the Gaussian field. However,
when such rescaling is applied the underlying geometry goes through a curvature dila-
tion effect: the curvature is rescaled from κ ≡ 1 to κt ≡ −α(t)2. Since α(t) = t−1/4 → 0
as t→ ∞, the limiting geometry where the fluctuation asymptotics takes place is thus
flat. Making such heuristics precise requires substantial effort. The main difficulty is
that one cannot simultaneously rescale the geometry of M to Euclidean and send the
time parameter of the rescaled PAM to infinity on the non-compact state space in one
go. One needs to perform localisation analysis over compact domains in a careful way.

2.4.2 Outline of main strategy and difficulties

To prove Theorem 2.1, we will follow the main strategy developed in [GK00]. However,
there are several challenges to overcome in the hyperbolic situation. We first outline
the main steps and point out the underlying difficulties.

The essence of the Gärtner-König argument is quite natural to describe (we only
consider the case when p = 1). First of all, after applying a suitable rescaling and re-
centering of the PAM (cf. (2.31) below) and the Feynman-Kac representation (2.33),
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one finds that
e−H(t)u(t, o) = Eo

[
e
∫ β(t)
0 ξt(W t

s )ds
]
,

where W t is now a Brownian motion in the hyperbolic space of curvature κt ≡ −α(t)2.
Of course, this is the correct normalisation in view of the first order asymptotics derived
in Proposition 2.2. In terms of the functional Jt (cf. (2.13)), one can now write

e−H(t)⟨u(t, o)⟩ = Eo
[
e−β(t)Jt(L

t
β(t)

)],
where

Lts(dx) ≜
1

s

∫ s

0

1{W t
r∈dx}dr, s > 0 (2.25)

is the occupation time measure process for W t. The key point is that the family of
measures {Law(Ltβ(t)) : t > 0} satisfies a large deviation principle (LDP) with rate
function Seu (the Donsker-Varadhan LDP). Since Jt → J , it follows from the well-
known Varadhan’s lemma that

lim
t→∞

1

β(t)
log

(
e−H(t)⟨u(t, o)⟩

)
= sup

{
− J − Seu

}
= − inf{J + Seu}.

However, it requires a substantial amount of non-trivial effort to implement this idea
precisely even in the Euclidean case. The main issue is that one cannot establish such
an LDP on the whole (non-compact) space Rd; the Donsker-Varadhan LDP essentially
only holds when the state space is compact. As a result, one has to develop localisation
techniques carefully to reduce the problem to the ones over fixed bounded domains.
This is easier when one tries to prove a lower asymptotics; by the positivity of the
PAM one just directly restrict the solution u to a ball of fixed radius in order to get a
lower bound. The upper bound is much harder to obtain. To accturately approximate
the solution u(t, o), one has to localise it on a sufficiently large ball QR(t) with a
time-dependent radius R(t) (R(t) → ∞ as t → ∞). One then decompose QR(t) into
balls of fixed (time-independent) radius and controls the PAM over R(t) in terms
the corresponding ones over these subdomains. This step is done through estimating
the corresponding principal Dirichlet eigenvalues (with a small sacrifice of potential),
which is accurate enough to reflect the large time asymptotics of the renormalised
PAMs (Laplace’s principle).

In the current hyperbolic situation, one faces several additional difficulties. First of
all, one cannot directly apply the Donsker-Varadhan LDP since the underlying process
{W t

s : s ⩾ 0} depends also on the t-parameter (the geometry changes at the same time
when one sends the time variable to infinity). To overcome this difficulty, we shall rely
on the abstract Gärtner-Ellis LDP in topological vector spaces (cf. Section 3.2 below).
Justifying the conditions in the theorem (i.e. convergence of cumulant generating
functions) becomes a question about spectral properties which can be handled by
analytical means (Lemma 3.3). In addition, the decomposition of the large geodesic
ball QR(t) into congruent balls is harder to achieve explicitly because one does not
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have the obvious periodic lattice structure as in Euclidean spaces. We shall develop a
more robust way of constructing suitable coverings of QR(t) as well as the associated
partitions of unity (Sections 4.4 and 4.6). One then also needs to control the sacrifice
of potential in the eigenvalue estimates geometrically (Lemma 4.11 (ii)). A surprising
fact is that even under exponential volume growth in the hyperbolic space, the error
arising from the eigenvalue decomposition is still negligible with a proper choice of R(t)
(Section 4.8.5).

2.5 Feynman-Kac representations

Our proof of Theorem 2.1 relies on the Feynman-Kac representation as a starting point.
We now recall this basic tool.

2.5.1 The global and localised PAM

Proposition 2.1. (i) [Global PAM] For a.e. realisation of ξ, the solution u(t, x) to
the PAM defined by (2.1) admits the following Feynman-Kac representation:

u(t, x) = E
[
e
∫ t
0 ξ(W

x
s )ds

]
, (2.26)

where {W x
s } denotes a hyperbolic Brownian motion (generated by ∆) starting at x that

is independent of ξ, and the expectation is taking with respect to {W x
s }.

(ii) [Localised PAM] Recall that QR is the closed geodesic ball of radius R centered at
o. Consider the following initial-boundary value problem:{

∂suR(s, x) = ∆uR(s, x) + ξ(x)uR(s, x), (s, x) ∈ (0,∞)×QR;

uR(0, ·) ≡ 1; uR(s, ·) = 0 on ∂QR

(2.27)

Then solution uR(t, x) admits the following representation:

uR(s, x) = E
[
e
∫ s
0 ξ(W

x
r )dr;W x([0, s]) ⊆ QR

]
.

Proof. This is standard from stochastic calculus; both equations (2.1) and (2.27) are
solved deterministically for every fixed realisation of ξ (cf. [KS88]).

2.5.2 The rescaled equation

We also need to consider a suitably rescaled PAM. Before doing so, we first introduce a
basic geometric convention that will be used frequently in our discussion. Recall that
the exponential map expo : ToM → M is a global diffeomorphism which produces the
(global) geodesic polar chart

[0,∞)× SToM ∋ (ρ, σ) 7→ exp(ρσ) ∈M,
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and under this chart the metric tensor is given by (2.3). Therefore, one can forget
about the actual space M and instead regard the space

Σ ≜ {(ρ, σ) : ρ ⩾ 0, σ ∈ Sd−1} (2.28)

equipped with metric g = dρ2 + sinh2 ρdσ2 as a model for the space M . Here dσ2

denotes the standard metric on the unit sphere Sd−1 in Rd. Of course when ρ = 0 the
sphere is collapsed to a point; topologically Σ ∼= ToM and geometrically ρ = 0 is not
a singularity. Later on, we will need to consider spaces of curvature κt ≡ −α(t)2 for
different t’s and a corresponding family of Markov processes (the Brownian motion) on
these spaces. A benefit of this viewpoint is that these spaces can all be modelled on the
same (topological) space Σ defined by (2.28) but now equipped with the t-dependent
metric

gt = dρ2 + α(t)−2 sinh2(α(t)ρ)dσ2. (2.29)

The space (Σ, gt) is isometric to Hd
α(t). Note that since α(t) → 0 as t → ∞, the space

(Σ, g∞) is just the Euclidean space. Respectively, given R ⩾ 0 we introduce the ball

ΣR ≜ {(ρ, σ) : ρ ⩽ R, Sd−1}. (2.30)

The spaces {(ΣR, g
t) : t > 0} are topologically identical but geometrically non-isometric;

for each fixed t it is the closed geodesic ball of radius R under curvature κt ≡ −α(t)2.
The space (ΣR, g

∞) is the closed Euclidean R-ball. Under such a convention (and under
geodesic polar coordinates), the rescaled Gaussian field ξt (cf. (2.12)) and the limiting
functional J (cf. Lemma 2.3) can both be viewed as defined on Σ or ΣR depending on
the context.

Now we derive the equation for a suitably rescaled PAM and its Feynman-Kac
representation. Given fixed R, t > 0, let uRα(t)(·, ·) be the solution to (2.27) on QRα(t).
Define the function

vt(s, x) ≜ e−sα
2(t)H(t)/tuRα(t)(α

2(t)s, α(t) · x), s ⩾ 0, x ∈ QR. (2.31)

We shall use polar coordinates x = (ρ, σ) (ρ ⩽ R and σ ∈ SToM ∼= Sd−1) so that
vt(s, ·) is viewed as a function defined on ΣR (cf. (2.30)).

Lemma 2.4. The function {vt(s, x) : s ⩾ 0, x = (ρ, σ) ∈ ΣR} is the solution to the
following rescaled PAM:

∂sv
t = Ltvt + ξtv

t, (s, (ρ, σ)) ∈ (0,∞)× ΣR;

vt(s, ·) = 0 on {ρ = R};
vt(0, ·) ≡ 1,

(2.32)

where
Lt ≜ ∂2ρ + α(t) coth(α(t)ρ)∂ρ + α2(t) sinh−2(α(t)ρ)∆σ
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is the Laplacian under curvature κt ≡ −α2(t) with (ρ, σ) being viewed as the correspond-
ing geodesic polar coordinates. In particular, vt(s, x) admits the following Feynman-
Kac representation:

vt(s, x) = E
[
e
∫ s
0 ξt(W

t,x
r )dr;W t,x([0, s]) ⊆ ΣR

]
, (s, x) ∈ [0,∞)× ΣR, (2.33)

where {W t,x
s } is a Brownian motion on (Σ, gt) starting at x that is independent of ξ.

Proof. By the definition of vt(s, x), one has

∂vt

∂s
(s, x) =− α2(t)H(t)

t
vt(s, x) + e−sα

2(t)H(t)/tα2(t)∂suRα(t)
(
α2(t)s, α(t) · x

)
=− α2(t)H(t)

t
vt(s, x) + e−sα

2(t)H(t)/tα2(t)∆uRα(t)
(
α2(t)s, α(t) · x

)
+ α2(t)ξ

(
α(t) · x

)
vt(s, x)

=ξt(x)v
t(s, x) + e−sα

2(t)H(t)/tα2(t)∆uRα(t)
(
α2(t)s, α(t) · x

)
.

By using the expression of ∆ under geodesic polar chart (cf. (2.4)), with the substitu-
tion r = α(t)ρ one finds that

α2(t)∆uRα(t)
(
α2(t)s, (α(t)ρ, σ)

)
= α2(t)

[
(∂2ruRα(t)

(
α2(t)s, (α(t)ρ, σ)

)
+ coth(α(t)ρ)∂ruRα(t)

(
α2(t)s, (α(t)ρ, σ)

)
+ sinh−2(α(t)ρ)∂2σuRα(t)

(
α2(t)s, (α(t)ρ, σ)

)]
= ∂2ρ

(
uRα(t)(α

2(t)s, (α(t)ρ, σ))
)
+ α(t)∂ρ

(
uRα(t)(α

2(t)s, (α(t)ρ, σ))
)

+ α2(t) sinh−2(α(t)ρ)∂2σ
(
uRα(t)(α

2(t)s, (α(t)ρ, σ))
)

= Lt
(
uRα(t)(α

2(t)s, (α(t)ρ, σ))
)
.

The result thus follows from the observation that Lt is precisely the Laplacian under
curvature κt ≡ −α2(t) with (ρ, σ) being viewed as the corresponding geodesic polar
coordinates (cf. (2.6)).

Notation. Throughout the rest, we will always use E[·] to denote the expectation with
respect to the Brownian motion in the Feynman-Kac representation and use ⟨·⟩ to
denote the expectation with respect to ξ.

2.6 The first order asymptotics

Before developing the actual proof of Theorem 2.1, it is beneficial to point out that the
first order asymptotics can be obtained in a quite straight forward and robust way.

Proposition 2.2. Let ξ be a mean zero Gaussian field on a complete Riemannian
manifold M with continuous covariance function C(x, y) ≜ E[ξ(x)ξ(y)] and constant

15



variance C(x, x) ≡ σ2. Let u(t, x) be the solution to the global PAM defined by (2.1).
Then for any positive integer p, one has

lim
t→∞

1

H(pt)
log⟨u(t, x)p⟩ = 1

for any x ∈M , where H(t) ≜ σ2t2/2.

Proof. This is essentially the same as the proof of [CM95, Theorem 4.1] and we re-
produce the argument for the sake of completeness. First of all, according to the
Feynman-Kac representation (2.26), one can write

⟨u(t, x)p⟩ = Ex
[
exp

(1
2

p∑
i,j=1

∫ t

0

∫ t

0

C(W i
u,W

j
v )dudv

)]
.

Here W 1, · · · ,W d are independent Brownian motions (Markov processes generated by
∆) on M all starting at x. Since |C(x, y)| ⩽ σ2, one immediately obtains that

⟨u(t, x)p⟩ ⩽ eH(pt) or
1

H(pt)
log⟨u(t, x)p⟩ ⩽ 1.

For the other direction, given ε > 0 let δ be such that

y, z ∈ B(x, δ) ≜ {y ∈M : d(y, x) < δ} =⇒ C(y, z) ⩾ σ2 − ε,

This is possible due to the continuity of B. One then has the following localised
estimate:

⟨u(t, x)p⟩ ⩾ Ex
[
exp

(1
2

p∑
i,j=1

∫ t

0

∫ t

0

C(W i
u,W

j
v )dudv

)
;W i([0, t]) ⊆ B(x, δ) ∀i

]
⩾ exp

(1
2
p2(σ2 − ε)t2

)
× P

(
W 1([0, t]) ⊆ B(x, δ)

)p
. (2.34)

On the other hand, it is standard that

P
(
W 1([0, t]) ⊆ B(x, δ)

)
∼ Ke−λδt as t→ ∞, (2.35)

where K is a positive constant and λδ ∈ (0,∞) is the principal Dirichlet eigenvalue of
∆ on B(x, δ). After substituting (2.35) into (2.34), one finds that

lim
t→∞

1

H(pt)
log⟨u(t, x)p⟩ ⩾ 1− ε

σ2
.

The desired lower asymptotics follows by taking ε ↓ 0.

The main effort of the present article is thus to establish the fluctuation asymptotics
(2.20). In what follows, we develop the main ingredients its the proof precisely. We
begin by establishing the lower L1 asymptotics (i.e. p = 1) in Section 3 and then
partially using it to establish the upper L1 asymptotics in Section 4. After that, we
identify the fluctuation exponent in Section 4.9. Finally, we extend the argument to
the p-th moment asymptotics in Section 5.
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3 The lower L1 asymptotics
The proof of Theorem 2.1 contains two separate parts: the lower and upper asymp-
totics. We will first derive the lower asymptotics and then derive the upper asymptotics
(whose proof will make use of the lower bound at some point). For both asymptotics,
we will focus on the L1 case. The general p-th moment case is discussed in Section 5.

Our first step is to establish the following result. Recall that u is the solution to
the PAM (2.1) under Gaussian potential ξ. For each R > 0, we define the exponent

χR ≜ inf
{
J(µ) + sup

f∈Cb(ΣR)

{
∫
ΣR

fdµ+ λeu;f,R0 } : µ ∈ P(ΣR)
}
. (3.1)

Theorem 3.1. One has

lim
t→∞

1

β(t)
log

(
e−H(t)⟨u(t, 0)⟩

)
⩾ lim

R→∞
(−χR). (3.2)

In the following subsections, we develop the main ingredients for the proof of The-
orem 3.1.

3.1 An eigenvalue asymptotics lemma

We first establish a lemma about asymptotics of principal eigenvalues that will be
useful for proving the theorem. Recall that (ΣR, g

t) (0 < t ⩽ ∞) is the closed geodesic
R-ball under curvature κt ≡ −α(t)2.

Lemma 3.1. Let f ∈ Cb(ΣR) (space of bounded continuous functions on ΣR) be given
fixed. Let v(s, (ρ, σ)) be the solution to the following initial-boundary value problem:

∂sv = Ltv + fv, (s, (ρ, σ)) ∈ (0,∞)× ΣR;

v(s, ·) = 0 on {ρ = R};
v(0, ·) ≡ 1.

(3.3)

Then one has
lim
t→∞

1

β(t)
log v(β(t), (ρ, σ)) = −λeu0

uniformly for (ρ, σ) ∈ [0, R− ε]× Sd−1 for any given fixed ε ∈ (0, R). Here λeu0 denotes
the principal Dirichlet eigenvalue of ∆+

eu − f on (ΣR, g
∞) with ∆+

eu being the positive
Euclidean Laplacian.

Proof. Let {(λtn, ϕtn) : n ⩾ 0} be the spectral decomposition of −(Lt + f) on ΣR with
Dirichlet boundary condition. Here Lt is the gt-Laplacian and the underlying measure
on ΣR is the Riemannian volume measure dtx induced by gt. More specifically,

λt0 < λt1 ⩽ λt2 ⩽ · · · ↑ ∞
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are the Dirichlet eigenvalues of −(Lt+ f) on ΣR and {ϕtn : n ⩾ 0} is the corresponding
ONB of L2(ΣR, d

tx) consisting of Dirichlet eigenfunctions. It is well-known from stan-
dard spectral theory that λt0 > 0 and ϕt0 is strictly positive in ΣR. Under the spectral
decomposition, one can write

v(β(t), x) =
∞∑
n=0

e−λ
t
n·β(t)⟨ϕtn,1⟩t ϕtn(x),

where x = (ρ, σ) and ⟨·, ·⟩t is the L2-inner product with respect to the volume measure
dtx. It follows that

1

β(t)
log v(β(t), x) = −λt0 +

1

β(t)
log

(
η(t, x) + A(t, x)

)
, (3.4)

where

η(t, x) ≜ ⟨ϕt0,1⟩tϕt0(x), A(t, x) ≜
∞∑
n=1

e−(λtn−λt0)β(t)⟨ϕtn,1⟩t ϕtn(x).

Since gt converges to the Euclidean metric geu as t → ∞ on the compact space ΣR,
the following facts are standard from perturbation theory (cf. [RS78]).

(i) lim
t→∞

λt0 = λeu0 .

(ii) There exist constants 0 < η1 < η2 such that

η1 ⩽ η(t, (ρ, σ)) ⩽ η2 for all large t and ρ ⩽ R− ε. (3.5)

(iii) There exists δ > 0 such that

λt1 − λt0 > δ for all large t. (3.6)

(iv) Let H t(s, x, y) be the Dirichlet heat kernel for Lt + f on ΣR. Then one has

sup
t⩾1,x∈ΣR

∣∣eλt0(H t(1, x, x)− e−λ
t
0ϕt0(x)

2
)∣∣ <∞. (3.7)

We now proceed to estimate A(t, x). Firstly, by using the Cauchy-Schwarz inequality
one has

|A(t, x)| ⩽

√√√√ ∞∑
n=1

⟨ϕtn,1⟩2t ·

√√√√ ∞∑
n=1

e−2(λtn−λt0)β(t)ϕtn(x)
2

⩽ ∥1∥t ·

√√√√ ∞∑
n=1

e−2(λtn−λt0)β(t)ϕtn(x)
2.
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In addition, one also has

∞∑
n=1

e−2(λtn−λt0)β(t)ϕtn(x)
2 ⩽ e−(λt1−λt0)β(t) ·

∞∑
n=1

e−(λtn−λt0)ϕtn(x)
2

= e−(λt1−λt0)β(t) · eλt0
(
H t(1, x, x)− e−λ

t
0ϕt0(x)

2
)
.

According to the properties (3.6) and (3.7), one finds that

|A(t, x)| ⩽Me−δβ(t) for all large t, (3.8)

where M, δ are some positive constants independent of t, x. It follows from (3.8) and
(3.5) that

log
(
η1 −Me−δβ(t)

)
⩽ log

(
η(t, x) + A(t, x)

)
⩽ log(η2 +Me−δβ(t))

uniformly for all large t and ρ ⩽ R− ε. Now the desired result follows from the above
Property (i) as well as the relation (3.4).

3.2 A large deviation principle for localised hyperbolic Brown-
ian motions

The core ingredient for proving Theorem 3.1 is a suitable LDP which we describe as
follows.

We first make some preparations. Let E ≜ P(ΣR) (respectively, X ≜ M(ΣR))
denote the space of probability measures (respectively, finite signed measures) over
ΣR. The topology on X is chosen to be the one generated by{

β ∈ X :
∣∣ ∫

Σ

fd(β − α)
∣∣ < r

}
(f ∈ Cb(ΣR), α ∈ X). (3.9)

The following facts are standard and can be found in [DS89, Section 3.2].

Lemma 3.2. (i) The topology τ restricted on E is exactly the topology of weak con-
vergence.

(ii) The representation

f 7→
[
α 7→

∫
Σ

fdα
]

(3.10)

is a linear isomorphism between Cb(Σ) and X∗.

Note that E is compact (since ΣR is compact). Given µ ∈ P(E), its logarithmic
moment generating function (log m.g.f.) is the functional Λµ : X∗ → (−∞,∞] defined
by

Λµ(λ) ≜ log

∫
E

exp
(
X∗⟨λ, x⟩Xµ(dx)

)
, λ ∈ X∗.
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Under the correspondence (3.10), Λµ can be viewed as a functional on Cb(ΣR):

Λµ(f) = log

∫
E

exp
(∫

ΣR

f(x)α(dx)
)
µ(dα), f ∈ Cb(ΣR).

Throughout the rest, let ε > 0 be given fixed. Let {W t
s : s ⩾ 0} be a gt-Brownian

motion on Σ (gt is the metric with curvature κt ≡ −α(t)2 defined in (2.29)). Let
{Lts(dx) : s ⩾ 0} be the occupation time measure process defined by (2.25). Consider
the family of probability measures

{µ(ρ,σ)
t : t ⩾ 0, (ρ, σ) ∈ ΣR, ρ ⩽ R− ε} ⊆ P(E)

given by
µ
(ρ,σ)
t (Γ) ≜ Eρ,σ

[
Ltβ(t) ∈ Γ

∣∣W t([0, β(t)]) ⊆ ΣR

]
, Γ ∈ B(E).

Here the subscript (ρ, σ) means that W t
0 = (ρ, σ).

As we will see, a (uniform) LDP for the family {µ(ρ,σ)
t } will follow from the general

theory of LDP in topological vector spaces (the abstract Gärtner-Ellis theorem). To
establish such an LDP, a crucial point is to identify the underlying rate function. Let
Λ

(ρ,σ)
t be the log m.g.f. of µ(ρ,σ)

t . One checks by definition that

Λ
(ρ,σ)
t (f) = logEρ,σ

[
exp

( 1

β(t)

∫ β(t)

0

f(W t
s)ds

)∣∣W t([0, β(t)]) ⊆ ΣR

]
for any f ∈ Cb(ΣR). Given any such f , let λeu;f,R0 denote the principal Dirichlet
eigenvalue of −(∆eu + f) on ΣR. We simply write λeu;R0 for the case f = 0.

Lemma 3.3. Let f ∈ Cb(ΣR) be given fixed. Then one has

lim
t→∞

1

β(t)
Λ

(ρ,σ)
t (β(t)f) = λeu;R0 − λeu;f,R0 =: Λ(f), (3.11)

where the convergence holds uniformly for ρ ⩽ R− ε.

Proof. Let vt,f (s, (ρ, σ)) be the solution to the initial-boundary value problem (3.3).
According to the Feynman-Kac representation (2.33), one has

exp
(
Λ

(ρ,σ)
t (β(t)f)

)
=
vt,f (β(t), (ρ, σ))

vt,0(β(t), (ρ, σ))
.

The result thus follows from Lemma 3.1.

Let Λ∗ : X → [0,∞] be the Fenchel-Legendre transform of Λ:

Λ∗(α) ≜ sup
{
X∗⟨λ, α⟩X − Λ(λ) : λ ∈ X∗}

= sup
{∫

ΣR

fdα+ λeu;f,R0 : f ∈ Cb(ΣR)
}
− λeu;R0 , α ∈ X. (3.12)

This will be the rate function governing the LDP for {µ(ρ,σ)
t }.
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Proposition 3.1. The family {µ(ρ,σ)
t } satisfies the following (uniform) LDP with the

convex, good rate function Λ∗:

− inf
Γ̊
Λ∗ ⩽ lim

t→∞

1

β(t)
log

(
inf

ρ⩽R−ε
µ
(ρ,σ)
t (Γ)

)
⩽ lim

t→∞

1

β(t)
log

(
sup
ρ⩽R−ε

µ
(ρ,σ)
t (Γ)

)
⩽ − inf

Γ̄
Λ∗ (3.13)

for all Γ ∈ B(E).

We are going to prove Proposition 3.1 by using the abstract Gärtner-Ellis theorem
in topological vector spaces. It asserts that under suitable conditions, Varadhan’s
asymptotics for linear functionals implies an LDP. The precise result is recalled as
follows (cf. [DZ09, Corollary 4.6.14]). A function f : X∗ → R is said to be Gâteaux
differentiable if for every α, β ∈ X, the function t 7→ f(α+ tβ) is differentiable at t = 0.

Abstract Gärtner-Ellis Theorem. Let {µη} be an exponentially tight family of
Borel probability measures on a locally convex, Hausdorff topological vector space X.
Suppose that

Λ(·) ≜ lim
η→0

ηΛµη(·/η) : X∗ → R (3.14)

exists finitely and is Gâteaux differentiable. Then {µη} satisfies the LDP with the
convex, good rate function Λ∗ being the Fenchel-Legendre transform of Λ.

Proof of Proposition 3.1. We first prove the Gâteaux differentiability of Λ(·) defined
by (3.11). Let f, g ∈ Cb(ΣR) and δ > 0 be given. To ease notation, we simply write

λδ ≜ λeu;f+δg,R0 , λ ≜ λeu;f,R0 .

Define
Lδ ≜ ∆+

eu − (f + δg), L ≜ ∆+
eu − f.

Let uδ (respectively, u) be the normalised principal eigenfunction of Lδ (respectively,
L) on ΣR with Dirichlet boundary condition. In particular, one has

Lδuδ = λδuδ, Lu = λu.

Simply algebra shows that

(λδ − λ)uδ = −δguδ + L(uδ − u)− λ(uδ − u).

Since L is self-adjoint, one has

⟨L(uδ − u), u⟩ = ⟨uδ − u,Lu⟩ = λ⟨uδ − u, u⟩,

where ⟨·, ·⟩ is the L2-inner product with respect to the Lebesgue measure. It follows
that

(λδ − λ)⟨uδ, u⟩ = −δ⟨guδ, u⟩.
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From standard perturbation results (cf. [RS78]), one knows that uδ → u in L2(ΣR) as
δ → 0. As a result, the function δ 7→ λδ is differentiable at δ = 0 and one has

d

dδ

∣∣
δ=0

λδ = −⟨gu, u⟩ = −
∫
Σ

g(x)u(x)2dx.

This proves the Gâteaux differentiability of the limiting functional Λ.
To prove the LDP estimate (3.13), let Γ ∈ B(E) be given fixed. For every t > 0,

there exist (ρt, σt) and (ρt, σt) ∈ ΣR−ε such that

µ
(ρt,σt)
t (Γ) = inf

ρ⩽R−ε
µ
(ρ,σ)
t (Γ) , µ

(ρt,σt)
t (Γ) = sup

ρ⩽R−ε
µ
(ρ,σ)
t (Γ) .

The uniform convergence (3.11) ensures that the convergence still holds (with the same
limit Λ when (ρ, σ) is replaced by the sequences (ρt, σt) and (ρt, σt)). Note that the
compactness of E trivially implies the uniform exponential tightness of the family
{µ(ρ,σ)

t }. Together with the Gâteaux differentiability of Λ and the abstract Gärtner-
Ellis theorem, one deduces that both µ(ρt,σt)

t and µ(ρt,σt)
t satisfy the LDP with good rate

function Λ∗. By the specific choices of (ρt, σt) and (ρt, σt), this in particular implies
that (3.13) holds for Γ ∈ B(E). The proof is then complete since Γ ∈ B(E) is arbitrary.

3.3 Varadhan’s asymptotics: lower bound

An important consequence of the LDP (3.13) is the following Varadhan-type asymp-
totics, which is critical for the proof of Theorem 3.1. Here we state the lower asymp-
totics that is relevant to the theorem (the upper version will be discussed in Lemma
4.5 below where we prove the upper asymptotics).

Recall that ξt is the rescaled Gaussian field defined by (2.12) and Jt is the functional
given by (2.13). Topologically, they are defined on Σ and Pc(Σ) respectively, where
Σ ∼= ToM is topologically identified with M . However, one should keep in mind that
they are defined under the geometry of curvature κt ≡ −α(t)2, i.e. on the Riemannian
manifold (Σ, gt). Also recall that W t is a Brownian motion in (Σ, gt).

Lemma 3.4. Let R, ε > 0 be given fixed. Then the following lower estimate holds true:

lim
t→∞

1

β(t)
inf

ρ⩽R−ε
logEρ,σ

[
e−β(t)Jt(L

t
β(t)

);W t([0, β(t)]) ⊆ ΣR

]
⩾ −χR,

where J is the functional defined by Lemma 2.3 and the exponent χR is defined by (3.1).

Proof. Recall that −λeu;f,R0 (respectively, −λeu;R0 ) is the principal Dirichlet eigenvalue
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of ∆+
eu − f on ΣR (respectively, ∆+

eu). One can write

1

β(t)
logEρ,σ

[
e−β(t)Jt(L

t
β(t)

);W t([0, β(t)]) ⊆ ΣR

]
=

1

β(t)
logEρ,σ

[
e−β(t)Jt(L

t
β(t)

)
∣∣W t([0, β(t)]) ⊆ ΣR

]
+

1

β(t)
logPρ,σ

(
W t([0, β(t)]) ⊆ ΣR

)
. (3.15)

To study the asymptotics of the first term, given any µ ∈ P(ΣR) and r > 0 one has

Eρ,σ
[
e−β(t)Jt(L

t
β(t)

)
∣∣W t([0, β(t)]) ⊆ ΣR

]
=

∫
P(ΣR)

e−β(t)Jt(α)dµ
(ρ,σ)
t (α)

⩾ exp
(
− β(t) sup

α∈B(µ,r)

Jt(α)
)
· µ(ρ,σ)

t

(
B(µ, r)

)
,

where B(µ, r) ≜ {ν ∈ P(ΣR) : ρ(ν, µ) < r} and ρ is some metric compatible with the
weak topology. It then follows from the lower bound in (3.13) that

lim
t→∞

1

β(t)
log inf

ρ⩽R−ε
L.H.S. ⩾ − sup

B(µ,r)

J − inf
B(µ,r)

Λ∗. (3.16)

Here we also used the fact that

sup
B(µ,r)

Jt → sup
B(µ,r)

J as t→ ∞,

which is a consequence of the uniform convergence of Jt proved in Lemma 2.3. By
taking r ↓ 0 in (3.16), one obtains that

lim
t→∞

1

β(t)
log inf

ρ⩽R−ε
Eρ,σ

[
e−β(t)Jt(L

t
β(t)

)
∣∣W t([0, β(t)]) ⊆ ΣR

]
⩾ −

(
J(µ) + Λ∗(µ)

)
= −

(
J(µ) + sup

f∈Cb(ΣR)

{∫
ΣR

fdµ+ λeu;f,R0

}
− λeu;R0

)
.

On the other hand, the second term in (3.15) converges to −λeu;R0 uniformly for (ρ, σ) ∈
ΣR−ε due to Lemma 3.3. The result thus follows after cancelling out λeu;R0 and taking
infimum over µ ∈ P(ΣR).

3.4 Proof of Theorem 3.1

Gathering the previous ingredients together, we are now in a position to prove Theorem
3.1.
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Let R > 0 be given fixed. First of all, due to the stationarity of ξ one has

⟨u(t, o)⟩ = 1

|QRα(t)|

∫
QRα(t)

⟨u(t, x)⟩dx ⩾
1

|QRα(t)|

∫
QRα(t)

⟨uRα(t)(t, x)⟩dx

=
(d− 1)2d−1

ωd−1e(d−1)Rα(t)

∫ Rα(t)

0

∫
Sd−1

⟨uRα(t)(t, (r, σ))⟩ sinhd−1 rdrdσ, (3.17)

where uRα(t)(·, ·) is the solution to the localised PAM (2.27) on QRα(t) and we used the
obvious bound that

|QRα(t)| = ωd−1

∫ Rα(t)

0

sinhd−1 rdr

⩽ ωd−1

∫ Rα(t)

0

(er
2

)d−1
dr ⩽

ωd−1

(d− 1)2d−1
e(d−1)Rα(t).

Respectively, recall that the rescaled function

vt(β(t), (ρ, σ)) = e−H(t)uRα(t)(t, (α(t)ρ, σ)), (ρ, σ) ∈ ΣR

is the solution to the rescaled PAM (2.32). By applying a change of variables r = α(t)ρ
to (3.17) and using the Feynman-Kac representation (2.33), one finds that

e−H(t)⟨u(t, o)⟩

⩾
(d− 1)2d−1α(t)

ωd−1e(d−1)Rα(t)

∫ R

0

∫
Sd−1

Eρ,σ
[
⟨e

∫ β(t)
0 ξt(W t

s )ds⟩;W t([0, β(t)]) ⊆ ΣR

]
× sinhd−1(α(t)ρ)dρdσ

=
(d− 1)2d−1α(t)

ωd−1e(d−1)Rα(t)

∫ R

0

∫
Sd−1

Eρ,σ
[
e−β(t)Jt(L

t
β(t)

);W t([0, β(t)]) ⊆ ΣR

]
× sinhd−1(α(t)ρ)dρdσ. (3.18)

Now let ε, η > 0 be given. According to Lemma 3.4, one has

inf
ρ⩽R−ε

Eρ,σ
[
e−β(t)Jt(L

t
β(t)

);W t([0, β(t)]) ⊆ ΣR

]
⩾ eβ(t)(−χR−η)

for all sufficiently large t, where χR is the exponent defined by (3.1). It follows from
(3.18) that

e−H(t)⟨u(t, o)⟩ ⩾ (d− 1)2d−1α(t)

ωd−1e(d−1)Rα(t)
eβ(t)(−χR−η)

∫ R−ε

0

∫
Sd−1

sinhd−1(α(t)ρ)dρdσ

=
(d− 1)2d−1α(t)

e(d−1)Rα(t)
eβ(t)(−χR−η)

∫ R−ε

0

sinhd−1(α(t)ρ)dρ.
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On the other hand, it is elementary to see that

(d− 1)2d−1α(t)

e(d−1)Rα(t)

∫ R−ε

0

sinhd−1(α(t)ρ)dρ ∼ CR,ε,dα(t)
d as t→ ∞

with some positive constant CR,ε,d. Therefore, one arrives at

lim
t→∞

1

β(t)
log

(
e−H(t)⟨u(t, o)⟩

)
⩾ −χR − η. (3.19)

The desired estimate (3.2) follows by taking η ↓ 0 and R ↑ ∞.

4 The upper L1 asymptotics
Our second step is to establish the following upper asymptotics.

Theorem 4.1. One has

lim
t→∞

1

β(t)
log

(
e−H(t)⟨u(t, 0)⟩

)
⩽ lim

R→∞
(−χR), (4.1)

where χR is defined by (3.1).

In the following subsections, we develop the main ingredients for the proof of The-
orem 4.1.

4.1 An exit time estimate for hyperbolic Brownian motion

We first present a lemma that will be useful for our localisation argument later on. Let
τR denote the first exit time of the hyperbolic Brownian motion {W o

t } on M (starting
at o) for the geodesic ball QR (here curvature κ ≡ −1).

Lemma 4.1. There exist constants C1, C2 > 0, such that

P(τR ⩽ t) ⩽ C1e
−C2R2/t (4.2)

for all R ≫ t > 1.

Proof. Let ρt be the radial component of W o
t . From the expression (2.4) of ∆ in

geodesic polar coordinates, it is readily seen that ρt is a Markov process with generator
∂2ρ + coth ρ∂ρ. In addition, it is obvious that

P(τR ⩽ t) ⩽ P(τ ′R ⩽ t),

where τ ′R ≜ inf{s ⩾ 0 : ρ1s = R} and ρ1t is the radial process starting at 1. The process
ρ1t satisfies the following one-dimensional SDE:

dρt =
√
2dBt + coth ρtdt, ρ0 = 1.
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We now fix a smooth, non-decreasing function f : [0,∞) → [0,∞) such that f(x) =
1/2 on [0, 1/2] and f(x) = x on [1,∞). By Itô’s formula, one has

f(ρ1t ) = 1 +
√
2

∫ t

0

f ′(ρ1s)dBs +

∫ t

0

(
f ′(ρ1s) coth ρ

1
s + f ′′(ρ1s)

)
ds.

From the choice of f , it is clear that

sup
0⩽s⩽t

ρ1s ⩾ R ⇐⇒ sup
0⩽s⩽t

f(ρ1s) ⩾ R.

In addition, one has

sup
0⩽s⩽t

f(ρ1s) ⩽ 1 +
√
2 sup
0⩽s⩽t

∣∣ ∫ s

0

f ′(ρ1u)dBu

∣∣+ ∫ t

0

∣∣f ′(ρ1s) coth ρ
1
s + f ′′(ρ1s)

∣∣ds
⩽ C1t+

√
2 sup
0⩽s⩽t

∣∣ ∫ s

0

f ′(ρ1u)dBu

∣∣.
Since R ≫ t, it follows that

P(τ ′

R ⩽ t) = P
(
sup
0⩽s⩽t

f(ρ1s) ⩾ R
)
⩽ P

(
sup
0⩽s⩽t

∣∣ ∫ s

0

f ′(ρ1u)dBu

∣∣ ⩾ C2R
)
.

The desired inequality (4.2) follows from the classical martingale inequality

P
(
sup
0⩽s⩽t

|Ms| ⩾ x, ⟨M⟩t ⩽ y
)
⩽ 2e−

x2

2y ∀x, y, t > 0

with Mt ≜
∫ t
0
f ′(ρ1s)dBs and y ≜ ∥f ′∥2∞t.

4.2 Localisation

The following lemma allows one to localise the problem on a sufficiently large ball.
Recall that uR(t, x) is the solution to the localised PAM (2.27).

Lemma 4.2. Let R(t) ≫ t5/4 as t→ ∞. Then one has

lim
t→∞

⟨uR(t)(t, o)⟩
⟨u(t, o)⟩

= 1.

Proof. By using the Feynman-Kac formulae (cf. Proposition 2.1), one has

⟨u(t, o)− uR(t)(t, o)⟩ =
〈
Eo

[
e
∫ t
0 ξ(Ws)ds; τR(t) ⩽ t

]〉
⩽

〈
Eo

[1
t

∫ t

0

eξ(Ws)ds; τR(t) ⩽ t
]〉

(Jensen)

= eH(t)Po(τR(t) ⩽ t).
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Here W is the hyperbolic Brownian motion in M and τR(t) denotes its exit time for the
ball QR(t). It follows from Lemma 4.1 that

⟨u(t, o)− uR(t)(t, o)⟩ ⩽ C1e
H(t)−C2R(t)2/t. (4.3)

On the other hand, the lower bound (3.2) shows that for any given fixed number

χ′ > χ ≜ lim
R→∞

χR,

one has
⟨u(t, o)⟩ ⩾ eH(t)−χ′β(t) for t sufficiently large. (4.4)

Combining (4.3) and (4.4), one finds that

⟨u(t, o)− uR(t)(t, o)⟩
⟨u(t, o)⟩

⩽ C1e
−(C2R(t)2/t−χ′β(t)). (4.5)

Since β(t) = t3/2 (cf. (2.11)), it is now clear that the right hand side of (4.5) tends to
zero as t→ ∞ provided that R(t) ≫ t5/4.

4.3 A fixed-domain upper bound

As in [GK00], later on we are going to decompose a large (t-dependent) geodesic
ball into regions of a fixed volume (independent of t). An essential ingredient in the
argument is a suitable upper asymptotics for the rescaled PAM (2.4) on a fixed domain.
Let r > 0 be given fixed. Let {λξtk (Σr) : k ⩾ 1} denote the decreasing sequence of
Dirichlet eigenvalues for the operator Lt + ξt on Σr.

Lemma 4.3. One has

lim
t→∞

1

β(t)
log

〈 ∞∑
k=1

eβ(t)λ
ξt
k (Σr)

〉
⩽ −χr, (4.6)

where χr is defined by (3.1).

The rest of this subsection is devoted to the proof of Lemma 4.3. We begin by
writing

∞∑
k=1

eβ(t)λ
ξt
k (Σr) =

∫
Σr

qξt(β(t), x, x)dtx,

where qξt is the Dirichlet heat kernel for the self-adjoint operator Lt+ ξt on Σr and dtx
is the volume measure induced by the metric gt. By using a gt-Brownian motion W t,
one can write

qξt(β(t), x, x) = Ex
[
eβ(t)(L

t
β(t)

,ξt)δx(W
t
β(t));W

t([0, β(t)]) ⊆ Σr

]
,
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where we recall that Ltβ(t) is the occupation time measure of W t up to β(t). After
taking expectation ⟨·⟩, one has〈 ∞∑

k=1

eβ(t)λ
ξt
k (Σr)

〉
=

∫
Σr

Ex
[
e−β(t)Jt(L

t
β(t)

)δx(W
t
β(t));W

t([0, β(t)]) ⊆ Σr

]
dtx. (4.7)

Now let δ > 0 be given fixed. The concavity and positivity of Jt easily implies that

β(t)Jt(L
t
β(t)) ⩾ (β(t)− δ)Jt(L

t
β(t)−δ).

It then follows from (4.7) and the Markov property that〈 ∞∑
k=1

eβ(t)λ
ξt
k (Σr)

〉
⩽
∫
Σr

Ex
[
e−(β(t)−δ)Jt(Lt

β(t)−δ
)

× pt(δ,W t
β(t)−δ, x);W

t([0, β(t)− δ]) ⊆ Σr

]
dtx, (4.8)

where pt(s, y, x) is now the gt-hyperbolic heat kernel (i.e. the transition density for the
hyperbolic Brownian motion W t).

To estimate the right hand side, we need two basic ingredients: a hyperbolic heat
kernel estimate for p and an upper Varadhan asymptotics for Lt.

4.3.1 A hyperbolic heat kernel estimate

Let pκ(s, x, y) denote the heat kernel on the hyperboloid Hd√
κ

with curvature −κ (κ >
0). Since pκ depends only on s and the hyperbolic distance between x, y, one can
simply write pκ = pκ(s, ρ). A simple scaling argument shows that

pκ(s, ρ) = κd/2p1(κs,
√
κρ). (4.9)

The following upper bound for pκ is a direct consequence of (4.9) and the corresponding
estimate for p1 proved by Davies-Mandouvalos [DM98, Theorem 3.1].

Lemma 4.4. There exists a universal constant Cd depending only on the dimension,
such that

pκ(s, ρ) ⩽Cds
−d/2 exp

(
− (d− 1)2κs

4
− ρ2

4s
− (d− 1)

√
κρ

2

)
×

(
1 +

√
κρ+ κs

) d−3
2 (1 +

√
κρ)

for all s > 0, ρ ⩾ 0.

In our situation, κ = −α(t)2 for the heat kernel pt. The following result is thus a
direct corollary of Lemma 4.4.

Corollary 4.1. With some universal constant C = Cd,r > 0, one has

pt(δ, y, x) ⩽ Cδ−d/2 ∀t, δ > 0, y, x ∈ Σr. (4.10)
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4.3.2 Varadhan’s asymptotics: upper bound

Let ε > 0 be also given fixed and denote E ≜ P(Σr+ε). Exactly the same argument as
in Section 3.2 shows that the family of probability measures

µ̄
(ρ,σ)
t (Γ) ≜ E(ρ,σ)

[
Ltβ(t)−δ ∈ Γ

∣∣W t([0, β(t)− δ]) ⊆ Σr+ε

]
, Γ ∈ B(E)

satisfy the same LDP with good rate function Λ∗ defined by (3.12) (with R = r +
ε) uniformly with respect to (ρ, σ) ∈ Σr. The following result is the upper bound
counterpart of Lemma 3.4.

Lemma 4.5. One has

lim
t→∞

1

β(t)
sup
ρ⩽r

logEρ,σ
[
e−(β(t)−δ)Jt(Lt

β(t)−δ
);W t([0, β(t)− δ]) ⊆ Σr+ε

]
⩽ −χr+ε. (4.11)

Proof. Let L, η > 0 be given. Define KL ≜ {α ∈ E : Λ∗(α) ⩽ L}. Note that KL is a
compact subset of E. For each α ∈ KL, there exists ρα > 0 such that

sup
B̄(α,ρα)

(−J) ⩽ (−J)(α) + η, inf
B̄(α,ρα)

Λ∗ ⩾ Λ∗(α)− η.

By the compactness of KL, one can cover it by finitely many such balls, say B̄(αm, ρm)
(i = 1, · · · , N). Setting G ≜ ∪Nm=1B̄(αm, ρm), one has

Eρ,σ
[
e−(β(t)−δ)Jt(Lt

β(t)−δ
)
∣∣W t([0, β(t)− δ]) ⊆ Σr+ε

]
=

∫
E

e−(β(t)−δ)Jt(α)µ̄
(ρ,σ)
t (dα) =

( ∫
G

+

∫
Gc

)
e−(β(t)−δ)Jt(α)µ̄

(ρ,σ)
t (dα)

⩽
N∑
m=1

∫
B̄(αm,ρm)

e−(β(t)−δ)Jt(α)µ̄
(ρ,σ)
t (dα) + µ̄

(ρ,σ)
t (Gc).

It follows that

1

β(t)
log sup

ρ⩽r
L.H.S.

⩽
1

β(t)
log(N + 1) + max

{β(t)− δ

β(t)
sup

B̄(αm,ρm)

(−Jt)

+
1

β(t)
log sup

ρ⩽r
µ̄
(ρ,σ)
t (B̄(αm, ρm)) : 1 ⩽ m ⩽ N

}
∨
( 1

β(t)
log sup

ρ⩽r
µ̄
(ρ,σ)
t (Gc)

)
.

We now analyse the behaviour of the right hand side as t → ∞. It is seen from
Lemma 2.3 and the uniform LDP that

1

β(t)
log(N + 1) → 0,

β(t)− δ

β(t)
sup

B̄(αm,ρm)

(−Jt) → sup
B̄(αm,ρm)

(−J) ⩽ (−J)(αm) + η,
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lim
t→∞

1

β(t)
log sup

ρ⩽r
µ̄
(ρ,σ)
t (B̄(αm, ρm)) ⩽ − inf

B̄(αm,ρm)
Λ∗ ⩽ −Λ∗(αm) + η,

lim
t→∞

1

β(t)
log sup

ρ⩽r
µ̄
(ρ,σ)
t (Gc) ⩽ − inf

Gc
Λ∗ ⩽ −L (since KL ⊆ G).

As a consequence, one obtains that

lim
t→∞

1

β(t)
log sup

ρ⩽r
Eρ,σ

[
e−(β(t)−δ)Jt(Lt

β(t)−δ
)
∣∣W t([0, β(t)− δ]) ⊆ Σr+ε

]
⩽ max

{
2η + (−J)(αm)− Λ∗(αm) : 1 ⩽ m ⩽ N

}
∨ (−L)

⩽
(
2η + sup

µ∈E
(−J(µ)− Λ∗(µ))

)
∨ (−L).

Since η and L are arbitrary, it follows that

lim
t→∞

1

β(t)
log sup

ρ⩽r
Eρ,σ

[
e−(β(t)−δ)Jt(Lt

β(t)−δ
)
∣∣W t([0, β(t)− δ]) ⊆ Σr+ε

]
⩽ − inf

µ∈E

(
J(µ) + Λ∗(µ)

)
.

The desired estimate now follows easily from (3.12) as well as Lemma 3.4.

4.3.3 Completing the proof of Lemma 4.3

We now proceed to upper bound the right hand side of (4.8) (call that expression It).
Let ε > 0 be given as before. By using the heat kernel bound (4.10), one finds that

It ⩽ Cd,rδ
−d/2

∫
Σr

Ex
[
e−(β(t)−δ)Jt(Lt

β(t)−δ
);W t([0, β(t)− δ]) ⊆ Σr+ε

]
dtx

⩽ Cd,rδ
−d/2volt(Σr) sup

ρ⩽r
Ex

[
e−(β(t)−δ)Jt(Lt

β(t)−δ
);W t([0, β(t)− δ]) ⊆ Σr+ε

]
,

where volt denotes the volume measure with respect to the metric gt. Note that volt(Σr)
converges to the Euclidean volume of the r-ball as t → ∞. Therefore, one concludes
from Lemma 4.5 that

lim
t→∞

1

β(t)
log It ⩽ −χr+ε.

The desired estimate (4.6) follows by taking ε↘ 0.

4.4 An explicit decomposition of large geodesic balls

After localisation on a (large t-dependent) geodesic ball as in Section 4.2, an important
step in the argument is to decompose the ball into subdomains of fixed (t-independent)
volume. After that, one can apply the estimate developed in Section 4.3 to each of
these subdomains.
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To develop this step precisely, let r < R̃(t) be given numbers. Here we consider r
fixed and R̃(t) ↑ ∞ as t→ ∞ (we will properly define R̃(t) later on but its value is of no
importance at this stage). Let Qt

R̃(t)
denote the closed geodesic ball centered at o with

radius R̃(t) on the hyperboloid model Hd
α(t). We shall decompose Qt

R̃(t)
into subdomains

whose volumes are all equal to volt(Qt
r). The underlying idea is very simple: one first

partitions Qt
R̃(t)

into concentric annuli with hyperbolic width r and on each annulus
one further decomposes the angular component (the unit sphere Sd−1) into congruent
balls. The radius of these balls are determined by the volume matching condition.

4.4.1 Sphere packing and covering

We first spend some time discussing the decomposition / economic covering of the
angular component Sd−1. If d = 2, this is straight forward; one just evenly partition
the unit circle into arcs of fixed length. Some technical care is needed in higher di-
mensions. For our purpose, one does not really need a strict partition of Sd−1 (which
is geometrically cumbersome to describe). Instead, an economic covering by identical
balls would suffice. Here we develop some basic lemmas that will be needed for our
later discussion. We use B(σ, θ) to denote the open ball of radius θ centered at σ on
the sphere Sd−1. We also denote ωd−1 ≜ vol(Sd−1).

Let θ ∈ (0, π) be a given fixed number. Let C(θ) = {B(σi, θ/2) : i ∈ I} denote
a maximal sphere packing of Sd−1. In other words, this is a maximal way of fitting
disjoint balls of radius θ/2 into Sd−1. Clearly, such a packing always exists but needs
not be unique. We fix such a choice. The total number N(θ) of members in C(θ)
admits the following obvious bound:

N(θ) ⩽
ωd−1

vol(B(σ, θ/2))
⩽

Cd
θd−1

∀θ ∈ (0, π) (4.12)

with some universal constant Cd depending only on d.

Lemma 4.6. The family U(θ) ≜ {B(σi, θ) : i ∈ I} is a cover of Sd−1.

Proof. Suppose on the contrary that there exists some σ ∈ Sd−1 not being covered
by the balls B(σi, θ). Then the ball B(σ, θ/2) does not intersect B(σi, θ/2) for all i
and can thus be added into the family C(θ) to form a larger packing of Sd−1. This
contradicts the maximality of C(θ).

Lemma 4.7. Consider the cover V(θ) ≜ {B(σi, 2θ) : i ∈ I}. Then there exists a
universal constant Dd depending only on d, such that any point σ ∈ Sd−1 is covered by
at most Dd times.

Proof. Let σ ∈ Sd−1 be given fixed. Define Iσ ≜ {i ∈ I : σ ∈ B(σi, 2θ)}. This is
equivalent to saying that σi ∈ B(σ, 2θ) for all i ∈ Iσ. It follows that⋃

i∈Iσ

B
(
σi,

θ

2

)
⊆ B

(
σ,

5θ

2

)
.

31



Since this is a disjoint union, one has

|Iσ| ⩽
vol

(
B(σ, 5θ/2)

)
vol

(
B(σi, θ/2)

) ⩽ Dd.

The result thus follows.

4.4.2 Construction of decomposition and related geometric estimates

We now proceed to construct the decomposition of the geodesic ball Qt
R̃(t)

announced
at the beginning. Under the hyperboloid model Hd

α(t), let (ρ, σ) denote the geodesic
polar coordinates with respect to o.

(i) [Radial part] We first divide Qt
R̃(t)

into concentric annuli with hyperbolic width r

(the inner one is taken to be the r-ball centered at o). In other words,

Qt
R̃(t)

=

R̃(t)/r⋃
k=1

Atk, Atk ≜ {x = (ρ, σ) ∈ Hd
α(t) : (k − 1)r ⩽ ρ ⩽ kr}.

(ii) [Angular part] For each k, consider the cover

U(θtk) = {B(σk,ti , θtk) : i ∈ Itk} (4.13)

of Sd−1 defined by Lemma 4.6, where the angular radius θtk is determined by Lemma
4.8 below (volume matching) and recall that U(θtk) is induced from a maximal sphere
packing C(θtk) (cf. Section 4.4.1). For each i ∈ Itk, we define

P t
k(i) ≜ {(ρ, σ) : (k − 1)r ⩽ ρ ⩽ kr, σ ∈ B(σk,ti , θtk)}. (4.14)

One is then led to the following decomposition of Qt
R̃(t)

, on which our later analysis is
largely based.

Qt
R̃(t)

=

R̃(t)/r⋃
k=1

⋃
i∈It

k

P t
k(i). (4.15)
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Figure 4.1: Decomposition of Qt
R̃(t)

when d = 2.

The angular radius θtk is determined by the volume matching condition volt(P t
k(i)) =

volt(Qt
r). More precisely, one has the following lemma. We will require that θtk ∈

(0, π/2) (just take θtk = π/2 otherwise).

Lemma 4.8. The number θtk is determined by the relation that∫ θtk

0

sind−2 udu =
ωd−1

ωd−2

×
∫ r
0
sinhd−1(α(t)ρ)dρ∫ kr

(k−1)r
sinhd−1(α(t)ρ)dρ

. (4.16)

It admits the following estimate:

C1,d ×
sinh(α(t)r/2)

sinh(kα(t)r)
⩽ θtk ⩽ C2,d ×

sinh(α(t)r)

sinh((k − 1)α(t)r)
∀k, t. (4.17)

In addition, the total number N t
r of subdomains P t

k(i) are estimated as

N t
r ⩽ C3,d ×

R̃(t)

r
×
(sinh(R̃(t)α(t))
sinh(α(t)r/2)

)d−1
. (4.18)

Here Ci,d (i = 1, 2, 3) are universal constants that depend only on d.

Proof. Recall that the volume of a ball of radius θ on Sd−1 is given by

ωd−2 ×
∫ θ

0

sind−2 udu.

According to the definition (4.14) of P t
k(i) as well as the expression (2.7) of the volume

form on Hd
α(t), one has

volt(P t
k(i)) = ωd−2 ×

∫ θtk

0

sind−2 udu×
∫ kr

(k−1)r

α(t)−(d−1) sinhd−1(α(t)ρ)dρ.
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In the same way, one also has

volt(Qt
r) = ωd−1 ×

∫ r

0

α(t)−(d−1) sinhd−1(α(t)ρ)dρ

The relation (4.16) follows by equating the above two expressions. The estimate (4.17)
follows from the elementary inequality

2u

π
⩽ sinu ⩽ u ∀u ∈

[
0,
π

2

]
as well as the monotonicity of x 7→ sinhx. The estimate (4.18) follows from (4.12) as
well as (4.17).

The following lemma plays a crucial role in our analysis. It says that each P t
k(i) can

be fitted into some geodesic ball of radius ∝ r. We use DiamP to denote the diameter
of a subset P in Hd

α(t).

Lemma 4.9. There exist a universal constant C4,d depending only on d and a constant
Tr depending additionally on r, such that

Diam(P t
k(i)) ⩽ C4,dr (4.19)

for all t > Tr and all subdomains P t
k(i) in the decomposition (4.15). In particular, each

P t
k(i) is contained in some geodesic ball of radius C4,dr.

Proof. Let A,B ∈ P t
k(i). Denote A′, B′ as the corresponding points on the level set

{x : dt(x, o) = kr} that have the same angular component as A,B respectively. It is
clear that

dt(A,B) ⩽ 2r + dt(A′, B′). (4.20)

By the distance formula (2.9) on the hyperboloid Hd
α(t), one has

A′ ∗B′ = −α(t)−2 cosh
(
α(t)dt(A′, B′)

)
, (4.21)

where ∗ denotes the standard Lorentzian inner product in Rd+1. Explicit calculation
shows that

A′ ∗B′ = α(t)−2
(
sinh2(kα(t)r) cos∠σA

′B′ − cosh2(kα(t)r)
)
, (4.22)

where ∠σA
′B′ denotes the angle between the angular components A′

σ, B
′
σ of A′, B′

(both are unit vectors on Sd−1). Since A′
σ, B

′
σ are contained in the same ball of radius

θtk on Sd−1, one has ∠σA
′B′ ⩽ 2θtk. By equating (4.21) and (4.22), one finds that

cosh
(
α(t)dt(A′, B′)

)
− 1 = (1− cos∠σA

′B′) sinh2(kα(t)r)

=
1

2
sin2∠σA

′B′ sinh2(kα(t)r)

⩽
1

2
(2θtk)

2 sinh2(kα(t)r)

⩽ 2C2
2,d × sinh2 α(t)r ×

( sinh(kα(t)r)

sinh((k − 1)α(t)r)

)2
, (4.23)
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where the last inequality follows from the estimate (4.17).
We now estimate the above quotient. Denoting x ≜ α(t)r and assuming k ⩾ 2, it

is elementary to see that

sinh kx

sinh(k − 1)x
=

1

ex
+

1− e−2x

ex(e−2x − e−2kx)
⩽

1

ex
+

1− e−2x

ex(e−2x − e−4x)
⩽ 3

provided that x ∈ (0, δ) with some universal number δ. According to (4.23), one has

cosh
(
α(t)dt(A′, B′)

)
− 1 ⩽ 18C2

2,d sinh
2 α(t)r. (4.24)

Recall that α(t) = t−1/4 ↓ 0 as t→ ∞. One can choose Tr so that

α(t)r < δ, sinhα(t)r ⩽ 2α(t)r, ∀t > Tr.

It follows from (4.24) that

cosh
(
α(t)dt(A′, B′)

)
− 1 ⩽ 72C2

2,d

(
α(t)r

)2
⩽ cosh

(
12C2,dα(t)r

)
− 1,

where we also used the obvious inequality that coshx ⩾ 1 + x2/2 for x > 0. As a
consequence,

dt(A′, B′) ⩽ 12C2,dr ∀t > Tr.

By substituting this back into (4.20), one obtains the desired estimate (4.19) with
C4,d ≜ 12C2,d + 2.

4.5 Decomposition of principal eigenvalue with respect to par-
tition of unity

Before returning in our geometric context, we shall first recall a general estimate on
principal Dirichlet eigenvalues with respect to a given partition of unity. This is stan-
dard but we carefully state a form that suits our purpose. Let N be an oriented
Riemannian manifold with volume measure dx.

Definition 4.1. A countable family {φm : m ∈ N} of smooth functions on N is called
a partition of unity on M if the following properties hold true:

(i) 0 ⩽ φm ⩽ 1;
(ii) Dm ≜ suppφm is compact;
(iii) for each x ∈ N , there exists a neighbourhood U of x which intersects at most
finitely many Dm’s;
(iv)

∑
m φ

2
m = 1.

In the usual definition there is no square in Condition (iv); we impose the square
for the convenience of our purpose. We will also assume that Dm has piecewise smooth
boundary (this will always be true in our situation). Let V : N → R be a continuous
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function and let D be a bounded domain in N with piecewise smooth boundary. We
use λV (D) to denote the principal Dirichlet eigenvalue of ∆ + V . It is standard from
the Rayleigh-Ritz formula that

λV (D) = sup
ψ∈C∞

c (D)
∥ψ∥L2(D)=1

∫
D

(
− |∇ψ|2 + V ψ2

)
dx. (4.25)

The following estimate controls the principle Dirichlet eigenvalue on D (with a sacrifice
on the potential) in terms of λV (Dm) (cf. [GK00, Section 3.1, Proposition 1]).

Lemma 4.10. Define the function Φ ≜
∑

m |∇φm|2 (Φ is well-defined due to Condition
(iii)). Then one has

λV−Φ(D) ⩽ sup
m
λV (Dm). (4.26)

Proof. Let ψ ∈ C∞
c (D) be a test function. Define ψm ≜ ψφm ∈ C∞

c (Dm). By using
the Condition (iv), an easy calculation shows that∑

m

|∇ψm|2 = |∇ψ|2 + Φψ2.

It follows that∫
D

(
− |∇ψ|2 + (V − Φ)ψ2

)
=

∫
M

(
−

∑
m

|∇ψm|2 + V ψ2
)

=
∑
m

∫
M

(
− |∇ψm|2 + V ψ2

m

)
.

On the other hand, for each m one has∫
M

(
− |∇ψm|2 + V ψ2

m

)
⩽ λV (Dm)∥ψm∥2L2(Dm) ⩽ sup

m′
λV (Dm′) · ∥ψm∥2L2(Dm).

After summing over m, one finds that∫
D

(
− |∇ψ|2 + (V − Φ)ψ2

)
⩽ sup

m′
λV (Dm′) ·

∑
m

∥ψm∥2L2(Dm) = sup
m′

λV (Dm′) · ∥ψ∥2L2 .

This gives the desired estimate.

Remark 4.1. In general, the sacrifice of potential (i.e. Φ) in the estimate (4.26) depends
on the magnitude of the gradient of the partition of unity. There is no guarantee that
Φ can be made arbitrarily small; in contrast to the principal Neumann eigenvalue, it
is not true that λV (D) ⩽ supm λ

V (Dm) for any partition of D into subdomains Dm.
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4.6 Construction of a partition of unity

A key step in the proof of Theorem 4.1 is to construct a partition of unity (in the sense
of Definition 4.1) which respects the decomposition (4.15) constructed in Section 4.4
(so that Lemma 4.9 can be applied) and at the same time the sacrifice of potential Φ
is small in a certain sense. The main technical lemma to achieve this is stated below.
We continue to use the same notation as in Section 4.4.

Lemma 4.11. For each r, t > 1, one can construct a partition of unity

{φk,i : 1 ⩽ k ⩽ R̃(t)/r, i ∈ Itk}

on Qt
R̃(t)

which satisfies the following properties. For any r > 1, there exists Tr > 0

such that for all t > Tr, one has:

(i) for each k, i, the support P̂ t
k(i) ≜ suppφk,i is contained in a geodesic ball of radius

Kdr with some universal constant Kd depending only on d;

(ii) Φt
r ≜

∑
k,i |∇tφk,i|2t ⩽ Ld/r

2 with some universal constant Ld depending only on d,
where ∇t, | · |t denote the Riemannian gradient and metric on Hd

α(t) respectively.

Proof. Our construction of {φk,i} is very natural: it has the form

φk,i(ρ, σ) = ηk(ρ)ζk,i(σ), (4.27)

where (ρ, σ) are the geodesic polar coordinates on Qt
R̃(t)

with respect to the origin.

Step one: construction of ηk(ρ).

Let ε be a fixed small number (ε = 1/3 suffices). We define ηk(ρ) to be a smooth
function such that the following properties hold true:

(i) 0 ⩽ ηk(ρ) ⩽ 1;
(ii) ηk(ρ) = 1 for ρ ∈ [(k − 1 + ε)r, (k − ε)r];
(iii) ηk(ρ) = 0 on [(k − 1− ε)r, (k + ε)r]c;
(iv)

∑
k η

2
k(ρ) = 1 for all ρ ∈ [0, R̃(t)].

Clearly, such a family {ηk} exists and the construction is elementary. It is easily seen
that one can choose ηk so that

|η′k(ρ)| ⩽
1

2εr
∀k, ρ. (4.28)

The figure below is a simple illustration of the construction.
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Step two: construction of ζk,i(σ).

This requires some care because one does not have an actual partition of Sd−1 here.
Recall that for each fixed k the sphere Sd−1 is covered by U(θtk) (cf. (4.13)), where
C(θtk) = {B(σi, θ

t
k/2) : i ∈ Itk} is a maximal packing of Sd−1. For each i ∈ Itk, let

χk,i(σ) be a smooth function such that:

(i) 0 ⩽ χk,i ⩽ 1;

(ii) χk,i = 1 on B(σi, θ
t
k) and χk,i = 0 on B(σi, 2θ

t
k)
c;

(iii) |∇σχk,i| ⩽ (θtk)
−1 where ∇σ denotes the gradient on Sd−1.

The existence of χk,i is again elementary. We now define

ζk,i ≜
χk,i√∑
j χ

2
k,j

, i ∈ Itk.

Note that ζk,i is well-defined; indeed
∑

j χ
2
k,j ⩾ 1 since U(θtk) covers Sd−1 (cf. Lemma

4.6). It is clear by definition that suppζk,i ⊆ B(σi, 2θ
t
k) and

∑
i ζ

2
k,i = 1. We claim that

∣∣∇σζk,i
∣∣ ⩽ L1,d

θtk
∀t, k, i (4.29)

where L1,d is some universal constant. Indeed, denoting ζ̄k ≜
√∑

j χ
2
k,j one has

∣∣∇σζk,i
∣∣ = ∣∣∇σχk,i

ζ̄k
− χk,i

ζ̄3k

∑
j

χk,j∇σχk,j
∣∣ ⩽ ∣∣∇σχk,i

∣∣+∑
j

∣∣∇σχk,j
∣∣.

According to Lemma 4.7, for each fixed σ ∈ Sd−1 there are at most Dd (a universal
constant) number of j’s such that σ ∈ B(σj, 2θ

t
k). As a result, one concludes from

Property (iii) of χk,i that ∣∣∇σζk,i
∣∣ ⩽ Dd + 1

θtk
.

Step three: verification of required properties for φk,i(ρ, σ) defined by (4.27).
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First of all, one has∑
k,i

φk,i(ρ, σ)
2 =

∑
k

ηk(ρ)
2
∑
i

ζk,i(σ)
2 =

∑
k

ηk(ρ)
2 · 1 = 1.

Next, we estimate the support P̂ t
k(i) of φk,i. Let A,B ∈ P̂ t

k(i) and let A′, B′ be their
closest points in the annulusAtk respectively. Note thatA′

σ, B
′
σ (the angular components

of A′, B′) are both contained in B(σi, 2θ
t
k). Let Γ be the geodesic on Sd−1 connecting

A′
σ, B

′
σ. Note that Γ ⊆ B(σi, 2θ

t
k). We claim that Γ can only intersect at most K1,d

(a universal constant) number of B(σj, θ
t
k)’s. In fact, suppose that τ ∈ Γ ∩ B(σj, θ

t
k).

Then for any σ ∈ B(σj, θ
t
k), one has (denoting dσ as the distance on Sd−1)

dσ(σ, σi) ⩽ dσ(σ, σj) + d(σj, τ) + d(τ, σi) ⩽ θtk + θtk + 2θtk = 4θtk.

It follows that ⋃
j:Γ∩B(σj ,θtk )̸=∅

B
(
σj,

θtk
2

)
⊆ B(σi, 4θ

t
k).

But the above union is a disjoint union by our construction. Therefore, the total
number of B(σj, θ

t
k)’s intersecting Γ is bounded above by

vol(B(σi, 4θ
t
k))

vol(B(σj, θtk/2))
⩽ K1,d.

According to the diameter estimate (4.19), one thus concludes that

dt(A,B) ⩽ dt(A′, B′) +K1,d · C4,dr ⩽ (2 +K1,dC4,d)r =: Kdr.

This shows that
DiamP̂ t

k(i) ⩽ Kdr

and thus P̂ t
k(i) is contained in a geodesic ball of radius Kdr.

It remains to estimate the potential Φt
r ≜

∑
k,i |∇tφk,i|2t . First of all, by using the

metric expression (2.29) one can write∣∣∇tφk,i(ρ, σ)
∣∣2
t
=

(
η′k(ρ)ζk,i(σ)

)2
+ α(t)2 sinh−2(α(t)ρ)ηk(ρ)

2
∣∣∇σζk,i(σ)

∣∣2. (4.30)

Since
∑

i ζ
2
k,i = 1 and each ρ belongs to the supports of at most two ηk’s, one sees from

the estimate (4.28) that∑
k,i

(
η′k(ρ)ζk,i(σ)

)2
=

∑
k

(η′k(ρ))
2 ⩽

1

2ε2r2
. (4.31)

We now estimate the second term on the right hand side of (4.30).
Firstly, according to the bounds (4.17) and (4.29) one has

∣∣∇σζk,i
∣∣ ⩽ L2,d

sinh
(
kα(t)r

)
sinh

(
α(t)r/2

) .
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In addition, due to the support property of ηk one can assume that ρ ∈ [(k − 1 −
ε)r, (k + ε)r]. It follows that

α(t)2 sinh−2(α(t)ρ)ηk(ρ)
2
∣∣∇σζk,i(σ)

∣∣2
⩽ L3,dα(t)

2 sinh−2
(
(k − 1− ε)α(t)r

)
·
( sinh

(
kα(t)r

)
sinh

(
α(t)r/2

))2
=
L3,d

r2
×

[
α(t)r · sinh−1

(
(k − 1− ε)α(t)r

)
·
sinh

(
kα(t)r

)
sinh

(
α(t)r/2

)]2. (4.32)

Here one should assume k ⩾ 2; the k = 1 case can be treated separately in the same
manner and its discussion will be omitted.

Consider the function

Fk(x) ≜ x · sinh−1
(
(k − 1− ε)x

)
·
sinh

(
kx

)
sinh

(
x/2

) , k ⩾ 2, x ∈ [0, 1].

In our context, x = α(t)r which can be assumed ⩽ 1 provided that t is sufficiently
large (depending on r). We claim that

Fk(x) ⩽ C ∀k ⩾ 2, x ∈ [0, 1] (4.33)

with some universal constant C. Indeed, simple algebra yields that

Fk(x) =
x

sinh(x/2)
· e(1+ε)x ·

(
1 + e−2kx · e2(1+ε)x − 1

1− e−2(k−1−ε)x

)
⩽

x

sinh(x/2)
· e(1+ε)x ·

(
1 +

e2(1+ε)x − 1

1− e−2(1−ε)x

)
, (4.34)

where we used e−2kx ⩽ 1 and k ⩾ 2 to reach the last inequality. It is clear that the
right hand side of (4.34), as a function of x ∈ [0, 1], is uniformly bounded by some
universal constant C.

By substituting (4.33) into (4.32), one obtains that

α(t)2 sinh−2(α(t)ρ)ηk(ρ)
2
∣∣∇σζk,i(σ)

∣∣2 ⩽ L4,d

r2

uniformly for all r, t, ρ, σ, k, i provided that t > Tr with suitable constant Tr (the precise
requirement here is that α(t)r ⩽ 1). To conclude Property (ii) of the lemma, it suffices
to observe from Lemma 4.7 that for any given (ρ, σ), there are at most 2 × Dd (a
universal constant) pairs of (k, i) such that ηk(ρ)∇σζk,i(σ) ̸= 0. Therefore,∑

k,i

α(t)2 sinh−2(α(t)ρ)ηk(ρ)
2
∣∣∇σζk,i(σ)

∣∣2 ⩽ L5,d

r2
. (4.35)

Combining the two estimates (4.31) and (4.35), one arrives at

Φt
r(ρ, σ) =

∑
k,i

|∇tφk,i(ρ, σ)|2t ⩽
( 1

2ε2
+ L5,d

) 1
r2

for all t > Tr and all (ρ, σ) ∈ Qt
R̃(t)

. This proves Property (ii) of the lemma.
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4.7 From pointwise to L1 bounds

In order to make use of eigenvalue estimates, one needs a technical step to control
uR(t)(t, o) in terms of its spatial average

(uR(t)(t, ·),1) ≜
∫
QR(t)

uR(t)(t, x)dx.

Here uR(t) is the solution to the localised PAM (2.27) on the geodesic ball QR(t) of
radius R(t) under curvature κ ≡ −1. The main estimate is summarised as follows.

Lemma 4.12. There exists a universal constant C > 0, such that

⟨uR(t)(t, o)⟩ ⩽ C(2 +R(t))1/2
(
⟨(uR(t)(t, ·),1)⟩+ |QR(t)|

)
+ e−1 · eH(t+1) (4.36)

for all t > 1, where |QR(t)| denotes the volume of QR(t).

Proof. We write

uR(t)(t, o) = Eo
[
exp

( ∫ t

0

ξ(Ws)ds
)
;W ([0, t]) ⊆ QR(t)

]
=: I(t) + J(t), (4.37)

where I(t), J(t) correspond to a further localisation on
∫ 1

0
ξ(Ws)ds ⩽ 1 and

∫ 1

0
ξ(Ws)ds >

1 respectively.

Estimation of I(t):

By using the Markov property, one has

I(t) ⩽ e · Eo
[
1{τR(t)>1)}EW1

[
exp

( ∫ t−1

0

ξ(W̃s)ds
)
; τ̃R(t) > t− 1

]]
= e · Eo

[
1{τR(t)>1)}u

ξ(t− 1,W1)
]
,

where W̃ is an independent Brownian motion and τ̃ is its corresponding exit time.
Since W1 ∈ QR(t) on the event {τR(t) > 1}, the last expectation is bounded above by∫

QR(t)

p(1, z)uξ(t− 1, z)dz

where p(s, z) is the hyperbolic heat kernel. According to Lemma 4.4, it is easily seen
that

p(1, z) ⩽ C(2 +R(t))1/2 ∀z ∈ QR(t).

As a consequence, one obtains that

I(t) ⩽ Ce · (2 +R(t))1/2 ·
(
uξR(t)(t− 1, ·),1

)
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On the other hand, by the spectral decomposition {(λk, ek)} of ∆ + ξ with Dirichlet
boundary condition, one can write(

uR(t)(t− 1, ·),1
)
=

∑
k

e(t−1)λk(ek,1)
2

⩽
∑
k:λk⩾0

etλk(ek,1)
2 +

∑
k:λk<0

(ek,1)
2

⩽
∑
k

etλk(ek,1)
2 +

∑
k

(ek,1)
2

=
(
uR(t)(t, ·),1

)
+ |QR(t)|

It follows that

⟨I(t)⟩ ⩽ Ce · (2 +R(t))1/2 ·
(
⟨(uR(t)(t, ·),1)⟩+ |QR(t)|

)
. (4.38)

Estimation of J(t):

On the event {
∫ 1

0
ξ(Ws)ds > 1}, one has

exp
( ∫ t

0

ξ(Ws)ds
)
⩽ e−1 · exp

( ∫ t

0

(1 + 1[0,1](s))ξ(Ws)ds
)

= e−1 · exp
(
(t+ 1)

∫ t

0

ξ(Ws)
1 + 1[0,1](s)

t+ 1
ds
)
.

According to Jensen’s inequality, the right hand side is bounded above by

e−1 ·
∫ t

0

e(t+1)ξ(Ws)
1 + 1[0,1](s)

t+ 1
ds.

It follows that

J(t) ⩽ e−1 ·
∫ t

0

Eo
[
e(t+1)ξ(Ws)

]1 + 1[0,1](s)

t+ 1
ds

and thus

⟨J(t)⟩ ⩽ e−1 ·
∫ t

0

⟨Eo
[
e(t+1)ξ(Ws)

]
⟩
1 + 1[0,1](s)

t+ 1
ds = e−1 · eH(t+1). (4.39)

The desired estimate (4.36) follows from (4.38) and (4.39).

4.8 Completing the proof of Theorem 4.1

We are now in a position to put all the previously developed ingredients together to give
a proof of Theorem 4.1. The major steps are respectively summarised in the following
subsections.
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4.8.1 Step 1: From u to uR(t)

Throughout the rest, we fix a choice of R(t) such that

t5/4 ≪ R(t) ≪ β(t) = t3/2.

According to Lemma 4.2, one has

lim
t→∞

1

β(t)
log⟨e−H(t)u(t, o)⟩ ⩽ lim

t→∞

1

β(t)
log⟨e−H(t)uR(t)(t, o)⟩. (4.40)

4.8.2 Step 2: From uR(t)(t, o) to the spatial average of uξt
R̃(t)

(β(t), ·)

Next, we recall the scaling relation (cf. Lemma 2.4 and (2.31)) that(
uR(t)(t, ·),1

)
= α(t)eH(t)

(
uξt
R̃(t)

(β(t), ·),1
)
t
.

Here we set R̃(t) ≜ R(t)/α(t), uξt
R̃(t)

is the solution to the localised PAM (2.31) on
Qt
R̃(t)

under curvature κt ≡ −α(t)2 with generator Lt + ξt and (·, ·)t denotes the L2-
inner product with respect to dtx. According to Lemma 4.12, one obtains the following
estimate:

⟨e−H(t)uR(t)(t, o)⟩ ⩽ C(2 +R(t))1/2
(
α(t)⟨

(
uξt
R̃(t)

(β(t), ·),1
)
t
⟩+ |QR(t)|

)
+ e−1 · etσ2+σ2/2, (4.41)

where we used the explicit fact that H(t) = t2σ2/2 with σ2 = Q(0). Since |QR(t)| =
O(e(d−1)R(t)) and R(t) ≪ β(t), one concludes from (4.41) that

lim
t→∞

1

β(t)
log⟨e−H(t)uR(t)(t, o)⟩ ⩽ lim

t→∞

1

β(t)
log

〈(
uξt
R̃(t)

(β(t), ·),1
)
t

〉
. (4.42)

4.8.3 Step 3: Sacrifice of potential

Let r > 0 be a given fixed parameter. We shall make use of the decomposition (4.15) of
the geodesic ball Qt

R̃(t)
introduced in Section 4.4 and the associated partition of unity

{φk,i} constructed in Lemma 4.11. Recall from Property (ii) of the lemma that

Φt
r ≜

∑
k,i

|∇tφk,i|2t ⩽
L

r2

for all t > Tr. It follows that

uξt
R̃(t)

(β(t), x) = Ex
[
exp

( ∫ β(t)

0

ξt(W
t
s)ds

)
;W t([0, β(t)]) ⊆ Qt

R̃(t)

]
⩽ eLβ(t)/r

2Ex
[
exp

( ∫ β(t)

0

(ξt − Φt
r)(W

t
s)ds

)
;W t([0, β(t)]) ⊆ Qt

R̃(t)

]
= eLβ(t)/r

2

u
ξt−Φt

r

R̃(t)
(β(t), x)
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and thus (
uξt
R̃(t)

(β(t), ·),1
)
t
⩽ eLβ(t)/r

2(
u
ξt−Φt

r

R̃(t)
(β(t), ·),1

)
t

(4.43)

for all t > Tr.

4.8.4 Step 4: Dominance by principal eigenvalue

The lemma below controls the spatial average of uξt−Φt
r

R̃(t)
(β(t), ·) in terms of the principal

Dirichlet eigenvalue of Lt + ξt − Φt
r. To ease notation, we just write ηt ≜ ξt − Φt

r.

Lemma 4.13. Let {ληtk , ϕk} be the L2-spectral decomposition of the operator Lt + ηt
with Dirichlet boundary condition on Qt

R̃(t)
. Then one has

⟨
(
uηt
R̃(t)

(β(t), ·),1
)
t
⟩ ⩽ volt

(
Qt
R̃(t)

)
· ⟨eβ(t)λ

ηt
1 ⟩ (4.44)

for all t.

Proof. One has the L2-expansion

uηt
R̃(t)

(β(t), ·) =
∞∑
k=1

eβ(t)λ
ηt
k (ϕk,1)tϕk ⩽ eβ(t)λ

ηt
1

∞∑
k=1

(ϕk,1)tϕk. (4.45)

After integrating (4.45) over Qt
R̃(t)

and taking expectation ⟨·⟩, one obtains the estimate
(4.44).

It is straight forward to see that volt(Qt
R̃(t)

) = O(e(d−1)R(t)) = o(eβ(t)). As a result
of Lemma 4.13, one obtains that

lim
t→∞

1

β(t)
log

〈(
uηt
R̃(t)

(β(t), ·),1
)
t

〉
⩽ lim

t→∞

1

β(t)
log⟨eβ(t)λ

ηt
1 ⟩. (4.46)

4.8.5 Step 5: Decomposition of principal eigenvalue

We now estimate ληt1 in terms of the principal eigenvalue on a ball of fixed radius.
Given a continuous potential V : Qt

R̃(t)
→ R and a sub-domain D ⊆ Qt

R̃(t)
with

piecewise smooth boundary, we use λV1 (D) to denote the principal Dirichlet eigenvalue
of the operator Lt + V on L2(D, dtx).

First of all, a direct application of Lemma 4.26 shows that

λ
ξt−Φt

r
1 (Qt

R̃(t)
) ⩽ max

k,i
λξt1 (P̂

t
k(i)),

where P̂ t
k(i) is the support of φk,i. Therefore, one has〈

exp
(
β(t)λ

ξt−Φt
r

1 (Qt
R̃(t)

)
)〉

⩽
〈
max
k,i

exp
(
β(t)λξt1 (P̂

t
k(i))

)〉
⩽

∑
k,i

〈
exp

(
β(t)λξt1 (P̂

t
k(i))

)〉
. (4.47)
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According to Property (i) of Lemma 4.11, P̂ t
k(i) is contained in a geodesic ball of radius

Kr on Hd
α(t), say Bt

k(i). One then knows from (4.25) that

λξt1 (P̂
t
k(i)) ⩽ λξt1 (B

t
k(i)).

In addition, note that both Lt (as the hyperbolic Laplacian on Hd
α(t)) and the distri-

bution of ξt (cf. Lemma 2.2) are invariant under isometries. As a result, one has

λξt1 (B
t
k(i))

d
= λξt1 (ΣKr).

On the other hand, recall that the total number of (k, i)’s admit an upper bound given
by (4.18). As a consequence, the right hand side of (4.47) is bounded above by

R̃(t)

r
×

( sinhR(t)

sinhα(t)r/2

)d−1 ×
〈
exp

(
β(t)λξt1 (ΣKr)

)〉
.

It follows that

lim
t→∞

1

β(t)
log

〈
exp

(
β(t)λ

ξt−Φt
r

1 (Qt
R̃(t)

)
)〉

⩽ lim
t→∞

1

β(t)
log

〈
exp

(
β(t)λξt1 (ΣKr)

)〉
. (4.48)

4.8.6 Step 6: Application of fixed-domain upper bound

As the final step, we enlarge the right hand side of (4.48) to

lim
t→∞

1

β(t)
log

〈 ∞∑
k=1

exp
(
β(t)λξtk (ΣKr)

)〉
where {λξtk (ΣKr)} is the entire sequence of Dirichlet eigenvalues. According to Lemma
4.3, one concludes that the above quantity is bounded by −χKr (cf. (3.1) for its
definition). Combining this with the estimates (4.40, 4.42, 4.43, 4.46, 4.48), one arrives
at the following inequality:

lim
t→∞

1

β(t)
log⟨e−H(t)u(t, o)⟩ ⩽ −χKr +

L

r2
,

where K,L are universal constants depending only on d. The desired upper bound
(4.1) thus follows by taking r → ∞.

4.9 Identification of fluctuation exponent

Combing both Theorem 3.1 and Theorem 4.1, it is readily seen that

χ′ ≜ lim
R→∞

χR

exists, where χR is the local exponent defined by (3.1). To identify the two exponents
χ′ = χ (cf. (2.24) for the definition of χ), it is enough to establish the following fact.
Recall that Seu(·) is the Euclidean Donsker-Varadhan functional defined by (2.22),
which is viewed as a functional on Pc(Σ). We also recall that λeu;f,R0 is the principal
Dirichlet eigenvalue of −(∆eu + f) on ΣR.
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Proposition 4.1. For each R > 0, one has

Seu(µ) = sup
f∈Cb(ΣR)

{∫
ΣR

fdµ+ λeu;f,R0

}
for any probability measure µ supported on ΣR.

To prove Proposition 4.1, we make use of an abstract tool from convex analysis
which we first recall (cf. [DS89, Theorem 2.2.15]).

Lemma 4.14. Let X be a locally convex, Hausdorff topological (real) vector space
and let X∗ be its topological dual. Suppose that F : X → (−∞,∞] is a lower semi-
continuous, convex function. Define G : X∗ → (−∞,∞] by

G(λ) ≜ sup
{
X∗⟨λ, x⟩X − F (x) : x ∈ X

}
, λ ∈ X∗. (4.49)

If F is not identically equal to ∞, then one has

F (x) = sup
{
X∗⟨λ, x⟩X −G(λ) : λ ∈ X∗}, x ∈ X.

In our context, we choose X ≜ M(ΣR) (the space of finite signed-measures on
ΣR) and define E ≜ P(ΣR) to be the subspace of probability measures on ΣR. Recall
that the topology on X is generated by (3.9) and one also has the basic facts given by
Lemma 3.2. In order to apply Lemma 4.14, we first define the functional F . This is
just the Donsker-Varadhan functional extended to X, i.e.

F (µ) ≜
∫
ΣR

|∇ϕ|2dx

if µ is a probability measure supported on ΣR, µ ≪ dx and ϕ ≜
√

dµ
dx

∈ H1
0 (ΣR);

otherwise we simply set F (µ) = +∞. We also define G : X∗ → (−∞,∞] according to
the relation (4.49). Since F is finite only on ϕ ∈ H1

0 (ΣR) with ∥ϕ∥L2 = 1, under the
identification (3.10) it is easy to check that

G(f) = −λeu;f,R0 ∀f ∈ Cb(ΣR).

Consequently, in order to complete the proof of Proposition 4.1 it is enough to verify
the following fact explicitly.

Lemma 4.15. F is convex and lower semi-continuous.

Proof. (i) Convexity. Let µ, ν ∈ X and θ ∈ [0, 1]. Define ρ ≜ (1 − θ)µ + θν. We want
to show that

F (ρ) ⩽ (1− θ)F (µ) + θF (ν). (4.50)

One can assume without loss of generality (WLOG) that both F (µ), F (ν) are finite.
In other words, one has

dµ

dx
= ϕ2,

dν

dx
= ψ2
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where ϕ, ψ ∈ H1
0 (ΣR) with ∥ϕ∥L2 = ∥ψ∥L2 = 1. In this case, ρ is a probability measure

and dρ
dx

= ζ2 with
ζ ≜

√
(1− θ)ϕ2 + θψ2.

Explicit calculation shows that

∇ζ = (1− θ)
ϕ

ζ
∇ϕ+ θ

ψ

ζ
∇ψ

=
√
1− θ ·

√
1− θϕ

ζ
∇ϕ+

√
θ ·

√
θψ

ζ
∇ψ,

and one thus has

|∇ζ|2 ⩽
(√

1− θ ·
√
1− θϕ

ζ
|∇ϕ|+

√
θ ·

√
θψ

ζ
|∇ψ|

)2
. (4.51)

To proceed further, we recall the following elementary inequality:

(acx+ bdy)2 ⩽ a2x2 + b2y2 (4.52)

for any nonnegative a, b, c, d, x, y provided that a2 + b2 = c2 + d2 = 1. This follows
easily by observing that the difference between the two sides is a perfect square. By
applying (4.52) to the RHS of (4.51), one finds that

|∇ζ|2 ⩽ (1− θ)|∇ϕ|2 + θ|∇ψ|2.

The convexity property (4.50) follows by integration.

(ii) Lower semi-continuity. Let F (µ) > y with given fixed µ ∈ X and y ∈ R. We want
to show that there exists a neighbourhood U of µ (with respect to the topology τ) such
that

F (ν) > y ∀ν ∈ U. (4.53)

Case (i): F (µ) is finite.

In this case, µ ∈ E and
√

dµ
dx

=: ϕ ∈ H1
0 (ΣR). Since F = ∞ on Ec, it is enough to

establish (4.53) when F is restricted on E. Since the induced topology on E (the weak
topology) is metrisable, this is equivalent to showing that

F (µ) =

∫
Σ

|∇ϕ|2dx ⩽ lim
n→∞

F (νn) (4.54)

for any sequence E ∋ νn → µ weakly. Let νn be such a sequence. One may further
assume that the right hand side of (4.54) is finite; otherwise the claim is trivial. In this
situation, let us just assume WLOG that

F (νn) =

∫
ΣR

|∇ψn|2dx→ r
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for some finite number r, where ψn =
√

dνn
dx

∈ H1
0 (ΣR). Then {ψn} is a bounded

sequence in H1
0 (ΣR). According to Rellich’s compactness theorem and the weak com-

pactness of H1
0 (ΣR), ψn contains an L2-convergent subsequence as well as an H1-weakly

convergent subsequence, say WLOG ψn → some ψ ∈ H1
0 (ΣR) both strongly in L2 and

weakly in H1. Define the probability measure dν ≜ ψ2dx. Then one has νn → ν
weakly, thus implying that µ = ν and ϕ = ψ a.e. Since ψn → ψ = ϕ weakly in H1, one
concludes that

∥ϕ∥H1 ⩽ lim
n→∞

∥ψn∥H1 .

This immediately gives (4.54).

Case (ii): F (µ) is infinite.

If µ is not a probability measure, it is obvious that any ν near µ (with respect to
the topology τ) cannot be a probability measure and one thus has F (ν) = ∞. Let us
assume that µ is a probability measure but F (µ) = ∞. The situation is again reduced
to the sequential setting and let us assume that E ∋ νn → µ weakly. We want to show
that

lim
n→∞

F (νn) = ∞.

Assuming on the contrary that the above limit is finite, a similar argument to Case (i)
shows that

√
dνn
dx

contains a subsequence that is both convergent strongly in L2 and
weakly in H1, say to some ϕ ∈ H1

0 (ΣR). Since νn → µ weakly, one then knows that

ϕ =
√

dµ
dx

which contradicts the assumption F (µ) = ∞.

Finally, we identify the exponent χ explicitly.

Lemma 4.16. One has χ =
√
Q′′(0)/2d.

Proof. Since both functionals J and Seu essentially live in the Euclidean space, the
result follows directly from [GK00, Equation (4.6)] with κ = 1 and Σ2 = −Q′′(0)Id in
their notation.

5 The general moment asymptotics
In this section, we complete the proof of Theorem 2.1 for the general moment asymp-
totics. The path from L1 to Lp asymptotics (p > 1) is quite standard and is a straight
forward adaptation of argument in [GK00]. The moral is that ⟨u(t, o)p⟩ ≈ ⟨u(pt, o)⟩ is
a good approximation at the logarithmic scale under consideration. We first address
the lower asymptotics.

Proof of Theorem 2.1: Lower asymptotics. LetR > 0 be given fixed. The same Jensen-
and Hölder-type estimates leading to [GK00, Equation 2.12] show that

⟨u(t, o)p⟩ ⩾ ⟨(uRα(pt)(pt, ·),1)⟩ ×
(⟨(uRα(pt)(pt, ·),1)⟩

⟨
∑

k e
ptλk⟩

)p
. (5.1)
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Here uRα(pt) is the localised PAM on (ΣRα(pt), g
1) defined by (2.27), (·, ·) is the L2-inner

product defined by

(f, g) ≜
1

|ΣRα(pt)|

∫
ΣRα(pt)

f(x)g(x)d1x

and {λk} are the principal Dirichlet eigenvalues of ∆+ξ on (ΣRα(pt), g
1). By a standard

scaling argument, it is readily checked that

β(s)λξsk (ΣR) = sλk −H(s) ∀s > 0, (5.2)

where {λξtk } are the principal Dirichlet eigenvalues of Ls + ξs on (ΣR, g
s). By substi-

tuting (5.2) into (5.1), one finds that

⟨u(t, o)p⟩ ⩾ ⟨(uRα(pt)(pt, ·),1)⟩ ×
(e−H(pt)⟨(uRα(pt)(pt, ·),1)⟩

⟨
∑

k e
β(pt)λ

ξpt
k (ΣR)⟩

)p
.

It is now clear from the lower L1 asymptotics (3.19) as well as the fixed domain upper
asymptotics (4.6) that

lim
t→∞

1

β(pt)
log

(
e−H(pt)⟨u(t, o)p⟩

)
⩾ lim
t→∞

1

β(pt)
log

(
e−H(pt)⟨(uRα(pt)(pt, ·),1)⟩

)
+ p lim

t→∞

1

β(pt)
log

(
e−H(pt)⟨(uRα(pt)(pt, ·),1)⟩

)
− p lim

t→∞

1

β(pt)
log

〈∑
k

eβ(pt)λ
ξpt
k (ΣR)

〉
⩾− χR + p(−χR − (−χR)) = −χR.

Here we remark that although the lower asymptotics (3.19) was stated for ⟨u(t, o)⟩, it
actually holds for ⟨(uRα(pt)(pt, ·),1)⟩ which is exactly how we proved (3.19) (cf. (3.17)).
By letting R → ∞, one concludes that

lim
t→∞

1

β(pt)
log

(
e−H(pt)⟨u(t, o)p⟩

)
⩾ −χ, (5.3)

which gives the desired lower asymptotics.

Next, we address the upper Lp asymptotics.

Proof of Theorem 2.1: Upper bound. First of all, with the lower asymptotics (5.3) at
hand a simple adaptation of the proof of Lemma 4.2 shows that

lim
t→∞

⟨uR(pt)(t, o)
p⟩

⟨u(t, o)p⟩
= 1 (5.4)
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provided that R(pt) ≫ t5/4 (and we fix such a choice of R(pt)). The next adaptation
required is Lemma 4.12 in Section 4.7. We continue to use the decomposition (4.37)
with QR(t) replaced by QR(pt). A standard Jensen- and Hölder-type argument applied
to the estimates (4.38) and (4.39) easily gives that

I(t)p ⩽ 2p−1(Ce)p(2 +R(pt))p/2
(
|QR(pt)|p−1(uR(pt)(pt, ·),1) + |QR(pt)|p

)
and

⟨J(t)p⟩ ⩽ e−peH(p(t+1)) = eH(pt)+O(t)

respectively. By substituting the above two estimates into the decomposition (4.37),
one obtains that

⟨uR(pt)(t, o)
p⟩ ⩽2p−1(⟨I(t)p⟩+ ⟨J(t)p⟩)

⩽2p−1
[
2p−1(Ce)p(2 +R(pt))p/2

(
|QR(pt)|p−1⟨(uR(pt)(pt, ·),1)⟩

+ |QR(pt)|p
)
+ eH(pt)+O(t)

]
. (5.5)

Recall from Section 4.8 that we essentially proved the following upper L1 asymptotics:

lim
t→∞

1

β(t)
log

(
e−H(t)⟨(uR(t)(t, ·),1)⟩

)
⩽ −χ.

By applying this to (5.5) and also making use of (5.4), one concludes that

lim
t→∞

1

β(pt)
log

(
e−H(pt)⟨u(t, o)p⟩

)
⩽ −χ.

This gives the desired upper asymptotics.
The proof of Theorem 2.1 is now complete.
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