Here, I collect my publications to date. Clicking on the title should give you the definitive version, while clicking on the arXiv number should take you to the corresponding arXiv page. Generally, both are close to identical though the definitive version may have fixed typos that aren't worth an arXiv replacement. Please let me know if you find any errors or confusions (and please consider donating to the arXiv, in my opinion the single most important resource for fundamental science research). Hopefully, the numbers (and severities) of errors and confusions are both decreasing with time.
A Gainutdinov, D Ridout and I Runkel (Eds). Logarithmic conformal field theory, a special issue of the Journal of Physics A46:490301, 2013. Preface (5 pages).
T Creutzig, D Ridout and M Rupert. A Kazhdan–Lusztig correspondence for L_{-3/2}(sl_{3}). 2021, arXiv:2112.13167 [math.RT] (42 pages).
Z Fehily and D Ridout. Modularity of Bershadsky–Polyakov minimal models. Letters in Mathematical Physics 112:46, 2022, arXiv:2110.10336 [math.QA] (61 pages).
K Kawasetsu, D Ridout and S Wood. Admissible-level sl_{3} minimal models. Letters in Mathematical Physics (to appear), arXiv:2107.13204 [math.QA] (37 pages).
C Raymond, D Ridout and J Rasmussen. Staggered modules of N=2 superconformal minimal models. Nuclear Physics B967:115397, 2021, arXiv:2102.05193 [hep-th] (25 pages).
A Babichenko, K Kawasetsu, D Ridout and W Stewart. Representations of the Nappi–Witten vertex operator algebra. Letters in Mathematical Physics 111:131, 2021, arXiv:2011.14453 [math-ph] (21 pages).
Z Fehily, K Kawasetsu and D Ridout. Classifying relaxed highest-weight modules for admissible-level Bershadsky–Polyakov algebras. Communications in Mathematical Physics 385:859–904, 2021, arXiv:2007.03917 [math.RT].
D Adamović, K Kawasetsu and D Ridout. A realisation of the Bershadsky–Polyakov algebras and their relaxed modules. Letters in Mathematical Physics 111:38, 2021, arXiv:2007.00396 [math.QA] (30 pages).
T Creutzig, C Jiang, F Orosz Hunziker, D Ridout and J Yang. Tensor categories arising from the Virasoro algebra. Advances in Mathematics 380:107601, 2021, arXiv:2002.03180 [math.RT] (35 pages).
K Kawasetsu and D Ridout. Relaxed highest-weight modules II: classifications for affine vertex algebras. Communications in Contemporary Mathematics 24:2150037, 2022, arXiv:1906.02935 [math.RT] (43 pages).
T Creutzig, T Liu, D Ridout and S Wood. Unitary and non-unitary N=2 minimal models. Journal of High Energy Physics 1906:024, 2019, arXiv:1902.08370 [math-ph] (32 pages).
S Kanade and D Ridout. NGK and HLZ: fusion for physicists and mathematicians. in Affine, Vertex and W-algebras, Springer INdAM Series 37:135–181, 2019, arXiv:1812.10713 [math-ph].
T Creutzig, S Kanade, T Liu and D Ridout. Cosets, characters and fusion for admissible-level osp(1|2) minimal models. Nuclear Physics B938:22–55, 2018, arXiv:1806.09146 [hep-th].
K Kawasetsu and D Ridout. Relaxed highest-weight modules I: rank 1 cases. Communications in Mathematical Physics 368:627–663, 2019, arXiv:1803.01989 [math.RT].
D Ridout, S Siu and S Wood. Singular vectors for the W_N algebras. Journal of Mathematical Physics 59:031701, 2018, arXiv:1711.10804 [math-ph] (18 pages).
D Ridout, J Snadden and S Wood. An admissible level osp(1|2)-model: modular transformations and the Verlinde formula. Letters in Mathematical Physics 108:2363–2423, 2018, arXiv:1705.04006 [hep-th].
J Auger, T Creutzig and D Ridout. Modularity of logarithmic parafermion vertex algebras. Letters in Mathematical Physics 108:2543–2587, 2018, arXiv:1704.05168 [math.QA].
T Creutzig, S Kanade, A Linshaw and D Ridout. Schur–Weyl duality for Heisenberg cosets. Transformation Groups 24:301–354, 2019, arXiv:1611.00305 [math.QA].
O Blondeau–Fournier, P Mathieu, D Ridout and S Wood. Superconformal minimal models and admissible Jack polynomials. Advances in Mathematics 314:71–123, 2017, arXiv:1606.04187 [hep-th].
O Blondeau–Fournier, P Mathieu, D Ridout and S Wood. The super-Virasoro singular vectors and Jack superpolynomials relationship revisited. Nuclear Physics B913:34–63, 2016, arXiv:1605.08621 [math-ph].
J Belletête, D Ridout and Y Saint–Aubin. Restriction and induction of indecomposable modules over the Temperley–Lieb algebras. Journal of Physics A51:045201, 2018, arXiv:1605.05159 [math-ph] (55 pages).
M Canagasabey and D Ridout. Fusion rules for the logarithmic N=1 superconformal minimal models II: including the Ramond sector. Nuclear Physics B905:132–187, 2016, arXiv:1512.05837 [hep-th].
M Canagasabey, J Rasmussen and D Ridout. Fusion rules for the logarithmic N=1 superconformal minimal models I: the Neveu–Schwarz sector. Journal of Physics A48:415402, 2015, arXiv:1504.03155 [hep-th] (49 pages).
A Morin–Duchesne, J Rasmussen and D Ridout. Boundary algebras and Kac modules for logarithmic minimal models. Nuclear Physics B899:677–769, 2015, arXiv:1503.07584 [hep-th].
D Ridout and S Wood. Relaxed singular vectors, Jack symmetric functions and fractional level sl(2) models. Nuclear Physics B894:621–664, 2015, arXiv:1501.07318 [hep-th].
D Ridout and S Wood. From Jack polynomials to minimal model spectra. Journal of Physics A48:045201, 2015, arXiv:1409.4847 [hep-th] (17 pages).
D Ridout and S Wood. The Verlinde formula in logarithmic CFT. Journal of Physics: Conference Series 597:012065, 2015, arXiv:1409.0670 [hep-th] (11 pages).
D Ridout and S Wood. Bosonic ghosts at c=2 as a logarithmic CFT. Letters in Mathematical Physics 105:279–307, 2015, arXiv:1408.4185 [hep-th].
D Ridout and S Wood. Modular transformations and Verlinde formulae for logarithmic (p_+,p_-)-models. Nuclear Physics B880:175–202, 2014, arXiv:1310.6479 [hep-th].
T Creutzig and D Ridout. Modular data and Verlinde formulae for fractional level WZW models II. Nuclear Physics B875:423–458, 2013, arXiv:1306.4388 [hep-th].
T Creutzig, D Ridout and S Wood. Coset constructions of logarithmic (1,p)-models. Letters in Mathematical Physics 104:553–583, 2014, arXiv:1305.2665 [math.QA].
T Creutzig and D Ridout. Logarithmic conformal field theory: beyond an introduction. Journal of Physics A46:494006, 2013, arXiv:1303.0847 [hep-th] (72 pages).
A Babichenko and D Ridout. Takiff superalgebras and conformal field theory. Journal of Physics A46:125204, 2013, arXiv:1210.7094 [math-ph] (26 pages).
T Creutzig and D Ridout. Modular data and Verlinde formulae for fractional level WZW models I. Nuclear Physics B865:83–114, 2012, arXiv:1205.6513 [hep-th].
D Ridout and Y Saint–Aubin. Standard modules, induction and the Temperley–Lieb algebra. Advances in Theoretical and Mathematical Physics 18:957–1041, 2014, arXiv:1204.4505 [math-ph].
D Ridout. Non-chiral logarithmic couplings for the Virasoro algebra. Journal of Physics A45:255203, 2012, arXiv:1203.3247 [hep-th] (12 pages).
T Creutzig and D Ridout. W-algebras extending gl(1|1). Springer Proceedings in Mathematics and Statistics 36:349–368, 2013, arXiv:1111.5049 [hep-th].
T Creutzig and D Ridout. Relating the archetypes of logarithmic conformal field theory. Nuclear Physics B872:348–391, 2013, arXiv:1107.2135 [hep-th].
D Ridout and J Teschner. Integrability of a family of quantum field theories related to sigma models. Nuclear Physics B853:327–378, 2011, arXiv:1102.5716 [hep-th].
D Ridout. Fusion in fractional level sl(2)-theories with k=-1/2. Nuclear Physics B848:216–250, 2011, arXiv:1012.2905 [hep-th].
D Ridout. sl(2)_{-1/2} and the triplet model. Nuclear Physics B835:314–342, 2010, arXiv:1001.3960 [hep-th].
K Kytölä and D Ridout. On staggered indecomposable Virasoro modules. Journal of Mathematical Physics 50:123503, 2009, arXiv:0905.0108 [math-ph] (51 pages).
D Ridout. sl(2)_{-1/2}: A case study. Nuclear Physics B814:485–521, 2009, arXiv:0810.3532 [hep-th].
D Ridout. On the percolation BCFT and the crossing probability of Watts. Nuclear Physics B810:503–526, 2009, arXiv:0808.3530 [hep-th].
P Mathieu and D Ridout. Logarithmic M(2,p) minimal models, their logarithmic couplings, and duality. Nuclear Physics B801:268–295, 2008, arXiv:0711.3541 [hep-th].
P Mathieu and D Ridout. From percolation to logarithmic conformal field theory. Physics Letters B657:120–129, 2007, arXiv:0708.0802 [hep-th].
P Mathieu and D Ridout. The extended algebra of the minimal models. Nuclear Physics B776:365–404, 2007, arXiv:hep-th/0701250 .
P Mathieu and D Ridout. The extended algebra of the SU(2) Wess–Zumino–Witten models. Nuclear Physics B765:201–239, 2007, arXiv:hep-th/0609226 .
P Bouwknegt and D Ridout. Presentations of Wess‐Zumino–Witten fusion rings. Reviews in Mathematical Physics 18:201–232, 2006, arXiv:hep-th/0602057 .
P Bouwknegt and D Ridout. A note on the equality of algebraic and geometric D-brane charges in WZW models. Journal of High Energy Physics 05 (2004) 029, 2004, arXiv:hep-th/0312259 (13 pages).
P Bouwknegt, P Dawson, and D Ridout. D-branes on group manifolds and fusion rings. Journal of High Energy Physics 12 (2002) 065, 2002, arXiv:hep-th/0210302 (22 pages).
D Ridout and K Judd. Convergence properties of gradient descent noise reduction. Physica D165:26–47, 2002.
P Bouwknegt, L Chim, and D Ridout. Exclusion statistics in conformal field theory and the UCPF for WZW models. Nuclear Physics B572:547–573, 2000, arXiv:hepth/9903176.
D Ridout. D-Brane Charge Groups and Fusion Rings in Wess-Zumino-Witten Models. Doctoral Thesis, University of Adelaide, 2005. [Adelaide Library link]
D Ridout. Convergence Properties of Noise Reduction by Gradient Descent. Masters Thesis, University of Western Australia, 2001.
D Ridout. Applications of Functional Analysis in Quantum Scattering Theory. Honours Thesis, Murdoch University, 1998.