
Topic 1: Weak Convergence of Probability
Measures

Convergence of random variables is a central topic in modern probability the-
ory. There are four different types of convergence that are of fundamental impor-
tance: almost sure convergence, convergence in probability, Lp-convergence, and
weak convergence (also known as convergence in distribution). Weak convergence,
being the weakest type of convergence among the four, is a distributional property
(i.e. it is only concerned with probability laws of the random variables). It does
not reflect the correlations among the random variables, and it does not rely on
the probability space where the random variables are defined. As a consequence,
it has larger flexibility to support finer quantitative estimates. This point will
be illustrated better when we discuss the rate of convergence in the central limit
theorems (Stein’s method). In this topic, we develop the basic tools for the study
of weak convergence. Other types of convergence will be discussed in later topics.

1 Recapturing convergence in distribution
We start by recapturing the concept of “convergence in distribution” that we
have seen from elementary probability theory, when we state the classical central
limit theorem. We will however use the notion of “weak convergence” instead.
This is a more commonly accepted terminology in modern probability although it
means the same thing as “convergence in distribution”. Recall that, the cumulative
distribution function of a real valued random variable X is the function defined
by

F (x) , P(X 6 x), x ∈ R.

Definition 1.1. Let Xn (n > 1) and X be random variables whose cumulative
distribution functions are Fn(x) and F (x) respectively. We say that Xn converges
weakly to X (as n → ∞), if Fn(x) converges to F (x) at every continuity point x
of F.
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The reason why we are not allowed to replace the definition with the “seemingly
more natural” requirement

“Fn(x)→ F (x) for every x ∈ R”

is best illustrated by the following simple example. Let Xn = 1
n
be the determin-

istic random variable taking value 1
n
. Obviously, any useful and reasonable notion

of convergence should ensure that Xn “converges to” the zero random variable
X = 0 as n → ∞. On the other hand, the cumulative distribution functions of
Xn and X are given by

Fn(x) =

{
0, x < 1/n;

1, x > 1/n,
F (x) =

{
0, x < 0;

1, x > 0,

respectively. It is apparent that

Fn(0) = 0 9 F (0) = 1

as n → ∞. This simple example tells us that, it is generally too restrictive to
require that Fn(x) converges to F (x) for all x ∈ R. In this example, the issue
occurs precisely when x = 0, which is a discontinuity point of F . One can check
that, at every continuity point of F (i.e. whenever x 6= 0) we do have Fn(x) →
F (x). In other words, Xn converges weakly to X in the sense of Definition 1.1.

Example 1.1. Let Xn be a discrete uniform random variable over {1, 2, · · · , n},
i.e.

P(Xn = k) =
1

n
, k = 1, 2, · · ·n.

Let X be a continuous uniform random variable over [0, 1]. Then Xn

n
→ X weakly

as n→∞. Indeed, the cumulative distribution functions of Xn is given by

Fn(x) = P
(Xn

n
6 x

)
= P(Xn 6 nx)

=


0, x < 0;
[nx]
n
, 0 6 x < 1;

1, x > 1,

where [nx] denotes the integer part of nx. From the simple inequality

[nx]

n
6
nx

n
= x 6

[nx]

n
+

1

n
,
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we know that [nx]
n
→ x as n→∞. It follows that

lim
n→∞

Fn(x) =


0, x < 0;

x, 0 6 x < 1;

1, x > 1,

which is precisely the cumulative distribution function F (x) of X. Therefore, by
definition we conclude that Xn

n
→ X weakly. Note that F (x) is continuous at

every x ∈ R.

Example 1.2. Let {Xn : n > 1} be a sequence of independent and identically
distributed random variables with finite mean and variance. Define Sn , X1 +
· · ·+Xn. Then the “sample average” Sn

n
converges weakly to E[X1] (here we regard

E[X1] as a deterministic random variable taking value E[X1]). In addition, the
normalised fluctuation Sn−E[Sn]√

Var[Sn]
converges weakly to the standard normal random

variable. These are contents of law of large numbers and central limit theorem,
both of which hold under greater generality. We will prove these facts in the
future.

When the limiting random variable X is continuous (i.e. the cumulative distri-
bution function of X being continuous), weak convergence does become pointwise
convergence for the cumulative distribution functions at every x ∈ R. A surprising
fact is that, one can obtain the stronger property of uniform convergence in this
context. This is a result due to Pólya.

Theorem 1.1 (Pólya’s theorem). Let Xn and X be real valued random variables
with cumulative distribution functions Fn and F respectively. Suppose that F is
continuous on R. Then Xn converges weakly to X if and only if Fn converges to
F uniformly on R.

Proof. We only need to prove necessity as the other direction is trivial. Suppose
that Fn converges to F at every x ∈ R. Let k > 1 be an arbitrary given integer.
We then choose a partition

−∞ = x0 < x1 < x2 < · · · < xk−1 < xk =∞

such that
F (xi) =

i

k
, i = 0, 1, · · · , k.
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This is possible since F is continuous on R. For any x ∈ [xi−1, xi), according to
the monotonicity of cumulative distribution functions, we have

Fn(x)− F (x) 6 Fn(xi)− F (xi−1) = Fn(xi)− F (xi) +
1

k
.

Similarly,

Fn(x)− F (x) > Fn(xi−1)− F (xi) = Fn(xi−1)− F (xi−1)− 1

k
.

Combining the two inequalities, we obtain

|Fn(x)− F (x)| 6 max{|Fn(xi−1)− F (xi−1)|, |Fn(xi)− F (xi)|}+
1

k
,

which holds whenever x ∈ [xi−1, xi). It follows that

sup
x∈R
|Fn(x)− F (x)| 6 max

06i6k
|Fn(xi)− F (xi)|+

1

k

Since Fn(xi)→ F (xi) at each xi, by letting n→∞ on both sides we get

lim
n→∞

sup
x∈R
|Fn(x)− F (x)| 6 1

k
.

Finally, as k is arbitrary, we conclude that

lim
n→∞

sup
x∈R
|Fn(x)− F (x)| = 0

giving the desired uniform convergence.

If we examine the definition of weak convergence, it is only concerned with
the cumulative distribution functions and has nothing to do with the underlying
probability spaces where the random variables are defined. Therefore, it is suffi-
cient to define weak convergence of cumulative distribution functions (in the same
way as Definition 1.1) without referring to the actual random variables.

On the other hand, it is important to extend the notion of weak convergence
to higher dimensions (i.e. for Rd-valued random variables). In higher dimensions,
the notion of cumulative distribution function is less natural. Therefore, before
seeking such extension, we need to reformulate weak convergence on R in a more
natural way. This is done through the consideration of probability laws/measures.
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Recall that, the Borel σ-algebra on R, denoted as B(R), is the smallest σ-
algebra containing all intervals of the form (a, b]. Given a random variable X
defined on some probability space (Ω,F ,R), the law of X is the probability mea-
sure µX on (R,B(R)) defined by

µX(B) , P(X ∈ B), B ∈ B(R).

Apparently, the law of X is related to its cumulative distribution function through
the relation

FX(x) = µX((−∞, x]).

In general, there is a one-to-one correspondence between cumulative distribution
functions and probability measures on (R,B(R)) defined as follows. If F is a
cumulative distribution function, the corresponding probability measure µ is the
unique probability measure such that

µ((a, b]) = F (b)− F (a)

for all intervals (a, b]. Conversely, if µ is a probability measure on (R,B(R)), the
corresponding cumulative distribution function F is given by

F (x) , µ((−∞, x]), x ∈ R.

To reformulate weak convergence in terms of probability measures, we first need
the following definition.

Definition 1.2. Let µ be a probability measure on (R,B(R)). A real number
a ∈ R is called a continuity point of µ if µ({a}) = 0.

Proposition 1.1. Let Fn and F be cumulative distribution functions, and let µn
and µ be the corresponding probability measures on (R,B(R)). Then Fn converges
weakly to F if and only if

µn((a, b])→ µ((a, b]) (1.1)

for any continuity points a < b of µ.

Remark 1.1. In the context of random variables, (1.1) reads

P(Xn ∈ (a, b])→ P(X ∈ (a, b])

for any continuity points a < b of the law of X. Note that we cannot replace
(a, b] by arbitrary Borel measurable subsets A ∈ B(R), even in the case when X
is a continuous random variable and we know from Pólya’s theorem (cf. Theorem
1.1) that Fn converges uniformly to F .
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The necessity part of Proposition 1.1 is trivial. Indeed, suppose that Fn converges
weakly to F , i.e. Fn(x) → F (x) at every continuity point x of F . Note that a is
a continuity point of µ if and only if it is a continuity point of F . Therefore, for
any continuity points a < b of µ, we have

µn((a, b]) = Fn(b)− Fn(a)→ F (b)− F (a) = µ((a, b]).

The sufficiency part is not as obvious. The crucial point is a so-called tightness
property for the sequence {µn}, which is in turn based on the fact that µn and µ are
probability measures. At this point, we take the result for granted as motivation.
Its proof will be clear when we are more comfortable with weak convergence
properties (in particular, with the tightness property).

2 Vague convergence and Helly’s theorem
For the moment, it will be convenient to first relax the assumption of being prob-
ability measures, and to start by working with finite measures. A reason for this,
which will be clear later on, is related to the important Helly’s theorem. Recall
that, a finite measure is a measure whose total mass is finite.

Let µ be a finite measure on (R,B(R)). In the same way as Definition 1.2,
an element a ∈ R is said to be a continuity point of µ if µ({a}) = 0. The set of
continuity points of µ is denoted as C(µ).

Remark 2.1. The complement of C(µ) is at most countable. In fact, first observe
that, for each given ε > 0, the set Eε , {a ∈ R : µ({a}) > ε} must be finite. For
otherwise, say Eε contains an infinite sequence a1, a2, · · ·, then

µ({a1, a2, · · · }) =
∞∑
i=1

µ({ai}) >
∞∑
i=1

ε =∞,

contradicting the finiteness of µ. Therefore, Eε is a finite set. It now follows that

C(µ)c = {a ∈ R : µ({a}) > 0} = ∪∞n=1

{
a ∈ R : µ({a}) > 1

n

}
is at most countable. In particular, as a consequence we also know that C(µ) is
dense in R.

Inspired by Proposition 1.1, we introduce the following definition.
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Definition 2.1. Let µn (n > 1) and µ be finite measures on R. We say that µn
converges vaguely to µ (as n → ∞), if µn((a, b]) → µ((a, b]) for any continuity
points a < b of µ. If in addition we further have µn(R)→ µ(R), then we say that
µn converges weakly to µ.

When µn and µ are probability measures, vague and weak convergence are
the same thing since µn(R) = 1 → 1 = µ(R) in this case. In general, these two
notions of convergence are different, as seen from the following example.

Example 2.1. Consider µn = δn (the Dirac mass at the point x = n) and µ = 0
(the zero measure). Every point on R is a continuity point of µ. For any fixed
a < b, when n is large (precisely when n > b) we have µn((a, b]) = 0. In particular,
µn converges vaguely to µ. But

µn(R) = 1 9 0 = µ(R).

In other words, µn does not converge weakly to µ.

The notion of intervals is too special for practical purposes. We need to find
more robust characterisations of vague and weak convergence in order to generalise
these concepts. The following two results provide very useful characterisations of
vague convergence and weak convergence in terms of integration against suitable
test functions. They are essential for seeking generalisations of the convergence
concepts to higher dimensions and to stochastic processes (infinite dimensions).

Recall that, a continuous function on Rd with compact support is a continuous
function f which vanishes identically outside some bounded subset of Rd. The
space of continuous functions on Rd with compact support is denoted as Cc(Rd).
Respectively, the space of bounded continuous functions on Rd is denoted as
Cb(Rd). Apparently, Cc(Rd) ⊆ Cb(Rd).

First of all, for vague convergence we have the following characterisation.

Theorem 2.1. Let µn (n > 1) and µ be finite measures on R. Then µn converges
vaguely to µ if and only if∫

R
f(x)µn(dx)→

∫
R
f(x)µ(dx) for all f ∈ Cc(R).

Proof. Necessity. Let f ∈ Cc(R). Firstly, we choose a < b in C(µ) (continuity
points of µ) and f(x) = 0 outside [a, b]. Since f is continuous, it is uniformly
continuous on [a, b]. In particular, given arbitrary ε > 0, there exists δ > 0 such
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that whenever x, y ∈ [a, b] with |x − y| < δ, we have |f(x) − f(y)| < ε. For such
δ, we choose a partition

a = x0 < x1 < · · · < xk−1 < xk = b

such that xi ∈ C(µ) and |xi − xi−1| < δ. This is possible since C(µ) is dense in R
(cf. Remark 2.1). Now if we define the step function

g(x) ,
k∑
i=1

f(xi−1)1(xi−1,xi](x), x ∈ R,

then f(x) = g(x) = 0 when x /∈ (a, b] and |f(x) − g(x)| < ε when x ∈ [a, b]. It
follows that,∣∣ ∫

R
f(x)µn(dx)−

∫
R
f(x)µ(dx)

∣∣
6
∣∣ ∫

R
f(x)µn(dx)−

∫
R
g(x)µn(dx)

∣∣+
∣∣ ∫

R
g(x)µn(dx)−

∫
R
g(x)µ(dx)

∣∣
+
∣∣ ∫

R
g(x)µ(dx)−

∫
R
f(x)µ(dx)

∣∣
6 ε · µn((a, b]) +

k∑
i=1

|f(xi−1)| · |µn((xi−1, xi])− µ((xi−1, xi])|+ ε · µ((a, b]).

Since a, b and all those xi’s are continuity points of µ, by letting n→∞ we have

µn((a, b])→ µ((a, b]), µn((xi−1, xi])→ µ((xi−1, xi]).

Therefore,

lim
n→∞

∣∣ ∫
R
f(x)µn(dx)−

∫
R
f(x)µ(dx)

∣∣ 6 2ε · µ((a, b]).

Since ε is arbitrary, we conclude that

lim
n→∞

∫
R
f(x)µn(dx) =

∫
R
f(x)µ(dx).

Sufficiency. Let a < b be two continuity points of µ, and let g(x) , 1(a,b](x).
Given an arbitrary δ > 0, we are going to define two “tent-shaped” functions
g1, g2 ∈ Cc(R) that approximate g from above and from below. Precisely, g1(x) , 1
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when x ∈ [a, b], g1(x) , 0 when x /∈ [a − δ, b + δ], and g1(x) is linear when
x ∈ [a − δ, a] and x ∈ [b, b + δ]. Similarly, g2(x) , 1 when x ∈ [a + δ, b − δ],
g1(x) , 0 when x /∈ [a, b], and g2(x) is linear when x ∈ [a, a+ δ] and x ∈ [b− δ, b].
By the constructions, it is not hard to see that

g2(x) 6 g(x) 6 g1(x) ∀x ∈ R, (2.1)

and
g1 = g2 on U c, 0 6 g1 − g2 6 1 on U (2.2)

with U , (a − δ, a + δ) ∪ (b − δ, b + δ). These properties are most easily seen by
draw the graphs of g1, g, g2 in the same picture.

By integrating (2.1) against µn and µ respectively, we obtain∫
g2dµn 6

∫
gdµn = µn((a, b]) 6

∫
g1dµn,

∫
g2dµ 6 µ((a, b]) 6

∫
g1dµ,

where we have omitted the region of integration and the integrating variable for
simplicity. Therefore,∫

g2dµn −
∫
g1dµ 6 µn((a, b])− µ((a, b]) 6

∫
g1dµn −

∫
g2dµ. (2.3)

By taking n→∞ in the first inequality and using (2.2), we obtain that

lim
n→∞

(
µn((a, b])− µ((a, b])

)
>
∫
g2dµ−

∫
g1dµ > −µ(U)

= −
(
µ((a− δ, a+ δ)) + µ((b− δ, b+ δ))

)
.

Since a, b are continuity points of µ and δ is arbitrary, by letting δ → 0 the last
term goes to zero and thus

lim
n→∞

(
µn((a, b])− µ((a, b])

)
> 0.

Exactly the same argument applied to the second inequality in (2.3) leads us to

lim
n→∞

(
µn((a, b])− µ((a, b])

)
6 0.

Therefore, we arrive at
lim
n→∞

µn((a, b]) = µ((a, b]).
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Respectively, for weak convergence we have the following characterisation.

Theorem 2.2. Let µn (n > 1) and µ be finite measures on R. Then µn converges
weakly to µ if and only if∫

R
f(x)µn(dx)→

∫
R
f(x)µ(dx) for all f ∈ Cb(R). (2.4)

Proof. Sufficiency. The condition already implies vague convergence as a conse-
quence of Theorem 2.1 since Cc(R) ⊆ Cb(R). In addition, by taking f = 1, we also
have µn(R)→ µ(R). Therefore, µn converges weakly to µ.

Necessity. Let f ∈ Cb(R) and suppose that |f(x)| 6 M for all x. Given an
arbitrary ε > 0, we pick two continuity points a < b of µ so that µ((a, b]c) < ε.
By the weak convergence assumption, we know that

µn((a, b]c) = µn(R)− µn((a, b])→ µ(R)− µ((a, b]) = µ((a, b]c).

In particular, µn((a, b]c) < ε when n is large. It follows that,∣∣ ∫
R
f(x)µn(dx)−

∫
R
f(x)µ(dx)

∣∣
6
∣∣ ∫

(a,b]

f(x)µn(dx)−
∫

(a,b]

f(x)µ(dx)
∣∣+
∣∣ ∫

(a,b]c
f(x)µn(dx)−

∫
(a,b]c

f(x)µ(dx)
∣∣

6
∣∣ ∫

(a,b]

f(x)µn(dx)−
∫

(a,b]

f(x)µ(dx)
∣∣+ 2Mε. (2.5)

By using the same approximation argument as in the necessity part of Theorem
2.1, we can show that the first term on the right hand side of (2.5) vanishes as
n→∞. Therefore,

lim
n→∞

∣∣ ∫
R
f(x)µn(dx)−

∫
R
f(x)µ(dx)

∣∣ 6 2Mε,

which further implies

lim
n→∞

∫
R
f(x)µn(dx) =

∫
R
f(x)µ(dx)

since ε is arbitrary.

Now using the characterisations given by Theorem 2.1 and Theorem 2.2, we
can generalise the concepts of vague and weak convergence to higher dimensions.
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Definition 2.2. Let µn (n > 1) and µ be finite meansures on (Rd,B(Rd)).

(i) We say that µn converges vaguely to µ if∫
Rd

f(x)µn(dx)→
∫
Rd

f(x)µ(dx)

for every f ∈ Cc(Rd) (continuous functions with compact supports).
(ii) We say that µn converges weakly to µ if∫

Rd

f(x)µn(dx)→
∫
Rd

f(x)µ(dx)

for every f ∈ Cb(Rd) (bounded continuous functions).

Remark 2.2. It can be shown that, weak convergence is equivalent to vague con-
vergence plus the property that µn(Rd) → µ(Rd). In particular, when µn, µ are
probability measures, the two notions of convergence are the same thing. In the
context of Rd-valued random variables Xn and X, Xn converges weakly to X if
and only if

E[f(Xn)]→ E[f(X)]

for every bounded continuous function f .

Recall from real analysis that a bounded sequence in Rd always has a con-
vergent subsequence. The extension of this result to probability measures is the
content of Helly’s theorem. This theorem is important because it is often the first
step towards proving weak convergence of probability measures. Before stating
the theorem, we first introduce the following definition.

Definition 2.3. A sub-probability measure µ on (Rd,B(Rd)) is a finite measure
such that µ(Rd) 6 1.

Theorem 2.3 (Helly’s theorem). Let {µn : n > 1} be a sequence of probabil-
ity measures on (Rd,B(Rd)). Then there exists a subsequence µnk

and a sub-
probability measure µ, such that µnk

converges vaguely to µ as k →∞.

Proof. We only prove the result in one dimension. The argument can be adapted
to the higher dimensions. We break down the proof into several key steps.

Step One. Consider the corresponding sequence of cumulative distribution
functions Fn(x) , µn((−∞, x]). Let D = {xj : j > 1} be a countable dense
subset of R1 (e.g. the rational numbers). We claim that, there exists a subsequence
{Fnk
} of {Fn}, such that limk→∞ Fnk

(xj) exists for every xj ∈ D. To prove this,
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let us start with the sequence {Fn(x1)} of real numbers. Since this is a bounded
sequence, there exists a subsequence {n1(k) : k > 1} of N and some real number
denoted as G(x1), such that Fn1(k)(x1)→ G(x1). Next, for the bounded sequence
{Fn1(k)(x2) : k > 1}, there exists a further subsequence {n2(k)} of {n1(k)} and
some real number denoted as G(x2), such that Fn2(k)(x2)→ G(x2). If we continue
this procedure, at the j-th step we find a subsequence {nj(k)} of the previous
sequence {nj−1(k)} as well as G(xj) ∈ R1, such that Fnj(k)(xj) → G(xj). Now
we consider the sequence {nk(k) : k > 1} selected diagonally. For each fixed j,
by the previous construction we know that {nk(k) : k > j} is a subsequence of
{nj(k) : k > 1}. Therefore,

lim
k→∞

Fnk(k)(xj) = G(xj),

which proves the desired claim.
Step Two. Using the previous numbers {G(xj) : j > 1}, we define the function

F (x) , inf{G(xj) : xj > x}.

It is obvious that 0 6 F (x) 6 1 and F (x) is increasing. Moreover, F (x) is right
continuous. Indeed, let x ∈ R1 and ε > 0. By the definition of F , there exists
xj > x such that G(xj) < F (x) + ε. It follows that, whenever 0 < h < xj − x we
have x+ h < xj and thus

F (x+ h) 6 G(xj) < F (x) + ε.

This shows that F is right continuous at x.
Step Three. At every continuity point x of F , we have Fnk(k)(x)→ F (x). For

simplicity we write nk , nk(k). Given ε > 0, there exists xp > x such that

G(xp) < F (x) + ε. (2.6)

In addition, since x is a continuity point of F, there exists y < x such that
F (x)−F (y) < ε. Pick any xq ∈ D∩ (y, x). It follows that F (y) 6 G(xq) and thus

F (x)−G(xq) 6 F (x)− F (y) < ε. (2.7)

Adding (2.6) and (2.7) gives

G(xp)−G(xq) < 2ε.
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Now we have:

|Fnk
(x)− F (x)| 6 |Fnk

(x)− Fnk
(xp)|+ |Fnk

(xp)−G(xp)|+ |G(xp)− F (x)|
6
(
Fnk

(xp)− Fnk
(xq)

)
+ |Fnk

(xp)−G(xp)|+ ε.

By taking k →∞, we obtain

lim
k→∞

∣∣Fnk
(x)− F (x)

∣∣ 6 G(xp)−G(xq) + ε 6 3ε.

Since ε is arbitrary, we conclude that Fnk
(x)→ F (x).

Step Four. By standard measure theory (Carathéodory’s extension theorem),
the function F induces a unique sub-probability µ on (R1,B(R1)) such that
µ((a, b]) = F (b) − F (a) for any a < b. Step three shows that µnk

converges
vaguely to µ, which completes the proof of Helly’s theorem.

It is important to point out that, in general one cannot strengthen the con-
clusion of Helly’s theorem to weak convergence, as the limit point µ may fail to
be a probability measure.
Example 2.2. Let µn be the uniform distribution over [−n, n]. Then µn converges
vaguely to the zero measure (and so does any of its subsequence). Indeed, for any
fixed a < b, when n is large we have

µn((a, b]) =
b− a
2n

,

which converges to zero as n→∞.
The question about when a vague limit point has to be a probability measure
becomes an important one. The complete answer to this question is related to
the so-called tightness property which will be discussed in Section 4. Here let us
look at a very simple but enlightening example.
Example 2.3. Let M > 0 be a fixed number. Let {µn : n > 1} be a sequence of
probability measures on (R1,B(R1)) such that µn([−M,M ]) = 1 for each n. Then
every vague convergent subsequence of µn must converge weakly to a probability
measure. Indeed, let µnk

converges vaguely to some sub-probability measure µ.
Pick two continuity points a, b of µ such that a < −M and b > M. Then

1 = µn((a, b])→ µ((a, b]),

showing that µ has to be a probability measure and thus µnk
converges weakly to µ.

The key point behind this example is the property that masses for the sequence
{µn} are uniformly concentrated on a large interval. The precise formulation
of such property, known as tightness, will be discussed in Section 4 and is of
fundamental importance in the study of weak convergence.
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3 Weak convergence on metric spaces and Port-
manteau’s theorem

Working with probability measures over Rd (i.e. in finite dimensions) is not suf-
ficient for modern probability theory. For instance, when we study distributions
of stochastic processes, we are immediately led to the consideration of probability
measures over infinite dimensional spaces (the space of “paths”). It is essential
to extend the notion of weak convergence to the more general context of metric
spaces.

Heuristically, a metric space is a set equipped with a distance function.

Definition 3.1. Let S be a non-empty set. A metric on S is a non-negative
function ρ : S × S → [0,∞) which satisfies the following three properties:

(i) Positive definiteness: ρ(x, y) = 0 if and only if x = y;
(ii) Symmetry: ρ(x, y) = ρ(y, x);
(iii) Triangle inequality: ρ(x, z) 6 ρ(x, y) + ρ(y, z).

When a set S is equipped with a metric ρ, we say that (S, ρ) is a metric space.

Example 3.1. An obvious metric on Rd is the Euclidean metric:

ρ(x, y) =
√

(x1 − y1)2 + · · ·+ (xd − yd)2.

But there are other choices of metrics, such as

ρ′(x, y) = |x1 − y1|+ · · ·+ |xd − yd| (the l1 metric)

or
ρ′′(x, y) = max

16i6d
|xi − yi| (the l∞ metric).

Example 3.2. One important infinite dimensional example of a metric space is
the space of paths. More precisely, let W = C[0, 1] be the set of all continuous
functions w : [0, 1]→ R1. Define ρ : W ×W → [0,∞) by

ρ(w1, w2) , sup
06t61

|w1(t)− w2(t)|, w1, w2 ∈ W.

It is a simple exercise to check that ρ is a metric on W (it is called the uniform
metric). We will frequently encounter this metric space (W, ρ) when we work
with continuous stochastic processes such as the Brownian motion and the related
stochastic calculus.
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Let (S, ρ) be a given metric space. We can describe some basic classes of
subsets. Unlike the usual Rd, there are no analogues of intervals on S. However,
we have the natural notion of open balls

B(x, r) , {y ∈ S : d(y, x) < r}

and similarly of closed balls. Given a subset A ⊆ S, a point x ∈ A is called an
interior point of A if there exists r > 0 such that B(x, r) ⊆ A. A subset G ⊆ S
is said to be open if every point in G is an interior point. A subset F ⊆ S is
said to be closed if its complement F c is open. A subset K ⊆ S is said to be
compact if any open cover of K contains a finite subcover, namely whenever K
is contained in the union of a family of open sets, one can always choose finitely
many members in that family whose union still contains K.

The above concepts are better illustrated along with the notion of convergence.
Let xn (n > 1) and x be points in S. We say that xn converges to x, denoted as
xn → x, if ρ(xn, x) → 0 as n → ∞. One can show that, a subset F is closed if
and only if

xn ∈ F, xn → x =⇒ x ∈ F.
In addition, a subset K is compact if and only if it is closed and any sequence in
K admits a convergent subsequence.

Let A be a subset of S. The closure of A, denoted as Ā, is the smallest closed
subset containing A. Equivalently, Ā consists of all limit points of A. The interior
of A, denoted as Å, is the largest open subset contained in A. Equivalently, Å is
the set of interior points of A. The boundary of A is defined to be ∂A , Ā\Å.

Continuous functions and uniformly continuous functions are defined in the
usual way. A function f : S → R is continuous at x, if

xn ∈ S, xn → x =⇒ f(xn)→ f(x).

A continuous function on S is a function that is continuous at every point in S.
A function is uniformly continuous, if for any ε > 0, there exists δ > 0 such that

x, y ∈ S, d(x, y) < δ =⇒ |f(y)− f(x)| < ε.

If f : S → R is continuous, then

U ⊆ R, U is open =⇒ f−1U is open in S;
C ⊆ R, C is closed =⇒ f−1C is closed in S.

The space of bounded and continuous functions on S is denoted as Cb(S).
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Remark 3.1. All the above concepts are natural generalisations of the Rd case,
and they are best visualised when one refers back to the example of Rd. One
major difference from the Rd case is notion of compact sets. In Rd, we know that
a subset is compact if and only if it is bounded and closed. This will not be true
in general metric spaces–compactness can be much subtler and more luxurious to
expect. In the appendix, we provide the description of compact subsets in the
space C[0, 1] of Example 3.2.

Now we can consider the notion of probability measures and weak convergence
on metric spaces. The crucial missing object is a natural σ-algebra (the class of
events). Let (S, ρ) be a given metric space.

Definition 3.2. The Borel σ-algebra over S, denoted as B(S), is the smallest
σ-algebra containing all open subsets.

Example 3.3. Open balls, closed balls, open sets, closed sets, compact sets and
any countable unions/intersections of these sets are all in B(S).

Remark 3.2. In the case of R1 (or Rd), the Borel σ-algebra is generated by the
class of open intervals (a, b). For general metric spaces, the Borel σ-algebra may
not necessarily be generated by open balls. Nevertheless, this will be the case
if the metric space (S, ρ) is separable, namely if there exists a countable subset
D ⊆ S such that D̄ = S.

We will always work with the Borel σ-algebra B(S), and probability measures
are all assumed to be defined on B(S). A natural way of generalising the notion
of weak convergence to metric spaces is through the characterisation given by
Theorem 2.2 for the Rd case.

Definition 3.3. Let µn (n > 1) and µ be probability measures on (S,B(S), ρ).
We say that µn converges weakly to µ, if∫

S

f(x)µn(dx)→
∫
S

f(x)µ(dx)

for all bounded and continuous functions f ∈ Cb(S).

One immediate question is: how can we understand weak convergence through
testing against “sets”, namely through understanding the convergence of µn(A) for
A ∈ B(S)? One cannot expect that µn(A) → µ(A) for all A ∈ B(S), and just
like the Rd case, we need some sort of continuity for the set A with respect to the
limiting measure µ.
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Definition 3.4. Let µ be a probability measure on (S,B(S), ρ). A subset A ∈
B(S) is said to be µ-continuous, if µ(∂A) = 0.

Example 3.4. In the case of S = R1, it is obvious that an interval (a, b] is
µ-continuous if and only if a, b are both continuity points of µ (cf. Definition 1.2).

Example 3.5. Let S = {(x, y) : 0 6 x, y 6 1} be the unit square in R2, and let
µ be the uniform probability measure, i.e. µ(A) , Area(A) for each A ∈ B(S).
Note that µ is the law of a uniform random point (X, Y ) taking values in S. Then
any region in S enclosed by a smooth curve is µ-continuous, as its boundary is
the enclosing curve which has zero area.

The following core result in this section, known as the Portmanteau theorem,
provides a set of equivalent characterisations for weak convergence.

Theorem 3.1. Let µn (n > 1) and µ be probability measures on (S,B(S), ρ). The
following statements are equivalent:

(i) µn converges weakly to µ;
(ii) for any bounded and uniformly continuous function f on S, we have∫

S

f(x)µn(dx)→
∫
S

f(x)µ(dx);

(iii) for any closed subset F ⊆ S, we have

lim
n→∞

µn(F ) 6 µ(F );

(iv) for any open subsets G ⊆ S, we have

lim
n→∞

µn(G) > µ(G);

(v) for any Borel measurable subset A ∈ B(S) that is µ-continuous, we have

lim
n→∞

µn(A) = µ(A).

Proof. (i) =⇒ (ii) is trivial.
(ii) =⇒ (iii). Let F be a closed subset of S. For k > 1, define

fk(x) =

(
1

1 + ρ(x, F )

)k
, x ∈ S,
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where ρ(x, F ) is the distance between x and F . Then fk is bounded and uniformly
continuous. In addition,

1F (x) 6 fk(x) 6 1, (3.1)

and fk(x) ↓ 1F (x) as k →∞, where 1F (x) denotes the indicator function of F. It
follows from (3.1) and the assumption that

lim
n→∞

µn(F ) 6 lim
n→∞

∫
S

fk(x)µn(dx) =

∫
S

fk(x)µ(dx)

for every k > 1. By taking k →∞ and using the dominated convergence theorem,
we conclude that

lim
n→∞

µn(F ) 6 µ(F ).

(iii)⇐⇒(iv) is obvious as they are complement to each other.
(iii)+(iv) =⇒ (v). Let A ∈ B(S) be such that µ(∂A) = 0. Then

µ(Å) = µ(A) = µ(Ā).

By the assumptions of (iii) and (iv), we have

lim
n→∞

µn(A) 6 lim
n→∞

µn(Ā)

6 µ(Ā) = µ(A) = µ(Å)

6 lim
n→∞

µn(Å)

6 lim
n→∞

µn(A).

Therefore, µn(A)→ µ(A).
(v) =⇒ (i). Let f ∈ Cb(S) be a bounded continuous function. The idea is to

approximate f by linear combinations of indicator functions of µ-continuous sets.
We first assume that 0 < f < 1. Since µ is a probability measure, for each

n > 1 the set {a ∈ R1 : µ(f = a) > 1/n} must be finite, and thus the set
{a ∈ R1 : µ(f = a) > 0} is at most countable. Given k > 1, for each 1 6 i 6 k we
can then choose some ai ∈ ((i − 1)/k, i/k) such that µ(f = ai) = 0. Set a0 , 0,
ak+1 , 1. Note that |ai − ai−1| < 2/k for all i. Next, define the subsets

Bi , {x ∈ S : ai−1 6 f(x) < ai}, 1 6 i 6 k + 1.

The Bi’s are disjoint and S = ∪k+1
i=1Bi since 0 < f < 1. In addition, from the

continuity of f , we see that

Bi ⊆ {ai−1 6 f 6 ai}, {ai−1 < f < ai} ⊆ B̊i.
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Therefore,
∂Bi ⊆ {f = ai−1} ∪ {f = ai},

showing that µ(∂Bi) = 0. We consider the step function

g(x) ,
k+1∑
i=1

ai−11Bi
(x).

The function g approximates f in the sense that

|f(x)− g(x)| 6 2

k
for any x ∈ S,

which is easily seen from the construction of the Bi’s and g.
It follows that,∣∣∣∣∫

S

fdµn −
∫
S

fdµ

∣∣∣∣
6
∫
S

|f(x)− g(x)|dµn +

∫
S

|f(x)− g(x)|dµ+
∣∣ ∫

S

gdµn −
∫
S

gdµ
∣∣

6
4

k
+

k+1∑
i=1

ai−1 ·
∣∣µn(Bi)− µ(Bi)

∣∣.
Since µ(∂Bi) = 0, by taking n→∞ we have

lim
n→∞

∣∣∣∣∫
S

fdµn −
∫
S

fdµ

∣∣∣∣ 6 4

k
.

Since k is arbitrary, we conclude that
∫
S
fdµn →

∫
S
fdµ.

Finally, if f is a general bounded continuous function, say a < f(x) < b, by
considering the function

0 < f̄(x) ,
f(x)− a
b− a

< 1,

we are led to the previous case. The proof is now complete.

4 Tightness and Prohorov’s theorem
Knowing the existence of a weakly convergent subsequence is an important first
step for many deeper problems in probability theory. Helly’s theorem provides a
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partial answer to this question as it guarantees the existence of a vaguely con-
vergent subsequence (though it is only true in finite dimensions). The key to
ensuring that vague limit points are always probability measures is through a
tightness property.

Definition 4.1. A family {µ : µ ∈ Λ} of probability measures on a metric space
(S,B(S), ρ) is said to be tight, if for any ε > 0 there exists a compact subset
K ⊆ S, such that

µ(K) > 1− ε for every µ ∈ Λ. (4.1)

In the context of random variables, we say that a family of real valued random
variables is tight if the induced family of probability laws on S = R1 is tight.

Note that when S = R1, the condition (4.1) means that, for any ε > 0 there
exists M > 0, such that

µ([−M,M ]) > 1− ε for every µ.

The following result, known as Prokhorov’s theorem, is fundamental in the
study of weak convergence. We only prove the finite dimensional version, which
gives the precise condition under which vague limit points are always probability
measures, thus enhancing Helly’s theorem to the level of weak convergence.

Theorem 4.1 (Prokhorov’s theorem in Rd). Let {µ : µ ∈ Λ} be a family of prob-
ability measures on (Rd,B(Rd)). The the following two statements are equivalent:

(i) The family {µ : µ ∈ Λ} is tight;
(ii) Every sequence in the family {µ : µ ∈ Λ} admits a weakly convergent subse-
quence.

Proof. For simplicity we only consider the one dimensional case, i.e. when d = 1.
(i) =⇒ (ii). Let µn ∈ Λ be a given sequence in the family. According to Helly’s

theorem (cf. Theorem 2.3), there exists a subsequence µnk
and a sub-probability

measure µ, such that µnk
converges vaguely to µ. We need to show that µ is a

probability measure. Since the family is tight by assumption, for given m > 1
there exists a closed interval Km such that

µnk
(Km) > 1− 1

m
for all k.

We may assume that Km is contained in (am, bm], where am < bm are continuity
points of µ such that am ↓ −∞ and bm ↑ ∞ (as m→∞). It follows that

µnk
((am, bm]) > 1− 1

m
for all k.
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Letting k → ∞, we obtain that µ((am, bm]) > 1 − 1/m, and by further sending
m→∞ we conclude that µ(R1) > 1. Therefore, µ must be a probability measure.

(ii) =⇒ (i). Suppose on the contrary that the family is not tight. Then there
exists ε > 0, such that for each closed interval [−n, n] one can find µn ∈ Λ with

µn([−n, n]) < 1− ε. (4.2)

On the other hand, by the assumption of (ii), µn has a weakly convergent subse-
quence, say µnk

converging weakly to some probability measure µ. The property
(4.2) implies that, for each fixed n, when k is large we have

µnk
([−n, n]) 6 µnk

([−nk, nk]) < 1− ε.
It follows from Portmanteau’s theorem (cf. Theorem 3.1 (iv)) that

µ((−n, n)) 6 lim
k→∞

µnk
((−n, n)) 6 1− ε

for every fixed n. Letting n → ∞, we obtain that µ(R1) 6 1 − ε which is a
contradiction to the fact that µ is a probability measure. Therefore, the family
{µ : µ ∈ Λ} is tight.
Example 4.1. Let {Xn : n > 1} be a sequence of random variables such that

L , sup
n

E[|Xn|] <∞.

Then this family is tight. Indeed, let µn be the law of Xn. Then for each M > 0,
we have

µn([−M,M ]c) = P(|Xn| > M) 6
E[|Xn|]
M

6
L

M
for all n > 1.WhenM is large enough, the right hand side can be made arbitrarily
small uniformly in n. This gives the tightness property.

We must point out the remarkable fact that Prokhorov’s theorem holds in
the general context of metric spaces. We only state the result as its proof is
beyond the scope of the subject. A metric space (S, ρ) is said to be complete, if
every Cauchy sequence is convergent to some point. Examples 3.1 and 3.2 are
both complete (and separable) metric spaces. The general Prokhorov’s theorem
is stated as follows.
Theorem 4.2 (Prokhorov’s theorem in metric spaces). Let {µ : µ ∈ Λ} be a
family of probability measures defined on a separable metric space (S,B(S), ρ).
(i) If the family {µ : µ ∈ Λ} is tight, then every sequence in the family admits a
weakly convergent subsequence.
(ii) Suppose further that S is complete. If every sequence in the family {µ : µ ∈ Λ}
admits a weakly convergent subsequence, then the family is tight.
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5 An important example: C[0, 1]
We conclude this topic by presenting a useful tightness criterion in the Example
3.2 of the path space C[0, 1]. This result is important for studying convergence of
stochastic processes such as functional central limit theorems.

Definition 5.1. A stochastic process on [0, 1] is a family of random variables
{X(t) : t ∈ [0, 1]} defined over some common probability space (Ω,F ,P).

Since the X(t)’s are random variables, there is a hidden dependence on sam-
ple points ω ∈ Ω. It is therefore more precise to write X(t, ω) to indicate such
dependence. Instead of regarding a stochastic process as a bunch of random
variables, an important perspective is that, for each fixed ω ∈ Ω, the function
[0, 1] 3 t 7→ X(t, ω) defines a real valued path on [0, 1] (called a sample path). In
this way, a stochastic process on [0, 1] can be equivalently viewed as a mapping
from Ω to “the space of paths”.

Recall thatW = C[0, 1] is the space of continuous functions (paths) x : [0, 1]→
R equipped with the uniform metric (cf. Example 3.2). Let {X(t) : t ∈ [0, 1]} be
a stochastic process defined over some probability space (Ω,F ,P). The process is
said to be continuous, if every sample path is continuous, i.e. for every ω ∈ Ω,
the function [0, 1] 3 t 7→ X(t, ω) is continuous. Using the sample path viewpoint,
a continuous stochastic process can be defined as a mapping from Ω to W .

Definition 5.2. Let X = {X(t) : t ∈ [0, 1]} be a continuous stochastic process
defined over some probability space (Ω,F ,P), viewed as a measurable mapping
X : (Ω,F) → (W,B(W )). The law of X is the probability measure µX on
(W,B(W )) defined by

µX(Γ) , P(X ∈ Γ), Γ ∈ B(W ).

We are often interested in the weak convergence of a sequence of stochastic
processes Xn(t). The following result provides a convenient criterion for proving
tightness, which is usually an important ingredient in this kind of problems. Its
proof, which is quite enlightening but also involved, is put in the appendix.

Theorem 5.1. Let Xn = {Xn(t) : t ∈ [0, 1]} (n > 1) be a sequence of contin-
uous stochastic processes defined over some common probability space (Ω,F ,P).
Suppose that:

(i) there exists r > 0 such that

sup
n>1

E[|Xn(0)|r] <∞;
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(ii) there exists α, β, C > 0 such that

E[|Xn(t)−Xn(s)|α] 6 C|t− s|1+β

for all s, t ∈ [0, 1] and n > 1.

Let µn be the law of Xn on (W,B(W )). Then the sequence of probability measures
{µn : n > 1} is tight.

6 Appendix: Compactness in C[0, 1] and proof of
Theorem 5.1

The characterisation of compact subsets in W = C[0, 1] is given by the renowned
Arzelà-Ascoli’s theorem in functional analysis.

Theorem 6.1. A subset F ⊆ W is pre-compact (i.e. the closure of F is compact),
if and only if the following two conditions hold:

(i) F is bounded at t = 0, in the sense that there exists M > 0 such that

|w(0)| 6M for all w ∈ F.

(ii) F is uniformly equicontinuous, in the sense that for any ε > 0, there exists
δ > 0 such that

|w(t)− w(s)| < ε

for all w ∈ F and s, t ∈ [0, 1] with |t− s| < δ.

In particular, F is compact if and only if it is closed and Conditions (i),(ii) hold.

Remark 6.1. Conditions (i) and (ii) can be equivalently reformulated in the fol-
lowing more concise forms:

sup
w∈F
|w(0)| <∞

and
lim
δ↓0

sup
w∈F

∆(δ;w) = 0

respectively, where ∆(δ;w) is the modulus of continuity for w defined by

∆(δ;w) , sup
|t−s|<δ

|w(t)− w(s)|. (6.1)
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Remark 6.2. In its more common form, Condition (i) is often replaced by the
following uniform boundedness condition: there exists M > 0 such that

|w(t)| 6M for all w ∈ F and t ∈ [0, 1].

With the extra Condition (ii), we leave the reader to see that the above uniform
boundedness condition is equivalent to Condition (i).

Remark 6.3. Let L > 0 be a fixed number. Define F to be the set of paths w ∈ W
such that w(0) = 0 and

|w(t)− w(s)| 6 L|t− s| for all s, t ∈ [0, 1].

Then F is compact.

Since the definition of tightness for probability measures is closely related to
compact sets, it is natural to expect that tightness over W can be characterised
in terms of suitable probabilistic versions of Conditions (i) and (ii) appearing in
Arzelà-Ascoli’s theorem. This is the content of the following result.

Theorem 6.2. Let {µ : µ ∈ Λ} be a family of probability measures on (W,B(W )).
Suppose that:

(i) we have
lim
M→∞

sup
µ∈Λ

µ({w : |w(0)| > M}) = 0;

(ii) for any ε > 0, we have

lim
δ↓0

sup
µ∈Λ

µ({w : |∆(δ;w)| > ε}) = 0. (6.2)

Then the family {µ : µ ∈ Λ} is tight.

Proof. Let ε > 0. We wish to find a compact subset K ⊆ W such that µ(Kc) < ε
for all µ ∈ Λ. To this end, by Assumption (i) we know that there exists M > 0,
such that

µ({w : |w(0)| > M}) < ε

2
for all µ ∈ Λ.

In addition, by Assumption (ii), for each n > 0 there exists δn > 0 such that

µ
({
w : |∆(δn;w)| > 1

n

})
<

ε

2n+1
for all µ ∈ Λ.
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Now we define

Γε , {w : |w(0)| 6M} ∩
(
∩∞n=1

{
w : |∆(δn;w)| 6 1

n

})
.

It is easy to check that Γε satisfies the two conditions in Arzelà-Ascoli’s theorem
and is thus pre-compact. In other words, its closure Γε is compact. On the other
hand, we also have

Γε
c ⊆ Γcε = {w : |w(0)| > M} ∪

(
∪∞n=1

{
w : |∆(δn;w)| > 1

n

})
,

and thus

µ(Γε
c
) 6 µ({w : |w(0)| > M) +

∞∑
n=1

µ
({
w : |∆(δn;w)| > 1

n

})
<
ε

2
+
∞∑
n=1

ε

2n+1

< ε

for any µ ∈ Λ. This establishes the tightness property.

Now we use the tightness criterion given by Theorem 6.2 to prove Theorem
5.1.

We first recall an elementary fact about real numbers that will be needed in
the proof. We will make use of dyadic partitions of [0, 1]. For m > 0, define

Dm = {k/2m : 0 6 k 6 2m}

to be the m-th dyadic partition of [0, 1]. Let D , ∪∞m=0Dm. D is the collection
of dyadic points on [0, 1]. Every real number t ∈ [0, 1] admits a unique dyadic
expansion

t =
∞∑
i=0

ai(t)2
−i

where ai(t) = 0 or 1 for each i. If t ∈ D, then the expansion is a finite sum (i.e.
there are at most finitely many 1’s among the ai(t)’s). For instance,

D 3 11

16
= 0 · 2−0 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3 + 1 · 2−4 + 0 + 0 + · · · .
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Proof of Theorem 5.1. We need to check the two conditions in Theorem 6.2 for
the laws of the sequence {Xn : n > 1} of stochastic processes.

Condition (i) is a simple consequence of Chebyshev’s inequality:

P(|Xn(0)| > M) 6
E[|Xn(0)|r]

M r
6

L

M r

where
L , sup

n>1
E[|Xn(0)|r] <∞.

Therefore,
lim
M→∞

sup
n>1

P(|Xn(0)| > M) = 0

and Condition (i) holds.
Checking Condition (ii) is much more challenging, which involves enlightening

probabilistic ideas. Since the following argument is uniform in n, to simplify
notation we write Y (t) = Xn(t).

Let γ ∈ (0, β/α) be a fixed number (recall the occurrence of α, β in the second
assumption of the theorem). According to Chebyshev’s inequality, we have

P
(
|Y (k/2m)− Y ((k − 1)/2m)| > 2−γm

)
6 2αγm · E

[
|Y (k/2m)− Y ((k − 1)/2m)|α

]
6 C · 2−m(1+β−αγ),

for all 1 6 k 6 2m. It follows that,

P
(

max
16k62m

|Y (k/2m)− Y ((k − 1)/2m)| > 2−γm
)

6 P
(
∪2m

k=1

{
|Y (k/2m)− Y ((k − 1)/2m)| > 2−γm

})
6

2m∑
k=1

P
(
|Y (k/2m)− Y ((k − 1)/2m)| > 2−γm

)
6 C · 2−m(β−αγ).

Note that since γ < β/α, the right hand side is summable in m. In particular, for
given η > 0, there exists p > 1, such that if we define

Ωp , ∪∞m=p

{
max

16k62m
|Y (k/2m)− Y ((k − 1)/2m)| > 2−γm

}
,

then

P(Ωp) 6 C ·
∞∑
m=p

2−m(β−αγ) < η.
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We wish to show that,{
∆(δ;Y ) > ε

}
⊆ Ωp or equivalently Ωc

p ⊆
{

∆(δ;Y ) 6 ε
}
,

when δ is small enough, where we recall that ∆(δ;w) is the modulus of continuity
for Y defined by (6.1) and ε is a given fixed number appearing in (6.2). To this
end, suppose that Ωc

p happens, i.e.

|Y (k/2m)− Y ((k − 1)/2m)| 6 2−γm for all m > p and 1 6 k 6 2m.

Now let s, t ∈ D (the set of dyadic points on [0, 1]) be such that

0 < |t− s| < δ , 2−p.

For each l we use the notation sl (respectively, tl) to be the largest l-th dyadic
point in Dl such that sl 6 s (respectively, tl 6 t). Let m > p be the unique
integer such that

2−(m+1) < |t− s| < 2−m.

Note that either sm = tm or tm − sm = 2−m. It follows that,

|Y (t)− Y (s)|

6 |Y (tm)− Y (sm)|+
∞∑
l=m

|Y (tl+1)− Y (tl)|+
∞∑
l=m

|Y (sl+1)− Y (sl)|

6 2−γm + 2
∞∑
l=m

2−γ(l+1)

=
(
1 +

2

2γ − 1

)
· 2−γm

6 2γ
(
1 +

2

2γ − 1

)
|t− s|γ

< 2γ
(
1 +

2

2γ − 1

)
· 2−pγ.

If we further assume that p satisfies

2γ
(
1 +

2

2γ − 1

)
· 2−pγ < ε

at the beginning, then we will have

|Y (t)− Y (s)| < ε.
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Since this is true from all s, t ∈ D with |t − s| < δ and D is dense in [0, 1], by
continuity we conclude that ∆(δ;Y ) < ε.

Now the proof of Theorem 5.1 is complete.
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Topic 2: The Law of Large Numbers

One of the most important results in probability theory is the law of large
numbers. Heuristically, it says that if we sample from a given distribution inde-
pendently, the sample average will eventually stabilise at the theoretical mean as
the sample size is getting larger. The goal of this topic is to make this fundamental
fact mathematically precise, and to explore some of its implications.

1 Almost sure convergence and convergence in prob-
ability

The notion of weak convergence is only concerned with the distributions of Xn

and X. On the other hand, there are two stronger notions of convergence, almost
sure convergence and convergence in probability, that do rely on the correlations
between Xn and X as well as the common probability space on which the random
variables are defined. These notions of convergence are important in the study of
the law of large numbers.

In what follows, (Ω,F ,P) is a given fixed probability space, and all random
variables are assumed to be defined over Ω. To discuss almost sure convergence,
we first need the following definition.

Definition 1.1. A null event is an eventN ∈ F with zero probability, i.e. P(N) =
0. A property E, which is given by an event E ∈ F , is said to hold almost surely,
or with probability one, if it holds outside a null event. Equivalently, this is saying
that P(E) = 1 or P(Ec) = 0.

Example 1.1. In the random experiment of tossing a fair coin repeatedly in a
sequence, we consider the property E that a “head” appears eventually. This is
an almost sure event seen as follows. For n > 1, let En be the event that a “head”
first appears in the n-th toss. Then these En’s are disjoint, and E = ∪∞n=1En.
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Therefore,

P(E) =
∞∑
n=1

P(En) =
∞∑
n=1

1

2n−1
· 1

2
= 1.

Now we define the notion of almost sure convergence.

Definition 1.2. Let Xn (n > 1) and X be random variables defined on the
probability space (Ω,F ,P). We say that Xn converges to X almost surely or with
probability one, if there exists a null event N , such that for any ω /∈ N we have

lim
n→∞

Xn(ω) = X(ω).

Equivalently,
P
({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

)
= 1.

We often use the short-handed notation “Xn → X a.s.” to denote almost sure
convergence.

In contrast to the notion of almost sure convergence, we have the following
weaker notion of convergence: convergence in probability.

Definition 1.3. Let Xn (n > 1) and X be random variables defined on the
probability space (Ω,F ,P). We say that Xn converges to X in probability, if for
any ε > 0, we have

lim
n→∞

P(|Xn −X| > ε) = 0.

We often use the short-handed notation “Xn → X in prob.” to denote convergence
in probability.

The first natural question one can ask is the relation among the three types
of convergence. In fact, we have the following result.

Theorem 1.1. Almost sure convergence =⇒ Convergence in probability =⇒Weak
convergence.

Proof. Firstly, suppose that Xn converges to X almost surely. Let ε > 0 be fixed.
Since {

lim
n→∞

Xn = X
}
⊆ ∪∞n=1 ∩∞m=n

{
|Xm −X| 6 ε

}
,

2



we know that

1 = P
(

lim
n→∞

Xn = X
)

6 lim
n→∞

P
(
∩∞m=n

{
|Xm −X| 6 ε

})
6 lim

n→∞
P
(
|Xn −X| 6 ε

)
.

Therefore, P(|Xn − X| 6 ε)] → 1, or equivalently P(|Xn − X| > ε) → 0. This
gives convergence in probability.

Now suppose that Xn converges to X in probability. We use the second chara-
terisation in the Portmanteau theorem to show that Xn converges weakly to X.
To this end, let f be a bounded and uniformly continuous function on R. Given
ε > 0, there exists δ > 0 such that

|x− y| 6 δ =⇒ |f(x)− f(y)| 6 ε.

It follows that∣∣E[f(Xn)]− E[f(X)]
∣∣

6 E[|f(Xn)− f(X)|]
= E[|f(Xn)− f(X)|; |Xn −X| 6 δ] + E[|f(Xn)− f(X)|; |Xn −X| > δ]

6 ε+ 2‖f‖∞P(|Xn −X| > δ),

where ‖f‖∞ , supx∈R |f(x)|. Since Xn → X in probability, by letting n→∞ we
see that

lim
n→∞

∣∣E[f(Xn)]− E[f(X)]
∣∣ 6 ε.

As ε is arbitrary, we conclude that E[f(Xn)]→ E[f(X)], yielding the desired weak
convergence.

We may not be surprised by the fact that none of the reverse directions in
Theorem 1.1 is true. This is illustrated by the following example.

Example 1.2. (i) Convergence in probability does not imply almost sure con-
vergence. Consider the random experiment of choosing a point ω ∈ Ω = [0, 1]
uniformly at random. We construct a sequence {Yn : n > 1} of random variables
as follows. Firstly, divide [0, 1] into two sub-intervals, and define Y1 , 1[0,1/2] and
Y2 , 1[1/2,1]. Next, divide [0, 1] into three sub-intervals, and define Y3 , 1[0,1/3],
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Y4 , 1[1/3,2/3] and Y5 , 1[2/3,1]. Now the procedure continues in the obvious way
to define the whole sequence {Yn}. Since the event

{ω ∈ [0, 1] : |Yn(ω)| > ε} = {ω : Yn(ω) = 1}

is given by a particular sub-interval whose length tends to zero, we conclude that
Yn converges to zero in probability. However, Yn(ω) does not converge to zero
at any ω ∈ [0, 1]. Indeed, for each ω, by the construction there must exist a
subsequence nk such that Ynk

(ω) = 1 for all k.
(ii) Weak convergence does not imply convergence in probability. Let W be a
Bernoulli random variable with parameter 1/2. Define Zn , W for all n and
Z , 1−W. Since Zn and Z are both Bernoulli random variables with parameter
1/2, it is trivial that Zn converges weakly to Z. However, for any 0 < ε < 1, we
have

P
(
|Zn − Z| > ε

)
= P(|2W − 1| > ε) = 1.

Therefore, Zn does not converge to Z in probability.

2 Independence and Borel-Cantelli’s lemma
In general, obtaining almost sure convergence is much more challenging than
proving convergence in probability. However, there is a rather power tool, which
allows us to establish almost sure properties fairly easily in many situations. This
is known as Borel-Cantelli’s lemma. Before discussing it, let us first recall the basic
notion of independence. Throughout the rest, we are always given a probability
space (Ω,F ,P). Events and random variables are assumed to be defined on it.

Two events A,B ∈ F are said to be independent, if

P(A ∩B) = P(A) · P(B).

Two random variables X, Y : Ω→ R are said to be independent, if

P(X ∈ E, Y ∈ F ) = P(X ∈ E) · P(Y ∈ F ) for all E,F ∈ B(R).

Using standard measure-theoretic arguments, one can show that two random vari-
ables X, Y are independent if and only if

E[f(X)g(Y )] = E[f(X)] · E[g(Y )]
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for all bounded Borel-measurable functions f, g on R. It is also equivalent to
the condition that the joint cumulative distribution function of (X, Y ) equals the
product of the marginal ones, i.e.

P(X 6 x, Y 6 y) = P(X 6 x) · P(Y 6 y) for all x, y ∈ R.

Given an event A, one can define an associated random variable (the indicator
random variable of A) by

XA(ω) ,

{
1, ω ∈ A;

0, ω /∈ A.

In this way, the independence for two events A,B is equivalent to the independence
for the associated indicator random variables XA and XB. Therefore, it is enough
to consider independence for random variables.

To study convergence of random variables, we need to extend the notion of
independence to sequences of random variables.

Definition 2.1. A sequence {Xn : n > 1} of random variables are said to be
independent, if for any n > 1 and any E1, · · · , En ∈ B(R), we have

P(X1 ∈ E1, · · · , Xn ∈ En) = P(X1 ∈ E1) · · ·P(Xn ∈ En).

A sequence {An : n > 1} of events are said to be independent, if the associated
sequence {XAn : n > 1} of indicator random variables are independent.

Now we present Borel-Cantelli’s lemma, which is an extremely powerful tool
in many probabilistic applications. Recall that, given a sequence {An : n > 1} of
events,

lim
n→∞

An , ∩∞n=1 ∪∞m=n Am

defines the event that “An happens for infinitely many n’s”, or equivalently “An
happens infinitely often”. Sometimes we simply write this event as “An i.o.” Re-
spectively,

lim
n→∞

An , ∪n=1 ∩m=n Am

defines the event that “from some point on every An happens”, or equivalently
“An happens for all but finitely many n’s”. Sometimes we simply write this event
as “An happens eventually.” It is obvious that(

lim
n→∞

An
)c

= lim
n→∞

Acn,
(

lim
n→∞

An
)c

= lim
n→∞

Acn.
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Theorem 2.1. Let {An : n > 1} be a sequence of events.

(i) [The first Borel-Cantelli’s lemma] If

∞∑
n=1

P(An) <∞,

then with probability zero An happens infinitely often, namely

P
(

lim
n→∞

An
)

= 0.

(ii) [The second Borel-Cantelli’s lemma] Suppose that the sequence {An : n > 1}
are independent. If

∞∑
n=1

P(An) =∞,

then with probability one An happens infinitely often, namely

P
(

lim
n→∞

An
)

= 1.

Proof. (i) By assumption, we have

P
(

lim
n→∞

An
)

= P
(
∩∞n=1 ∪∞m=nAm

)
= lim

n→∞
P(∪∞m=nAm)

6 lim
n→∞

∞∑
m=n

P(Am) = 0.

(ii) We look at the complement:

P
((

lim
n→∞

An
)c)

= P
(
∪∞n=1 ∩∞m=nA

c
m

)
= lim

n→∞
P
(
∩∞m=n A

c
m

)
= lim

n→∞
lim
N→∞

P
(
∩Nm=n A

c
m

)
.

Now we analyse the above limit. First of all, by independence we know that

P
(
∩Nm=n A

c
m

)
= (1− P(An)) · · · (1− P(AN))

= exp
( N∑
m=n

log(1− P(Am)
)

6 exp
(
−

N∑
m=n

P(Am))
)
,
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where we have used the simple fact that log(1−x) 6 −x. Since
∑∞

n=1 P(An) =∞,
by letting N →∞ we have,

lim
N→∞

P
(
∩Nm=n A

c
m

)
6 exp

(
−

∞∑
m=n

P(Am)
)

= exp(−∞) = 0.

This is true for every n. Therefore,

P
((

lim
n→∞

An
)c)

= lim
n→∞

lim
N→∞

P
(
∩Nm=n A

c
m

)
= 0,

and the result follows.

The independence assumption is essential for the second Borel-Cantelli’s lemma
to hold, as illustrated by the following example.

Example 2.1. Let X be a uniform random variable over [0, 1]. Define An , {X 6
1/n} (n > 1). Then P(An) = 1

n
and thus

∑
n P(An) =∞. However,

lim
n→∞

An = {X = 0}

which is an event of zero probability. Note that the An’s are apparently not
independent.

Remark 2.1. The second Borel-Cantelli’s lemma remains true if the independence
assumption is weakened as pairwise independence, i.e. only assuming that An and
Am are independent for each pair of (n,m).

Example 2.2. Suppose we toss a fair coin independently in a sequence. Let A1

be the event that the first 1010 consecutive tosses all end up being “head”, let A2

be next 1010 consecutive tosses all end up being “head”, and so forth. It is obvious
that these events An are independent, and each one has a rather small probability:

P(An) =
(1

2

)1010
> 0.

However, we have
∑∞

n=1 P(An) = ∞. According to the second Borel-Cantelli’s
lemma, we conclude that

P
(

lim
n→∞

An
)

= 1.

In other words, with probability one An happens infinitely often. This implies
that, with probability one, we will see infinitely many intervals of length 1010

that contain only “head”! There is another interesting way of describing this
phenomenon. If a monkey randomly types one letter at each time, then with
probability one it will eventually produces an exact copy of Shakespeare’s “Ham-
let” (in fact infinitely many copies!). Now the next question is: how long does it
on average for the monkey to first produce such a copy?
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3 The weak law of large numbers
We demonstrate an important application of Borel-Cantelli’s lemma to the proof of
the weak law of large numbers. We first prove a simple property for the expectation
that will be used later on. Recall that if X > 0, then

E[X] =

∫ ∞
0

P(X > x)dx.

Lemma 3.1. Let X be non-negative random variable with finite mean. Then
∞∑
n=1

P(X > n) <∞.

Proof. We have

E[X] =

∫ ∞
0

P(X > x)dx =
∞∑
n=1

∫ n

n−1
P(X > x)dx

>
∞∑
n=1

∫ n

n−1
P(X > n)dx =

∞∑
n=1

P(X > n),

and the result follows.

The weak law of large numbers is stated as follows.

Theorem 3.1. Let {Xn : n > 1} be a sequence of pairwise independent, identically
distributed random variables with finite mean m. Define Sn , X1+ · · ·+Xn. Then

Sn
n
→ m in prob. (3.1)

as n→∞.

Before developing the proof, we first examine a rather simple but enlightening
situation. For the moment, let us further assume that all the Xn’s have finite
variance σ2. By Chebyshev’s inequality, in this case we have

P
(∣∣Sn
n
−m

∣∣ > ε
)
6

1

ε2
Var
[Sn
n

]
=

1

ε2n2
Var[Sn] =

σ2

nε2
. (3.2)

This trivially gives the convergence (3.1). If we think about this argument in a
deeper way, the key point is that Var[Sn] = o(n2) as n→∞.

The main idea to treat the general case is truncating Xn to a bounded random
variable. This is a very common technique in the study of probabilistic limit
theorems.
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Proof of Theorem 3.1. We divide the proof into several steps. Let F (x) be the
cumulative distribution function of X1 (equivalently, of any Xn).

Step one: truncation. We define

Yn ,

{
Xn, if |Xn| 6 n;

0, otherwise.

Observe that {Xn 6= Yn} = {|Xn| > n}. Since all the Xn’s are identically dis-
tributed, we know that

∞∑
n=1

P(Xn 6= Yn) =
∞∑
n=1

P(|Xn| > n) =
∞∑
n=1

P(|X1| > n) <∞,

where the last part follows from Lemma 3.1. According to the first Borel-Cantelli’s
lemma, we have

P
(
Xn 6= Yn for infinitely many n

)
= 0.

In other words, with probability one, Xn = Yn for all n sufficiently large.
Step two: the weak law of large numbers for {Yn}. Define Tn , Y1 + · · ·+ Yn.

Inspired by the argument for (3.2), let us estimate Var[Tn]. Since Y1, · · · , Yn are
independent, we have

Var[Tn] =
n∑
j=1

Var[Yj] 6
n∑
j=1

E[Y 2
j ].

Our goal is to show that the above quantity is of o(n2). By the construction of
Yn, we have

n∑
j=1

E[Y 2
j ] =

n∑
j=1

E[X2
j 1{|Xj |6j}] =

n∑
j=1

∫
{|x|6j}

x2dF (x)

=
∑
j6
√
n

∫
{|x|6j}

x2dF (x) +
∑
√
n<j6n

∫
{|x|6j}

x2dF (x). (3.3)

We estimate the above two sums separately. For the first one,∑
j6
√
n

∫
{|x|6j}

x2dF (x) 6
∑
j6
√
n

∫
{|x|6j}

√
n · |x|dF (x)

6
∑
j6
√
n

√
n

∫ ∞
−∞
|x|dF (x)

= n · E[|X1|].
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For the second one,∑
√
n<j6n

∫
{|x|6j}

x2dF (x) =
∑
√
n<j6n

( ∫
{|x|6

√
n}
x2dF (x) +

∫
{
√
n<|x|6j}

x2dF (x)
)

6 n
√
n ·
∫ ∞
−∞
|x|dF (x) + n2

∫
{|x|>

√
n}
|x|dF (x)

= n
√
n · E[|X1|] + n2E[|X1| · 1{|X1|>

√
n}].

Note that
lim
n→∞

E[|X1| · 1{|X1|>
√
n}] = 0

since E[|X1|] < ∞ and P(|X1| >
√
n) → 0. Therefore, we see that both sums on

the right hand side of (3.3) is of o(n2), and thus Var[Tn] = o(n2). It follows in the
same way as in (3.2) that

Tn − E[Tn]

n
→ 0 in prob.

as n→∞.
Step three: relating back to the sequence {Xn}. To complete the proof, let us

compare Sn

n
−m with Tn−E[Tn]

n
. We first observe that∣∣(Sn

n
−m

)
−
(Tn − E[Tn]

n

)∣∣ 6 |Sn − Tn|
n

+
∣∣E[Tn]

n
−m

∣∣.
In Step One, we have seen that with probability one, Xn = Yn for all sufficiently
large n. This implies that, with probability one,

Sn − Tn = (X1 − Y1) + · · ·+ (Xn − Yn)

stops depending on n after some point and thus

|Sn − Tn|
n

→ 0 as n→∞.

In addition, it is apparent that

E[Yn] =

∫
{|x|6n}

xdF (x)→
∫ ∞
−∞

xdF (x) = m

as n→∞. This implies that,

E[Tn]

n
=

E[Y1] + · · ·+ E[Yn]

n
→ m,

10



where we have used the elementary analytic fact that

an → a =⇒ a1 + · · ·+ an
n

→ a.

To summarise, we conclude that with probability one,

lim
n→∞

∣∣(Sn
n
−m

)
−
(Tn − E[Tn]

n

)∣∣ = 0.

Combining with Step Two, the result follows.

We discuss an interesting application of the weak law of large numbers to the
approximation of continuous functions. Constructing polynomial approximations
of continuous functions is an important question in practice. The following result,
known as Bernstein’s approximation theorem, provides an elegant solution to this
question.

Theorem 3.2. Let f(x) be a continuous function on [0, 1]. For each n > 1, define
the polynomial

pn(x) ,
n∑
k=0

f
(k
n

)( n
k

)
xk(1− x)n−k, x ∈ [0, 1].

Then pn converges to f uniformly on [0, 1] as n→∞.

Proof. Fix x ∈ [0, 1]. Let {Xn : n > 1} be a sequence of independent and identi-
cally distributed random variables, each following the Bernoulli distribution with
parameter x, i.e.

P(Xn = 1) = x, P(Xn = 0) = 1− x.

Define Sn , X1 + · · · + Xn. It is straight forward to see that pn(x) = E
[
f
(
Sn

n

)]
.

According to the weak law of large numbers (cf. Theorem 3.1), Sn

n
→ E[X1] = x

in probability. In particular, Sn

n
→ x weakly. Since f is bounded continuous, this

already implies that

pn(x) = E
[
f
(Sn
n

)]
→ E[f(x)] = f(x),

for every given x ∈ [0, 1].
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Proving uniform convergence requires a little bit of extra effort. First of all,
since f is uniformly continuous on [0, 1], for any given ε > 0, there exists δ > 0
such that

x, y ∈ [0, 1], |x− y| 6 δ =⇒ |f(x)− f(y)| 6 ε.

Exactly the same argument as the proof of Theorem 1.1 (the second part) gives∣∣pn(x)− f(x)
∣∣ 6 ε+ 2‖f‖∞ · P

(∣∣Sn
n
− x
∣∣ > δ

)
,

where ‖f‖∞ , supx∈[0,1] |f(x)| denotes the supremum norm of f . In addition,
from Chebyshev’s inequality we know that

P
(∣∣Sn
n
− x
∣∣ > δ

)
6

1

δ2
Var
[Sn
n

]
=
x(1− x)

nδ2
6

1

4nδ2
,

where we have used the elementary inequality that x(1 − x) 6 1
4
. Therefore, we

arrive at ∣∣pn(x)− f(x)
∣∣ 6 ε+

‖f‖∞
2nδ2

.

When n is large, the right hand side can be made smaller than 2ε, uniformly in
x ∈ [0, 1]. This concludes the desired uniform convergence.

A remarkable fact is that, the conclusion of Theorem 3.1 can be strengthened
to almost sure convergence under the same assumptions, hence yielding a strong
law of large numbers. In the next section, we will prove a version of such result
under the stronger assumption of total independence.

4 The strong law of large numbers
Strong laws of large numbers concern with convergence in the almost sure sense.
Establishing this type of laws is more challenging than proving weak laws. From
the viewpoint of real analysis, laws of large numbers are essentially related to the
following type of convergence properties:

1

an

n∑
j=1

xj → 0 (4.1)

where 0 < an ↑ ∞ and xn ∈ R. It is often the case that an = n and xn =
Xn(ω) − E[Xn]. The property (4.1) can be obtained by means of the so-called
Kronecker’s lemma.
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Lemma 4.1. Let {xn : n > 1} be a real sequence and {an : n > 1} be a positive
sequence increasing to infinity. If the series

∑∞
n=1

xn
an

is convergent, then (4.1)
holds.

Kronecker’s lemma will be proved in the appendix. This lemma inspires us
that, we can study strong laws of large numbers through the convergence of certain
random series.

4.1 Kolmogorov’s two-series theorem

We start by taking some effort to discuss random series. Let {Xn : n > 1} be
a sequence of random variables defined on some probability space (Ω,F ,P). We
say that the random series

∑∞
n=1Xn is convergent almost surely (a.s.), if

P
(
{ω :

∞∑
n=1

Xn(ω) is convergent}
)

= 1.

Recall from the Cauchy criterion that a real series
∑∞

n=1 xn is convergent if and
only if for any ε > 0, there exists n > 1, such that for any i, j > n we have∣∣si − sj∣∣ < ε,

where sn , x1 + · · · + xn is the partial sum sequence. A natural probabilistic
analogue of the Cauchy criterion gives us the following characterisation for the
almost sure convergence of random series. Its proof is however quite technical,
and we leave it in the appendix.

Proposition 4.1. Let {Xn : n > 1} be a sequence of random variables and set
Sn , X1 + · · · + Xn. The random series

∑∞
n=1Xn is convergent a.s. if and only

if for any ε > 0, we have

lim
n→∞

lim
N→∞

P
(

max
n6l6N

|Sl − Sn| > ε
)

= 0 (4.2)

The probabilistic Cauchy criterion (4.2) is in general quite difficult to verify.
However, there is rather simple criterion due to Kolmogorov in the context of
independent random variables. This is known as Kolmogorov’s two-series theorem.

Theorem 4.1 (Kolmogorov’s two-series theorem). Let {Xn : n > 1} be a sequence
of independent random variables. Suppose that each Xn has finite variance. If
both of the real series

∑
n E[Xn] and

∑
n Var[Xn] are convergent, then the random

series
∑

nXn is convergent a.s.
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This theorem is an immediate consequence of the following inequality also due
to Kolmogorov, the proof of which is ingenious.

Lemma 4.2. Let X1, · · · , Xn be independent random variables. Suppose that
E[Xk] = 0 and Var[Xk] <∞ for each k. Then for any ε > 0, we have

P
(

max
16k6n

|Sk| > ε
)
6

1

ε2

n∑
k=1

Var[Xk], (4.3)

where Sk , X1 + · · ·+Xk.

Proof. We decompose the event

A ,
{

max
16k6n

|Sk| > ε
}

according to the first k such that |Sk| > ε. More precisely, for each 1 6 k 6 n we
introduce the event

Ak ,
{
|S1| < ε, · · · , |Sk−1| < ε, |Sk| > ε

}
.

It is obvious that A1, · · · , An are disjoint and

A = ∪nk=1Ak.

Therefore,

P
(
A
)

=
n∑
k=1

P(Ak) 6
1

ε2

n∑
k=1

E[S2
k1Ak

], (4.4)

where the last inequality follows from the fact that |Sk| > ε on Ak.
Here comes the crucial point. We claim that

E[S2
k1Ak

] 6 E[S2
n1Ak

] (4.5)

for every k. Coming up with such an observation is much harder than its proof,
which requires some insight from the viewpoint of martingales. Let us just verify
this property directly. Note that

E[S2
n1Ak

] = E[(Sn − Sk + Sk)
21Ak

]

= E[(Sn − Sk)21Ak
] + 2E[(Sn − Sk)Sk1Ak

] + E[S2
k1Ak

]. (4.6)

14



Since X1, · · · , Xn are independent, we have

E[(Sn − Sk)Sk1Ak
] = E[(Xk+1 + · · ·+Xn)Sk1Ak

]

= E[Xk+1 + · · ·+Xn] · E[Sk1Ak
]

= 0.

In addition, the first term on the right hand side of (4.6) is non-negative. There-
fore, the property (4.5) holds.

It follows from (4.4) and (4.5) that

P
(
A
)
6

1

ε2

n∑
k=1

E[S2
n1Ak

] =
1

ε2
E[S2

n1A] 6
1

ε2
E[S2

n].

On the other hand, we also have

E[S2
n] = E[(X1 + · · ·+Xn)2]

=
n∑
k=1

E[X2
k ] +

∑
i 6=j

E[XiXj]

=
n∑
k=1

E[X2
k ] +

∑
i 6=j

E[Xi]E[Xj]

=
n∑
k=1

Var[Xk].

Therefore, the result follows.

Using Kolmogorov’s inequality (4.3), the proof Theorem 4.1 is almost trivial.

Proof of Theorem 4.1. We will verify the Cauchy criterion (4.2). Without loss
of generality, we may assume that E[Xn] = 0, for otherwise we can consider the
sequence Xn − E[Xn] instead. In this case, according to inequality (4.3), for any
ε > 0 we have

P
(

max
n6l6N

|Sl − Sn| > ε
)
6

1

ε2
(
Var[Xn+1] + · · ·+ Var[XN ]

)
,

where Sn , X1 + · · ·+Xn is the partial sum sequence. It follows that

lim
N→∞

P
(

max
n6l6N

|Sl − Sn| > ε
)
6

1

ε2

∞∑
k=n+1

Var[Xk].
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Since
∑

n Var[Xn] <∞, we obtain

lim
n→∞

lim
N→∞

P
(

max
n6l6N

|Sl − Sn| > ε
)
6

1

ε2
lim
n→∞

∞∑
k=n+1

Var[Xk] = 0.

Therefore, (4.2) holds and we conclude that the random series
∑

nXn converges
a.s.

4.2 The strong laws of large numbers

We now use Kronecker’s lemma and Kolmogorov’s two-series theorem to establish
the strong law of large numbers. It strengthens the weak law (cf. Theorem 3.1)
but under the stronger assumption of total independence.

Theorem 4.2. Let {Xn : n > 1} be a sequence of independent and identically
distributed random variables.

(i) If E[|X1|] <∞, then
Sn
n
→ E[X1] a.s.

as n→∞.
(ii) If E[|X1|] =∞, then

lim
n→∞

|Sn|
n

=∞ a.s.

as n→∞.

Proof. (i) Step one. We use the same truncation idea as in the proof of the weak
law. Define Yn , Xn1{|Xn|6n}. According to the first step in that proof, we know
that with probability one, Xn = Yn for all n sufficiently large. In particular, this
implies that

1

n

n∑
j=1

(Xj − Yj)→ 0 a.s. (4.7)

as n→∞, since a.s. the sum stops depending on n after some point.
Step two. We try to apply Kolmogorov’s two-series theorem to the random

series
∑

n Zn where Zn , Yn−E[Yn]
n

. Since Zn has mean zero, we only need to check
that

∑
n Var[Zn] <∞. For this purpose, note that

Var[Zn] 6
1

n2
E[Y 2

n ] =
1

n2

∫
{|x|6n}

x2dF (x)

16



where F (x) is the cumulative distribution function of X1. It follows that
∞∑
n=1

Var[Zn]

6
∞∑
n=1

1

n2

∫
{|x|6n}

x2dF (x)

=
∞∑
n=1

1

n2

n∑
j=1

∫
{j−1<|x|6j}

x2dF (x)

=
∞∑
j=1

( ∫
{j−1<|x|6j}

x2dF (x)
) ∞∑
n=j

1

n2
(exchange of summation).

In the first place, we have∫
{j−1<|x|6j}

x2dF (x) 6 j ·
∫
{j−1<|x|6j}

|x|dF (x).

In addition, we also know that
∞∑
n=j

1

n2
6

∞∑
n=j

1

(n− 1)n
=
∞∑
n=j

( 1

n− 1
− 1

n

)
=

1

j − 1
6

2

j

when j > 2. This inequality is also true when j = 1 since
∞∑
n=1

1

n2
=
π2

6
< 2.

Therefore,
∞∑
n=1

Var[Zn] 6
∞∑
j=1

j ·
( ∫
{j−1<|x|6j}

|x|dF (x)
)
· 2

j

= 2
∞∑
j=1

∫
{j−1<|x|6j}

|x|dF (x)

= 2E[|X1|] <∞.

By Kolmogorov’s two-series theorem, we know that
∑

n Zn converges a.s. Accord-
ing to Kronecker’s lemma (cf. Lemma 4.1) with an = n and xn = Yn−E[Yn], this
implies that

1

n

n∑
j=1

(Yj − E[Yj])→ 0 a.s.
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as n→∞.
Step three. We have

E[Yn] =

∫
{|x|6n}

xdF (x)→ E[X1].

Therefore,
1

n

n∑
j=1

E[Yj]→ E[X1],

and thus
1

n

n∑
j=1

Yj → E[X1] a.s.

as n→∞. Now the assertion follows from (4.7) in Step One.
(ii) Suppose that E[|X1|] = ∞. A simple adaptation of the proof of Lemma

3.1 implies that for any given A > 0, we have
∑∞

n=1 P(|X1| > An) =∞. Since the
Xn’s are independent and identically distributed, we see that

∞∑
n=1

P(|Xn| > An) =∞,

which further implies by the second Borel-Cantelli’s lemma that

P(|Xn| > An for infinitely many n) = 1.

Observe that

{Xn > An} ⊆
{
|Sn| >

An

2

}
∪
{
|Sn−1| >

A(n− 1)

2

}
.

Therefore, we have

P
(
|Sn| >

An

2
for infinitely many n

)
= 1.

Now if we define

Ωm ,
{
|Sn| > mn for infinitely many n

}
, m > 1,

and set Ω , ∩∞m=1Ωm, then P(Ω) = 1. But we know that

Ω ⊆
{

lim
n→∞

|Sn|
n

> m for all m
}

=
{

lim
n→∞

|Sn|
n

=∞
}
.

Consequently, the result follows.
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Remark 4.1. It was a remarkable result of N. Etemadi (cf. N. Etemadi, An
elementary proof of the strong law of large numbers, Z. Wahrscheinlichkeitstheorie
55 (1981) 119–122) that the assertion of Theorem 4.2 (i) remains true when the
assumption of total independence is weakened to pairwise independence.

We conclude this topic by an interesting application of Theorem 4.2 to number
theory. Recall that, every real number x ∈ (0, 1) admits an expansion

x = 0.x1x2 · · ·xn · · ·

in the usual decimal system where each xn = 0, 1, · · · , 9. Except for countably
many points in (0, 1) (points of the form x = m/10n where m,n are positive
integers) whose expansions terminate in finitely many steps, such expansion is
unique and infinite.

Given x ∈ (0, 1) and 0 6 k 6 9, let ν(k)n (x) be the number of digits among the
first n digits of x that are equal to k. Apparently, ν

(k)
n (x)
n

is the relative frequency
of the digit k in the first n places. It is reasonable to believe that, for most of the
points x ∈ (0, 1), this frequency should be close to 1

10
as n→∞. Probabilistically,

all the ten digits should occur equally likely in the decimal expansion of x if x is
chosen randomly.

Definition 4.1. A real number x ∈ (0, 1) is said to be simply normal (in base
10) if

lim
n→∞

ν
(k)
n (x)

n
=

1

10
for every k = 0, 1, · · · , 9.

The following result, which was due to Borel, asserts that almost every real
number in (0, 1) is simply normal.

Theorem 4.3. Let X be a point in (0, 1) chosen uniformly at random (i.e. X d
=

U(0, 1)). Then with probability one, X is a simply normal number.

Proof. We write X in its decimal expansion: X = 0.X1X2 · · ·Xn · · · . The crucial
point is that, the sequence {Xn : n > 1} of digits are independent and identically
distributed, each following the distribution

P(Xn = k) =
1

10
, k = 0, 1, · · · , 9. (4.8)

We first show that (4.8) holds. To understand the event {Xn = k}, let A1, · · · , Am
(m = 10n−1) be the partition of (0, 1) into 10n−1 sub-intervals of equal length. For
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each j we further evenly sub-divide Aj into 10 sub-intervals and let Bj,k be the
k-th one of these sub-intervals. Then

{Xn = k} = ∪mj=1

{
X ∈ Bj,k

}
,

and thus

P(Xn = k) =
m∑
j=1

P
(
X ∈ Bj,k

)
= 10n−1 · 1

10n
=

1

10
.

The intuition behind the above argument is best seen when one considers base 2
instead of 10 and draw a picture for the cases n = 1, 2, 3. If one understands the
geometric intuition behind these digits X1, X2, · · · , it is immediate that for any
given n > 1 and 0 6 k1, · · · kn 6 9, the event

{X1 = k1, X2 = k2, · · · , Xn = kn}
simply means X falls in one particular sub-interval (depending on k1, · · · , kn) in
the even partition of (0, 1) into 10n sub-intervals. In particular,

P
(
X1 = k1, · · · , Xn = kn

)
=

1

10n
= P(X1 = k1) · · ·P(Xn = kn).

This gives the independence among X1, · · · , Xn.
To prove the theorem, let 0 6 k 6 10, and consider the Bernoulli sequence

Yn =

{
1, Xn = k;

0, otherwise.
, n > 1.

Then ν(k)n (X) = Y1 + · · ·+ Yn. According to the strong law of large numbers (cf.
Theorem 4.2), we conclude that with probability one,

ν
(k)
n (X)

n
→ E[Y1 = 1] = E[X1 = k] =

1

10
(4.9)

as n → ∞. In other words, with Ωk ,
{ν(k)n (X)

n
→ 1

10

}
we have P(Ωk) = 1. The

conclusion of the theorem follows by observing that

P
(ν(k)n (X)

n
→ 1

10
for every k

)
= P

(
∩9k=0 Ωk

)
= 1.

Remark 4.2. Although Theorem 4.3 tells us that almost every real number in
(0, 1), it does not explicitly give us a single one! In fact, one can easily come up
with numbers that are not simply normal. For instance, x = 0.111 · · · . However,
it is more challenging to explicitly construct numbers that are simply normal.
Can you give one?
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5 Appendix: Proofs of Kronecker’s lemma and the
probabilistic Cauchy criterion for random series

Now we prove the two key lemmas that we have used in studying the strong law
of large numbers.

The first one is Kronecker’s lemma which is purely analytic.

Proof of Lemma 4.1. Define bn ,
∑n

j=1
xj
aj

and set a0 = b0 , 0. Then xn =

an(bn − bn−1), and thus

1

an

n∑
j=1

xj =
1

an

n∑
j=1

aj(bj − bj−1).

The crucial step is to write

n∑
j=1

aj(bj − bj−1) = anbn −
n−1∑
j=0

bj(aj+1 − aj).

This is a discrete version of integration by parts, and the intuition behind this
formula is best illustrated by the following figure.

Therefore,
1

an

n∑
j=1

xj = bn −
n−1∑
j=0

aj+1 − aj
an

· bj.
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Since bn is convergent by assumption, let us assume that bn → b ∈ R. We
claim that

lim
n→∞

n−1∑
j=0

aj+1 − aj
an

· bj = b.

Indeed, given ε > 0, there exists N > 1 such that for all n > N, |bn − b| < ε. It
follows that, for n > N we have

∣∣ n−1∑
j=0

(aj+1 − aj)bj
an

− b
∣∣ =

∣∣ n−1∑
j=0

(aj+1 − aj)(bj − b)
an

∣∣
=
∣∣(∑

j6N

+
∑

N<j6n−1

)(aj+1 − aj)(bj − b)
an

∣∣
6
aN+1

a0
· 2M + ε ·

∑
N<j6n−1

aj+1 − aj
an

6
2MaN+1

an
+ ε,

where M > 0 is a constant such that |bn| 6 M for all n. By letting n → ∞, we
obtain

lim
n→∞

∣∣ n−1∑
j=0

(aj+1 − aj)bj
an

− b
∣∣ 6 ε.

The result follows since ε is arbitrary.

The second one is the probabilistic Cauchy criterion for the almost sure con-
vergence of random series.

Proof of Proposition 4.1. The argument is a tedious unwinding of the statement
in the usual Cauchy criterion. We first recall that,

∑
nXn is convergent if and

only if for any ε > 0, there exists n > 1, such that whenever i, j > n we have
|Si − Sj| < ε. Equivalently,

∑
nXn is divergent if and only if,

∃ε > 0, ∀n > 1, ∃i, j > n, s.t. |Si − Sj| > ε.

The statement ∃i, j > n, s.t. |Si − Sj| > ε can obviously be replaced by

∃N > n, s.t. max
n6i,j6N

|Si − Sj| > ε.
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To summarise, we conclude that (assuming ε is rational)

P
( ∞∑
n=1

Xn is divergent
)

= 0

⇐⇒ P
(
∪ε>0 ∩n>1 ∪N>n

{
max

n6i,j6N
|Si − Sj| > ε

})
= 0

⇐⇒ for all ε > 0, P
(
∩n>1 ∪N>n

{
max

n6i,j6N
|Si − Sj| > ε

})
= 0

⇐⇒ for all ε > 0, lim
n→∞

lim
N→∞

P
({

max
n6i,j6N

|Si − Sj| > ε
})

= 0.

Now the result follows from the observation that{
max
n6l6N

|Sl − Sn| > ε
}
⊆
{

max
n6i,j6N

|Si − Sj| > ε
}
⊆
{

max
n6l6N

|Sl − Sn| >
ε

2

}
.
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Topic 3: Characteristic Functions

In elementary probability theory, we have seen the notion of moment gener-
ating functions. There are many important reasons for introducing the moment
generating function. For instance, it uniquely determines the law of a random
variable, it can be used to study convergence in distribution and to compute mo-
ments effectively etc. One disadvantage of the moment generating function is that
it is not always well defined (consider the Cauchy distribution as an example).
Even when it is defined, it comes with its intrinsic domain of definition making
the analysis cumbersome.

On the other hand, the characteristic function is always well defined for any
random variable and achieves its greater power in probability theory. Analytic
properties of the characteristic function is nicer and more robust than the mo-
ment generating function, although a price to pay is that one needs to work with
complex numbers (mostly in the obvious manner). In this topic, we develop the
basic theory of characteristic functions. The characteristic function is also a fun-
damental tool for proving the central limit theorem, as we will see in the next
topic.

1 Definition of the characteristic function and its
basic properties

The characteristic function will take complex values in general. To begin with,
we first recall that, for z = x+ iy ∈ C, ez is the complex number given by

ez = ex(cos y + i sin y).

In particular, we have the Euler formula:

eiy = cos y + i sin y, y ∈ R. (1.1)
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Definition 1.1. Let X be a (real-valued) random variable. The characteristic
function of X is the complex-valued function given by

fX(t) , E[eitX ], t ∈ R. (1.2)

Remark 1.1. Using the Euler formula (1.1), equation (1.2) is interpreted as

fX(t) = E[cos tX] + iE[sin tX].

But in many circumstances there is no need to treat the real and imaginary parts
separately. It is more efficient to work with complex numbers.

The characteristic function is defined in terms of the distribution of X, and
the underlying probability space is of no importance. In fact, we have

fX(t) =

∫ ∞
−∞

eitxdFX(x)

where FX(x) is the cumulative distribution function of X. Equivalently, we can
simply define the characteristic function of a probability measure µ on R as

fµ(t) ,
∫
R
eitxµ(dx)

without referring to any random variables.
Remark 1.2. When X (or µ) admits a density function ρ(x), the characteristic
function is given by

f(t) =

∫ ∞
−∞

eitxρ(x)dx,

which is commonly known as the Fourier transform of the function ρ(x).
The characteristic function is defined for all t ∈ R. Indeed, by the triangle

inequality we have
|fX(t)| 6 E[|eitX |] = E[1] = 1.

It is obvious that fX(0) = 1 and

fX(t) = E[eitX ] = E[e−itX ] = fX(−t).

Heuristically, the characteristic function is related to the moment generating func-
tion MX(t) by the simple relation

fX(t) = MX(it),

and like the moment generating function case it has the following elementary
properties.
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Proposition 1.1. Let a, b ∈ R and X, Y be random variables.

(i) faX+b(t) = eitb · fX(at) and f−X(t) = fX(t).
(ii) If X and Y are independent, then fX+Y (t) = fX(t) · fY (t).

Proof. (i) By definition,

faX+b(t) = E[eit(aX+b)] = E[eitaX · eitb] = eitb · fX(at),

and
f−X(t) = E[eit·(−X)] = fX(−t) = fX(t).

(ii) Recall that, X and Y are independent if and only if

E[ϕ(X)ψ(Y )] = E[ϕ(X)] · E[ψ(Y )]

for any bounded Borel-measurable functions ϕ, ψ. Applying this to the bounded
function ϕ(x) = ψ(x) = eitx (for fixed t), we get

fX+Y (t) = E[eit(X+Y )] = E[eitX · eitY ] = E[eitX ] · E[eitY ] = fX(t)fY (t).

The first important analytic property which the moment generating function
may fail to have is the following.

Proposition 1.2. fX(t) is uniformly continuous on R.

Proof. By definition, for any t, h ∈ R we have

fX(t+ h)− fX(t) =

∫ ∞
−∞

(ei(t+h)x − eitx)dFX(x)

=

∫ ∞
−∞

eitx(eihx − 1)dFX(x).

According to the triangle inequality,

|fX(t+ h)− fX(t)| 6
∫ ∞
−∞
|eihx − 1|dFX(x). (1.3)

Note that the right hand side is independent of t, and the integrand |eihx−1| → 0
as h→ 0 for each fixed x. By the dominated convergence theorem, the right hand
side of (1.3) converges to zero as h → 0. This implies the uniform continuity of
fX(t).
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We do not list the explicit formulae for the characteristic functions of those
special distributions we encounter in elementary probability theory. Some of them
are straight forward while some can be quite challenging. Here we give one im-
portant example: the standard normal distribution.

Example 1.1. The characteristic function of X d
= N (0, 1) is given by f(t) =

e−t
2/2. The following is an enlightening but semi-rigorous argument for verifying

this fact. We start with the definition

f(t) =
1√
2π

∫ ∞
−∞

eitxe−x
2/2dx.

By differentiation and integration by parts,

f ′(t) =
i√
2π

∫ ∞
−∞

xeitxe−x
2/2dx

= − i√
2π

∫ ∞
−∞

eitxd
(
e−x

2/2
)

=
i√
2π

∫ ∞
−∞

e−x
2/2d(eitx)

= − t√
2π

∫ ∞
−∞

eitxe−x
2/2dx

= −tf(t).

This is a first order ODE that can be solved uniquely with the obvious initial
condition f(0) = 1. The solution gives f(t) = e−t

2/2.

We conclude this section with an elementary inequality for the complex expo-
nential which will be used frequently later on.

Lemma 1.1. For any a, b ∈ R, we have

|eib − eia| 6 |b− a|. (1.4)

Proof. Let us assume that a < b. A simple use of the triangle inequality yields:

|eib − eia| =
∣∣ ∫ b

a

ieitdt
∣∣ 6 ∫ b

a

∣∣ieit∣∣dt =

∫ b

a

1dt = b− a.
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2 The uniqueness theorem and the inversion for-
mula

One important reason for using the characteristic function is that it uniquely
determines the distribution of the random variable. In addition, one can recover
the distribution and learn many of its properties from the characteristic function
in a fairly explicit way.

The central theorem for this part is the following inversion formula, which
almost trivially implies the uniqueness property.

Theorem 2.1. Let µ be a probability measure on R and let f(t) be its character-
istic function. Then for any real numbers x1 < x2, we have

µ((x1, x2)) +
1

2
µ({x1}) +

1

2
µ({x2}) = lim

T→∞

1

2π

∫ T

−T

e−itx1 − e−itx2
it

f(t)dt. (2.1)

Remark 2.1. The function e−itx1−e−itx2
it

at t = 0 is defined in the limiting sense as
x2 − x1. It should be pointed out that the right hand side of (2.1) cannot simply
be understood as the integral

1

2π

∫ ∞
−∞

e−itx1 − e−itx2
it

f(t)dt,

which may not be well-defined unless f(t) is integrable over R.
We postpone the proof of Theorem 2.1 to the end of this section and discuss

some of its consequences. First of all, it implies the following uniqueness result,
which asserts that a probability measure is uniquely determined by its character-
istic function.

Corollary 2.1. Let µ1 and µ2 be two probability measures. If they have the same
characteristic function, then µ1 = µ2.

Proof. Let Di , {x ∈ R1 : µi({x}) > 0} denote the set of atoms (discontinuity
points) for µi (i = 1, 2) and D , D1 ∪ D2. Since µ1 and µ2 have the same
characteristic function, by the inversion formula (2.1) we have

µ1((x1, x2)) = µ2((x1, x2)), for all x1 < x2 in Dc. (2.2)

On the other hand, D1, D2 are both countable and so is D. In particular, Dc is
dense in R. By a standard approximation argument, the relation (2.2) is enough
to conclude that µ1((a, b]) = µ2((a, b]) for all real numbers a < b. This in turns
implies µ1 = µ2 by Dynkin’s π-λ theorem in measure theory.
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Another nice consequence of the uniqueness theorem is that many properties
of the original distribution can be detected from its characteristic function. We
give two examples of this kind. The first one only uses the uniqueness property
while the second one requires application of the inversion formula.

Proposition 2.1. Let X be a random variable with characteristic function fX(t).
Then fX(t) is real-valued if and only if X and −X have the same distribution.

Proof. Note that f−X(t) = fX(−t) = fX(t). Therefore, fX(t) is real-valued if and
only if f−X(t) = fX(t), which according to the uniqueness theorem is equivalent
to saying that X d

= −X.

Proposition 2.2. Let X be a random variable with cumulative distribution func-
tion F (x) and characteristic function f(t) respectively. Suppose that f(t) is in-
tegrable over (−∞,∞). Then F (x) is continuously differentiable on R, and its
derivative (the probability density function) is given by the formula

ρ(x) =
1

2π

∫ ∞
−∞

e−itxf(t)dt. (2.3)

Proof. We can actually express the inversion formula (2.1) as

P(x1 < X < x2) +
1

2
P(X = x1) +

1

2
P(X = x2) =

1

2π

∫ ∞
−∞

e−itx1 − e−itx2
it

f(t)dt.

(2.4)
Indeed, according to (1.4) we have∣∣∣∣e−itx1 − e−itx2it

∣∣∣∣ 6 |x1 − x2|.
It follows from the assumption that the function t 7→ e−itx1−e−itx2

it
f(t) is integrable

over (−∞,∞).
We first show that F is left continuous (and thus continuous). Let x ∈ R and

h > 0. Using the relations

P(x− h < X < x) = F (x−)− F (x− h),

P(X = x− h) = F (x− h)− F ((x− h)−),

P(X = x) = F (x)− F (x−),
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the inversion formula (2.4) applied to the case when x1 = x − h and x2 = x
simplifies to

1

2
(F (x)−F (x−h)) +

1

2
(F (x−)−F ((x−h)−)) =

1

2π

∫ ∞
−∞

e−it(x−h) − e−itx

it
f(t)dt.

(2.5)
Note that we always have

lim
h↓0

F ((x− h)−) = F (x−) (why?).

In addition, since

lim
h↓0

e−it(x−h) − e−itx

it
= 0

for every fixed t, by the dominated convergence theorem we know that the right
hand side of (2.5) tends to zero as h ↓ 0. Therefore, F (x − h) → F (x) as h ↓ 0
which shows that F is left continuous at x.

Since F is continuous, by applying the inversion formula to the case when
x1 = x and x2 = x+ h and dividing it by h, we obtain

F (x+ h)− F (x)

h
=

1

2π

∫ ∞
−∞

e−itx − e−it(x+h)

ith
f(t)dt.

By the dominated convergence theorem, the right hand side tends to 1
2π

∫∞
−∞ e

−itxf(t)dt
as h→ 0. Therefore, F is differentiable at x with derivative

F ′(x) =
1

2π

∫ ∞
−∞

e−itxf(t)dt.

The continuity of F ′(x) follows from the continuity of the integral x 7→
∫∞
−∞ e

−itxf(t)dt
which is again a simple consequence of the dominated convergence theorem.

Proof of the inversion formula (2.1)

The proof of (2.1) (as well as many other analytic aspects of the characteristic
function) relies on the following basic identity (the Dirichlet integral):∫ ∞

0

sinu

u
du =

π

2
. (2.6)

Note that this integral must be understood as an improper integral limR→∞
∫ R
0

sinu
u
du

with sin 0
0

, 1.
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To prove the inversion formula we begin with its right hand side. We fix
x1 < x2 throughout the discussion. By the definition of the characteristic function,
for each T > 0 we have∫ T

−T

e−itx1 − e−itx2
it

f(t)dt =

∫ T

−T

e−itx1 − e−itx2
it

( ∫ ∞
−∞

eitxµ(dx)
)
dt

=

∫ ∞
−∞

( ∫ T

−T

e−it(x1−x) − e−it(x2−x)

it
dt
)
µ(dx). (2.7)

Here we have used Fubini’s theorem to change the order of integration. This is
legal since ∣∣∣∣e−itx1 − e−itx2it

· eitx
∣∣∣∣ 6 |x2 − x1|

which is integrable over [−T, T ]×R with respect to the product measure dt× µ.
The reader who is not familiar with measure theory can take the exchange of
double integral as granted.

Next, we denote the integrand in the µ-integral on the right hand side of (2.7)
as

IT (x;x1, x2) ,
∫ T

−T

e−it(x1−x) − e−it(x2−x)

it
dt.

By writing out the real and imaginary parts we obtain

IT (x;x1, x2)

=

∫ T

−T

(
cos t(x1 − x)− cos t(x2 − x)

)
+ i
(

sin t(x2 − x)− sin t(x1 − x)
)

it
dt

= 2
( ∫ T

0

sin t(x2 − x)

t
dt−

∫ T

0

sin t(x1 − x)

t
dt
)
,

where the cosine part is gone since the cosine function is even. We apply a change
of variables and discuss according to different scenarios of x to get

IT (x;x1, x2) =



2
( ∫ T (x2−x)

0
sinu
u
du−

∫ T (x1−x)
0

sinu
u
du
)
, x < x1;

2
∫ T (x2−x)
0

sinu
u
du, x = x1;

2
( ∫ T (x2−x)

0
sinu
u
du+

∫ T (x−x1)
0

sinu
u
du
)
, x1 < x < x2;

2
∫ T (x−x1)
0

sinu
u
du, x = x2;

2
(
−
∫ T (x−x2)
0

sinu
u
du+

∫ T (x−x1)
0

sinu
u
du
)
, x > x2.

(2.8)
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By sending T →∞ and using the Dirichlet integral (2.6), we obtain

lim
T→∞

IT (x;x1, x2) =



0, x < x1;

π, x = x1;

2π, x1 < x < x2;

π, x = x2;

0, x > x2.

(2.9)

Note that we have already expressed the right hand side of the inversion for-
mula (2.1) as

lim
T→∞

1

2π

∫ ∞
−∞

IT (x;x1, x2)µ(dx).

The equation (2.9) urges us to take limit under the integral sign. This is indeed
legal as a result of the following elementary fact.

Lemma 2.1. We have

0 6
∫ y

0

sinu

u
du 6

∫ π

0

sinu

u
du for all y > 0.

In view of the expression (2.8) of IT (x;x1, x2), Lemma 2.1 tells us that

|IT (x;x1, x2)| 6 4

∫ π

0

sinu

u
du <∞ for all x and T.

According to the dominated convergence theorem and (2.9), we obtain that

lim
T→∞

1

2π

∫ ∞
−∞

IT (x;x1, x2)µ(dx) =
1

2
µ({x1}) + µ((x1, x2)) +

1

2
µ({x2})

which concludes the desired inversion formula.
As the last piece of the puzzle, it remains to prove Lemma 2.1 which is an

interesting calculus exercise.

Proof of Lemma 2.1. We first show that D(y) ,
∫ y
0

sinu
u
du is non-negative for all

y > 0. This is obvious when y ∈ [0, π]. When y ∈ [(2k − 1)π, (2k + 1)π] with any
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k > 1, we have∫ y

0

sinu

u
du >

∫ 2kπ

0

sinu

u
du =

k∑
l=1

∫ 2lπ

2(l−1)π

sinu

u
du

=
k∑
l=1

( ∫ (2l−1)π

(2l−2)π

sinu

u
du+

∫ 2lπ

(2l−1)π

sinu

u
du
)

=
k∑
l=1

∫ (2l−1)

(2l−2)π
(sinu) ·

(1

u
− 1

u+ π

)
du

> 0,

where to reach the last equality we have applied a change of variables to the
integral

∫ 2lπ

(2l−1)π
sinu
u
du.

Next we show that D(y) is maximised at y = π. Due to the sign pattern of
sinu, it is enough to show that (why?)∫ (2k+1)π

π

sinu

u
du 6 0 for all k > 0.

This can be proved in a similar way as the positivity part:∫ (2k+1)π

π

sinu

u
du =

k∑
l=1

( ∫ 2lπ

(2l−1)π

sinu

u
du+

∫ (2l+1)π

2lπ

sinu

u
du
)

=
k∑
l=1

∫ 2lπ

(2l−1)π
(sinu) ·

(1

u
− 1

u+ π

)
du

6 0.

Remark 2.2. The proof of the inversion formula (2.1) we give here is not very
enlightening, since we have started from the right hand side of the formula pre-
tending that it was known in advance. In the context of Fourier transform, in
fact it took mathematician a long journey to understand why the simple inversion
formula

ρ(x) =
1

2π

∫ ∞
−∞

e−itxf(t)dt

recovers the original function ρ(x) from its Fourier transform f(t). One needs to
go into Fourier analysis to understand in a deeper way how the inversion formula
arises naturally.
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3 Lévy-Cramér’s continuity theorem
The most important and useful result of the characteristic function is that conver-
gence in distribution for random variables is equivalent to pointwise convergence
for their characteristic functions. This is the content of Lévy-Cramér’s continuity
theorem, which is sometimes referred to as the convergence theorem. As we will
see, it provides a useful tool for proving central limit theorems.

We start with the easier part of the theorem.

Theorem 3.1. Let µn (n > 1) and µ be probability measures on R, with charac-
teristic functions fn (n > 1) and f respectively. If µn converges weakly to µ, then
fn converges to f uniformly on every finite interval of R.

Proof. For each fixed t, the function x 7→ eitx is a bounded continuous function.
Therefore, the convergence of fn(t) to f(t) (for fixed t) is a trivial consequence
of the weak convergence of µn to µ. Here there is no difficulty with eitx being
complex-valued: just work with the real and imaginary parts separately.

The uniformity assertion requires more effort than the simple pointwise con-
vergence. We first claim that, under the assumption, the family of functions
{fn : n > 1} is uniformly equicontinuous on R. Recall that uniform equicontinu-
ity means, for any ε > 0, there exists δ > 0 such that

|fn(t)− fn(s)| < ε

for all n > 1 and all s, t with |t − s| < δ. To prove the uniform equicontinuity of
{fn}, first note that the family of probability measures {µn : n > 1} is tight, as
a consequence of weak convergence. In particular, for given ε > 0, there exists
A = A(ε) > 0 such that

µn([−A,A]c) < ε for all n.

Next, for any real numbers t and h and n > 1, we have

|fn(t+ h)− fn(t)| =
∣∣ ∫ ∞
−∞

ei(t+h)xµn(dx)−
∫ ∞
−∞

eitxµn(dx)
∣∣

6
∫ ∞
−∞
|eihx − 1|µn(dx)

=

∫
{x:|x|6A}

|hx|µn(dx) +

∫
{x:|x|>A}

2µn(dx)

6 |h|A+ 2µn([−A,A]c)

< |h|A+ 2ε.
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When |h| is small enough (in a way that is independent of t), the right hand side
can be made less than 3ε. This proves the uniform equicontinuity property.

Now we establish the desired uniform convergence property. Let I = [a, b] be
an arbitrary finite interval. First of all, for an given ε > 0, by uniform equiconti-
nuity there exists δ > 0, such that whenever |t− s| < δ we have

|fn(t)− fn(s)| < ε.

We may also assume that for the same δ we have |f(t) − f(s)| < ε, since f is
uniformly continuous (cf. Proposition 1.2). Next, we fix a finite partition

P : a = t0 < t1 < · · · < tr−1 < tr = b

of [a, b] such that |ti − ti−1| < δ for all 1 6 i 6 r. Since at each partition point
ti we have the pointwise convergence fn(ti) → f(ti) (as n → ∞) and there are
finitely many of them, one can find N > 1, such that

|fn(ti)− f(ti)| < ε for all n > N and 0 6 i 6 r.

It follows that for each n > N and t ∈ [a, b], with ti ∈ P being the partition point
such that t ∈ [ti, ti+1], we have

|fn(t)− f(t)| 6 |fn(t)− fn(ti)|+ |fn(ti)− f(ti)|+ |f(ti)− f(t)|
< ε+ ε+ ε

= 3ε.

This concludes the uniform convergence of fn to f on [a, b].

The harder (and more useful) part of the theorem is the other direction as-
serting that weak convergence can be established through pointwise convergence
of the characteristic function.

Theorem 3.2. Let {µn : n > 1} be a sequence of probability measures on R with
characteristic functions {fn : n > 1} respectively. Suppose that:

(i) fn(t) converges pointwisely to some limiting function f(t);
(ii) f(t) is continuous at t = 0.

Then there exists a probability measure µ, such that µn converges weakly to µ. In
addition, f is the characteristic function of µ.

12



We postpone its proof to the end of this section. There are two important
remarks concerning the assumptions in the above two theorems. On the one hand,
in Theorem 3.1, it is crucial to assume weak convergence of µn. As illustrated
by the following example, fn may fail to converge if only vague convergence is
assumed.

Example 3.1. Let µn = 1
2
δ0 + 1

2
δn be the two-point distribution at 0 and n

with equal probabilities. It is a simple exercise that µn converges vaguely to 1
2
δ0

(which is not a probability measure). The characteristic function of µn is given
by fn(t) = 1

2
+ 1

2
eint, which fails to converge at any t /∈ 2πZ.

On the other hand, the following example illustrates that, in Theorem 3.2, the
continuity assumption of the limiting function at t = 0 is crucial. As we will see
in the proof, this assumption guarantees the tightness property which is crucial
for expecting weak convergence.

Example 3.2. Let µn be the normal distribution with mean zero and variance
n. Then

fn(t) = e−
1
2
nt2 n→∞−→ f(t) =

{
0, t 6= 0;

1, t = 0.

Note that although fn converges pointwisely, the limiting function is not contin-
uous at t = 0. The sequence µn converges vaguely to the zero measure and thus
fails to be weakly convergent.

Combining the two theorems, we obtain the following elegant but weaker for-
mulation.

Corollary 3.1. Let µn (n > 1) and µ be probability measures on R, with charac-
teristic functions fn (n > 1) and f respectively. Then µn converges weakly to µ if
and only if fn converges pointwisely to f .

Proof. Necessity is trivial. For sufficiency, since we know that f is a characteristic
function it must be continuous at t = 0. In particular, the two conditions of
Theorem 3.2 are both verified. Therefore, there exists a probability measure ν
such that µn converges weakly to ν and f is the characteristic function of ν. Since
f is assumed to be the characteristic function of µ, by the uniqueness theorem we
have ν = µ, showing that µn converges weakly to µ.
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Proof of Theorem 3.2

Before proving Theorem 3.2, we first derive a general estimate for the character-
istic function which is also of independent interest.

Lemma 3.1. Let µ be a probability measure on R with characteristic function f .
Then for any δ > 0, we have

µ([−2δ−1, 2δ−1]) >
1

δ

∣∣ ∫ δ

−δ
f(t)dt

∣∣− 1. (3.1)

Proof. By definition, we have∫ δ

−δ
f(t)dt =

∫ δ

−δ

∫ ∞
−∞

eitxµ(dx)dt

=

∫ ∞
−∞

µ(dx)

∫ δ

−δ
(cos tx+ i sin tx)dt

=

∫ ∞
−∞

2 sin δx

x
µ(dx).

Since | sinx
x
| 6 1, it follows that

1

2δ

∣∣ ∫ δ

−δ
f(t)dt

∣∣ =
∣∣ ∫ ∞
−∞

sin δx

δx
µ(dx)

∣∣
6
∫
{x:|δx|62}

µ(dx) +

∫
{x:|δx|>2}

1

|δx|
µ(dx)

6 µ([−2δ−1, 2δ−1]) +
1

2
µ([−2δ−1, 2δ−1]c)

=
1

2
+

1

2
µ([−2δ−1, 2δ−1]).

Reorganising the terms gives the desired inequality.

The significance of Lemma 3.1 lies in telling us that the continuity of f(t) at
t = 0 controls the speed that µ loses its mass at infinity. Indeed, a re-arrangement
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of (3.1) yields

µ([−2δ−1, 2δ−1]c) 6 2− 1

δ

∣∣ ∫ δ

−δ
f(t)dt

∣∣
=

∣∣ ∫ δ
−δ f(0)dt

∣∣− ∣∣ ∫ δ−δ f(t)dt
∣∣

δ
(since f(0) = 1)

6
1

δ

∫ δ

−δ

∣∣f(t)− f(0)
∣∣dt. (3.2)

This inequality shows that the speed that µ([−2δ−1, 2δ−1]c) → 0 as δ ↓ 0 is
controlled by the speed of convergence to zero for the right hand side, which is in
turn controlled by the (modulus of) continuity of f(t) at t = 0.

Remark 3.1. In the language of analysis, the study of the precise relationship
between the tail behaviour of a function and the behaviour near the origin of its
Fourier transform is the content of Tauberian theory.

The key step for proving Theorem 3.2 is to show that the family {µn : n > 1} is
tight, which guarantees the existence of a weak convergent subsequence, and the
remaining steps are easy. The assumptions in the theorem play an essential role
for establishing tightness through the estimate (3.2).

Proof of Theorem 3.2. Step one: tightness of {µn}. According to (3.2), for every
δ > 0 we have

µn([−2δ−1, 2δ−1]c) 6
1

δ

∫ δ

−δ

∣∣fn(t)− fn(0)
∣∣dt

6
1

δ

∫ δ

−δ

∣∣fn(t)− f(t)
∣∣dt+

1

δ

∫ δ

−δ

∣∣f(t)− f(0)
∣∣dt

where we have also used the obvious fact that fn(0) = f(0) = 1. Now given ε > 0,
by the continuity assumption for f(t) at t = 0, there exists δ = δ(ε) > 0 such that

1

δ

∫ δ

−δ

∣∣f(t)− f(0)
∣∣dt < ε.

Since fn(t)→ f(t) for every t and |fn(t)−f(t)| 6 2, by the dominated convergence
theorem (for such fixed δ) we know that

lim
n→∞

∫ δ

−δ
|fn(t)− f(t)|dt = 0.
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In particular, there exists N = N(ε) > 1, such that

1

δ

∫ δ

−δ

∣∣fn(t)− f(t)
∣∣dt < ε for all n > N.

It follows that
µn([−2δ−1, 2δ−1]c) < 2ε for all n > N. (3.3)

By further shrinking δ, we can ensure that (3.3) holds for µ1, · · · , µN as well and
thus for all n. This gives the tightness property.

Step two: there is precisely one weak limit point of µn. Since the family {µn}
is tight, we know that there exists a subsequence µnk converging weakly to some
probability measure µ. Let µmj another subsequence which converges weakly to
another probability measure ν. According to Theorem 3.1, we have

fnk(t)→ fµ(t), fmj(t)→ fν(t)

for the corresponding characteristic functions. But from assumption we know that
fn(t) converges pointwisely. Therefore, we conclude that fν(t) = fµ(t), which
implies ν = µ by the uniqueness theorem. Therefore, the sequence has one and
only one weak limit point µ.

Step three: µn converges weakly to µ. This is a very natural consequence of
Step Two. Let f ∈ Cb(R) and denote cn ,

∫∞
−∞ f(x)µn(dx). Suppose that c is

a limit point of cn, say along a subsequence cmj . By tightness, there is a further
weakly convergent subsequence µmjl , whose weak limit has to be µ by Step Two.
Therefore,

cmjl =

∫ ∞
−∞

f(x)µmjl (dx)→
∫ ∞
−∞

f(x)µ(dx)

as l → ∞. This shows that c =
∫∞
−∞ f(x)µ(dx). In other words, cn has precisely

one limit point c. Therefore,

cn =

∫ ∞
−∞

f(x)µn(dx)→ c =

∫ ∞
−∞

f(x)µ(dx)

as n→∞. This proves the weak convergence of µn to µ.

4 Some applications of the characteristic function
We discuss a few simple applications of the characteristic function. The more
powerful applications to central limit theorems will be discussed in the next topic.
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If we take the k-th derivative of the expression f(t) = E[eitX ] at t = 0, we
obtain (formally) that f (k)(0) = ikE[Xk]. This tells us that we can use the char-
acteristic function to compute moments. The following result makes this fact
precise.

Theorem 4.1. Suppose that the random variable X has absolute moments up to
order n. Then its characteristic function f(t) has bounded continuous derivatives
up to order n, given by

f (k)(t) = ikE[XkeitX ], 1 6 k 6 n.

In particular, E[Xk] = f (k)(0)
ik

for each 1 6 k 6 n.

Proof. We only consider the case when n = 1, as the general case will follow by
induction. First of all, for any real numbers t and h we have

f(t+ h)− f(t)

h
= E

[ei(t+h)X − eitX
h

]
.

Note that
ei(t+h)X − eitX

h
→ iXeitX as h→ 0,

and
∣∣ ei(t+h)X−eitX

h

∣∣ 6 |X| which is integrable by assumption. According to the
dominated convergence theorem, we conclude that

f(t+ h)− f(t)

h
→ E[iXeitX ] as h→ 0,

which is the derivative of f(t). Its continuity is an obvious consequence of the
dominated convergence theorem again.

The following result is a direct corollary of Theorem 4.1 and the Taylor ap-
proximation theorem in calculus.

Corollary 4.1. Under the same assumption as in Theorem 4.1, we have

f(t) =
n∑
k=0

ikE[Xk]

k!
tk + o(|t|n),

where o(|t|n) denotes a function such that o(|t|n)
|t|n → 0 as t→ 0.
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As another application, we reproduce the weak law of large numbers in the
i.i.d. case, using the theory of characteristic functions.

Theorem 4.2. Let {Xn : n > 1} be a sequence of i.i.d. random variables with
finite mean m , E[X1]. Then

X1 + · · ·+Xn

n
→ m in prob.

as n→∞.

Proof. Since the asserted limit is a deterministic constant, it is equivalent to
proving convergence in distribution. Let f(t) be the characteristic function of X1

(and thus of Xn for every n). Then, with Sn , X1 + · · ·+Xn we have

fSn/n(t) = E
[
eit(X1+···+Xn)/n

]
=
(
f
( t
n

))n
.

Since X1 has finite mean, by Corollary 4.1 we can write

fSn/n(t) =
(
1 +

imt

n
+ o(1/n)

)n
= (1 + qn)

1
qn
·nqn ,

where qn , imt
n

+ o(1/n). Note that qn → 0 and nqn → imt as n→∞. Therefore,
(1 + qn)1/qn → e and

fSn/n(t)→ eimt

as n→∞. Since eimt is the characteristic function of the constant random variable
X = m, we conclude from Lévy-Cramér’s continuity theorem that Sn

n
converges

to m in distribution.

5 Pólya’s criterion for characteristic functions
In this section, we consider the following natural question. Suppose that f(t) is a
given function. How can we know if it is the characteristic function of some ran-
dom variable/probability measure? There is a general theorem, due to Bochner,
which provides a necessary and sufficient condition for a function to be a char-
acteristic function. Bochner’s criterion is not very easy to verify in practice. On
the other hand, there is a rather useful criterion (a sufficient condition) due to
Pólya. In many situations, Pólya’s criterion can be checked explicitly and be used
to construct a rich class of characteristic functions. In what follows, we discuss
this elegant and important result of Pólya.
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Theorem 5.1. Let f : R→ R be a real valued function which satisfies the follow-
ing properties:

(i) f(0) = 1 and f(t) = f(−t) for all t;
(ii) f(t) is decreasing and convex on (0,∞);
(iii) f(t) is continuous at the origin, and limt→∞ f(t) = 0.

Then f(t) is the characteristic function of some random variable/probability mea-
sure.

The generic shape of functions that satisfy Pólya’s criterion is sketched in the
figure below.

Figure 1: Pólya’s Criterion

Remark 5.1. Note that the conditions imply that f(t) is non-negative. The con-
dition that f(t) is continuous at t = 0 is important. Indeed, the function

f(t) ,

{
1, t = 0;

0, t 6= 0,

satisfies all conditions of the theorem except for continuity at the origin. This func-
tion is apparently not a characteristic function. The condition that limt→∞ f(t) =
0 is not important, and can be replaced by limt→∞ f(t) = c > 0 for some c ∈ (0, 1).
Indeed, in the latter case, we consider

g(t) ,
f(t)− c

1− c
.

Then g(t) satisfies the conditions of the theorem and is thus a characteristic
function. But we can write

f(t) = (1− c) · g(t) + c · 1,
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which is a convex combination of two characteristic functions (g(t) and 1). There-
fore, f(t) is also a characteristic function.

Before proving Theorem 5.1, we first look at a simple but enlightening example.

Example 5.1. The simplest example that satisfies Pólya’s criterion is the follow-
ing function:

f(t) = (1− |t|)+ ,

{
1− |t|, |t| 6 1;

0, otherwise.

For this example, there is no need to use Theorem 5.1 to see that it is a charac-
teristic function. By evaluating the inversion formula (2.3) explicitly, one easily
finds that f(t) is the characteristic function of the distribution whose probability
density function is given by

ρ(x) =
1− cosx

πx2
, x ∈ R.

Example 5.2. Another interesting example that satisfies the conditions of the
theorem is the function fα(t) , e−|t|

α (α ∈ (0, 1]). In particular, this covers the
case of the Cauchy distribution (when α = 1). When α ∈ (1, 2), fα is still a
characteristic function, however, Theorem 5.1 does not apply since fα is no longer
convex. The treatment of this case will be given in the next topic (by a different
approach) when we study the central limit theorem.

The starting point for proving Theorem 5.1 is the following observation: if
f1, f2 are characteristic functions and λ ∈ (0, 1), then

λ1f1 + λ2f2

is also a characteristic function (cf. Week 6 Practice Problem 2-ii). This property
is easily generalised to the case of more than two members: if f1, · · · , fn are
characteristic functions and λ1, · · · , λn are positive numbers such that λ1 + · · ·+
λn = 1, then

λ1f1 + · · ·+ λnfn

is also a characteristic function. Without surprise, this fact can be further gener-
alised to the case of the convex combination of a continuous family of characteristic
functions. To be precise, let ν be a probability measure on (0,∞), and for each
r ∈ (0,∞) let t 7→ fr(t) be a characteristic function. Under some measurability
property of r 7→ fr, one can show that the function

t 7→
∫
(0,∞)

fr(t)ν(dr)

20



is also a characteristic function. The assumption that ν is a probability measure on
(0,∞) guarantees that this is a convex combination of the family {fr : r ∈ (0,∞)}
of characteristic functions, weighted by the measure ν.

The key idea of the proof of Theorem 5.1 is to express f(t) as a convex com-
bination of a (continuous) family of characteristic functions, more precisely, as

f(t) =

∫
(0,∞)

fr(t)ν(dr) (5.1)

where fr is some classical characteristic function (for each r > 0) and ν is a
probability measure on (0,∞). The above discussion then shows that f must also
be a characteristic function. We now carry out this scheme.

Proof of Theorem 5.1. Step one. We first collect some standard properties arising
from the convexity of f(t) as well as the other assumptions in the theorem. For
each t > 0, we define the right derivative of f(t) as

f ′+(t) , lim
h↓0

f(t+ h)− f(t)

h
.

(i) f ′+ is well defined and we have −∞ < f ′+(t) 6 0 for every t > 0.
(ii) f ′+ is increasing and right continuous on (0,∞).
(iii) For each given t > 0, f is Lipschitz (and absolutely continuous) on [t,∞).
(iv) Since limt→∞ f(t) = 0, we have

lim
t→∞

f ′+(t) = 0.

Step two. Since f ′+ is increasing and right continuous, we can define a measure
µ on (0,∞) by using the relation

µ((a, b]) , f ′+(b)− f ′+(a), 0 < a < b.

The Carathéodory extension theorem in measure theory ensures the construction
of µ. Using µ and the density function ρ(r) = r, we introduce another measure ν
on (0,∞) by

ν(dr) , rµ(dr).

The definition of ν is understood as dν
dµ

(r) = r or

ν(A) ,
∫
A

rν(dr), A ∈ B((0,∞)).
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Step three. We are going to express f(t) as an integral with respect to ν in the
form (5.1). To this end, first note that, by the definition of µ, we have

−f ′+(s) = 0− f ′+(s) = f ′+(∞)− f ′+(s)

=

∫ ∞
s

µ(dr) =

∫ ∞
s

r−1ν(dr)

for every s > 0. In addition, by the fundamental theorem of calculus, we have

f(t) = −(f(∞)− f(t)) = −
∫ ∞
t

f ′+(s)ds

=

∫ ∞
t

∫ ∞
s

r−1ν(dr)ds

for every t > 0. Using Fubini’s theorem, we obtain that

f(t) =

∫ ∞
t

( ∫ r

t

ds
)
r−1ν(dr) =

∫ ∞
t

(
1− t

r

)
ν(dr)

=

∫
(0,∞)

(
1− t

r

)+
ν(dr), for all t > 0.

Since f(t) is an even function, we arrive at

f(t) =

∫
(0,∞)

(
1− |t|

r

)+
ν(dr), for all t ∈ R\{0}. (5.2)

Step four. For each given r > 0, the function

fr(t) ,
(
1− |t|

r

)+
, t ∈ R

is a characteristic function. This is a direct consequence of Example 5.1 and the
scaling property of characteristic functions.

Step five. It remains to show that ν is a probability measure on (0,∞), which
then recognises (5.2) as a convex combination of the family {fr : r > 0} of
characteristic functions. To see this, we let t ↓ 0 in the equation (5.2). By the
assumption, the left hand side converges to f(0) = 1. For the right hand side,
note that for each fixed r,

(
1− |t|

r

)+ ↑ 1 as t ↓ 0.
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By the monotone convergence theorem, we conclude that

1 = lim
t↓0

∫
(0,∞)

(
1− |t|

r

)+
ν(dr) =

∫
(0,∞)

1ν(dr) = ν(0,∞).

Therefore, ν is a probability measure on (0,∞), finishing the proof of Theorem
5.1.

We conclude this topic by two interesting applications of Pólya’s theorem.

Corollary 5.1. Let c > 0. There exist two different characteristic functions f1, f2
such that

f1(t) = f2(t) for t ∈ (−c, c).

Proof. Let f1(t) = e−|t| be the characteristic function of the Cauchy distribution.
We draw the tangent line of f1(t) at the point A = (c, f1(c)) and let this line
intersect the positive t-aixs at the point B. We define f2 to be the function whose
graph on (0,∞) is given by

(i) the graph of f1 on the part of (0, c);
(ii) the line segment AB on the part from A to B;
(iii) the zero function from B to infinitely.

The construction is mostly clear when one draws a picture. f2(t) is assumed to be
extended to the negative axis by symmetry. It is readily checked that f2 satisfies
Pólya’s criterion and is thus a characteristic function. The functions f1, f2 satisfy
the desired property.

Corollary 5.2. There exist three characteristic functions f1, f2, f3 such that f1 6=
f2 but f1f3 = f2f3.

Proof. Let f1, f2 be given as in Corollary 5.1. Let

f3(t) , (1− |t|
c′

)+

where c′ ∈ (0, c) is a fixed constant. Then f1, f2, f3 are desired.

Remark 5.2. Corollary 5.2 tells us that the cancellation law does not hold for
characteristic functions, i.e.

f1f3 = f2f3 ; f1 = f2.
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6 Appendix: The uniqueness theorem without in-
version

Using the inversion formula to prove the uniqueness result (as we did) is quite
heavy and unnatural. There is a more direct argument which gives us better
insight into the uniqueness property. Suppose that µ1 and µ2 have the same
characteristic function, i.e.∫ ∞

−∞
eitxµ1(dx) =

∫ ∞
−∞

eitxµ2(dx) for all t ∈ R.

We want to show that µ1 = µ2. The general idea is the following.

(i) it is enough to show that∫ ∞
−∞

f(x)µ1(dx) =

∫ ∞
−∞

f(x)µ2(dx) (6.1)

for a sufficiently large class of functions f ,
(ii) and this class of functions can be approximated by linear combinations of
functions from the family {eitx : t ∈ R}.

The first point is natural to expect. The fact that the family {eitx : t ∈ R}
generates a wide class of functions is also natural from the view of Fourier series:
any continuous periodic function f(x) with period T = 1 (i.e. f(x + 1) = f(x))
admits a Fourier series expansion

f(x) ∼
∞∑

n=−∞

cne
2πinx, x ∈ [0, 1],

where cn =
∫ 1

0
f(x)e2πinxdx is the Fourier coefficient.

Instead of using Fourier series, we rely on a rather power theorem of Stone-
Weierstrass, stated in the context of periodic functions as follows.

Theorem 6.1 (The Stone-Weierstrass Theorem for period functions). Let T > 0.
Define CT to be the space of continuous periodic functions f : R→ C with period
T . Let A be a subset of CT satisfying the following properties:

(i) A is an algebra: f, g ∈ A, a, b ∈ R =⇒ af + bg, f · g ∈ A;
(ii) A vanishes at no point: for any x ∈ [0, T ), there exists f ∈ A such that
f(x) 6= 0;
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(iii) A separates points: for any x 6= y ∈ [0, T ), there exists f ∈ A such that
f(x) 6= f(y).

Then A is dense in CT with respect to uniform convergence on [0, T ]. More pre-
cisely, for any periodic function f ∈ CT and ε > 0, there exists g ∈ A such
that

sup
t∈[0,T ]

|f(t)− g(t)| < ε.

Now we prove the uniqueness result for the characteristic function by using
the Stone-Weierstrass theorem.

Another proof of Corollary 2.1. Let µ1, µ2 be two probability measures having the
same characteristic function.

We first claim that (6.1) holds for any continuous periodic function f . Indeed,
let T > 0 be an arbitrary positive number and define CT to be the space of periodic
functions f : R→ C with period T . Let AT ⊆ CT be the vector space spanned by
the family {e2πinx/T : n ∈ Z} of functions. It is tedious to check that AT satisfies
all the assumptions in Theorem 6.1. Therefore, AT is dense in CT with respect to
uniform convergence on [0, T ]. On the other hand, by assumption we know that
(6.1) holds for every f ∈ AT . It follows from a simple approximation argument
that (6.1) holds for every f ∈ CT .

Next, we claim that (6.1) holds for every bounded continuous function f . The
idea is to replace f by a periodic function with large period. Given an arbitrary
ε > 0, there exists M > 0 such that

µi([−M,M ]c) < ε for i = 1, 2.

Let g : [−M − 1,M + 1]→ R be the continuous function given by

g(x) ,


f(x), x ∈ [−M,M ];

0, x ∈ (−∞,−M − 1) ∪ (M + 1,∞);

linear, x ∈ [−M − 1,−M ] or x ∈ [M,M + 1].

By definition we have g(−M − 1) = g(M + 1) and

|g(x)| 6 ‖f‖∞ , sup
y∈R
|f(y)| for all x ∈ [−M − 1,M + 1]

Let ḡ : R→ R be the periodic extension of g to R with period T = 2M + 2. From
the previous step we know that (6.1) holds for ḡ. Since we also have f = ḡ on
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[−M,M ], it follows that∣∣ ∫ fdµ1 −
∫
fdµ2

∣∣
6
∣∣ ∫ fdµ1 −

∫
ḡdµ1

∣∣+
∣∣ ∫ ḡdµ1 −

∫
ḡdµ2

∣∣+
∣∣ ∫ ḡdµ2 −

∫
fdµ2

∣∣
=
∣∣ ∫ fdµ1 −

∫
ḡdµ1

∣∣+
∣∣ ∫ ḡdµ2 −

∫
fdµ2

∣∣
6 2‖f‖∞ ·

(
µ1([−M,M ]c) + µ2([−M,M ]c)

)
< 4‖f‖∞ε.

Since ε is arbitrary, we conclude that (6.1) holds for f .
Finally, if (6.1) holds for all bounded continuous functions, we must have

µ1 = µ2. The verification of this point is left to the reader as an exercise.

26



Topic 4: The Central Limit Theorem

The classical central limit theorem describes the phenomenon that the fluctu-
ation of the partial sum of an i.i.d. sequence around its mean is asymptotically
Gaussian. This behaviour is universal as the particular distribution of the se-
quence is of little relevance and one ends up with a canonical Gaussian limit.
The mathematics behind the appearance of this Gaussian nature is rather deep.
In vague terms, the reason lies in two aspects: the dependence structure in the
sequence is weak and the contribution of each individual term in the sum is neg-
ligible in some sense. In this topic, we develop some insights into the hidden
mechanism of this fundamental phenomenon from several perspectives. The next
topic, which deals with the rate of convergence, will uncover the secrets in an even
deeper way.

1 The classical central limit theorem
We start by recapturing the classical central limit theorem in the context of i.i.d.
random variables. This fundamental result was due to Lindeberg and Lévy.

Theorem 1.1. Let {Xn : n > 1} be a sequence of independent and identically
distributed random variables. Suppose that X1 has finite mean and variance. Then
Sn−E[Sn]√

Var[Sn]
converges weakly to the standard normal distribution as n → ∞, where

Sn , X1 + · · ·+Xn.

Proof. We may assume that E[X1] = 0, for otherwise we can consider the sequence
Xn − E[Xn] instead, which does not change the original claim. Let f(t) be the
characteristic function of X1. Since X1 has finite second moment, according to
Topic 3, Corollary 4.1, we have

f(t) = 1− 1

2
σ2t2 + o(t2),
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where σ2 , Var[X1]. Since the sequence {Xn} is i.i.d., the characteristic function
of Sn−E[Sn]√

Var[Sn]
is easily seen to be given by

fn(t) =
(
f
( t

σ
√
n

))n
=
(
1− t2

2n
+ o
( t2
nσ2

))n
.

Note that t is fixed and the infinitesimal term o(t2/nσ2) is understood as n→∞.
If we write

cn , − t
2

2n
+ o
( t2
nσ2

)
,

then
fn(t) = (1 + cn)

1
cn
·ncn → e−t

2/2.

The limit is precisely the characteristic function of the standard normal distribu-
tion. According to the Lévy-Cramér theorem, we conclude that

Sn − E[Sn]√
Var[Sn]

→ N(0, 1), weakly.

The above proof, as the most standard one, is so simple that it has unfor-
tunately concealed most of the deeper insights into this fundamental theorem.
The use of characteristic functions is somehow like a piece of magic, leaving the
audience in shock after the play is over without telling the deeper truth of why.
On the other hand, the following argument perhaps provides us with a little bit
more clues towards the matter.

It is often true (and is natural to believe) that most of the common distribu-
tions are uniquely determined by the sequence of moments. The normal distri-
bution is one such example. Recall that, the moments of Z d

= N(0, 1) are given
by

E[Z2m−1] = 0, E[Z2m] = (2m− 1) · (2m− 3) · · · · · 3 · 1
for each m > 1.

Let us compute moments of the quantity Sn−E[Sn]√
Var[Sn]

. We assume that E[X1] = 0

and Var[X1] = 1, so that Sn−E[Sn]√
Var[Sn]

becomes Sn√
n
. The general case can always be

reduced to this standardised one. To make use of the idea of moments, let us
further assume that X1 has finite moments of all orders. The following result is
the crucial point why we expect that Sn√

n
converges weakly to N(0, 1).
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Lemma 1.1. For each m > 1, we have

lim
n→∞

E
[( Sn√

n

)m]
= Lm,

where Lm , E[Zm] is the m-th moment of the standard normal distribution.

Proof. We prove the claim by induction on m. The case when m = 1 is trivial.
When m = 2, we have

E[
( Sn√

n

)2]
=

1

n

n∑
j=1

E[X2
j ] = 1 = L2.

Now suppose that the claim is true for a general m. To examine the (m+ 1)-case,
first observe that

E[Sm+1
n ] = E[(X1 + · · ·+Xn)Smn ]

= n · E[XnS
m
n ] (since {Xn} are i.i.d.)

= n · E[Xn(Xn + Sn−1)m]

= n ·
m∑
j=0

( m
j

)
E[Xj+1

n ]E[Sm−jn−1 ]

= nm · E[Sm−1
n−1 ] + n ·

m∑
j=2

( m
j

)
E[Xj+1

n ]E[Sm−jn−1 ], (1.1)

where to reach the last equality we have used the fact that E[Xn] = 0 and E[X2
n] =

1.
Now let us take into account the

√
n-normalisation. To simplify the notation,

we set
Lm(n) , E

[( Sn√
n

)m]
and Cj , E[Xj+1

n ]. It follows from (1.1) that

Lm+1(n) = mLm−1(n− 1) ·
(n− 1

n

)m−1
2

+
m∑
j=2

( m
j

)
CjLm−j(n− 1) · (n− 1)(m−j)/2

n(m−1)/2
.
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According to the induction hypothesis and the simple observation that (for j > 2)

(n− 1)(m−j)/2

n(m−1)/2
→ 0 as n→∞,

we conclude that
Lm+1(n)→ mLm−1

as n→∞. This not only shows the convergence of Lm+1(n), but more importantly
its convergence to the correct limit

mLm−1 = Lm+1,

which is precisely the relation that the moments of N(0, 1) satisfy. This completes
the proof of the lemma.

Based on Lemma 1.1, it is now reasonable to expect that the central limit
theorem holds true, i.e. Sn√

n
converges weakly to N(0, 1). Technically there is still

a missing component in the proof, namely why the convergence of each moment
implies the weak convergence. This is the content of the more general moment
problem in probability theory. We will not delve into this property which is not
so surprising to believe at the heuristic level.

An application of the classical central limit theorem

We give an enlightening application of the classical central limit to prove the
famous Stirling’s formula:

n! ∼
√

2πn
(n
e

)n
,

where the notation an ∼ bn means limn→∞
an
bn

= 1.
We fist provide a heuristic but semi-rigorous argument. Let {Xn : n > 1} be a

sequence of independent and Poisson distributed random variables with parameter
1. Define Sn , X1 + · · ·+Xn. We can then write

P(Sn = n) = P(n− 1 < Sn 6 n)

= P
(
− 1√

n
<
Sn − n√

n
6 0
)
.

By the central limit theorem, we know that Sn−n√
n
→ N(0, 1) weakly. In particular,

P(Sn = n) ≈ 1√
2π

∫ 0

−1/
√
n

e−x
2/2dx.
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Note that
P(Sn = n) =

nne−n

n!

since Sn
d
= Poisson(n), and ∫ 0

−1/
√
n

e−x
2/2dx ≈ 1√

n
.

It follows that
nne−n

n!
≈ 1√

2πn

which is precisely the Stirling approximation. This argument is not rigorous since
the step

P
(
− 1√

n
<
Sn − n√

n
6 0
)
≈ 1√

2π

∫ 0

−1/
√
n

e−x
2/2dx.

is by no mean a simple consequence of the central limit theorem, as we are also
varying the end point of the interval.

To give a rigorous treatment, let us instead use a sequence {Xn : n > 1}
of independent and exponential distributed random variables with parameter 1.
It is well known that Sn , X1 + · · · + Xn now follows a Gamma distribution
with parameter n and 1. Using the explicit formula for the density function of a
Gamma distribution, it is plain to check that

P
(
0 6

Sn+1 − (n+ 1)√
n+ 1

6 1
)

=

√
n+ 1

n!

∫ 1

0

(
√
n+ 1 · (x+

√
n+ 1))ne−

√
n+1(x+

√
n+1)dx. (1.2)

In the first place, according to the central limit theorem, we know that

lim
n→∞

P
(
0 6

Sn+1 − (n+ 1)√
n+ 1

6 1
)

=
1√
2π

∫ 1

0

e−x
2/2dx. (1.3)

On the other hand, if we apply two steps of change of variables:

y =
√
n+ 1(x+

√
n+ 1), z =

y − n√
n
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and on the right hand side of (1.2), it leads us to

P
(
0 6

Sn+1 − (n+ 1)√
n+ 1

6 1
)

=
1

n!

∫ 1+n+
√
n+1

1+n

yne−ydy

=

√
nnne−n

n!

∫ 1√
n

+
√

1+ 1
n

1√
n

(
1 +

z√
n

)n
e−
√
nzdz.

Note that (
1 +

z√
n

)n
= exp

(
n log

(
1 +

z√
n

))
= exp

(
n ·
( z√

n
− z2

2n
+ o(

1

n
)
))
,

and thus
lim
n→∞

(
1 +

z√
n

)n
e−
√
nz = e−z

2/2.

It follows that

P
(
0 6

Sn+1 − (n+ 1)√
n+ 1

6 1
)
∼
√
nnne−n

n!

∫ 1

0

e−z
2/2dz. (1.4)

Now Stirling’s formula follows from comparing (1.3) and (1.4).

2 Lindeberg’s central limit theorem
There are at least two reasons why we still wish to push the matter further. The
first reason is that, in the classical central limit theorem we have assumed that
the sequence of random variables {Xn} are identically distributed. The two proofs
given in the last section make use of this condition in a crucial way. However, this
condition is not an essential point at all for the central limit theorem. We need
to understand the deeper reason that has led to this phenomenon. The second
reason is that, the previous proofs are only qualitative, as it tells us nothing about
how close the distribution of Sn−E[Sn]√

Var[Sn]
is to the standard normal one for each given

n. For practical purposes it is necessary and important to develop robust tools
for studying the rate of convergence in the central limit theorem.
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Lindeberg’s central limit theorem provides essential insights towards the above
two aspects. For the first aspect, it suggests that some sort of “uniform negligibility
of each summand Xm (1 6 m 6 n) with respect to Sn” is crucial to for the central
limit theorem to hold. For the second aspect, recall that probability measures µn
on (R,B(R)) converge weakly to µ if and only if∫

R
f(x)µn(dx)→

∫
R
f(x)µ(dx) for all f ∈ Cb(R).

In this spirit, a natural way of comparing the “distance” between µn and µ is
to quantitatively estimate the distance

∣∣ ∫
R fdµn −

∫
R fdµ

∣∣ for each f in a suit-
able class of functions. In the context of random variables and the central limit
theorem, this is about estimating the distance∣∣E[f(Sn − E[Sn]√

Var[Sn]

)]
− E[f(Z)]

∣∣ for suitable class of functions f,

where Z d
= N(0, 1). Lindeberg’s central limit theorem precisely gives an answer

to the question of such kind.
Before stating the theorem, we first present the basic set-up. We are again

considering a sequence {Xn : n > 1} of independent (but not necessarily identi-
cally distributed!) random variables with finite mean and variance. We assume
that E[Xn] = 0, for otherwise we can always centralised the sequence to have
mean zero. For each n > 1, let

σn ,
√

Var[Xn], Σn ,
√

Var[Sn], Ŝn ,
Sn
Σn

.

We introduce two key quantities that will appear in the rate of convergence esti-
mate:

rn , max
16m6n

σm
Σn

(2.1)

and

gn(ε) ,
1

Σ2
n

n∑
m=1

E[X2
m; |Xm| > εΣn], ε > 0.

Vaguely speaking, these two quantities reflect the relative magnitude of each
summand Xm (1 6 m 6 n) with respect to Sn. We also recall the notation
‖f‖∞ , supx∈R |f(x)| for a given function f : R→ R.

Now we are able to state Lindeberg’s central limit theorem. In many ways it
is deeper and more fundamental than the classical central limit theorem in the
last section. We denote C3

b (R) as the space of functions f : R → R that are
continuously differentiable with bounded derivatives up to order three.
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Theorem 2.1. Under the aforementioned set-up, let f ∈ C3
b (R). Then for each

ε > 0 and n > 1, we have∣∣E[f(Ŝn)]− E[f(Z)]
∣∣ 6 (ε

6
+
γ · rn

6

)
‖f ′′′‖∞ + gn(ε) · ‖f ′′‖∞, (2.2)

where Z d
= N(0, 1) and γ , E[|Z|3] =

√
8
π
is the third absolute moment of Z. In

addition, if
lim
n→∞

gn(ε) = 0 for every ε > 0, (2.3)

then
Ŝn → Z weakly

as n→∞, giving the central limit theorem for {Xn}.

The condition (2.3) is known as Lindeberg’s condition. Theorem 2.1 therefore
tells us that Lindeberg’s condition implies a central limit theorem in the context of
independent random variables with finite mean and variance. As a direct corollary,
we can recover the classical limit theorem. Indeed, if {Xn : n > 1} is i.i.d., then
Σn =

√
nσ (σ2 , Var[X1]), and thus

gn(ε) =
1

nσ2

n∑
m=1

E[X2
m; |Xm| > ε

√
nσ]

=
1

σ2
E[X2

1 : |X1| > ε
√
nσ]

which goes to zero as n→∞. In particular, Lindeberg’s condition holds. A more
interesting corollary of Lindeberg’s theorem is the following Lyapunov’s central
limit theorem.

Corollary 2.1. Let {Xn : n > 1} be a sequence of independent random variables
with mean zero and finite third moments. Define Sn,Σn as before, and we also set

Γn ,
n∑

m=1

E[|Xm|3].

If Γn
Σ3
n
→ 0, then Sn

Σn
converges weakly to N(0, 1).

Proof. We verify Lindeberg’s condition by using Chebyshev’s inequality:

gn(ε) =
1

Σ2
n

n∑
m=1

E[X2
m; |Xm| > εΣn] 6

1

εΣ3
n

n∑
m=1

E[|Xm|3] =
Γn
εΣ3

n

→ 0.
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Remark 2.1. Lyapunov’s central limit theorem can be derived by using the method
of characteristic functions, by looking at third order Taylor expansions for the
characteristic function. We leave it as a good exercise to the reader.

The rest of this section is devoted to the proof of Lindeberg’s central limit
theorem.

Proof of Theorem 2.1

We first establish the quantitative estimate (2.2), and then show how leads to the
weak convergence property for the central limit theorem.

The quantitative estimate.

Fix n > 1. For each 1 6 m 6 n, we define X̂m , Xm
Σn

so that

Ŝn = X̂1 + · · ·+ X̂n.

The main idea of the proof is to swap each X̂m to a reference normal random
variable Ŷm (one flip at each step) in a way that after n swaps the accumulated
error between Ŝn and Ŷ1 + · · ·+ Ŷn

d
= N(0, 1) is controllable.

Step one: Introducing the reference normal random variables. To implement
this idea mathematically, let us first assume that, there are n standard normal
random variables Y1, · · · , Yn defined on the same probability space as X1, · · · , Xn

are, and
X1, X2, · · · , Xn, Y1, Y2, · · · , Yn

are all independent. This is always possible by enlarging the original probability
space (a standard measure-theoretic construction). We set

Ŷm ,
σmYm

Σn

, 1 6 m 6 n,

and
T̂n , Ŷ1 + · · ·+ Ŷn.

Observe that Ŷm is a normal random variable that has mean zero and the same
variance as X̂m does. In addition, T̂n

d
= N(0, 1). The problem is now essentially

about estimating ∣∣E[f(Ŝn)]− E[f(T̂n)]
∣∣

where f ∈ C3(R;R) is the given fixed test function.
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Step two: Forming the telescoping sum. Let us form a telescoping sum to esti-
mate the above quantity by flipping X̂m to Ŷm, one at each step. More precisely,
we write

E[f(Ŝn)]− E[f(T̂n)]

= E[f(X̂1 + X̂2 + X̂3 + · · ·+ X̂n)]− E[f(Ŷ1 + X̂2 + X̂3 + · · ·+ X̂n)]

+ E[f(Ŷ1 + X̂2 + X̂3 + · · ·+ X̂n)]− E[f(Ŷ1 + Ŷ2 + X̂3 + · · ·+ X̂n)]

+ E[f(Ŷ1 + Ŷ2 + X̂3 + · · ·+ X̂n)]− E[f(Ŷ1 + Ŷ2 + Ŷ3 + · · ·+ X̂n)]

· · ·
+ E[f(Ŷ1 + · · · Ŷn−1 + X̂n)]− E[f(Ŷ1 + · · ·+ Ŷn−1 + Ŷn)]. (2.4)

To rewrite the expression in a more enlightening form, let us introduce for 1 6
m 6 n,

Um , Ŷ1 + · · ·+ Ŷm−1 + X̂m+1 + · · ·+ X̂n.

Then (2.4) can be written as

E[f(Ŝn)]− E[f(T̂n)] =
n∑

m=1

(
E[f(Um + X̂m)]− E[f(Um + Ŷm)]

)
.

Step three: Introducing the Taylor approximation. Now we use Taylor’s ap-
proximation for the function f to estimate∣∣E[f(Um + X̂m)]− E[f(Um + Ŷm)]

∣∣.
For this purpose, define

Rm(ξ) , f(Um + ξ)− f(Um)− f ′(Um)ξ − f ′′(Um)

2
ξ2, ξ ∈ R.

This is the remainder for the second order Taylor expansion of f around Um. Since
Um, X̂m, Ŷm are independent, and X̂m, Ŷm have the same mean and variance, we
see that

E[f(Um + X̂m)]− E[f(Um + Ŷm)] = E[Rm(X̂m)]− E[Rm(Ŷm)].

This is a very important observation. It follows that∣∣E[f(Ŝn)]− E[f(T̂n)]
∣∣

6
n∑

m=1

∣∣E[Rm(X̂m)]
∣∣+

n∑
m=1

∣∣E[Rm(Ŷm)]
∣∣. (2.5)
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Step four: Estimating the E[Rm(X̂m)] and E[Rm(Ŷm)] sums separately. Next
we estimate the right hand side of (2.5). First of all, by using a third order Taylor
expansion of f , we have

|Rm(ξ)| 6 1

3!
‖f ′′′‖∞|ξ|3, (2.6)

In addition, the second order Taylor expansion gives

|f(Um + ξ)− f(Um)− f ′(Um)ξ| 6 1

2
‖f ′′‖∞|ξ|2,

and thus we also have

|Rm(ξ)| 6 1

2
‖f ′′‖∞|ξ|2 +

1

2
|f ′′(Um)| · |ξ|2

6 ‖f ′′‖∞|ξ|2. (2.7)

We use (2.6) to estimate the E[Rm(Ŷm)]-sum as follows:

n∑
m=1

∣∣E[Rm(Ŷm)]
∣∣ 6 1

6
‖f ′′′‖∞

n∑
m=1

E[|Ŷm|3]

=
γ

6
‖f ′′′‖∞

n∑
m=1

σ3
m

Σ3
n

6
γ

6
‖f ′′′‖∞ ·

max16m6n σm
Σn

·
n∑

m=1

σ2
m

Σ2
n

=
γ

6
‖f ′′′‖∞ · rn, (2.8)

where we recall that rn is defined in (2.1) and γ , E[|Y1|3] =
√

8
π
is the third

absolute moment of the standard normal distribution.
The estimation of the E[Rm(X̂m)]-sum is a bit more complicated, and we need
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to split the region of integration into two parts:
n∑

m=1

∣∣E[Rm(X̂m)]
∣∣

=
n∑

m=1

∣∣E[Rm(X̂m); |X̂m| < ε]
∣∣+

n∑
m=1

∣∣E[Rm(X̂m); |X̂m| > ε]
∣∣

6
‖f ′′′‖∞

6

n∑
m=1

E[|X̂m|3; |X̂m| < ε] + ‖f ′′‖∞
n∑

m=1

E[|X̂m|2; |X̂m| > ε]

6
‖f ′′′‖∞ε

6

n∑
m=1

σ2
m

Σ2
n

+ ‖f ′′‖∞gn(ε)

=
ε

6
‖f ′′′‖∞ + gn(ε)‖f ′′‖∞, (2.9)

where we have used (2.6) and (2.7) to estimate the two parts respectively.
The desired estimate (2.2) is now a consequence of (2.8) and (2.9).

Obtaining the central limit theorem.

Now we show that, if Lindeberg’s condition (2.3) holds, then we have the central
limit theorem

Ŝn → N(0, 1) weakly.

To this end, we first recall the definition of rn given by (2.1). Let m be the integer
at which the maximum in (2.1) is attained, i.e. rn = σm

Σn
. It follows that

r2
n =

σ2
m

Σ2
n

= E[X̂2
m]

= E[X̂2
m; |X̂m| < ε] + E[X̂2

m : |X̂m| > ε]

6 ε2 + gn(ε),

for every ε > 0. In particular, if Lindeberg’s condition (2.3) holds, then rn → 0.
According to (2.2), we have

E[f(Ŝn)]→ E[f(Z)] for every f ∈ C3(R),

where Z d
= N(0, 1).

In order to show weak convergence, using the second characterisation in the
Portmanteau theorem, we have to strengthen the class C3(R) of test functions to
the class of bounded, uniformly continuous functions. This is possible due to a
standard technique of molification in analysis.
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Lemma 2.1. Let f : R → R be a bounded and uniformly continuous function.
Then there exists a sequence fn ∈ C3

b (R) such that fn converges uniformly to f .

Proof. The idea is to apply convolution of f with some “nice” function. One
possible choice is the following. For each η > 0, define

ρη(x) =
1√
2πη

e−
x2

2η , x ∈ R

to be the density function of N(0, η). Let

fη(x) , (ρη ∗ f)(x) ,
∫
R
ρη(x− y)f(y)dy.

Since
∫
R ρη(x)dx = 1 and f is bounded, we know that fη is well defined. Indeed,

fη is smooth and its k-th derivative is given by

f (k)
η (x) =

∫
R
ρ(k)
η (x− y)f(y)dy

which is easily seen to be bounded on R.
We now show that fη converges uniformly to f as η → 0. First of all, since f

is uniformly continuous, given ε > 0, there exists δ > 0 such that

|y − x| < δ =⇒ |f(y)− f(x)| < ε.

It follows that∣∣fη(x)− f(x)
∣∣ =

∣∣ ∫
R
ρη(x− y)(f(y)− f(x))dy

∣∣
6
∣∣ ∫
{y:|y−x|<δ}

ρη(x− y)(f(y)− f(x))dy
∣∣

+
∣∣ ∫
{y:|y−x|>δ}

ρη(x− y)(f(y)− f(x))dy
∣∣

6 ε+ 2‖f‖∞ ·
∫
{y:|y−x|>δ}

ρη(x− y)dy

= ε+ 2‖f‖∞ · E[|Xη| > δ]

where Xη
d
= N(0, η). Note that

E[|Xη| > δ] = E
[
Z >

δ
√
η

]
→ 0 as η →∞,
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where Z d
= N(0, 1). Therefore,

lim
η→0
‖fη − f‖∞ 6 ε,

and the result follows as ε is arbitrary.

To complete the proof of the central limit theorem, let f be a bounded and
uniformly continuous function on R. Given ε > 0, let g ∈ C3

b (R) be such that

‖g − f‖∞ , sup
x∈R
|g(x)− f(x)| < ε.

The existence of g is guaranteed by Lemma 2.1. It follows that∣∣E[f(Ŝn)]− E[f(Z)]
∣∣

6
∣∣E[f(Ŝn)]− E[g(Ŝn)]

∣∣+
∣∣E[g(Ŝn)]− E[g(Z)]

∣∣
+
∣∣E[g(Z)]− E[f(Z)]

∣∣
6 2ε+

∣∣E[g(Ŝn)]− E[g(Z)]
∣∣.

According to (2.2), the second term tends to zero as n→∞. Since ε is arbitrary,
we conclude that

E[f(Ŝn)]→ E[f(Z)].

This yields the desired weak convergence.

Remark 2.2. We have seen that Lindeberg’s condition (2.3) implies that

(i)
Sn
Σn

weakly→ N(0, 1) and (ii) rn → 0.

Later on, Feller proved that Lindeberg’s condition is also necessary for (i) and (ii)
to hold. This result together with Theorem 2.1 is known as the Lindeberg-Feller
theorem.

3 Non-Gaussian central limit theorems: an exam-
ple

In the i.i.d. context, if the random variables have finite mean and variance,
the limiting distribution for the normalised partial sum sequence is Gaussian.
However, if the random variables have heavy tails leading to less integrability, the
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limiting distribution (if exists) may no longer be Gaussian. We give one example
to illustrate this.

Let 0 < α < 2 be fixed. Define Fα to be the distribution whose probability
density function is given by

pα(x) ,

{
α

2|x|1+α , |x| > 1;

0, otherwise.

Let {Xn : n > 1} be an i.i.d. sequence with distribution Fα. We are interested in
the behaviour of X1+···+Xn

an
with some normalising sequence an. Note that here X1

does not have finite variance and we are not in the setting of the classical central
limit theorem.

Let fα(t) be the characteristic function of X1. The crucial point for under-
standing this situation is to figure out the behaviour of fα(t) near t = 0. Since
fα(0) = 1, let us write

1− fα(t) =

∫ ∞
−∞

(
1− eitx

)
pα(x)dx

= α

∫ ∞
1

1− cos tx

x1+α
dx

= α|t|α
∫ ∞
|t|

1− cosu

u1+α
du

= α|t|α
( ∫ ∞

0

1− cosu

u1+α
du−

∫ |t|
0

1− cosu

u1+α
du
)
.

Since 1 − cosu = 1
2
u2 + o(u2), we know that first integral on the right hand side

is finite and ∫ |t|
0

1− cosu

u1+α
du =

∫ |t|
0

1
2
u2 + o(u2)

u1+α
du = O(|t|2−α).

Therefore, we see that

1− fα(t) = Cα|t|α +O(|t|2) (3.1)

when t is small, where Cα > 0 is a constant depending only on α.
The relation (3.1) will give rise to the correct normalisation in the corre-

sponding central limit theorem. In fact, the characteristic function of Sn
n1/α (Sn ,

X1 + · · ·+Xn) is given by

f Sn

n1/α
(t) =

(
fα
( t

n1/α

))n
=
(
1− Cα|t|α

n
+O

( t2

n2/α

))n
.
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In the above equation, t is fixed and the term O( t2

n2/α ) is understood as n → ∞.
It follows that

lim
n→∞

f Sn

n1/α
(t) = e−Cα|t|

α

.

According to Lévy-Cramér’s theorem, the function gα(t) , e−Cα|t|
α must be a

characteristic function (of some distribution Gα) and

Sn
n1/α

→ Gα weakly

as n→∞.

Remark 3.1. It is plain to check that when α = 1, Gα is a Cauchy distribution.

Remark 3.2. When α > 2, we are in the setting of the classical central limit
theorem and thus Sn√

n
converges weakly to a normal distribution. What happens

if α = 2?

To understand in a deeper way what limiting distributions can arise from
partial sums of independent random variables, we will be led to the theory of
infinitely divisible distributions which is beyond the scope of our current study.
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Topic 5: Stein’s Method for Gaussian
Approximations

To have a deeper understanding about the central limit theorem, we need
to find effective ways to analyse certain “distance” between probability distribu-
tions/measures. A powerful modern technique is known as Stein’s method. In this
topic, we develop the basic ideas behind this method for Gaussian approximations,
and use it to derive quantitative error estimates for the central limit theorem.

1 The general picture

Recall that, the central limit theorem asserts that Ŝn → Z weakly, where Ŝn
is a suitably normalised random variable and Z

d
= N(0, 1). To understand the

rate of convergence in the central limit theorem, we first need to have a natural
notion of “distance” between two distribution functions (or equivalently, between
two probability measures).

To get the essential idea, suppose thatW and Z are two random variables with
distribution functions F and G respectively. Among others, there are at least two
apparent notions of “distance” between F and G :

(i) The uniform distance:

‖F −G‖∞ , sup
x∈R
|F (x)−G(x)|. (1.1)

(ii) The L1-distance:

‖F −G‖L1 ,
∫
R
|F (x)−G(x)|dx. (1.2)

There is a unified viewpoint to look at these two distances. Let µ, ν be the
probability laws of W,Z respectively. We have seen in the definition of weak
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convergence and the proof of the central limit theorem that, the quantity∣∣E[ϕ(W )]− E[ϕ(Z)]
∣∣ =

∣∣ ∫
R
ϕdµ−

∫
R
ϕdν

∣∣
when ϕ ranges over certain class of test functions, gives a natural sense of “close-
ness” between the two distributions. In fact, if one fixes a suitable class H of test
functions on R, there is an associated notion of distance defined by

dH(µ, ν) , sup
{∣∣ ∫

R
ϕdµ−

∫
R
ϕdν

∣∣ : ϕ ∈ H
}
. (1.3)

Apparently, this notion of distance depends crucially on what class of test func-
tions we are taking.

(i)If H is the class of indicator functions for half intervals, i.e.

H , {1(−∞,a](x) : a ∈ R},

then dH(µ, ν) recovers the uniform distance between F and G defined in (1.1).
The uniform distance is often known as the Kolmogorov distance.
(ii) Now assume further that W and Z both have finite mean. If we take H to be
the class of 1-Lipschitz functions, i.e. the class of functions ϕ : R→ R such that

|ϕ(x)− ϕ(y)| 6 |x− y| for all x, y ∈ R,

then it can be shown that dH(µ, ν) recovers the L1-distance between F and G
defined in (1.2). This fact, which is not entirely obvious, will be clear from the
appendix. This distance is often known as the 1-Wasserstein distance.
(iii) There is another natural distance associated with the class of test functions
taken to be all indicator functions of Borel subsets, i.e. H , {1A(x) : A ∈ B(R)}.
The associated distance, given by

dH(µ, ν) = sup
A∈B(R)

∣∣ ∫
R
1Adµ−

∫
R
1Adν

∣∣ = sup
A∈B(R)

∣∣µ(A)− ν(A)
∣∣,

is known as the total variation distance. This distance is commonly used in the
context of discrete random variables, in particular in the study of Poisson approx-
imations.

From the above discussion, we see that in order to estimate the “distance”
between the distributions of W and Z, a crucial ingredient is to find an effective
way to estimate the quantity

|E[ϕ(W )]− E[ϕ(Z)]| (1.4)
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in terms of suitable “norms” of the test function ϕ. For instance, from Topic
4, Theorem 2.1 (Lindeberg’s central limit theorem) we have seen such type of
estimate in terms of the third derivative of ϕ. But this is not sufficient for many
applications, and we need to strengthen the estimate to other norms of ϕ (e.g. in
terms of the first derivative of ϕ).

In the 1960s, C. Stein developed a powerful method, now known as Stein’s
method, to estimate distributional distances defined through quantities like (1.4).
The scope of Stein’s method goes way beyond the central limit theorem and
Gaussian approximations. However, we will only discuss the Gaussian case in the
most classical set-up. The analysis we develop here contains the essential ideas
behind this method.

As our main goal of this topic, we will use Stein’s method to estimate the
L1-distance between the distributions of W = Ŝn and Z d

= N(0, 1) in the context
of independent random variables. This estimate is known as the L1-Berry-Esseen
estimate. The uniform Berry-Esseen estimate (i.e. the corresponding estimate for
the uniform distance) is much harder to obtain, but is still achievable along the
lines of Stein’s method.

The philosophy and basic ingredients of Stein’s method for
Gaussian approximation

Recall that, in the context of the central limit theorem, Z is a standard normal
random variable and W = Ŝn. The starting point of Stein’s method is the follow-
ing simple calculation. Let f be some nice test function. By applying integration
by parts (assuming the boundary term goes away), we have

E[f ′(Z)] =
1√
2π

∫
R
f ′(z)e−z

2/2dz

=
1√
2π

∫
R
zf(z)e−z

2/2dz

= E[Zf(Z)].

A key observation is that, the above property indeed characterises the standard
normal distribution. Namely, a random variable Z is N(0, 1)-distributed if and
only if

E[f ′(Z)]− E[Zf(Z)] = 0 (1.5)
for a wide class of test functions f . This will be the content of Stein’s lemma in
Section 2. From this point, one naturally expects that, if the distribution of W is
“close to” N(0, 1), then the quantity E[f ′(W )]− E[Wf(W )] should be “small”.
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To quantify this property, recall that we wish to estimate (1.4) for some given
test function ϕ, whereW is a general random variable and Z d

= N(0, 1). The next
key step, is to write down a so-called Stein’s equation associated with the given
function ϕ:

f ′(x)− xf(x) = ϕ(x)− cϕ, (1.6)

where
cϕ , E[ϕ(Z)] =

1√
2π

∫
R
ϕ(z)e−z

2/2dz

is the mean of ϕ with respect to the standard normal distribution. The form
of this equation is naturally motivated from the characterisation (1.5). Stein’s
equation (1.6) is a first order linear ODE, whose solution f can be written down
easily. It follows that

f ′(W )−Wf(W ) = ϕ(W )− cϕ.

Now if we take expectation on both sides, we arrive at

E[f ′(W )]− E[Wf(W )] = E[ϕ(W )]− E[ϕ(Z)].

In particular, the original task of estimating (1.4) is magically transferred to the
estimation of the quantity

E[f ′(W )]− E[Wf(W )]. (1.7)

Note that if W = Z, this quantity is zero which is consistent with the char-
acterisation (1.5). In general, this quantity can be estimated in terms of certain
derivatives of the function f (the development of this part is the last step in Stein’s
method). Since our original goal is to estimate (1.4) in terms of ϕ, we must find
a way to estimate derivatives of the solution f in terms of suitable norms of ϕ.
This part corresponds to the analysis of Stein’s equation, which will be developed
in Section 3.

The last step, is to estimate the quantity (1.7). There is no universal approach
to this step. The analysis of this part depends heavily on the specific problem
we are considering (i.e. the specific assumption on the random variable W ). To
illustrate the essential idea, we will only develop this step in Section 4 in the
context of independent random variables, i.e. when W = Ŝn with {Xn : n > 1}
being an independent sequence. Nonetheless, we must point out that, this step can
be developed extensively in the dependent context, which makes Stein’s method
robust and powerful.
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To summarise, there are three main steps for developing Stein’s method.

Step one. Establish the characterising property for the standard normal distribu-
tion. Abstractly, this characterising property takes the form

E[Af(Z)] = 0 for all suitable test functions f.

For the standard normal distribution, we have seen that (Af)(x) = f ′(x)−xf(x).

Step two. Write down Stein’s equation associated with a given test function ϕ.
This equation takes the form

Af = ϕ− cϕ.

For the standard normal distribution, this equation is given by (1.6). Estimate
the solution f in terms of the given function ϕ.

Step three. Using the specific structure of the random variable W to estimate the
quantity E[Af(W )] in terms of f . In our Gaussian context, this quantity is given
by (1.7).

Remark 1.1. Although we are only considering Gaussian approximations, the for-
mulation of the previous three steps is robust enough to be applied to other types
of distributional approximations, i.e. when the limiting random variable Z has
other distributions (e.g. the Poisson distribution).

In the following sections, we develop the analysis for each step carefully with
our ultimate goal towards the L1-Berry-Esseen estimate in the independent case.

2 Step one: Stein’s lemma for the standard nor-
mal distribution

We start by establishing the characterising property (1.5) of N(0, 1) rigorously.
This is known as Stein’s lemma for the normal distribution.

Lemma 2.1. Let Z be a random variable. Then the following two statements are
equivalent:

(i) Z d
= N(0, 1);

(ii) for any piecewise differentiable function f : R → R that is integrable with
respect to the standard Gaussian density, we have both of E[f ′(Z)] and E[Zf(Z)]
being finite, and

E[f ′(Z)] = E[Zf(Z)].
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Proof. (i) =⇒ (ii). Suppose that Z d
= N(0, 1). Given such f, we have

E[f ′(Z)] =
1√
2π

∫ ∞
−∞

f ′(z)e−z
2/2dz

=
1√
2π

∫ 0

−∞
f ′(z)

( ∫ z

−∞
(−x)e−x

2/2dx
)
dz

+
1√
2π

∫ ∞
0

f ′(z)
( ∫ ∞

z

xe−x
2/2dx

)
dz,

where we have written

e−z
2/2 =

∫ z

−∞
(−x)e−x

2/2dx =

∫ ∞
z

xe−x
2/2dx.

By using Fubini’s theorem (exchanging the order of integration), we have∫ 0

−∞
f ′(z)

( ∫ z

−∞
(−x)e−x

2/2dx
)
dz

=

∫ 0

−∞
(−x)e−x

2/2dx

∫ 0

x

f ′(z)dz

=

∫ 0

−∞
(−x)e−x

2/2
(
f(0)− f(x)

)
dx

=

∫ 0

−∞
x
(
f(x)− f(0)

)
e−x

2/2dx.

Similarly, ∫ ∞
0

f ′(z)
( ∫ ∞

z

xe−x
2/2dx

)
dz =

∫ ∞
0

x
(
f(x)− f(0)

)
e−x

2/2dx.

Therefore,

E[f ′(Z)] =
1√
2π

∫ 0

−∞
x
(
f(x)− f(0)

)
e−x

2/2dx

+
1√
2π

∫ ∞
0

x
(
f(x)− f(0)

)
e−x

2/2dx

=
1√
2π

∫ ∞
−∞

xf(x)e−x
2/2dx

= E[Zf(Z)].
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where we have used the fact that∫ ∞
−∞

xe−x
2/2dx = 0.

(ii) =⇒ (i). Let ϕ(t) , E[eitZ ] be the characteristic function of Z. Taking
f = 1 in the assumption, we know that E[Z] is finite. By Topic 3, Theorem 4.1,
ϕ(t) is differentiable and

ϕ′(t) = iE[ZeitZ ].

On the other hand, if we choose f(x) = eitx (with t fixed), we have

E[f ′(Z)] = itE[eitZ ] = itϕ(t),

and
E[Zf(Z)] = E[ZeitZ ] = −iϕ′(t).

The assumption implies that itϕ(t) = −iϕ′(t), or equivalently

ϕ′(t) = −tϕ(t).

Since ϕ(0) = 1, the above first order linear ODE has a unique solution ϕ(t) =
e−t

2/2 which is precisely the characteristic function of N(0, 1). Therefore, we con-
clude that Z d

= N(0, 1).

3 Step two: Analysing Stein’s equation
As the next step, for a given function ϕ, we wish to estimate the solution f to
Stein’s equation

f ′(x)− xf(x) = ϕ(x)− cϕ
in terms of ϕ. To do so, we first need the following important lemma regarding
Gaussian tail estimates.

Lemma 3.1. For any x ∈ R, we have

|x|ex2/2
∫ ∞
|x|

e−t
2/2dt 6 1, ex

2/2

∫ ∞
|x|

e−t
2/2dt 6

√
π

2
.

Proof. Apparently we can assume that x > 0. The first claim follows from

xex
2/2

∫ ∞
x

e−t
2/2dt 6 ex

2/2

∫ ∞
x

te−t
2/2dt = 1.
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For the second claim, we consider the function

q(x) , ex
2/2

∫ ∞
x

e−t
2/2dt, x > 0.

Using the first part, we see that

q′(x) = xex
2/2

∫ ∞
x

e−t
2/2dt− 1 6 0,

and thus

q(x) 6 q(0) =

∫ ∞
0

e−t
2/2dt =

√
π

2
.

Remark 3.1. Heuristically, Lemma 3.1 quantifies the fact that P(|Z| > r) (Z d
=

N(0, 1)) decays like e−r2/2 as r →∞.

The key estimates for the solution of Stein’s equation is contained in the
following result.

Proposition 3.1. Let ϕ : R → R be continuously differentiable with bounded
derivative. Set

ϕ̃(x) , ϕ(x)− cϕ,

where recall that cϕ , 1√
2π

∫
R ϕ(x)e−x

2/2dx is the mean of ϕ with respect to N(0, 1).
Then

f(x) , ex
2/2

∫ x

−∞
ϕ̃(t)e−t

2/2dt, x ∈ R, (3.1)

is the unique bounded solution to Stein’s equation

f ′(x)− xf(x) = ϕ̃(x) (3.2)

associated with ϕ. In addition, f has bounded, continuous derivatives up to order
two, and the following estimates hold:

‖f‖∞ 6 2‖ϕ′‖∞, ‖f ′‖∞ 6 3

√
π

2
‖ϕ′‖∞, ‖f ′′‖∞ 6 6‖ϕ′‖∞.

Proof. From standard ODE theory, the general solution to the linear ODE (3.2)
is found to be

fc(x) = c · ex2/2 + f(x),
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where f(x) is the function defined by (3.1) and c is an arbitrary constant. In
what follows we will prove that f(x) is bounded. From this, it is clear that f(x) is
the unique bounded solution, since any choice of c 6= 0 will lead to an unbounded
solution due to the unboundedness of ex2/2.

(i) Estimating f.

Let us assume that ϕ(0) = 0, as subtracting a constant to ϕ does not change
ϕ̃ and the ODE (3.2). In this case, we have

|ϕ(t)| = |ϕ(t)− ϕ(0)| 6 ‖ϕ′‖∞ · |t| (3.3)

and

|cϕ| 6 ‖ϕ′‖∞ ·
1√
2π

∫
R
|t|e−t2/2dt = ‖ϕ′‖∞ ·

√
2

π
, (3.4)

where we have used the explicit expression for the first absolute moment ofN(0, 1).
To estimate f(x), we first consider the case when x 6 0. By using (3.3) and

(3.4), we have

|f(x)| 6 ex
2/2

∫ ∞
|x|

(
‖ϕ′‖∞ · t+ ‖ϕ′‖∞ ·

√
2

π

)
e−t

2/2dt

= ‖ϕ′‖∞ · ex
2/2

∫ ∞
|x|

te−t
2/2dt+

√
2

π
‖ϕ′‖∞ · ex

2/2

∫ ∞
|x|

e−t
2/2dt

= ‖ϕ′‖∞ +

√
2

π
‖ϕ′‖∞ · ex

2/2

∫ ∞
|x|

e−t
2/2dt.

According to Lemma 3.1, we see that

|f(x)| 6 2‖ϕ′‖∞. (3.5)

If x > 0, we use the alternative expression for f given by

f(x) = −ex2/2
∫ ∞
x

ϕ̃(t)e−t
2/2dt, (3.6)

which follows from the observation that∫ ∞
−∞

ϕ̃(t)e−t
2/2dt = 0.
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The same argument applied to (3.6) gives the same estimate as (3.5) in this case.
Therefore, we conclude that

‖f‖∞ 6 2‖ϕ′‖∞.

(ii) Estimating f ′.

First note that, since ϕ is differentiable, by differentiating the ODE (3.2) we
have

f ′′(x)− xf ′(x) = f(x) + ϕ′(x). (3.7)

Inspired by the previous argument, in order to estimate f ′, we may wish to express
f ′ as the product of ex2/2 and another function (an

∫ x
−∞-integral), just like the

case for f . For this purpose, we compute

d

dx

(
e−x

2/2f ′(x)
)

= e−x
2/2f ′′(x)− xe−x2/2f ′(x)

= e−x
2/2
(
f(x) + ϕ′(x)

)
.

Therefore,

f ′(x) = ex
2/2 ·

∫ x

−∞

(
f(t) + ϕ′(t)

)
e−t

2/2dt. (3.8)

Similar to Part (i), we first consider x 6 0. In this case, using the estimate on
f we just obtained as well as Lemma 3.1, we have

|f ′(x)| 6 3‖ϕ′‖∞ex
2/2

∫ ∞
|x|

e−t
2/2dt 6 3

√
π

2
‖ϕ′‖∞. (3.9)

If x > 0, we resort to the alternative expression that

f ′(x) = −ex2/2
∫ ∞
x

(
f(t) + ϕ′(t)

)
e−t

2/2dt. (3.10)

This is legal since∫ ∞
−∞

(
f(t) + ϕ′(t)

)
e−t

2/2dt =

∫ ∞
−∞

(
f ′′(t)− tf ′(t)

)
e−t

2/2dt = 0,

where the second equality is a simple consequence of integration by parts. The
same argument applied to (3.10) again gives (3.9) in this case. Therefore, we have

‖f ′‖∞ 6 3

√
π

2
‖ϕ′‖∞.
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(iii) Estimating f ′′.

According to the equation (3.7) for f ′′ and the expression (3.8) for f ′, we have

f ′′(x) = xex
2/2

∫ x

−∞

(
f(t) + ϕ′(t)

)
e−t

2/2dt+
(
f(x) + ϕ′(x)

)
.

We have already got all the needed ingredients to estimate the above terms. To
be precise, again by considering the cases x 6 0 and x > 0 separately, we have

|f ′′(x)| 6
(
‖f‖∞ + ‖ϕ′‖∞

)
· |x|ex2/2

∫ ∞
|x|

e−t
2/2dt+

(
‖f‖∞ + ‖ϕ′‖∞

)
6 2
(
‖f‖∞ + ‖ϕ′‖∞

)
6 6‖ϕ′‖∞,

where we have used Lemma 3.1 and the estimate on f obtained in Part (i).
Now the proof of the Proposition is complete.

4 Step 3: Establishing the L1-Berry-Esseen esti-
mate

The previous two steps on Stein’s method are entirely general. To develop the
last step, we restrict ourselves to the independent case. In its complete form, the
main theorem is stated as follows.

Theorem 4.1. Let {Xn : n > 1} be a sequence of independent random variables,
each having mean zero and finite third moment. For each n, set

Σn ,
√

Var[Sn], τn ,
(
E[|Xn|3]

)1/3
, Ŝn ,

Sn
Σn

,

where Sn , X1 + · · · + Xn. Then for any continuously differentiable function
ϕ : R→ R with bounded derivative, we have∣∣E[ϕ

(
Ŝn
)
]− E[ϕ(Z)]

∣∣ 6 9‖ϕ′‖∞ ·
∑n

m=1 τ
3
m

Σ3
n

for every n > 1, where Z d
= N(0, 1). In particular, if {Xn : n > 1} is an i.i.d.

sequence with mean zero, unit variance and τ ,
(
E[|X1|3]

)1/3
<∞, we have∣∣E[ϕ

(
Ŝn
)
]− E[ϕ(Z)]

∣∣ 6 9‖ϕ′‖∞ ·
τ 3√
n
.
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Proof. Let f be the unique bounded solution to Stein’s equation (3.2) correspond-
ing to ϕ. Then

E[ϕ
(
Ŝn
)
]− E[ϕ(Z)] = E[f ′(Ŝn)]− E[Ŝnf(Ŝn)].

As the last step in Stein’s method, our goal is to estimate the right hand side of
the above equation. For this purpose, we first introduce the following notation:

X̂m ,
Xm

Σn

, σ̂m ,
σm
Σn

, 1 6 m 6 n.

Note that σ̂2
m = E[X̂2

m], and
n∑

m=1

X̂m = Ŝn,

n∑
m=1

σ̂2
m = 1.

We can now rewrite

E[f ′(Ŝn)]− E[Ŝnf(Ŝn)] =
n∑

m=1

E[σ̂2
mf
′(Ŝn)]−

n∑
m=1

E[X̂mf(Ŝn)].

The next crucial point is to relate f(Ŝn) with f(Ŝn − X̂m) through f ′ (this
is beneficial since Ŝn − X̂m and X̂m are independent). To this end, recall from
calculus that

f(y) = f(x) +

∫ 1

0

f ′
(
(1− t)x+ ty

)
· (y − x)dt.

Taking x = Ŝn − X̂m and y = Ŝn, we can write

f(Ŝn) = f(Ŝn − X̂m) +

∫ 1

0

f ′(Tn,m(t))X̂mdt,

where to simplify notation we have set

Tn,m(t) , (1− t)(Ŝn − X̂m) + tŜn.

It follows that

E[X̂mf(Ŝn)] = E[X̂mf(Ŝn − X̂m)] + E
[
X̂2
m ·
∫ 1

0

f ′(Tn,m(t))dt
]

= E
[
X̂2
m ·
∫ 1

0

f ′(Tn,m(t))dt
]
.
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Therefore,

E[f ′(Ŝn)]− E[Ŝnf(Ŝn)]

=
n∑

m=1

E[σ̂2
mf
′(Ŝn)]−

n∑
m=1

E
[
X̂2
m ·
∫ 1

0

f ′(Tn,m(t))dt
]

=
n∑

m=1

E
[
σ̂2
m ·
(
f ′(Ŝn)− f ′(Tn,m(0))

)]
−

n∑
m=1

E
[
X̂2
m ·
∫ 1

0

(
f ′(Tn,m(t))− f ′(Tn,m(0))

)
dt
]
, (4.1)

where to reach the last equality we have used the observation that Tn,m(0) =

Ŝn − X̂m and thus

E[σ̂2
mf
′(Tn,m(0))] = E[X̂2

mf
′(Tn,m(0))].

To estimate the first summation on the right hand side of (4.1), we use∣∣f ′(Ŝn)− f ′(Tn,m(0))
∣∣ 6 ‖f ′′‖∞ · |X̂m|.

This gives∣∣E[σ̂2
m ·
(
f ′(Ŝn)− f ′(Tn,m(0))

)]∣∣ 6 ‖f ′′‖∞σ̂2
m · E[|X̂m|] 6 ‖f ′′‖∞ ·

τ 3m
Σ3
n

,

where we have used the fact that [1,∞) 3 p 7→ (E[|X|p])1/p is an increasing
function (as seen from Hölder’s inequality), and in particular,

E[|Xm|] 6 τm, σm 6 τm.

To estimate the second summation on the right hand side of (4.1), note that∣∣f ′(Tn,m(t))− f ′(Tn,m(0))
)∣∣ 6 t‖f ′′‖∞ · |X̂m|.

This gives ∣∣E[X̂2
m ·
∫ 1

0

(
f ′(Tn,m(t))− f ′(Tn,m(0))

)
dt
]∣∣ 6 1

2
‖f ′′‖∞ ·

τ 3m
Σ3
n

.

Finally, using the estimate ‖f ′′‖∞ 6 6‖ϕ′‖∞ given by Proposition 3.1, we
arrive at ∣∣E[f ′(Ŝn)]− E[Ŝnf(Ŝn)]

∣∣ 6 9‖ϕ′‖∞ ·
∑n

m=1 τ
3
m

Σ3
n

,

which is the desired estimate.
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We have mentioned earlier that we wish to obtain the L1-Berry-Esseen esti-
mate, i.e. the L1-distance between the distribution functions of Ŝn and N(0, 1).
We give a heuristic argument to see how Theorem 4.1 gives rise to such an L1-
estimate. Making this argument rigorous is not a trivial task, which will be
deferred to the appendix.

Let Fn be the distribution function of Ŝn, and let Φ be the distribution function
of N(0, 1). First of all, a naive integration by parts gives∫

R
ϕ(x)dFn(x)−

∫
R
ϕ(x)dΦ(x) =

∫
R
ϕ′(x)(Φ(x)− Fn(x))dx. (4.2)

Therefore, Theorem 4.1 tells us that∣∣ ∫
R
ϕ′(x)

(
Φ(x)− Fn(x)

)∣∣ 6 Cn · ‖ϕ′‖∞ (4.3)

for any ϕ with ϕ′ ∈ Cb(R), where

Cn , 9 ·
∑n

m=1 τ
3
m

Σ3
n

is the constant giving the rate of convergence. Of course symbolically we can just
write ψ , ϕ′ to indicate that∣∣ ∫

R
ψ(x)(Fn(x)− Φ(x))dx

∣∣ 6 Cn‖ψ‖∞

is true for any bounded continuous function ψ. From this point, it is not too
surprising to expect that,

‖Fn − Φ‖L1 =

∫
R
|Fn(x)− Φ(x)| 6 Cn.

In fact, if we were allowed to choose ψ(x) = sgn(Fn(x) − G(x)) where sgn(x) is
the function defined by

sgn(x) ,


1, x > 0,

−1, x < 0,

0, x = 0,

then we have ‖ψ‖∞ 6 1 and∫
R
ψ(x)(Fn(x)− Φ(x))dx =

∫
R
|Fn(x)− Φ(x)|dx,
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yielding the desired L1-estimate. The main difficulty here is that ψ(x) is not a
continuous function. Getting around this difficulty requires some analysis.

To summarise, the L1-Berry-Esseen estimate is given by the following result.

Corollary 4.1. Under the same set-up as in Theorem 4.1, we have∫ ∞
−∞
|Fn(x)− Φ(x)|dx 6 9

∑n
m=1 τ

3
m

Σ3
n

. (4.4)

In particular, in the i.i.d. context we have∫ ∞
−∞
|Fn(x)− Φ(x)|dx 6 9

τ 3√
n
.

5 Some further remarks and scopes
We conclude this topic and the subject by giving a few further comments on the
development of Stein’s method.

(i) Let us take a second look at our previous heuristic argument about obtaining
the L1-Berry-Esseen estimate. The fact that the right hand side of (4.3) is the
uniform norm of ϕ′ leads us to the L1-estimate for the distribution functions.
Through a naive duality viewpoint, if we were able to replace the right hand side
of (4.3) by the L1-norm of ϕ′ (‖ϕ′‖L1 ,

∫
R |ϕ

′(x)|dx), we should be able to deduce
the uniform Berry-Esseen estimate. This requires strengthening the analysis of
Stein’s equation (cf. Proposition 3.1) to estimating the uniform norms of f, f ′, f ′′
in terms of ‖ϕ′‖L1 . It can be done for f, f ′ but not for f ′′! This is what makes the
uniform Berry-Esseen estimate much harder than the L1-estimate. The result is
stated as follows.

Theorem 5.1 (The Uniform Berry-Esseen Estimate). Under the same notation
as in Theorem 4.1 and Corollary 4.1, we have

‖Fn − Φ‖∞ 6 10 ·
∑n

m=1 τ
3
m

Σ3
n

.

In particular, in the i.i.d. context we have

‖Fn − Φ‖∞ 6 10 · τ
3

√
n
.
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A proof that follows the current line of argument is contained in Reference [3].

(ii) As we have mentioned earlier, Step 3 in Stein’s method can be developed in the
more general context of dependent random variables. In addition, the philosophy
of this method is robust enough to be applied to other types of distributional
approximations. One important topic is about Poisson approximations. Reference
[1] contains the discussion of such extensions.

(iii) There are extensions of the one-dimensional theory we developed here to mul-
tivariate Gaussian approximations. A natural way of performing the analysis in
the multidimensional context is to combine modern tools from Gaussian analysis.
Reference [2] contains a nice modern introduction to this topic.

(iv) There is a modern viewpoint of Stein’s method, known as the generator
approach, that leads to more profound applications such as distributional approx-
imations for stochastic processes. Suppose that µ is the target distribution that
we wish to approximate. µ can be defined on R, Rn or even an infinite dimensional
space S (e.g. the space of continuous paths if we are in the context of stochastic
process approximations). As the first step in Stein’s method, we need to identify
the Stein operator, say A, which is an operator acting on a space of functions on
S, so that the property

E[Af(Z)] = 0 ∀f

uniquely characterises the distribution µ. The key idea behind the generator ap-
proach is to regard µ as the invariant measure of some S-valued Markov process.
The Stein operator A will then be given by the generator of this Markov process,
and the associated Stein’s equation can be studied through the structure of this
Markov process. Reference [1] contains an introduction to this approach.
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6 Appendix: A functional analytic lemma for ob-
taining the L1-Berry-Esseen estimate

We now provide the precise details which allow us to obtain the L1-Berry-Esseen
estimate (4.4) from Theorem 4.1. As the first main ingredient, we prove (4.2)
rigorously.

Lemma 6.1. Let F,G : R → R be distribution functions with finite first mo-
ment, i.e.

∫
R |x|dF (x) and

∫
R |x|dG(x) are both finite. Let ψ be a bounded Borel-

measurable function and define ϕ(x) ,
∫ x
0
ψ(u)du. Then∫

R
ϕ(x)dF (x)−

∫
R
ϕ(x)dG(x) =

∫
R
ψ(x)

(
G(x)− F (x)

)
dx. (6.1)

Proof. We can write∫
R
ϕ(x)dF (x)

=

∫
R

( ∫ x

0

ψ(u)du
)
dF (x)

= −
∫ 0

−∞

∫ 0

x

ψ(u)dudF (x) +

∫ ∞
0

∫ x

0

ψ(u)dudF (x)

= −
∫ 0

−∞
ψ(u)F (u)du+

∫ ∞
0

ψ(u)(1− F (u))du,

where in the last equality we have used Fubini’s theorem to exchange the order
of integration. Similarly,∫

R
ϕ(x)dG(x) = −

∫ 0

−∞
ψ(u)G(u)du+

∫ ∞
0

ψ(u)(1−G(u))du.

By subtracting the two results, we obtain (6.1).

The other main ingredient is to see why restricting to the class Cb(R) of test
functions will allow us to recover the L1-norm. This is the content of the following
lemma.

Lemma 6.2. Let Q : R → R be a function which contains at most countably
many discontinuity points and suppose that

∫
R |Q(x)|dx <∞. Then∫

R
|Q(x)|dx = sup

{∣∣ ∫
R
ϕ(x)Q(x)dx

∣∣ : ϕ ∈ Cb(R), ‖ϕ‖∞ 6 1
}
. (6.2)
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Proof. For any ϕ with ‖ϕ‖∞ 6 1, we have∣∣ ∫
R
ϕ(x)Q(x)dx

∣∣ 6 ‖ϕ‖∞ · ∫
R
|Q(x)|dx 6

∫
R
|Q(x)|dx.

Therefore, the right hand side of (6.2) is not greater than the left hand side. To
prove the other direction, first note that∫

R
|Q(x)|dx =

∫
R

sgn(Q(x)) ·Q(x)dx,

where sgn(x) is the function defined by

sgn(x) ,


1, x > 0,

−1, x < 0,

0, x = 0.

We set ψ(x) , sgn(Q(x)). The main difficulty here is that ψ(x) is not a continuous
function, and thus we need to construct Cb(R)-approximations.

For this purpose, for each ε > 0, let us choose a continuous function ρε : R→ R
such that

ρε > 0,

∫
R
ρε(x)dx = 1

and ρε(x) = 0 for any |x| > ε. Define ψε to be the convolution of ψ and ρε, i.e.

ψε(x) ,
∫
R
ψ(x− y)ρε(y)dy =

∫
R
ρε(x− y)ψ(y)dy. (6.3)

Using the latter expression, one can check that ψε is continuous. Since |ψ| 6 1,
we also know that

|ψε(x)| 6
∫
R
|ψ(x− y)| · ρε(y)dy 6

∫
R
ρε(y)dy = 1.

Therefore, ψε ∈ Cb(R). It may not be true that ψε(x)→ ψ(x) for every x ∈ R as
ε→ 0, however, we claim that

lim
ε→0

∫
R
ψε(x)Q(x)dx =

∫
R
ψ(x)Q(x)dx. (6.4)

If we can prove this, it is then immediate that the left hand side of (6.2) is not
greater than the right hand side, and the proof of (6.2) will be finished.
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To prove (6.4), let CQ be the set of continuity points of Q. The crucial obser-
vation is that,

ψε(x)1{x:Q(x)6=0}∩CQ(x)→ ψ(x)1{x:Q(x)6=0}∩CQ(x) (6.5)

as ε → 0. Indeed, if x is a continuity point of Q and Q(x) 6= 0, we know by
continuity that Q(x) does not change sign in a small neighbourhood of x. Suppose
that Q(x) > 0 (so that ψ(x) = 1). Then there exists δ > 0 such that Q(x−y) > 0
for any y ∈ (−δ, δ). In particular,

ψ(x− y) = sgn(Q(x− y)) = 1, y ∈ (−δ, δ).

According to the constructions of ρε and ψε, for any ε < δ we have

ψε(x) =

∫
R
ψ(x− y)ρε(y)dy =

∫
(−ε,ε)

1 · ρε(y)dy = 1 = ψ(x),

which trivially implies that ψε(x) → ψ(x) as ε → 0. Therefore, (6.5) holds. The
dominated convergence theorem then implies that∫

{x:Q(x) 6=0}∩CQ
ψε(x)Q(x)dx→

∫
{x:Q(x) 6=0}∩CQ

ψ(x)Q(x)dx.

On the other hand, since CcQ is at most countable (and thus has zero Lebesgue
measure), we know that∫

R
ψε(x)Q(x)dx =

∫
{x:Q(x)6=0}

ψε(x)Q(x)dx

=

∫
{x:Q(x)6=0}∩CQ

ψε(x)Q(x)dx.

The same property holds for ψ(x). Therefore, we conclude that (6.4) holds.

The above two lemmas enable us to make our previous heuristic argument of
obtaining the L1-Berry-Esseen estimate from Theorem 4.1 rigorous.

Proof of Corollary 4.1. In Theorem 4.1, we have shown that

∣∣ ∫
R
ϕ(x)dFn(x)−

∫
R
ϕ(x)dΦ(x)

∣∣ 6 9‖ϕ′‖∞ ·
∑n

m=1 τ
3
m

Σ3
n
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for any ϕ with ϕ′ ∈ Cb(R). Using Lemma 6.1 and setting ψ , ϕ′, we conclude that

∣∣ ∫
R
ψ(x)

(
Fn(x)− Φ(x)

)
dx
∣∣ 6 9‖ψ‖∞ ·

∑n
m=1 τ

3
m

Σ3
n

for any ψ ∈ Cb(R). The L1-estimate (4.4) then follows from Lemma 6.2 with
Q , Fn − Φ.
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